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ABSTRACT. A bipartite graph H = (Vi, Va; E) with |Vi|+|Va| = n
is semilinear if V; C R% for some d; and the edge relation E
consists of the pairs of points (x1,22) € Vi x Vi satisfying a
fixed Boolean combination of s linear equalities and inequalities
in dy + ds variables for some s. We show that for a fixed k, the
number of edges in a Kj, j-free semilinear H is almost linear in
n, namely |E| = Os(n't) for any ¢ > 0; and more gener-
ally, |E| = Os gre(n""1%¢) for a Ky j-free semilinear r-partite
r-uniform hypergraph.

As an application, we obtain the following incidence bound:
given n, points and ny open boxes with axis parallel sides in R?
such that their incidence graph is Kj, ;-free, there can be at most
Ok)s(nl*‘E ) incidences. The same bound holds if instead of boxes
one takes polytopes cut out by the translates of an arbitrary fixed
finite set of halfspaces.

We also obtain matching upper and (superlinear) lower bounds
in the case of dyadic boxes on the plane, and point out some con-
nections to the model-theoretic trichotomy in o-minimal structures
(showing that the failure of an almost linear bound for some de-
finable graph allows one to recover the field operations from that
graph in a definable manner).

1. INTRODUCTION

We fix r € N>y and let H = (V4,...,V,; E) be an r-partite and 7-
uniform hypergraph (or just r-hypergraph for brevity) with vertex sets
Vi,...,V, having |V;| = n;, (hyper-) edge set E, and n =Y ;_, n; being
the total number of vertices.

Zarankiewicz’s problem asks for the maximum number of edges in
such a hypergraph H (as a function of ny,...,n,) assuming that it
does not contain the complete r-hypergraph Ky, with £ > 0 a fixed
number of vertices in each part. The following classical upper bound is

due to Kévari, Sés and Turédn [1 1] for » = 2 and Erdés [7] for a general
1
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r: if H is K},
struction in [7] also shows that the exponent cannot be substantially
improved.

However, stronger bounds are known for restricted families of hy-
pergraphs arising in geometric settings. For example, if H is the
incidence graph of a set of n; points and n, lines in R?, then H is
K o-free, and K6vari-Sés-Turdn Theorem implies |E| = O(n%/2). The
Szemerédi-Trotter Theorem [17] improves this and gives the optimal
bound |E| = O(n*/?). More generally, [10] gives improved bounds for
semialgebraic graphs of bounded description complexity. This is gener-
alized to semialgebraic hypergraphs in [0]. In a different direction, the
results in [10] are generalized to graphs definable in o-minimal struc-
tures in [1] and, more generally, in distal structures in [3].

A related highly nontrivial problem is to understand when the bounds
offered by the results in the preceding paragraph are sharp. When H
is the incidence graph of n; points and ns circles of unit radius in R2,
the best known upper bound is |E| = O(n*3), proven in [16] and also
implied by the general bound for semialgebraic graphs. Any improve-
ment to this bound will be a step toward resolving the long standing
unit distance conjecture of Erdds (an almost linear bound of the form
|E| = O(n'*e/loglen) will positively resolve it).

This paper was originally motivated by the following incidence prob-
lem. Let H be the incidence graph of a set of n; points and a set of
ng solid rectangles with axis-parallel sides (which we refer to as bozes)
in R% Assuming that H is Kjo-free, i.e. no two points belong to two
rectangles simultaneously, what is the maximum number of incidences
|E|? In the following theorem, we obtain an almost linear bound (which
is much stronger than the bound implied by the aforementioned gen-
eral result for semialgebraic graphs) and demonstrate that it is close
to optimal.

Theorem (A). (1) For any set P of ny points in R? and any set R of
ny bozes in R?, if the incidence graph on P x R is Ky, y-free, then
it contains at most Oy (nlog*(n)) incidences (Corollary 2.38 with
d=2).

(2) If all bozes in R are dyadic (i.e. direct products of intervals of
the form [s2!, (s +1)2') for some integers s,t), then the number of

incidences is at most Oy, (n%) (Theorem 4.7).

(8) For an arbitrarily large n, there exist a set of n points and n dyadic
bozes in R? so that the incidence graph is Ky o-free and the number

of incidences is (”102)&(;()71)) (Proposition 3.5).

r-free, then |E| = O, <nr_k’%1>. A probabilistic con-

-----
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Problem 1.1. While the bound for dyadic boxes is tight, we leave it
as an open problem to close the gap between the upper and the lower
bounds for arbitrary boxes.

Remark 1.2. A related result in [9] demonstrates that every K y-free
intersection graph of n convex sets on the plane satisfies |FE| = Og(n).
Note that in Theorem (B) we consider a Ky, g-free bipartite graph, so in
particular there is no restriction on the intersection graph of the boxes
in R.

Theorem (A.1) admits the following generalization to higher dimen-
sions and more general polytopes.

Theorem (B). (1) For any set P of ny points and any set B of ngy
bozes in R?, if the incidence graph on P x B is Ky, y-free, then it
contains at most Ogy, (nlog® n) incidences (Corollary 2.38).

(2) More generally, given finitely many half-spaces Hy, ..., Hy in R?,
let F be the family of all possible polytopes in R cut out by arbitrary
translates of Hy,...,H,. Then for any set P of n, points in R?
and any set F of ny polytopes in F, if the incidence graph on
PxFis Ky p-free, then it contains at most Oy, s (nlog® n) incidences

(Corollary 2.37).

Problem 1.3. What is the optimal bound on the power of logn in
Theorem (B)? In particular, does it actually have to grow with the
dimension d?

Remark 1.4. A bound similar to Theorem (B.1) and an improved bound
for Theorem (A.1) in the Kj-free case are established independently
by Tomon and Zakharov in | ], in which the authors also use our
Theorem (A.3) to provide a counterexample to a conjecture of Alon et
al. | ] about the number of edges in a graph of
bounded separation dimension, as well as to a conjecture of Kostochka
from | |. Some further Ramsey properties of
semilinear graphs are demonstrated by Tomon in | .

The upper bounds in Theorems (A.1) and (B) are obtained as imme-
diate applications of a general upper bound for Zarankiewicz’s problem
for semilinear hypergraphs of bounded description complexity.

Definition 1.5. Let V' be an ordered vector space over an ordered
division ring R (e.g. R viewed as a vector space over itself). A set
X C V4is semilinear, of description complexity (s,t) if X is a union
of at most ¢ sets of the form

TV @) <0, f,(2) S0, 1 () <0, fo (7) < 0},



4 A.BASIT, A. CHERNIKOV, S. STARCHENKO, T.TAO, AND C.-M.TRAN

where p < s € N and each f; : V¢ — V is a linear function, i.e., of the
form

f(:cl,...,xd) :A1x1+...+)\d:cd+a
for some \; € Rand a € V.

We focus on the case V = R = R in the introduction, in which case
these are precisely the semialgebraic sets that can be defined using only
linear polynomials.

Remark 1.6. By a standard quantifier elimination result [, §7], every
set definable in an ordered vector space over an ordered division ring,
in the sense of model theory, is semilinear (equivalently, a projection
of a semilinear set is a finite union of semilinear sets).

Definition 1.7. We say that an r-hypergraph H is semilinear, of de-
scription complezity (s,t) if there exist some d; € N,V; C R% and a
semilinear set X C R? = Hie[r] R% of description complexity (s,t) so

that H is isomorphic to the r-hypergraph (Vl, Ve XN Hie[r] VZ->.

We stress that there is no restriction on the dimensions d; in this
definition. We obtain the following general upper bound.

Theorem (C). If H is a semilinear r-hypergraph of description com-
plexity (s,t) and H is Ky ;-free, then

|E| _ Or,s,t,k) (nr—l lOgs(?Ll_l) (n)> )

In particular |E| = O, ss5c (n"717¢) for any ¢ > 0 in this case.

For a more precise statement, see Corollary 2.36 (in particular, the
dependence of the constant in O, on k is at most linear).

Remark 1.8. It is demonstrated in [14] that a similar bound holds in the
situation when H is the intersection hypergraph of (d — 1)-dimensional
simplices in R

One can get rid of the logarithmic factor entirely by restricting to
the family of all finite r-hypergraphs induced by a given Kj _i-free
semilinear relation (as opposed to all K}, _j-free r-hypergraphs induced
by a given arbitrary semilinear relation as in Theorem (C)).

Theorem (D). Assume that X C R? =[],
X does not contain the direct product of r infinite sets (e.g. if X is
Ky g-free for some k). Then for any r-hypergraph H of the form

(Vl,...,VT;XﬂHiE[T] V;) for some finite V; C R% we have |E| =
Ox(nrfl).

R% 4s semilinear and
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This is Corollary 5.12 and follows from a more general Theorem
5.6 connecting linear Zarankiewicz bounds to a model-theoretic notion
of linearity of a first-order structure (in the sense that the matroid
given by the algebraic closure operator behaves like the linear span in
a vector space, as opposed to the algebraic closure in an algebraically
closed field — see Definition 5.3).

In particular, for every Kj j-free semilinear relation X C R™ x R%
(equivalently, X definable with parameters in the first-order structure
(R, <,+) by Remark 1.6) we have | X N (V] x V,)| = O(n) for all
Vi C R?i, Vi| = ni,n = ny + ny. One the other hand, by optimality of
the Szemerédi-Trotter bound, for the semialgebraic K o-free point-line
incidence graph X = {(z1, To;y1,92) € R* : 19 = y111 + 12} C R? x R?
we have | X N (V; x V)| = Q(n3). Note that in order to define it we use
both addition and multiplication, i.e. the field structure. This is not co-
incidental — as a consequence of the trichotomy theorem in o-minimal
structures [15], we observe that the failure of a linear Zarankiewicz
bound always allows to recover the field in a definable way (Corollary
5.11). In the semialgebraic case, we have the following corollary that
is easy to state (Corollary 5.14).

Theorem (E). Assume that X CR? =[],y R% for somer,d; € N is
semialgebraic and Ky p-free, but | X N Hiem Vi| # O(n"=1). Then the

graph of multiplication x [ restricted to the unit box is definable in
(R, <, +, X).

We conclude with a brief overview of the paper.

In Section 2 we introduce a more general class of hypergraphs de-
finable in terms of coordinate-wise monotone functions (Definition 2.1)
and prove an upper Zarankiewicz bound for it (Theorem 2.17). Theo-
rems (A.1), (B) and (C) are then deduced from it in Section 2.5.

In Section 3 we prove Theorem (A.3) by establishing a lower bound
on the number of incidences between points and dyadic boxes on the
plane, demonstrating that the logarithmic factor is unavoidable (Propo-
sition 3.5).

In Section 4, we establish Theorem (A.2) by obtaining a stronger
bound on the number of incidences with dyadic boxes on the plane
(Theorem 4.7). We use a different argument relying on a certain partial
order specific to the dyadic case to reduce from log*(n) given by the
general theorem above to log(n). Up to a constant factor, this implies
the same bound for incidences with general boxes when one only counts
incidences that are bounded away from the border (Remark 4.8).
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Finally, in Section 5, we prove a general Zarankiewicz bound for de-
finable relations in weakly locally modular geometric first-order struc-
tures (Theorem 5.6), deduce Theorem (D) from it (Corollary 5.12) and
observe how to recover a real closed field from the failure of Theorem
(D) in the o-minimal case (Corollary 5.11).
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2. UPPER BOUNDS

2.1. Coordinate-wise monotone functions and basic sets. For
an integer r € Nyg, by an r-grid (or a grid if r is clear from the
context) we mean a cartesian product B = ByXx --- X B, of some sets
By, ..., B,. As usual, [r] denotes the set {1,2,...,r}.

If B= B;x---xB, is a grid, then by a sub-grid we mean a subset
C C B of the form C = C; x --- x C, for some C; C B;.

Let B be an r-grid, S an arbitrary set and f : B — S a function.
For i € [r], set

Bi:Bl X "'Bi,1 XBiJrl Xoee XBT,
and let m; : B — B; and 7' : B — B® be the projection maps.

For a € B and b € B;, we write a @; b for the element ¢ € B with
7'(c) = a and 7;(c) = b. In particular, when i = r, a ®, b = (a, b).

Definition 2.1. Let B be an r-grid and (5, <) a linearly ordered set.
A function f: B — S is coordinate-wise monotone if for any i € [r],
a,a’ € B and b, b € B; we have

fla®ib) < fla®; V) <= f(a' @;b) < f(a @ V).

Remark 2.2. Let B = Byx---xB, be an r-grid and I' an ordered
abelian group. We say that a function f: B — [ is quasi-linear if
there exist some functions f;: B; — I, i € [r], such that

f(.il?l, ce ,.237») = fl(xl) + -+ fr($,~).

Then every quasi-linear function is coordinate-wise monotone (as

fla®;b) < fla®i V) & fi(b) < fi(V) for any a € BY).
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Example 2.3. Suppose that V is an ordered vector space over an ordered
division ring R, d; € Nfori € [r],and f: V4 x --- x V¥ — Visa
linear function. Then f is obviously quasi-linear, hence coordinate-wise
monotone.

Remark 2.4. Let B be a grid and C C B a sub-grid. If f: B — S
is a coordinate-wise monotone function then the restriction f| C is a
coordinate-wise monotone function on C.

Definition 2.5. Let B be an r-grid. A subset X C B is a basic set if
there exists a linearly ordered set (5, <), a coordinate-wise monotone

function f: B — S and [ € S such that X = {b € B: f(b) < (}.
Remark 2.6. If r = 1, then every subset of B = B; is basic.

Remark 2.7. If X C B is given by X = {be B: f(b) <1} for some
coordinate-wise monotone function f: B — S, then X is a basic set
as well. Indeed, we can just add a new element !’ to S so that it is a
successor of [, then X = {be€ B : f(b) <'}.

Similarly, the sets {b € B: f(b) > },{b € B: f(b) > [} are basic, by
inverting the order on S.

We have the following “coordinate-splitting” presentation for basic
sets.

Proposition 2.8. Let B = Byx---xB, be an r-grid and X C B a
basic set. Then there is a linearly ordered set (S, <), a coordinate-wise
monotone function f": B" — S and a function f.: B, — S such that

X = {0 @, b fr(07) < fr(bo)}

Remark 2.9. The converse of this proposition is also true: an arbitrary
linear order (S, <) can be realized as a subset of some ordered abelian
group (G, +, <) with the induced ordering (we can take G := Q when
S is at most countable); then define f : B — S by setting

FO" @, by) = (") — £,(b,), and [ == 0.

Proof of Proposition 2.8. Assume that we are given a coordinate-wise
monotone function f: B — S and [ € S with X ={be€ B: f(b) <}.

For i € [r], let <; be the pre-order on B; induced by f, namely for
b, b € B; we set b <; I/ if and only if for some (equivalently, any) a € B’
we have f(a @; b) < f(a®; V).

Quotienting B; by the equivalence relation corresponding to the pre-
order <; if needed, we may assume that each <; is actually a linear
order.
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Let <" be the partial order on B” with (by,...,b.—1) <" (b},...,b._,)
if and only if

(bl, e ,br—l) 7é (bll, e 7b;“—1) and bj Sj b; for all] c [T - ]_]

Let T := B"UB,, where U denotes the disjoint union. Clearly <" is
a strict partial order on T, i.e. a transitive and anti-symmetric (hence
irreflexive) relation.

For any b" € B" and b, € B, we define

b"<b, if f(b" @, b,) <, and b, <b" otherwise.

Claim 2.10. Let a,as € B", and by, by € B,.

(1) If a3 <by <ay < by, then by <, by and ay < by.
(2) Ifb1<1a1<b2<la2, then by <, by and by <as.

Proof. (1). We have f(ay@®,b1) > 1 and f(as®, bs) < [, hence by <, b;.
Since f(ay @, b1) <l and by <, by we also have f(a; &, by) < .
(2) is similar. O

Let <t be the transitive closure of <. It follows from the above claim
that < = <9 U <o<. More explicitly, for by, by € B,, by <! by if by <, by,
and for aj,ay € B", a;<tag if f(a;®b) <1 < f(ay®b) for some b € B,.
It is not hard to see then that <! is anti-symmetric, hence it is a strict
partial order on 7T

Claim 2.11. The union <" U<t is a strict partial order on T.

Proof. We first show transitivity. Note that <" and <’ are both tran-
sitive, so it suffices to show for z,y, 2 € T that if either z <" y <* 2z or
x<ty <" z, then <’ 2. Furthermore, since <! = <U<o<, we may restrict
our attention to the following cases. If a1 <" as<b with a1, ay € B and
b € B,, then f(a; &, b) < f(az ®,b) <, and so a; <b. If baa; <" ay
with a;,as € B" and b € B,, then f(az ®,b) > f(a; @, b) > [, and so
b« as.

To check anti-symmetry, assume a; <" ay and as<' a;. Since a,ay €
B" we have ay <b<a; for some b € B,. We have f(a; &, b) > 1| >
f(az @, b), contradicting a; <" as. O

Finally, let < be an arbitrary linear order on T' = B"UB, extending
<" U<!. Since < extends <, for a € B" and b € B, we have (a,b) € X
if and only if a < b.

We take f7: B" — T and f,: B, — T to be the identity maps. Since
< extends <", the map f" is coordinate-wise monotone. O
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2.2. Main theorem.

Definition 2.12. Let B = B;x --- X B, be an r-grid.

(1) Given s € N, we say that a set X C B has grid-complezity s (in
B) if X is the intersection of B with at most s basic subsets of B.
We say that X has finite grid-complezity if it has grid-complexity
s for some s € N.

(2) For integers ki, ...k, we say that X C B is Ky, _,-free is X does
not contain a sub-grid Cy x --- x C,. C S with |C;| = k;.

In particular, B itself is the only subset of B of grid-complexity 0.

Example 2.13. Suppose that V' is an ordered vector space over an or-
dered division ring, d =d; + ...+ d, € N and

X={zeV*: fi(®)<0,....f, () <0, fr1 (2) <0,..., fs (Z) <0},

for some linear functions f; : V¢ — V,i € [s]. Then each f; is
coordinate-wise monotone (Example 2.3), hence each of the sets

{zeVv?: fi(z)<0},{zeV: f(z) <0}

is a basic subset of the grid V% x ... x V¢ (the latter by Remark 2.7),
and X C V4 x ... x V% as an intersection of these s basic sets has
grid-complexity s.

Remark 2.14. (1) Let B be an r-grid and A C B a subset of B of grid-
complexity s. If C' C B is a sub-grid containing A, then A is also
a subset of C' of grid-complexity s.

(2) In particular, if A C B is a subset of grid-complexity s, then A
is a subset of grid-complexity s of the grid A;x---xA,, where
A; :=m;(A) is the projection of A on B; (it is the smallest sub-grid
of B containing A).

Definition 2.15. Let B = B;x --- xB, be a finite r-grid and n; :=
|Bi|. For j € {0,...r}, we will denote by ¢7(5) the integer

5;(3) = Z Ny * My nzj
11 <i2<--<i; €[r]
Ezxample 2.16. We have 0j(B) = 1, 07(B) = ny + -+ +n,, 0.(B) =
ning - - - Ny
We can now state the main theorem.

Theorem 2.17. For every integers v > 2,s > 0,k > 2 there are
a=a(r,s,k) € R and § = B(r,s) € N such that: for any finite r-grid
k-free subset A C B of grid-complexity s we have

Al < ab7_,(B)log? (57_,(B) +1).

77777
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Moreover, we can take B(r,s) = s(2"1 —1).

Remark 2.18. Inspecting the proof, it can be verified that the depen-
dence of o on k is at most linear.

Remark 2.19. We use log” (07_,(B) + 1) instead of log” (67_,(B)) to
include the case §/_,(B) < 1.

Remark 2.20. If in Theorem 2.17 A is only assumed to be a union of
at most ¢ sets of grid-complexity s, then the same bound holds with
o =t-a(if A= Uie[t] A; is Ky, i-free, then each A; is also K x-
free, so we can apply Theorem 2.17 to each of the A;’s and bound |A]
by the sum of their bounds).

,,,,,

Definition 2.21. Let B = Byx---xB, be a grid. We extend the
definition of 47 to arbitrary finite subsets of B as follows. Let A C B
be a finite subset, and let A; := m;(A), ¢ € [r], be the projections of A.
We define §7(A) := 5 (A1 x -+ X A,).

If B is a finite r-grid and A C B, then obviously 07(A) < §7(B).
Thus Theorem 2.17 is equivalent to the following.

Proposition 2.22. For every integers r > 2,s > 0,k > 2 there are

a=a(r,s, k) €R and = s(2"~! — 1) € N such that for any r-grid B

and Ky, . p-free finite subset A C B of grid-complexity < s we have
Al < ad_; (A) log? (6;_,(A) + 1),

Definition 2.23. For r > 1,5 > 0,k > 2 and n € N, let F, x(s,n) be
the maximal size of a K}, i-free subset A of grid-complexity s of some
r-grid B with §7_,(B) < n.

,,,,,

Then Proposition 2.22 can be restated as follows.

Proposition 2.24. For every integers r > 2,s > 0,k > 2 there are
a=«a(r,s, k) € R and = B(r,s) € N such that

F,(s,n) < anlog’(n + 1).
Remark 2.25. Notice that F, x(s,0) = 0.

In the rest of the section we prove Proposition 2.24 by induction on
r, where for each r it is proved by induction on s. We will use the
following simple recurrence bound.

Fact 2.26. Let ui: N — N be a function satisfying p(0) = 0 and p(n) <
2u(|n/2]) + anlog’(n + 1)) for some o € R and B € N. Then u(n) <
a/nlog”™(n + 1) for some o/ = o/(a, B) € R.
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2.3. The base case r = 2. Let B = B; x B, be a finite gridand A C B
a subset of grid-complexity s. We will proceed by induction on s.
If s =0 then A = By x By. If Ais Kj-free then one of the sets
B, B, must have size at most k. Hence |A| < k(| By|+ |Bz|) = k6% (B).
Thus
Fy5(0,n) < kn.

Remark 2.27. The same argument shows that F, x(0,n) < kn for all
r> 2.

Assume now that the theorem is proved for r = 2 and all s’ < s. Let
ny := |By|, ny := |Bs| and n := 62(B) = ny + no.

We choose basic sets X, ... X, C B such that A= BnN ﬂje[s] X;.

By Proposition 2.8, we can choose a finite linear order (S, <) and
functions f;: By — S and fy: By — S so that

Xs = {(xl,.fljg) € Bl X BQZ fl(fl}'l) < f2($2)}
Forle S,ie{l1,2} and O € {<,=,>,<, >}, let

B ={be B;: f;(b)Ol}.
We choose h € S such that
B+ 1B5" < n/2 and |B7"| +|B5"| < n/2.
For example we can take h to be the minimal element in fi(B;)U fo(Bs)
with |B="| + |BS"| > n/2. Then
X, = [(Bf" x Bs")n X, ] U [(By" x B3") N X, ]
U(B" x B¥"Y U (B x B;").
Hence we conclude
Fyr(s,n) < 2Fy (s, [n/2]) + 2F5 (s — 1,n).

Applying induction hypothesis on s, and using Fact 2.26 and Re-
mark 2.25 we obtain Fy(s,n) < an(logn)? for some a = a(s, k) € R
and § = f(s) € N.

This finishes the base case r = 2.

2.4. Induction step. We fix r € N3 and assume that Proposition 2.24
holds for all pairs (r/, s) with ' < r and s € N.

Definition 2.28. Let B = By X --- X B, be a finite r-grid.

(1) For integers t,u € N, we say that a subset A C B is of split grid-
complexity (t,u) if there are basic sets Xi,..., X, C B, a subset
A" C By x---xB,_y of grid-complexity ¢, and a subset A, C B,
such that A = (A" x A,) N (Vg Xi-
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(2) Fort,u >0,k > 2 and n € N, let Gi(t,u,n) be the maximal size of
a Ky, g-free subset A of an r-grid B of split grid-complexity (¢, u)
with 07_,(B) < n.

Remark 2.29. (1) Note that A, has grid-complexity at most 1, which
is the reason we do not include a parameter for the grid-complexity
of A, in the split grid-complexity of A.

(2) If A C B is of grid-complexity s, then it is of split grid-complexity
(0, s).

(3) If A C B is of split grid-complexity (¢,u), then it is of grid-
complexity t + w.

For the rest of the proof, we abuse notation slightly and refer to the
“split grid-complexity” of a set as the “grid-complexity”. To complete
the induction step we will prove the following Proposition.

Proposition 2.30. For any integers t,u > 0,k > 2,r > 3 there are
o =d(rk,t,u) € R and B’ = ' (r, k,t,u) € N such that

Gr(t,u,n) < o/nlog? (n+1).

We will use the following notations throughout the section:

e B = B;x---xB, is a finite grid with n = 0]_,(B);

e A C B is a subset of grid-complexity (¢, u);

e B is the (r — 1)-grid B" := By X -+ X B,_1;

e A" C B" is a subset of grid-complexity ¢, A, C B,, and X;,... X, C
B are basic subsets such that A = (A"x4,) N (¢, Xi-

We proceed by induction on w.

The base case u = 0 of Proposition 2.30.

In this case A = A" x A,. If Ais Kj, __j-free then either A" is
Ky, g-free or |A,| < k.

In the first case, by induction hypothesis on r, there are o = a(r —
1,t,k) and 8 = B(r — 1,t) such that |A"| < ad"~3(B")1log’(67-3(B") +
1). In the second case we have |A| < |B"|k = 6.1 (B")k.

Since n = 6"_,(B) = 6._{(B") + 0" ~5(B")|B,|, the conclusion of the
proposition follows with o := «, 5" := 5.

Induction step of Proposition 2.30. We assume now that the proposi-
tion holds for all pairs (¢,u') with v’ < u and ¢t € N.

Given a tuple z = (x1,...,2,) € B, we let 2" := (21,...,2,_1). By
Proposition 2.8, we can choose a finite linear order (.5, <), a coordinate-
wise monotone function f": B” — S and a function f,.: B, — S so that

Xy={2"®,z. € B" X B.: f'(2") < fo(z,)}.
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Moreover, by Remark 2.9, we may assume without loss of generality
that the coordinate-wise monotone function defining X, is given by

f(xT S xr) = fr(xT) - fT(xT)‘

Definition 2.31. Given an arbitrary set C" C B", we say that a set
H" C C"is an f"-strip in C" if

H ={z"e€C": ;< f(2") <2 2}
for some 1,1y € S, <1,< € {<,<}. Likewise, given an arbitrary set
C, C B,, we say that H, C C, is an f,-strip in C,. if

Hr = {.TT S CTZ ll < fr,-(l’r) <9 ZQ}
for some 1,1l € S, <1, € {<, <}, If C" = A" or C, = A,, we simply
say an f"-strip or f,.-strip, respectively.
Remark 2.32. Note the following:
(1) A" is an f"-strip, and A, is an f,.-strip;
(2) every f"-strip is a subset of the (r — 1)-grid B" of grid-complexity

t + 2 (using Remark 2.7);

(3) the intersection of any two f"-strips is an f"-strip; the same con-
clusion holds for f,.-strips.

Definition 2.33. (1) We say that a subset H C B is an f-grid if
H = H" x H,, where H" C B" is an f"-strip in B" and H, C B, is
an f.-strip in B,.

(2) If H=H" x H, is an f-grid, we set

A(H) :=|H"| + (5::%(HT)|HT| (see Definition 2.21 for 6&5).

Note that if H is a sub-grid of B, then A(H) =6]_,(H).
(3) For an f-grid H, we will denote by Ay the set AN H.

The induction step for Proposition 2.30 will follow from the following
proposition.

Proposition 2.34. For every integer k > 2,r > 3 there are o/ =
o (r,k,t,u) € R and f/ = B'(r,t,u) € N such that, for any f-grid H,
if the set Ay is Ky i-free then

|Ag| < o/ A(H) log? (A(H) +1).

We should stress that in the above proposition o' and ' do not
depend on f", f., B, A", and A, but they may depend on our fixed ¢
and u.

Given Proposition 2.34, we can apply it to the f-grid H := A" x A,
(so Ay = A) and get

|A| < o/ A(H) log? (A(H) +1).
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It is easy to see that A(A” x A,) < §/_,(B), hence Proposition 2.30
follows with the same o' and f'.

We proceed with the proof of Proposition 2.34

Proof of Proposition 2.34. Fix m € N, and let L(m) be the maximal
size of a K, j-free set Ay among all f-grids H C B with A(H) < m.
We need to show that for some o = o/(k) € R and ' € N we have

L(m) < o/mlog® (m +1).

Let H = H" x H, be an f-grid with A(H) < m.
Forl e Sand Oe {<,=>,<, >}, let

H™P = {z" € H™: fr(z")Ol}
and
H?' :={x, € H,: f.(x,)0l}.
Note that for every [ € S, H" is an f"-strip in H", H-' is an
fr-strip in H,., and their product is an f-grid.

Claim 2.35. There is h € S such that
A(H"<" x H"Y <m/2 and A(H™" x H>") < m/2.

Proof of Claim. Let § := §""3(H").
Let h be the minimal element in f"(H")U f,.(H,) with

=M 4 6| HE > 2.

Then |H™<h| + §|H"| < m/2 and |H™>"| + §|H"| < m/2. Since
Hm<h H">h C H" we have 6" 5(H™<"),6"5(H™>") < 6. The claim
follows. U

Let h be as in the claim. It is not hard to see that the following
holds:

(H"="x H-"YN X, = (H"" x H")u (H"=" x H"),
(H="x HF") N X, = 0.
It follows that
ApnX, = [(H"x H") N X, U [(H" x H") N X,]
U(H"<" x HZMY U (H™=" x H>").
Hence, by the choice of h and using Remark 2.32(2),
L(m) <2L(|m/2]) 4+ 2G,(t +2,u — 1,m).

Applying the induction hypothesis on u and using Fact 2.26 we ob-
tain L(m) < o/mlog® (m +1) for some o = o/(k) € R and §’ € N.
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This finishes the proof of Proposition 2.34, and hence of the induction
step of Proposition 2.24. O

Finally, inspecting the proof, we have shown the following:

(1) B(2,s) < s forall s € N;
(2) B'(r,t,0) < B(r —1,¢t) for all r > 3 and t € N;
(3) B'(r,t,u) < B'(r,it+2,u—1)+1forall r >3t >0,u>1.

Iterating (3), for every r > 3,s > 1 we have §(r,s) < f/(r,0,s) <
B'(r,2s,0) 4+ s. Hence, by (2), B(r,s) < f(r —1,2s) + s for every r > 3
and s > 1. Tterating this, we get B(r, s) < B(2,272s)+s >1_> 2'. Using
(1), this implies B(r,s) < s S22 = s(2""' — 1) for all 7 > 3,5 > 1.
Hence, by Remark 2.27 and (1) again, 8(r,s) < s(2"! — 1) for all
r>2,s>0.

2.5. Some applications. We observe several immediate applications
of Theorem 2.17, starting with the following bound for semilinear hy-
pergraphs.

Corollary 2.36. For every r,s,t,k € N;r > 2 there exist some a =
a(r, s, t, k) € R and B(r,s) := s(2"~1 — 1) satisfying the following.

For any semilinear Ky, -free r-hypergraph H = (Vi,..., V., E) of
description complexity (s,t) (see Definition 1.7), taking V =[] Vi
we have

i€lr

1B] < ad]_y (V) log? (57_,(V) +1) .

Proof. By assumption the edge relation E can be defined by a union of
t sets, each of which is defined s linear equalities and inequalities, hence
of grid-complexity < s (see Example 2.13). The conclusion follows by
Theorem 2.17 and Remark 2.20. U

As a special case with r = 2, this implies a bound for the following
incidence problem.

Corollary 2.37. For every s,k € N there exists some o = (s, k) € R
satisfying the following.

Let d € N and Hy,...,H, C R be finitely many (closed or open)
half-spaces in RY. Let F be the (infinite) family of all possible polytopes
in R? cut out by arbitrary translates of Hy, . .., H,.

For any set P of n, points in R? and any set F' of ny polytopes in F,
if the incidence graph on P x F is Ky, ,-free, then it contains at most
anlog®n incidences.
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Proof. We can write

Hi={Z=(x1,...,14) €R?: Z a; ;jx;0:b; »
Jj€ld]
where a; j,b; € R and 00; € {>,>} for ¢ € [s],j € [d] depending on
whether H; is an open or a closed half-space.
Every polytope F' € F is of the form ﬂie[s](?z‘ + H;) for some
(U1, ...,7s) € R where ; + H; is the translate of H; by the vec-
tor §; = (Yi1, .-, yia) € R e

gi + Hz = T € Rd . Z CLZ‘J.T]' + Z(—aiﬁj)ijibi
Jjeld] Jj€ld]

Then the incidence relation between points in R? and polytopes in
F can be identified with the semilinear set

(%5 (Wi)iesjera) € R xR e A " agsa; + ) (—ai;)yi Oibs

i€[s] je(d] Jj€ld]

defined by s linear inequalities. The conclusion now follows by Corol-
lary 2.36 with r = 2. O

In particular, we get a bound for the original question that motivated
this paper.

Corollary 2.38. Let F; be the family of all (closed or open) bozes
in R%. Then for every k there exists some o = a(d, k) satisfying the
following.

For any set P of ny points in R and any set F of ny boxes in Fy,
if the incidence graph on P X F' is Ky -free, then it contains at most
anlog® n incidences.

Proof. Immediate from Corollary 2.37, since we have 2d half-spaces
in R? so that every box in R? is cut out by the intersection of their
translates. 0

3. LOWER BOUNDS

While we do not know if the bound 5(2,s) < s in Theorem 2.17 is
optimal, in this section we show that at least the logarithmic factor
is unavoidable already for the incidence relation between points and
dyadic boxes in R2.

We describe a slightly more general construction first. Fix d € Ny.
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Definition 3.1. Given finite tuples p = (p1,...,00),7 = (q1,---,qn)
and 7 = (ry,...,7m) with pi, ¢, € R say p; = (Digs- -, Pia)s @i =
(Gi1y---+Gia),ri = (Ti1,...,7iq), we say that p and q have the same
order-type over 7 if

pi,iji’,j’ < qi,jDQi’,j/ and
pi,jDrk,j’ e Qi,jljrk,j’
forall D e {<,>=},1<4,9 <n,1<jj <dand 1 <k <m.

In other words, the tuples (p;; : 1 < i < n,1 <j <d)and (¢, :
1 <i<n,1<j<d) have the same quantifier-free type over the set
{ri; :1<i<m,1<j<d} in the structure (R, <).

Remark 3.2. Assume that P = {p;,...,p,} C R? is a finite set of
points and B is a finite set of d-dimensional open boxes with axis-
parallel sides, with I incidences between P and B.

(1) By perturbing P and B slightly, we may assume that for every
1 < j < d, all points in P have pairwise distinct jth coordinates
Dijs---,Pnyj, and none of the points in P belongs to the border of
any of the boxes in B, while the incidence graph between P and B
remains unchanged.

(2) Let 7 be the tuple listing all corners of all boxes in B. If P' =
{p|,..., 0.} € R%is an arbitrary set of points with the same order-
type as P over 7, then the incidence graph on P x B is isomorphic
to the incidence graph on P’ x B.

We have the following lemma for combining point-box incidence con-
figurations in a higher-dimensional space.

Lemma 3.3. Given any d,ny,ne,n},n,, m,m’ € Nyg, assume that:

(1) there erists a set of points P4~1 C RI™L with |P4| = ny and a
set of (d — 1)-dimensional bores Bt with |B¥Y = ny, with m
incidences between them, and the incidence graph K o-free;

(2) there exists a set of points P? C R® with |P?| = n and a set of
d-dimensional bozes B¢ with | BY| = nl, with m’ incidences between
them and the incidence graph K o-free.

Then there exists a set of points P C R? with |P| = nin} and a set
of d-dimensional boxes B with |B| = ninl, + nina, so that there are
nym’ + mn incidences between P and B and their incidence graph is
still Ky o-free.

Proof. By Remark 3.2(1) we may assume that for every 1 < j < d,
all points in P? have pairwise distinct jth coordinates, for every 1 <
j < d—1 all points in P! have pairwise distinct jth coordinates, and
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none of the points is on the border of any of the boxes. Write P41 as
Pi,...,Dn,. Let 7 be the tuple listing all corners of all boxes in B4,
Using this, for each p; we can choose a very small (d— 1)-dimensional
box 5; with p; € f; and such that: for any choice of points p; €
Bi,1 < i < ny, we have that (pf,...,p}, ) has the same order-type as
(p1y---,pn,) over 7. In particular, all the f;’s are pairwise disjoint,
and the incidence graph between P9~! and B! is isomorphic to the
incidence graph between (p},...,p; ) and B4~ by Remark 3.2(2).
Contracting and translating while keeping the dth coordinate un-
changed, for each 1 < i < n; we can find a copy (P¢, BY) of the
configuration (P?, BY) entirely contained in the box 3; x R, that is:

e all points in P? and boxes in B¢ are contained in 3; x R;

e the incidence graph on (P, BY) is isomorphic to the incidence graph
on (P4, BY);

e for all 7, the dth coordinate of every point in P? is the same as the

dth coordinate of the corresponding point in P
Let P = U cicn, P and B’ := Ui<i<n, B{, then |P| = mny, |B'| =
nin, and there are nym’ incidences between P and B'.

Write P? as qi,...,qy and B*" as ¢1,...,¢y,. As all of the dth
coordinates of the points in P¢ are pairwise disjoint, for each 1 < j < n)
we can choose a small interval I; C R with ¢;4 € I;, and so that all of
the intervals [;,1 < j < n! are pairwise disjoint. For each 1 < j <n}
and ¢ € B4 ! we consider the d-dimensional box cjy = ¢ X I;. Let
B; :=={cj; -1 <1 <mny}. Foreachl <i <mnyandl < j < nf,
(B; x R)N (R4 x I;) contains exactly one point ¢; ; (given by the copy
of ¢; in P%), and the projection q; ; of q; ; onto the first d—1 coordinates
is in 3;. Hence the incidence graph between P and B; is isomorphic to
the incidence graph between P4~! and B%! by the choice of the §;’s,
in particular the number of incidences is m.

Finally, let B := B U Ulgjgn’l B;, then |B| = ninb + njny. Note
that ¢;; N¢jp =0 for j # j' and any [,1', i.e. no box in B; intersects
any of the boxes in Bj for j # j'. It is now not hard to check that the
incidence graph between P and B is K o-free (by construction and the
assumptions of Kjo-freeness of (P, B?) and (P41 B?71))  and that
there are nym’ + mn/ incidences between P and B. O

Remark 3.4. Tt follows from the proof that if all the boxes in B! and
B? are dyadic (see Definition 4.6), then we can choose the boxes in B
to be dyadic as well.
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Proposition 3.5. For any ¢ € N, there exist a set P of ¢* points and
a set B of ¢* dyadic bozes in R? such that their incidence graph is
Ky o-free and the number of incidences is (0°.

In particular, substituting n := (°, this shows that the number of

. 1
incidences grows as € (n—l e )
oglogn

Proof. Given d, assume that there exist Kjo-free ‘point — dyadic box’
configurations satisfying (1) and (2) in Lemma 3.3 for some parameters
d,ni,ne,ny,ny,m,m’. Then, for any j € N, we can iterate the lemma
j times and find a Ky o-free ‘point — dyadic box’ configuration in R?
with n/n/ points, nin}, + jn] 'n/n, dyadic boxes (Remark 3.4), and
ndm 4 jnd~'nim incidences.

In particular, let d = 2 and let ¢ be arbitrary. We can start with
ny = {,ny = 1,m = ¢ (one dyadic interval containing n; points in R)
and njy = 1,n, = 0,m’ = 0 (one point and zero dyadic boxes in R?).
Taking j := ¢, we then find a Ky »-free configuration with ¢¢ points, ¢
dyadic boxes and ¢£¢* incidences. Hence for n := k¥, we have n points,

n boxes and (nlloi) incidences. O
oglogn

Remark 3.6. We remark that the construction in Lemma 3.3 cannot

. . 1 ..
produce a K o-free configuration with more than O nlogolgogn inci-

dences in R? for any d.
. . ! I\ .
Indeed, using the “coordinates” (log nf, Z—? ;”—,1> instead of (n}, nj, m’),

where the coordinates correspond to the number of points, boxes and

nz2g m
niy’ ni

incidences respectively, the lemma says that if (log ny, is at-

tainable in d — 1 dimensions and (log ny, Z—%, ’77:—,/) is attainable in d
1 1
dimensions, then <log n} + logn, % + 2, Z‘—,ll + 7%) is attainable in d

dimensions. Thus, one adds the vector Z—f, nﬂl to (:—:2, ::—,/) We want
1 1
to maximize the second coordinate of this vector while keeping the first

coordinate below 1, and the optimal way to do it essentially is to add n;
times the vector (nil, 1), which increases logn} by n;logn; and gives

the lololg" lower bound.
glogn
We thus ask whether in the ‘point-box’ incidence bound in R¢ the

power of logn has to grow with the dimension d (see Problem 1.3).

4. DYADIC RECTANGLES

In this section we strengthen the bound on the number of incidences
with rectangles on the plane with axis-parallel sides given by Corollary
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2.38, i.e., Oy (n log* n), in the special case of dyadic rectangles, using
a different argument (which relies on a certain partial order specific to
the dyadic case).

4.1. Locally d-linear orders. Throughout this section, let (P, <) be
a partially ordered set of size at most ni, and let L be a collection of
subsets of P (possibly with repetitions) of size at most ny. As before,
we let n = nq + no.

Definition 4.1. We say that a set S C P is d-linear if it contains no
antichains of size greater than d, and (P, <) is locally d-linear if any
interval [a,b] = {z € P :a <z < b} is d-linear.

Note that d-linearity is preserved under removing points from P.

Definition 4.2. The collection L is said to be a K}, i-free arrangement
if for any a1 # ... # a, € P, there are at most k — 1 sets from L
containing all of them simultaneously.

Observe that if one removes any number of points from P, or removes
any number of sets from L, one still obtains a Kj, j-free arrangement.
We now state the main theorem of this section.

Theorem 4.3. Suppose (P, <) is locally d-linear, and L is a Ky -free
arrangement of d-linear subsets of P. Then

log(100 + ny)
/6 ==
Z [} = Oax (nlog log(100 + n4)

lel

To prove Theorem 4.3, we first need some definitions and a lemma.
If x € P, define a parent of x to be an element y € P with y > «x
and no element between x and y, and similarly define a child of x to
be an element z € P with z < x and no element between z and x.
We say that z is a strict t-descendant of x if there are some elements
20 =x > 21 > ...> 2z = z such that z;,; is a child of z;, and that z is
a t-descendant of x if it is a strict s-descendant for some 0 < s < ¢.

Lemma 4.4. Fizd, k € N. Let L be a K}, -free arrangement of d-linear
subsets of P, and let m > 0. Let P’ denote the set of all elements in
P which have a (k — 1)-descendant with more than m children. Then

DY e P4 d(k = DL + (k= Dm* ([P = |P']).

lel lel
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Proof. Let P" := P\P' denote the set of elements z € P such that
every (k — 1)-descendant of z has at most m children. Then we can
rearrange the desired inequality as

> len P’ <d(k—1)|L| + (k — L)ym*[P"].
LeL

The quantity >, ., |¢ N P"| is counting incidences (x,f) where ¢ € L
and x € P" N /.

Given ¢ € L, call a point x € ¢ low if x has no descending chain
of length £ — 1 under it in ¢. Every ¢ can contain at most d(k — 1)
low points. Indeed, as ¢ is d-linear, it has at most d minimal elements.
Removing them, we obtain a d-linear set ¢; C ¢ such that every point in
it contains an element under it in ¢, and /¢; itself has at most d minimal
elements. Remove them to obtain a d-linear set ¢5 C ¢; such that each
point in it contains a descending chain of length 2 under it in /¢, etc.

Hence each ¢ € L contributes at most d(k—1) incidences with its low
points, giving a total contribution of at most d(k —1)|L| to the sum. If
x is not a low point on /, then there are some z; < ... < 2,1 < x in ¥,
with each one a child of the next one. As L is a K, j-free arrangement,
among the sets ¢ € L there are at most £ — 1 containing all these
points. By definition of P”, for each € P” there are at most m*!
choices for such tuples (z1,...,25_1). Hence x is incident to at most
(k —1)m*=! sets ¢ € L for which it is not low, and the total number of
contributions of incidences in this case is at most (k — 1)m*~!|P"|, so
the claim follows. U

Now we prove Theorem 4.3. Let ¢ be a natural number to be chosen
later, and m > 0 be another parameter to be chosen later. Define the
subsets

P=FD>OPD>---DF
of P by defining P, := P, and for each ¢+ = 0,...,t — 1, defining P,
to be the set of points in P; that have a (k — 1)-descendant with more
than m children in (P;, <). By the above lemma, we have

Y UNPI<Y 16N Pyl +d(k = DIL| + (k = m* (|B] = [Psa)

lel leL

for all i =0,...,t — 1, and hence on telescoping
S <> [N B+ d(k — DL + (k= 1)m*"ny.
teL teL
Claim 4.5. Let x be a point in P,. Then it has at least # distinct

descendants in P.
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Proof. By definition of P, there is some (k — 1)-descendant =’ € P, 4
of z which has at least m children in P_;. Let S,_; € P,_; denote
the set of children of 2/, so |S;_1] > m. By reverse induction for
1=t—1,t—2,...,0 we choose sets S; C P; of descendants of x so that
|Si—1] > |ii1‘;n. Then |Sy| > #, as wanted.

Let S; be given. By definition of P; and pigeonhole principle, there
is some 0 < s < k— 1 and S/ C S; such that |S]| > ‘%' and every
y € S] has a strict s-descendant z, € P,_; with at least m children in
P,_;. Fix a path I, of length s connecting y to z,, and for 0 <r <'s
let 2] denote the rth element on the path I, (so z) =y, 2z} = 2z, and
s a child of z}). Let I" = {z; : y € Sj}, so I° = S, Then
| > % (otherwise there is some element z € I"™! which has at
least d + 1 different parents in 1", which would then form an antichain

of size d + 1 contradicting local d-linearity of P). Hence

|]s| > |IO| > |Sz/| > |S%|

= g5 T g1 T g1
Now by hypothesis every element in I° has at least m children in P;_q,
denote the set of all the children of the elements in I by S;,_; C P;_;.

Then, again by d-linearity, |S;—1| > @ > %. O

Thus if we choose m,t so that

m t
— ] >n
(kdk) !
then we will get a contradiction, unless P, is empty. We conclude, for
such m and ¢, that

Dl < d(k = DEL| + (k = 1)ym*ny.
lel

s
<%> "' and t to be the integer part of

If we take m =
clog(100+n1)
loglog(100+n1)

d, then the claim follows.

, and assume that c is sufficiently large relatively to k and

4.2. Reduction for dyadic rectangles.

Definition 4.6. (1) Define a dyadic interval to be a half-open interval
I of the form I = [s2, (s + 1)2) for integers s, t; we use |I| = 2" to
denote the length of such an interval.

(2) Define a dyadic box in R? (dyadic rectangle when d = 2) to be a
product I7 x ... x I; of dyadic intervals.
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Note that if two dyadic intervals intersect, then one must be con-
tained in the other.

Theorem 4.7. Fiz k € N. Assume we have a collection P of ny points
in R? and a collection R of ny dyadic rectangles in R?, with the property
that the incidence graph contains no Ky, and n = ny + ny. Then the
number of incidences (p,I x J) withp € P andp € [ x J € R is at

most log( )
0g(100 + ny
O :
g (nlog log (100 + nl))

Proof. Suppose that we have some nested dyadic rectangles D; O Dy D

. 2 Dy in R. As the incidence graph is K} y-free by hypothesis,
Dy, may contain at most (k — 1) points from P. Removing all such
rectangles repeatedly we loose only (k — 1)ngy incidences, and thus may
assume that any nested sequence in R is of length at most & — 1.
In particular, any rectangle can be repeated at most k£ — 1 times in
R. Then, possibly increasing the number of incidences by a multiple
(k — 1), we may assume that there are no repetitions in R.

We now define a relation < on R by declaring I x J < I'x J'if [ C I
and J O J'. Thisis alocally (k—1)-linear partial order (by the previous
paragraph: antisymmetry holds as there are no repetitions in R, and
using that all rectangles are dyadic, any antichain of size k inside an
interval would give a nested sequence of rectangles of length k).

For each point p in P, let ¢, be a subset of R consisting of all those
rectangles in R that contain p; then ¢, is a (k — 1)-linear set (again,
any antichain gives a nested sequence of rectangles of the same length).
Finally, p € R <= R € /{,, hence the collection {¢, : p € P} is a
K}, p-free arrangement and the claim now follows from Theorem 4.3
with d .=k — 1. 0

Remark 4.8. For a non-dyadic rectangle R, let 0.99R denote the rec-
tangle with the same center as R, but whose lengths and heights have
been shrunk by a factor of 0.99. Define a “good incidence” to be a
pair (p, R) where p is a point lying in 0.99R, not just in R. Then the
dyadic bound in Theorem 4.7 implies that for a family of arbitrary
(not necessarily dyadic) rectangles with no Kj’s, one still gets the

(@) (%)—type bound for the number of good incidences.

The reason is as follows. First we can randomly translate and dilate
(non-isotropically, with the horizontal and vertical coordinates dilated
separately) the configuration of points and rectangles by some trans-
lation parameter and a pair of dilation parameters (s,t) for each of
the coordinates. While there is no invariant probability measure on
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the space of dilatations, one can for instance pick a large number N
(much larger than the number of points and rectangles, etc.), dilate
horizontally by a random dilation between 1/N and N (using say the
dt/t Haar measure) making (with positive probability) the horizontal
side length close to a power of two; then a vertical dilation will achieve
a similar effect for the vertical side length; and then translate by a
random amount in [—N, N|? (chosen uniformly at random) placing the
rectangle very close to a dyadic one with positive probability. If R is a
rectangle that is randomly dilated and translated this way, then with
probability > 1071°, there will be a dyadic rectangle R’ stuck between
R and 0.99R. If the original rectangles have no Ky, then neither
will these new dyadic rectangles. The expected number of incidences
amongst the dyadic rectangles is at least 107'° times the number of
good incidences amongst the original rectangles. Hence any incidence
bound we get on dyadic rectangles implies the corresponding bound for
good incidences for non-dyadic rectangles (losing a factor of 10'?).

5. A CONNECTION TO MODEL-THEORETIC LINEARITY

In this section we obtain a stronger bound in Theorem 2.17 (without
the logarithmic factor) under a stronger assumption that the whole
semilinear relation X is Kj, _x-free (Corollary 5.12). And we show
that if this stronger bound doesn’t hold for a given semialgebraic rela-
tion, then the field operations can be recovered from this relation (see
Corollary 5.14 for the precise statement). These results are deduced
in Section 5.2 from a more general model-theoretic theorem proved in
Section 5.1.

5.1. Main theorem. We recall some standard model-theoretic nota-
tion and definitions, and refer to [12] for a general introduction to
model theory, and to [2] for further details on geometric structures.

Recall that acl denotes the algebraic closure operator, i.e. if M =
(M, ...) is a first-order structure, A C M and a is a finite tuple in M,
then a € acl(A) if it belongs to some finite A-definable subset of M
(this generalizes linear span in vector spaces and algebraic closure in
fields). Throughout this section we follow the standard model theoretic
notation: depending on the context, writing BC' denotes either the
union of two subsets B, C' of M, or the tuple obtained by concatenating
the (possibly infinite) tuples B, C' of elements of M.

Definition 5.1. A complete first-order theory T in a language L is
geometric if for any model M = (M, ...) = T we have the following.

(1) The algebraic closure in M satisfies the Ezchange Principle:
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if a, b are singletons in M, A C M and b € acl(4,a) \ acl(A), then
a € acl(A,b).

(2) T eliminates 3 quantifier:
for every L-formula ¢(x,y) with = a single variable and y a tuple
of variables there exists some k € N such that for every b € MY, if
¢(x, b) has more than k solutions in M, then it has infinitely many
solutions in M.

In models of a geometric theory, the algebraic closure operator acl
gives rise to a matroid, and given a a finite tuple in M and A C
M, dim(a/A) is the minimal cardinality of a subtuple a’ of a so that
acl(a U A) = acl(a’ U A) (in an algebraically closed field, this is just
the transcendence degree of a over the field generated by A). Finally,
given a finite tuple a and sets C, B C M, we write a J/C B to denote
that dim (a/BC) = dim (a/C).

Remark 5.2. If T is geometric, then it is easy to check that | is an
independence relation, i.e. it satisfies the following properties for all
tuples a,a’,b,b',d and C, D C M:

ea | b+ ac(eC) L, acl(b,C);

e (extension) if a | b and d is arbitrary, then there exists some a’ so
that o’ |, bd and o’ =cp, a (which means that o’ belongs to exactly
the same Cb-definable subsets of M as a).

e (monotonicity) aa’ | 00" = a | . b;

e (symmetry) a | b = b |

o (tramsitivity) a | bV <= a |V anda | b

e (non-degeneracy) if a | b and d € acl(a,C) Nacl(b,C), then d €
acl(C).

The following property expresses that the matroid defined by the
algebraic closure is linear, in the sense that the closure operator behaves
more like span in vector spaces, as opposed to algebraic closure in fields.

Definition 5.3. [2, Definition 2.1] A geometric theory T is weakly
locally modular if for any saturated M =T and A, B small subsets of

M there exists some small set C' J/@ ABsuchthat A || (AC)Nacl(BO) B.

Recall that a linearly ordered structure M = (M, <, ...) is o-minimal
if every definable subset of M is a finite union of intervals (see e.g. [18]).

Ezxample 5.4. [2, Section 3.2] An o-minimal structure is linear (i.e. any
normal interpretable family of plane curves in 7" has dimension < 1) if
and only if it is weakly locally modular.
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In particular, every theory of an ordered vector space over an ordered
division ring is weakly locally modular (so Theorem 5.6 applies to semi-
linear relations).

The following is a key model-theoretic lemma.

Lemma 5.5. Assume that T is geometric and weakly locally modular,
and M = (M,...) = T is N;-saturated. Assume that E C M% x
... X M% is an r-ary relation defined by a formula with parameters
in a finite tuple b, and E contains no r-grid A = HZ.E[T] A; with each
A; € M% infinite. Then for any (a1,...,a,) € E there exists some
i € [r] so that a; € acl({a; : j € [r]\ {i}},0).

Proof of Lemma 5.5. Assume not, then there exist some (ay,...,a,) in
M such that (a,...,a,) € E, but a; ¢ acl(ay;,b) for every i € [r],

where ay; :=={a; : j € [r] \ {i}}.
By weak local modularity, for each i € [r] there exists some small set
C; € M so that

C; | {ai,...,a,} U{b} and q; L aib.
1] acl(a;,C;)Nacl(ax4,b,C;)
By extension of |, we may assume that C; J,@Cll, o a,b,Coy
for all i € [r]. Hence by transitivity C J/Qal, ...,a,,b, where C :=
Uie['r} Cl

Let D := (Y, acl (azi, b, C).

i€lr
Claim (A). For everyi € [r], a; |, az:

Proof. Fixi € [r]. AsC \Lwal, ...yar,banda; |
by symmetry and transitivity we have
a; \I/ a;,,g,bC’
acl(a;,Cy)Nacl(a;,b,C;)
Note that acl(a;, C;) C acl(ag;,C) for every i # j € [r], hence
acl(a;, C;) Nacl(ay;, b,C;) € D, and clearly D C acl(ay;, b, C'). Hence
a; | b a,;bC, and in particular a; | D (i O

acl(a;,Cs)Nacl(ax;,b,C;) a#iba

Claim (B). For every i € [r], a; ¢ acl(D).
Proof. Fix i € [r]. Then acl(D) C acl(ay;, b, C) by definition. But
as C' J/a#b a; by transitivity, if a;, € acl(ay;,b, C) then we would get

a; € acl(ay;, b), contradicting the assumption. O

By induction we will choose sequences of tuples a; = (af)en, i € [r]
in M such that for every i € [r] we have:
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(1) af =pa_,a-; a; for all t € N;
(2) al # af (as tuples) for all s #¢ € N;
(3) a \I/D Qi

Fix i € [r], and assume that we already chose some sequences a; for
1 < j < i satistying (1)-(3).

Claim (C). We have a; J/D Qi

Proof. 1f © = 1, this claim becomes a; | p @i, hence holds by Claim
(A). So assume i > 2. We will show by induction that for each | =
1,...,7—1 we have

Qi1+ Qi | Qi1

D
For | = 1 this is equivalent to a;_ J/Dd<i_1a>i_1, which holds by
(3) for i — 1. So we assume this holds for [ < i — 1, that is we have
Qi+ Oy \LD @ <i_1a>;_1, and show it for [ + 1. By assumption and
transitivity we have

Q1. Qi L Qeimg1)@siot-
Déay_ 141y

Also a;— 41y \LD Qci—(141)a>i—1 by (3) for i —(I4+1) < 7. Then by tran-
sitivity again ay_1 ... Qi 1Qi—(41) JJD Q<i—(141)0>i—1, Which concludes
the inductive step.

In particular, for [ = i—1 we get a; J/D a=i_1, that is ., J/D A;0;.
By transitivity and Claim (A) this implies a<;a~; |, a;, and we con-
clude by symmetry. O

Using Claim (C) and extension of | , we can choose a sequence
@; = (al)ien so that a! =ps_,a., @; and al J/Dd<,-a>iai<t for every
t € N. By Claim (B) we have a; ¢ acl(D), hence a! ¢ acl(D), hence a! ¢
acl (A<, asi, art), so in particular all the tuples (a!)ien are pairwise-
distinct and @; satisfies (1) and (2). By symmetry and transitivity
of | weget a; | p @<ia>;. This concludes the inductive step in the
construction of the sequences.

Finally, as (1) holds for all i € [r] and b is contained in D, it follows
that (al',...,al") = (ay,...,a,), and hence (a¥', ..., a'r) € E for every
(t1,...,t,) € N". By (1) each of the sets {a! : t € N} i € [r] is infinite
— contradicting the assumption on E£. This concludes the proof of the
lemma. U

Theorem 5.6. Assume that T is a geometric, weakly locally modular
theory, and M |=T. Assume that r € N>y and ¢(Z1,...,%,,y) is an
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L-formula without parameters, with |z;| = d;, |y| = e. Then there exists
some o = a(p) € Ruq satisfying the following.
Given b € M€, consider the r-ary relation

Ey:={(a1,...,a;) € M x ... x M : M = ¢(ay,...,a.,b)}.

Then for every b € M€, exactly one of the following two cases must
occur:

(1) Ey is not Ky,
(2) for any finite r-grid B C Hze[

|E, N B| < ad’_(B).

k-free for any k € N;
M% we have

Proof. Assume that N/ = (N, ...) is an elementary extension of M and
b € M¢. Then, for a fixed k € N,

Ey={(ay,...,a,) € M x ... x M*" : M = ¢(ai,...,a,,b)}
is K, p-free if and only if
E,={(a1,...,a,) € N x ... x N*" : N = p(ai,...,a,,b)}

is Ky p-free, as this can be expressed by a first-order formula ¥ (y)
and M | (b)) <= N E ¢(b). Similarly, for a ﬁxed a € R,
|Ey N Bl < ad;_1(B) for every finite r-grid B C [,y M di if and only
if |[E, N B| < ad;_(B) for every finite r-grid B C [];¢, Ndi (as for
every fixed sizes of By, ..., B, this condition can be expressed by a
first-order formula). Hence, passing to an elementary extension, we
may assume that M is Nj-saturated.

As T eliminates 3°°, there exists some m = m(y) € N such that for
any i € [T] b € M¢ and tuple @ := (a; € M% : j € [r] \ {i}), the fiber

b = {a* e M4 . M Eplar, ... ai1,0% a1, ... a3 b))

is finite if and only if it has size < m.

Given an arbitrary b € M€ such that Ej is K, j-free, Lemma 5.5
and compactness imply that for every tuple (aq,...,a,) € Eb, there
exists some ¢ € [r] such that the fiber 7, is finite, hence |ELyl < m.
This easily implies that for any finite r-grid B C Hie[r] M% we have
|Ey N B < md"_,(B). O

Remark 5.7. In the binary case, a similar observation was made by
Evans in the context of certain stable theories |3, Proposition 3.1].

Restricting to distal structures, we can relax the assumption “FEj
is Ky, i-free for some k" to “Ej does not contain a direct product
of infinite sets” in Theorem 5.6 (we refer to e.g. the introduction in
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[5] or [3] for a general discussion of model-theoretic distality and its
connections to combinatorics).

Corollary 5.8. Assume that T is a distal, geometric, weakly locally
modular theory, M |= T, r € Nsy and o(Z1, ..., %, ) is an L-formula
without parameters, with |T;| = d;,|y| = e. Then there exists some
a = a(p) € Ry satisfying the following.

Assume that b € M€ and the r-ary relation E, does not contain an
r-grid A = Hie[r] A; with each A; C M% infinite. Then |E, N B| <
adl_,(B) for any finite r-grid B.

Proof. By [3, Theorem 5.12], if M is a distal structure with elimination
of 3%, then there exists some k = k(¢) € N such that for every b € M*,

.....

A; € M%. The conclusion now follows by Theorem 5.6. U

Remark 5.9. Weaker bounds for non-cartesian relations definable in
arbitrary distal theories are established in [4, ].

Now we show that in the o-minimal case, this result actually charac-
terizes weak local modularity. By the trichotomy theorem in o-minimal
structures [15] we have the following equivalence.

Fact 5.10. Let M be an o-minimal (N;-)saturated structure. The fol-
lowing are equivalent:

o M is not linear (see Example 5.4);
o M is not weakly locally modular;
e there exists a real closed field definable in M.

Corollary 5.11. Let M be an o-minimal structure. The following are
equivalent:

(1) M is weakly locally modular;
(2) Corollary 5.8 holds in M;
(3) for every dy,ds € N and every definable (with parameters) X C
M4 x M% if X is Ky, p-free for some k € N, then there exist some
B < % and o such that: for any n and B; € M% with |B;| = n we
have
|X N By x By| < an”;

(4) there is no infinite field definable in M.

Proof. (1) = (2) by Corollary 5.8, and (2) = (3) is obvious.

(3) = (4) Assume that R is an infinite field definable in M, char(R) =
0 by o-minimality. Then the point-line incidence relation on R? cor-
responds to a Kjo-free definable relation £ C M x M? for some
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d. By the standard lower bound for Szemerédi-Trotter, the number of
incidences satisfies Q(n*/3), hence E cannot satisfy (3).

(4) = (1) If M is not weakly locally modular, by Fact 5.10 a real
closed field R is definable in M. O

5.2. Applications to semialgebraic relations.

Corollary 5.12. Assume that X C R¢ = Hiem R% s semilinear and

X does not contain a direct product of r infinite sets (e.g. if X is Ky -
free for some k). Then there exists some a = «(X) so that for any
r-hypergraph H of the form <V1, L Ve XN Hiem V;) for some finite
Vi CRY with >, |Vi| = n, we have |E| < an"!.

Proof. As every o-minimal structure is distal and every semilinear rela-
tion is definable in an ordered vector space over R which is o-minimal
and locally modular (Example 5.4), the result follows by Corollary
5.8. O

We recall the following special case of the trichotomy theorem in
o-minimal structures restricted to semialgebraic relations.

Fact 5.13. [13, Theorem 1.3] Let X C R"™ be a semialgebraic but not
semilinear set. Then x [q1)2 (i.e. the graph of multiplication restricted
to the unit box) is definable in the first-order structure (R, <,+, X).

Using it, we have the following more explicit variant of Corollary
5.11 in the semialgebraic case.

Corollary 5.14. Let X C R? be a semialgebraic set, and consider
the first-order structure M = (R,<,+,X). Then the following are
equivalent.

(1) For anyr € N and any r-ary relation’ Y C Hz‘e[r} R% not containing
an r-grid A = Hie[r] A; with each A; C R% infinite, there exists
some o € R so that |Y N B| < adl_,(B) for every finite r-grid B.

(2) For everydy,dy € N and Y C R xR% definable (with parameters)
in M, if Y is Ky i-free for some k € N, then there exist some 3 < %
and o such that: for any n and B; C R% with |B;| = n we have

|X N By x By| < an”.
(3) x [0 is not definable in M.

Proof. (1) = (2) is obvious.
(2) = (3) Using x [j912, the Kj,-free point-line incidence relation
in R? is definable restricted to [0,1]?, and the standard configurations
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witnessing the lower bound in Szemerédi-Trotter can be scaled down
to the unit box.

(3) = (1) Assume that (1) does not hold in (R, <, +, X). Then nec-
essarily some Y definable in (R, <, 4, X)) is not semilinear by Corollary
5.12. By Fact 5.13, if Y is not semilinear then x [[ )2 is definable in
the structure (R, <,+,Y), hence in (R, <, +, X). O
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