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Abstract. A bipartite graph H = (V1, V2;E) with |V1|+ |V2| = n
is semilinear if Vi ⊆ Rdi for some di and the edge relation E
consists of the pairs of points (x1, x2) ∈ V1 × V2 satisfying a
fixed Boolean combination of s linear equalities and inequalities
in d1 + d2 variables for some s. We show that for a fixed k, the
number of edges in a Kk,k-free semilinear H is almost linear in
n, namely |E| = Os,k,ε(n

1+ε) for any ε > 0; and more gener-
ally, |E| = Os,k,r,ε(n

r−1+ε) for a Kk,...,k-free semilinear r-partite
r-uniform hypergraph.

As an application, we obtain the following incidence bound:
given n1 points and n2 open boxes with axis parallel sides in Rd

such that their incidence graph is Kk,k-free, there can be at most
Ok,ε(n

1+ε) incidences. The same bound holds if instead of boxes
one takes polytopes cut out by the translates of an arbitrary fixed
finite set of halfspaces.

We also obtain matching upper and (superlinear) lower bounds
in the case of dyadic boxes on the plane, and point out some con-
nections to the model-theoretic trichotomy in o-minimal structures
(showing that the failure of an almost linear bound for some de-
finable graph allows one to recover the field operations from that
graph in a definable manner).

1. Introduction

We fix r ∈ N≥2 and let H = (V1, . . . , Vr;E) be an r-partite and r-
uniform hypergraph (or just r-hypergraph for brevity) with vertex sets
V1, . . . , Vr having |Vi| = ni, (hyper-) edge set E, and n =

∑r
i=1 ni being

the total number of vertices.
Zarankiewicz’s problem asks for the maximum number of edges in

such a hypergraph H (as a function of n1, . . . , nr) assuming that it
does not contain the complete r-hypergraph Kk,...,k with k > 0 a fixed
number of vertices in each part. The following classical upper bound is
due to Kővári, Sós and Turán [11] for r = 2 and Erdős [7] for a general
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r: if H is Kk,...,k-free, then |E| = Or,k

(
nr−

1
kr−1

)
. A probabilistic con-

struction in [7] also shows that the exponent cannot be substantially
improved.

However, stronger bounds are known for restricted families of hy-
pergraphs arising in geometric settings. For example, if H is the
incidence graph of a set of n1 points and n2 lines in R2, then H is
K2,2-free, and Kővári-Sós-Turán Theorem implies |E| = O(n3/2). The
Szemerédi-Trotter Theorem [17] improves this and gives the optimal
bound |E| = O(n4/3). More generally, [10] gives improved bounds for
semialgebraic graphs of bounded description complexity. This is gener-
alized to semialgebraic hypergraphs in [6]. In a different direction, the
results in [10] are generalized to graphs definable in o-minimal struc-
tures in [1] and, more generally, in distal structures in [3].

A related highly nontrivial problem is to understand when the bounds
offered by the results in the preceding paragraph are sharp. When H
is the incidence graph of n1 points and n2 circles of unit radius in R2,
the best known upper bound is |E| = O(n4/3), proven in [16] and also
implied by the general bound for semialgebraic graphs. Any improve-
ment to this bound will be a step toward resolving the long standing
unit distance conjecture of Erdős (an almost linear bound of the form
|E| = O(n1+c/ log logn) will positively resolve it).

This paper was originally motivated by the following incidence prob-
lem. Let H be the incidence graph of a set of n1 points and a set of
n2 solid rectangles with axis-parallel sides (which we refer to as boxes)
in R2. Assuming that H is K2,2-free, i.e. no two points belong to two
rectangles simultaneously, what is the maximum number of incidences
|E|? In the following theorem, we obtain an almost linear bound (which
is much stronger than the bound implied by the aforementioned gen-
eral result for semialgebraic graphs) and demonstrate that it is close
to optimal.

Theorem (A). (1) For any set P of n1 points in R2 and any set R of
n2 boxes in R2, if the incidence graph on P × R is Kk,k-free, then
it contains at most Ok

(
n log4(n)

)
incidences (Corollary 2.38 with

d = 2).
(2) If all boxes in R are dyadic (i.e. direct products of intervals of

the form [s2t, (s+ 1)2t) for some integers s, t), then the number of

incidences is at most Ok

(
n log(100+n1)

log log(100+n1)

)
(Theorem 4.7).

(3) For an arbitrarily large n, there exist a set of n points and n dyadic
boxes in R2 so that the incidence graph is K2,2-free and the number

of incidences is Ω
(
n log(n)

log log(n)

)
(Proposition 3.5).
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Problem 1.1. While the bound for dyadic boxes is tight, we leave it
as an open problem to close the gap between the upper and the lower
bounds for arbitrary boxes.

Remark 1.2. A related result in [9] demonstrates that every Kk,k-free
intersection graph of n convex sets on the plane satisfies |E| = Ok(n).
Note that in Theorem (B) we consider a Kk,k-free bipartite graph, so in
particular there is no restriction on the intersection graph of the boxes
in R.

Theorem (A.1) admits the following generalization to higher dimen-
sions and more general polytopes.

Theorem (B). (1) For any set P of n1 points and any set B of n2

boxes in Rd, if the incidence graph on P × B is Kk,k-free, then it

contains at most Od,k

(
n log2d n

)
incidences (Corollary 2.38).

(2) More generally, given finitely many half-spaces H1, . . . , Hs in Rd,
let F be the family of all possible polytopes in Rd cut out by arbitrary
translates of H1, . . . , Hs. Then for any set P of n1 points in Rd

and any set F of n2 polytopes in F , if the incidence graph on
P×F is Kk,k-free, then it contains at most Ok,s (n logs n) incidences
(Corollary 2.37).

Problem 1.3. What is the optimal bound on the power of log n in
Theorem (B)? In particular, does it actually have to grow with the
dimension d?

Remark 1.4. A bound similar to Theorem (B.1) and an improved bound
for Theorem (A.1) in the K2,2-free case are established independently
by Tomon and Zakharov in [?Tomon], in which the authors also use our
Theorem (A.3) to provide a counterexample to a conjecture of Alon et
al. [?alon2015separation] about the number of edges in a graph of
bounded separation dimension, as well as to a conjecture of Kostochka
from [?kostochka2004coloring]. Some further Ramsey properties of
semilinear graphs are demonstrated by Tomon in [?tomon2021ramsey].

The upper bounds in Theorems (A.1) and (B) are obtained as imme-
diate applications of a general upper bound for Zarankiewicz’s problem
for semilinear hypergraphs of bounded description complexity.

Definition 1.5. Let V be an ordered vector space over an ordered
division ring R (e.g. R viewed as a vector space over itself). A set
X ⊆ V d is semilinear, of description complexity (s, t) if X is a union
of at most t sets of the form{

x̄ ∈ V d : f1 (x̄) ≤ 0, . . . , fp (x̄) ≤ 0, fp+1 (x̄) < 0, . . . , fs (x̄) < 0
}

,
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where p ≤ s ∈ N and each fi : V d → V is a linear function, i.e., of the
form

f (x1, . . . , xd) = λ1x1 + . . .+ λdxd + a

for some λi ∈ R and a ∈ V .

We focus on the case V = R = R in the introduction, in which case
these are precisely the semialgebraic sets that can be defined using only
linear polynomials.

Remark 1.6. By a standard quantifier elimination result [18, §7], every
set definable in an ordered vector space over an ordered division ring,
in the sense of model theory, is semilinear (equivalently, a projection
of a semilinear set is a finite union of semilinear sets).

Definition 1.7. We say that an r-hypergraph H is semilinear, of de-
scription complexity (s, t) if there exist some di ∈ N, Vi ⊆ Rdi and a
semilinear set X ⊆ Rd =

∏
i∈[r] Rdi of description complexity (s, t) so

that H is isomorphic to the r-hypergraph
(
V1, . . . , Vr;X ∩

∏
i∈[r] Vi

)
.

We stress that there is no restriction on the dimensions di in this
definition. We obtain the following general upper bound.

Theorem (C). If H is a semilinear r-hypergraph of description com-
plexity (s, t) and H is Kk,...,k-free, then

|E| = Or,s,t,k

(
nr−1 logs(2

r−1−1)(n)
)
.

In particular |E| = Or,s,t,k,ε (nr−1+ε) for any ε > 0 in this case.
For a more precise statement, see Corollary 2.36 (in particular, the
dependence of the constant in Or,s,t,k on k is at most linear).

Remark 1.8. It is demonstrated in [14] that a similar bound holds in the
situation when H is the intersection hypergraph of (d−1)-dimensional
simplices in Rd.

One can get rid of the logarithmic factor entirely by restricting to
the family of all finite r-hypergraphs induced by a given Kk,...,k-free
semilinear relation (as opposed to all Kk,...,k-free r-hypergraphs induced
by a given arbitrary semilinear relation as in Theorem (C)).

Theorem (D). Assume that X ⊆ Rd =
∏

i∈[r] Rdi is semilinear and

X does not contain the direct product of r infinite sets (e.g. if X is
Kk,...,k-free for some k). Then for any r-hypergraph H of the form(
V1, . . . , Vr;X ∩

∏
i∈[r] Vi

)
for some finite Vi ⊆ Rdi, we have |E| =

OX(nr−1).
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This is Corollary 5.12 and follows from a more general Theorem
5.6 connecting linear Zarankiewicz bounds to a model-theoretic notion
of linearity of a first-order structure (in the sense that the matroid
given by the algebraic closure operator behaves like the linear span in
a vector space, as opposed to the algebraic closure in an algebraically
closed field — see Definition 5.3).

In particular, for every Kk,k-free semilinear relation X ⊆ Rd1 × Rd2

(equivalently, X definable with parameters in the first-order structure
(R, <,+) by Remark 1.6) we have |X ∩ (V1 × V2)| = O(n) for all
Vi ⊆ Rdi

i , |Vi| = ni, n = n1 + n2. One the other hand, by optimality of
the Szemerédi-Trotter bound, for the semialgebraic K2,2-free point-line
incidence graph X = {(x1, x2; y1, y2) ∈ R4 : x2 = y1x1 + y2} ⊆ R2 ×R2

we have |X ∩ (V1×V2)| = Ω(n
4
3 ). Note that in order to define it we use

both addition and multiplication, i.e. the field structure. This is not co-
incidental — as a consequence of the trichotomy theorem in o-minimal
structures [15], we observe that the failure of a linear Zarankiewicz
bound always allows to recover the field in a definable way (Corollary
5.11). In the semialgebraic case, we have the following corollary that
is easy to state (Corollary 5.14).

Theorem (E). Assume that X ⊆ Rd =
∏

i∈[r] Rdi for some r, di ∈ N is

semialgebraic and Kk,...,k-free, but |X ∩
∏

i∈[r] Vi| 6= O(nr−1). Then the
graph of multiplication × �[0,1] restricted to the unit box is definable in
(R, <,+, X).

We conclude with a brief overview of the paper.
In Section 2 we introduce a more general class of hypergraphs de-

finable in terms of coordinate-wise monotone functions (Definition 2.1)
and prove an upper Zarankiewicz bound for it (Theorem 2.17). Theo-
rems (A.1), (B) and (C) are then deduced from it in Section 2.5.

In Section 3 we prove Theorem (A.3) by establishing a lower bound
on the number of incidences between points and dyadic boxes on the
plane, demonstrating that the logarithmic factor is unavoidable (Propo-
sition 3.5).

In Section 4, we establish Theorem (A.2) by obtaining a stronger
bound on the number of incidences with dyadic boxes on the plane
(Theorem 4.7). We use a different argument relying on a certain partial
order specific to the dyadic case to reduce from log4(n) given by the
general theorem above to log(n). Up to a constant factor, this implies
the same bound for incidences with general boxes when one only counts
incidences that are bounded away from the border (Remark 4.8).
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Finally, in Section 5, we prove a general Zarankiewicz bound for de-
finable relations in weakly locally modular geometric first-order struc-
tures (Theorem 5.6), deduce Theorem (D) from it (Corollary 5.12) and
observe how to recover a real closed field from the failure of Theorem
(D) in the o-minimal case (Corollary 5.11).
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support. Sergei Starchenko was supported by the NSF Research Grant
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2. Upper bounds

2.1. Coordinate-wise monotone functions and basic sets. For
an integer r ∈ N>0, by an r-grid (or a grid if r is clear from the
context) we mean a cartesian product B = B1× · · ·×Br of some sets
B1, . . . , Br. As usual, [r] denotes the set {1, 2, . . . , r}.

If B = B1× · · ·×Br is a grid, then by a sub-grid we mean a subset
C ⊆ B of the form C = C1 × · · · × Cr for some Ci ⊆ Bi.

Let B be an r-grid, S an arbitrary set and f : B → S a function.
For i ∈ [r], set

Bi = B1 × · · ·Bi−1 ×Bi+1 × · · · ×Br,

and let πi : B → Bi and πi : B → Bi be the projection maps.
For a ∈ Bi and b ∈ Bi, we write a ⊕i b for the element c ∈ B with

πi(c) = a and πi(c) = b. In particular, when i = r, a⊕r b = (a, b).

Definition 2.1. Let B be an r-grid and (S,<) a linearly ordered set.
A function f : B → S is coordinate-wise monotone if for any i ∈ [r],
a, a′ ∈ Bi and b, b′ ∈ Bi we have

f(a⊕i b) ≤ f(a⊕i b′)⇐⇒ f(a′ ⊕i b) ≤ f(a′ ⊕i b′).

Remark 2.2. Let B = B1× · · ·×Br be an r-grid and Γ an ordered
abelian group. We say that a function f : B → Γ is quasi-linear if
there exist some functions fi : Bi → Γ, i ∈ [r], such that

f(x1, . . . , xr) = f1(x1) + · · ·+ fr(xr).

Then every quasi-linear function is coordinate-wise monotone (as
f(a⊕i b) ≤ f(a⊕i b′)⇔ fi(b) ≤ fi(b

′) for any a ∈ Bi).
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Example 2.3. Suppose that V is an ordered vector space over an ordered
division ring R, di ∈ N for i ∈ [r], and f : V d1 × · · · × V dr → V is a
linear function. Then f is obviously quasi-linear, hence coordinate-wise
monotone.

Remark 2.4. Let B be a grid and C ⊆ B a sub-grid. If f : B → S
is a coordinate-wise monotone function then the restriction f� C is a
coordinate-wise monotone function on C.

Definition 2.5. Let B be an r-grid. A subset X ⊆ B is a basic set if
there exists a linearly ordered set (S,<), a coordinate-wise monotone
function f : B → S and l ∈ S such that X = {b ∈ B : f(b) < l}.

Remark 2.6. If r = 1, then every subset of B = B1 is basic.

Remark 2.7. If X ⊆ B is given by X = {b ∈ B : f(b) ≤ l} for some
coordinate-wise monotone function f : B → S, then X is a basic set
as well. Indeed, we can just add a new element l′ to S so that it is a
successor of l, then X = {b ∈ B : f(b) < l′}.

Similarly, the sets {b ∈ B : f(b) > l} , {b ∈ B : f(b) ≥ l} are basic, by
inverting the order on S.

We have the following “coordinate-splitting” presentation for basic
sets.

Proposition 2.8. Let B = B1× · · ·×Br be an r-grid and X ⊆ B a
basic set. Then there is a linearly ordered set (S,<), a coordinate-wise
monotone function f r : Br → S and a function fr : Br → S such that
X = {br ⊕r br : f r(br) < fr(br)}.

Remark 2.9. The converse of this proposition is also true: an arbitrary
linear order (S,<) can be realized as a subset of some ordered abelian
group (G,+, <) with the induced ordering (we can take G := Q when
S is at most countable); then define f : B → S by setting

f(br ⊕r br) := f r(br)− fr(br), and l := 0.

Proof of Proposition 2.8. Assume that we are given a coordinate-wise
monotone function f : B → S and l ∈ S with X = {b ∈ B : f(b) < l}.

For i ∈ [r], let ≤i be the pre-order on Bi induced by f , namely for
b, b′ ∈ Bi we set b ≤i b′ if and only if for some (equivalently, any) a ∈ Bi

we have f(a⊕i b) ≤ f(a⊕i b′).
Quotienting Bi by the equivalence relation corresponding to the pre-

order ≤i if needed, we may assume that each ≤i is actually a linear
order.
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Let <r be the partial order on Br with (b1, . . . , br−1) <r (b′1, . . . , b
′
r−1)

if and only if

(b1, . . . , br−1) 6= (b′1, . . . , b
′
r−1) and bj ≤j b′j for all j ∈ [r − 1].

Let T := Br∪̇Br, where ∪̇ denotes the disjoint union. Clearly <r is
a strict partial order on T , i.e. a transitive and anti-symmetric (hence
irreflexive) relation.

For any br ∈ Br and br ∈ Br we define

br / br if f(br ⊕r br) < l, and br / b
r otherwise.

Claim 2.10. Let a1, a2 ∈ Br, and b1, b2 ∈ Br.

(1) If a1 / b1 / a2 / b2, then b2 <r b1 and a1 / b2.
(2) If b1 / a1 / b2 / a2, then b2 <r b1 and b1 / a2.

Proof. (1). We have f(a2⊕r b1) ≥ l and f(a2⊕r b2) < l, hence b2 <r b1.
Since f(a1 ⊕r b1) < l and b2 <r b1 we also have f(a1 ⊕r b2) < l.
(2) is similar. �

Let /t be the transitive closure of /. It follows from the above claim
that /t = / ∪ /◦/. More explicitly, for b1, b2 ∈ Br, b1 /

t b2 if b2 <r b1,
and for a1, a2 ∈ Br, a1 /

t a2 if f(a1⊕b) < l < f(a2⊕b) for some b ∈ Br.
It is not hard to see then that /t is anti-symmetric, hence it is a strict
partial order on T .

Claim 2.11. The union <r ∪/t is a strict partial order on T .

Proof. We first show transitivity. Note that <r and /t are both tran-
sitive, so it suffices to show for x, y, z ∈ T that if either x <r y /t z or
x/t y <r z, then x/t z. Furthermore, since /t = /∪/◦/, we may restrict
our attention to the following cases. If a1 <

r a2/b with a1, a2 ∈ Br and
b ∈ Br, then f(a1 ⊕r b) < f(a2 ⊕r b) < l, and so a1 / b. If b / a1 <

r a2

with a1, a2 ∈ Br and b ∈ Br, then f(a2 ⊕r b) > f(a1 ⊕r b) ≥ l, and so
b / a2.

To check anti-symmetry, assume a1 <
r a2 and a2 /

t a1. Since a1, a2 ∈
Br we have a2 / b / a1 for some b ∈ Br. We have f(a1 ⊕r b) ≥ l >
f(a2 ⊕r b), contradicting a1 <

r a2. �

Finally, let ≺ be an arbitrary linear order on T = Br∪̇Br extending
<r ∪/t. Since ≺ extends /, for a ∈ Br and b ∈ Br we have (a, b) ∈ X
if and only if a ≺ b.

We take f r : Br → T and fr : Br → T to be the identity maps. Since
≺ extends <r, the map f r is coordinate-wise monotone. �
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2.2. Main theorem.

Definition 2.12. Let B = B1× · · ·×Br be an r-grid.

(1) Given s ∈ N, we say that a set X ⊆ B has grid-complexity s (in
B) if X is the intersection of B with at most s basic subsets of B.
We say that X has finite grid-complexity if it has grid-complexity
s for some s ∈ N.

(2) For integers k1, . . . kr we say that X ⊆ B is Kk1,...,kr-free is X does
not contain a sub-grid C1 × · · · × Cr ⊆ S with |Ci| = ki.

In particular, B itself is the only subset of B of grid-complexity 0.

Example 2.13. Suppose that V is an ordered vector space over an or-
dered division ring, d = d1 + . . .+ dr ∈ N and

X =
{
x̄ ∈ V d : f1 (x̄) ≤ 0, . . . , fp (x̄) ≤ 0, fp+1 (x̄) < 0, . . . , fs (x̄) < 0

}
,

for some linear functions fi : V d → V, i ∈ [s]. Then each fi is
coordinate-wise monotone (Example 2.3), hence each of the sets{

x̄ ∈ V d : fi(x̄) < 0
}
,
{
x̄ ∈ V d : fi(x̄) ≤ 0

}
is a basic subset of the grid V d1× . . .×V dr (the latter by Remark 2.7),
and X ⊆ V d1 × . . . × V dr as an intersection of these s basic sets has
grid-complexity s.

Remark 2.14. (1) Let B be an r-grid and A ⊆ B a subset of B of grid-
complexity s. If C ⊆ B is a sub-grid containing A, then A is also
a subset of C of grid-complexity s.

(2) In particular, if A ⊆ B is a subset of grid-complexity s, then A
is a subset of grid-complexity s of the grid A1× · · ·×Ar, where
Ai := πi(A) is the projection of A on Bi (it is the smallest sub-grid
of B containing A).

Definition 2.15. Let B = B1× · · ·×Br be a finite r-grid and ni :=
|Bi|. For j ∈ {0, . . . r}, we will denote by δrj (B) the integer

δrj (B) :=
∑

i1<i2<···<ij∈[r]

ni1 · ni2 · . . . · nij .

Example 2.16. We have δr0(B) = 1, δr1(B) = n1 + · · · + nr, δ
r
r(B) =

n1n2 · · ·nr.
We can now state the main theorem.

Theorem 2.17. For every integers r ≥ 2, s ≥ 0, k ≥ 2 there are
α = α(r, s, k) ∈ R and β = β(r, s) ∈ N such that: for any finite r-grid
B and Kk,...,k-free subset A ⊆ B of grid-complexity s we have

|A| ≤ αδrr−1(B) logβ
(
δrr−1(B) + 1

)
.
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Moreover, we can take β(r, s) := s(2r−1 − 1).

Remark 2.18. Inspecting the proof, it can be verified that the depen-
dence of α on k is at most linear.

Remark 2.19. We use logβ
(
δrr−1(B) + 1

)
instead of logβ

(
δrr−1(B)

)
to

include the case δrr−1(B) ≤ 1.

Remark 2.20. If in Theorem 2.17 A is only assumed to be a union of
at most t sets of grid-complexity s, then the same bound holds with
α′ := t · α (if A =

⋃
i∈[t] Ai is Kk,...,k-free, then each Ai is also Kk,...,k-

free, so we can apply Theorem 2.17 to each of the Ai’s and bound |A|
by the sum of their bounds).

Definition 2.21. Let B = B1× · · ·×Br be a grid. We extend the
definition of δrj to arbitrary finite subsets of B as follows. Let A ⊆ B
be a finite subset, and let Ai := πi(A), i ∈ [r], be the projections of A.
We define δrj (A) := δrj (A1× · · ·×Ar).

If B is a finite r-grid and A ⊆ B, then obviously δrj (A) ≤ δrj (B).
Thus Theorem 2.17 is equivalent to the following.

Proposition 2.22. For every integers r ≥ 2, s ≥ 0, k ≥ 2 there are
α = α(r, s, k) ∈ R and β = s(2r−1 − 1) ∈ N such that for any r-grid B
and Kk,...,k-free finite subset A ⊆ B of grid-complexity ≤ s we have

|A| ≤ αδrr−1(A) logβ(δrr−1(A) + 1).

Definition 2.23. For r ≥ 1, s ≥ 0, k ≥ 2 and n ∈ N, let Fr,k(s, n) be
the maximal size of a Kk,...,k-free subset A of grid-complexity s of some
r-grid B with δrr−1(B) ≤ n.

Then Proposition 2.22 can be restated as follows.

Proposition 2.24. For every integers r ≥ 2, s ≥ 0, k ≥ 2 there are
α = α(r, s, k) ∈ R and β = β(r, s) ∈ N such that

Fr,k(s, n) ≤ αn logβ(n+ 1).

Remark 2.25. Notice that Fr,k(s, 0) = 0.

In the rest of the section we prove Proposition 2.24 by induction on
r, where for each r it is proved by induction on s. We will use the
following simple recurrence bound.

Fact 2.26. Let µ : N→ N be a function satisfying µ(0) = 0 and µ(n) ≤
2µ(bn/2c) + αn logβ(n+ 1)) for some α ∈ R and β ∈ N. Then µ(n) ≤
α′n logβ+1(n+ 1) for some α′ = α′(α, β) ∈ R.
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2.3. The base case r = 2. Let B = B1×B2 be a finite grid and A ⊆ B
a subset of grid-complexity s. We will proceed by induction on s.

If s = 0 then A = B1 × B2. If A is Kk,k-free then one of the sets
B1, B2 must have size at most k. Hence |A| ≤ k(|B1|+ |B2|) = kδ2

1(B).
Thus

F2,k(0, n) ≤ kn.

Remark 2.27. The same argument shows that Fr,k(0, n) ≤ kn for all
r ≥ 2.

Assume now that the theorem is proved for r = 2 and all s′ < s. Let
n1 := |B1|, n2 := |B2| and n := δ2

1(B) = n1 + n2.
We choose basic sets X1, . . . Xs ⊆ B such that A = B ∩

⋂
j∈[s] Xj.

By Proposition 2.8, we can choose a finite linear order (S,<) and
functions f1 : B1 → S and f2 : B2 → S so that

Xs = {(x1, x2) ∈ B1 ×B2 : f1(x1) < f2(x2)} .
For l ∈ S, i ∈ {1, 2} and � ∈ {<,=, >,≤,≥}, let

B�l
i = {b ∈ Bi : fi(b)�l} .

We choose h ∈ S such that

|B<h
1 |+ |B<h

2 | ≤ n/2 and |B>h
1 |+ |B>h

2 | ≤ n/2.

For example we can take h to be the minimal element in f1(B1)∪f2(B2)

with |B≤h1 |+ |B
≤h
2 | ≥ n/2. Then

Xs =
[
(B<h

1 ×B<h
2 ) ∩Xs

]
∪
[
(B>h

1 ×B>h
2 ) ∩Xs

]
∪(B<h

1 ×B
≥h
2 ) ∪ (B=h

1 ×B>h
2 ).

Hence we conclude

F2,k(s, n) ≤ 2F2,k(s, bn/2c) + 2F2,k(s− 1, n).

Applying induction hypothesis on s, and using Fact 2.26 and Re-
mark 2.25 we obtain F2,k(s, n) ≤ αn(log n)β for some α = α(s, k) ∈ R
and β = β(s) ∈ N.

This finishes the base case r = 2.

2.4. Induction step. We fix r ∈ N≥3 and assume that Proposition 2.24
holds for all pairs (r′, s) with r′ < r and s ∈ N.

Definition 2.28. Let B = B1× · · ·×Br be a finite r-grid.

(1) For integers t, u ∈ N, we say that a subset A ⊆ B is of split grid-
complexity (t, u) if there are basic sets X1, . . . , Xu ⊆ B, a subset
Ar ⊆ B1× · · ·×Br−1 of grid-complexity t, and a subset Ar ⊆ Br

such that A = (Ar × Ar) ∩
⋂
i∈[u] Xi.
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(2) For t, u ≥ 0, k ≥ 2 and n ∈ N, let Gk(t, u, n) be the maximal size of
a Kk,...,k-free subset A of an r-grid B of split grid-complexity (t, u)
with δrr−1(B) ≤ n.

Remark 2.29. (1) Note that Ar has grid-complexity at most 1, which
is the reason we do not include a parameter for the grid-complexity
of Ar in the split grid-complexity of A.

(2) If A ⊆ B is of grid-complexity s, then it is of split grid-complexity
(0, s).

(3) If A ⊆ B is of split grid-complexity (t, u), then it is of grid-
complexity t+ u.

For the rest of the proof, we abuse notation slightly and refer to the
“split grid-complexity” of a set as the “grid-complexity”. To complete
the induction step we will prove the following Proposition.

Proposition 2.30. For any integers t, u ≥ 0, k ≥ 2, r ≥ 3 there are
α′ = α′(r, k, t, u) ∈ R and β′ = β′(r, k, t, u) ∈ N such that

Gk(t, u, n) ≤ α′n logβ
′
(n+ 1).

We will use the following notations throughout the section:

• B = B1× · · ·×Br is a finite grid with n = δrr−1(B);
• A ⊆ B is a subset of grid-complexity (t, u);
• Br is the (r − 1)-grid Br := B1× · · ·×Br−1;
• Ar ⊆ Br is a subset of grid-complexity t, Ar ⊆ Br, and X1, . . . Xu ⊆
B are basic subsets such that A = (Ar×Ar) ∩

⋂
i∈[u] Xi.

We proceed by induction on u.

The base case u = 0 of Proposition 2.30.
In this case A = Ar × Ar. If A is Kk,...,k-free then either Ar is

Kk,...,k-free or |Ar| < k.
In the first case, by induction hypothesis on r, there are α = α(r −

1, t, k) and β = β(r− 1, t) such that |Ar| ≤ αδr−1
r−2(Br) logβ(δr−1

r−2(Br) +
1). In the second case we have |A| ≤ |Br|k = δr−1

r−1(Br)k.
Since n = δrr−1(B) = δr−1

r−1(Br) + δr−1
r−2(Br)|Br|, the conclusion of the

proposition follows with α′ := α, β′ := β.

Induction step of Proposition 2.30. We assume now that the proposi-
tion holds for all pairs (t, u′) with u′ < u and t ∈ N.

Given a tuple x = (x1, . . . , xr) ∈ B, we let xr := (x1, . . . , xr−1). By
Proposition 2.8, we can choose a finite linear order (S,<), a coordinate-
wise monotone function f r : Br → S and a function fr : Br → S so that

Xu = {xr ⊕r xr ∈ Br ×Br : f r(xr) < fr(xr)} .
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Moreover, by Remark 2.9, we may assume without loss of generality
that the coordinate-wise monotone function defining Xu is given by

f(xr ⊕r xr) = f r(xr)− fr(xr).
Definition 2.31. Given an arbitrary set Cr ⊆ Br, we say that a set
Hr ⊆ Cr is an f r-strip in Cr if

Hr = {xr ∈ Cr : l1 /1 f
r(xr) /2 l2}

for some l1, l2 ∈ S, /1, /2 ∈ {<,≤}. Likewise, given an arbitrary set
Cr ⊆ Br, we say that Hr ⊆ Cr is an fr-strip in Cr if

Hr = {xr ∈ Cr : l1 /1 fr(xr) /2 l2}
for some l1, l2 ∈ S, /1, /2 ∈ {<,≤}. If Cr = Ar or Cr = Ar, we simply
say an f r-strip or fr-strip, respectively.

Remark 2.32. Note the following:

(1) Ar is an f r-strip, and Ar is an fr-strip;
(2) every f r-strip is a subset of the (r − 1)-grid Br of grid-complexity

t+ 2 (using Remark 2.7);
(3) the intersection of any two f r-strips is an f r-strip; the same con-

clusion holds for fr-strips.

Definition 2.33. (1) We say that a subset H ⊆ B is an f -grid if
H = Hr ×Hr, where Hr ⊆ Br is an f r-strip in Br and Hr ⊆ Br is
an fr-strip in Br.

(2) If H = Hr ×Hr is an f -grid, we set

∆(H) := |Hr|+ δr−1
r−2(Hr)|Hr| (see Definition 2.21 for δr−1

r−2).

Note that if H is a sub-grid of B, then ∆(H) = δrr−1(H).
(3) For an f -grid H, we will denote by AH the set A ∩H.

The induction step for Proposition 2.30 will follow from the following
proposition.

Proposition 2.34. For every integer k ≥ 2, r ≥ 3 there are α′ =
α′(r, k, t, u) ∈ R and β′ = β′(r, t, u) ∈ N such that, for any f -grid H,
if the set AH is Kk,...,k-free then

|AH | ≤ α′∆(H) logβ
′
(∆(H) + 1).

We should stress that in the above proposition α′ and β′ do not
depend on f r, fr, B, Ar, and Ar but they may depend on our fixed t
and u.

Given Proposition 2.34, we can apply it to the f -grid H := Ar ×Ar
(so AH = A) and get

|A| ≤ α′∆(H) logβ
′
(∆(H) + 1).
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It is easy to see that ∆(Ar × Ar) ≤ δrr−1(B), hence Proposition 2.30
follows with the same α′ and β′.

We proceed with the proof of Proposition 2.34

Proof of Proposition 2.34. Fix m ∈ N, and let L(m) be the maximal
size of a Kk,...,k-free set AH among all f -grids H ⊆ B with ∆(H) ≤ m.
We need to show that for some α′ = α′(k) ∈ R and β′ ∈ N we have

L(m) ≤ α′m logβ
′
(m+ 1).

Let H = Hr ×Hr be an f -grid with ∆(H) ≤ m.
For l ∈ S and � ∈ {<,=, >,≤,≥}, let

Hr,�l := {xr ∈ Hr : f r(xr)�l}
and

H�l
r := {xr ∈ Hr : fr(xr)�l} .

Note that for every l ∈ S, Hr,�l is an f r-strip in Hr, H�l
r is an

fr-strip in Hr, and their product is an f -grid.

Claim 2.35. There is h ∈ S such that

∆(Hr,<h ×H<h
r ) ≤ m/2 and ∆(Hr,>h ×H>h

r ) ≤ m/2.

Proof of Claim. Let δ := δr−1
r−2(Hr).

Let h be the minimal element in f r(Hr) ∪ fr(Hr) with

|Hr,≤h|+ δ|H≤hr | ≥ m/2.

Then |Hr,<h| + δ|H<h
r | ≤ m/2 and |Hr,>h| + δ|H>h

r | ≤ m/2. Since
Hr,<h, Hr,>h ⊆ Hr, we have δr−1

r−2(Hr,<h), δr−1
r−2(Hr,>h) ≤ δ. The claim

follows. �

Let h be as in the claim. It is not hard to see that the following
holds: (

Hr,≤h ×H≥hr
)
∩Xu =

(
Hr,<h ×H≥hr

)
∪
(
Hr,=h ×H>h

r

)
,(

Hr,≥h ×H≤hr
)
∩Xu = ∅.

It follows that

AH ∩Xu =
[
(Hr,<h ×H<h

r ) ∩Xu

]
∪
[
(Hr,>h ×H>h

r ) ∩Xu

]
∪(Hr,<h ×H≥hr ) ∪ (Hr,=h ×H>h

r ).

Hence, by the choice of h and using Remark 2.32(2),

L(m) ≤ 2L(bm/2c) + 2Gk(t+ 2, u− 1,m).

Applying the induction hypothesis on u and using Fact 2.26 we ob-
tain L(m) ≤ α′m logβ

′
(m+ 1) for some α′ = α′(k) ∈ R and β′ ∈ N.
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This finishes the proof of Proposition 2.34, and hence of the induction
step of Proposition 2.24. �

Finally, inspecting the proof, we have shown the following:

(1) β(2, s) ≤ s for all s ∈ N;
(2) β′(r, t, 0) ≤ β(r − 1, t) for all r ≥ 3 and t ∈ N;
(3) β′(r, t, u) ≤ β′(r, t+ 2, u− 1) + 1 for all r ≥ 3, t ≥ 0, u ≥ 1.

Iterating (3), for every r ≥ 3, s ≥ 1 we have β(r, s) ≤ β′(r, 0, s) ≤
β′(r, 2s, 0) + s. Hence, by (2), β(r, s) ≤ β(r− 1, 2s) + s for every r ≥ 3
and s ≥ 1. Iterating this, we get β(r, s) ≤ β(2, 2r−2s)+s

∑r−3
i=0 2i. Using

(1), this implies β(r, s) ≤ s
∑r−2

i=0 2i = s(2r−1 − 1) for all r ≥ 3, s ≥ 1.
Hence, by Remark 2.27 and (1) again, β(r, s) ≤ s(2r−1 − 1) for all
r ≥ 2, s ≥ 0.

2.5. Some applications. We observe several immediate applications
of Theorem 2.17, starting with the following bound for semilinear hy-
pergraphs.

Corollary 2.36. For every r, s, t, k ∈ N, r ≥ 2 there exist some α =
α(r, s, t, k) ∈ R and β(r, s) := s(2r−1 − 1) satisfying the following.

For any semilinear Kk,...,k-free r-hypergraph H = (V1, . . . , Vr;E) of
description complexity (s, t) (see Definition 1.7), taking V :=

∏
i∈[r] Vi

we have

|E| ≤ αδrr−1(V ) logβ
(
δrr−1(V ) + 1

)
.

Proof. By assumption the edge relation E can be defined by a union of
t sets, each of which is defined s linear equalities and inequalities, hence
of grid-complexity ≤ s (see Example 2.13). The conclusion follows by
Theorem 2.17 and Remark 2.20. �

As a special case with r = 2, this implies a bound for the following
incidence problem.

Corollary 2.37. For every s, k ∈ N there exists some α = α(s, k) ∈ R
satisfying the following.

Let d ∈ N and H1, . . . , Hs ⊆ Rd be finitely many (closed or open)
half-spaces in Rd. Let F be the (infinite) family of all possible polytopes
in Rd cut out by arbitrary translates of H1, . . . , Hs.

For any set P of n1 points in Rd and any set F of n2 polytopes in F ,
if the incidence graph on P × F is Kk,k-free, then it contains at most
αn logs n incidences.



16 A. BASIT, A. CHERNIKOV, S. STARCHENKO, T.TAO, AND C.-M.TRAN

Proof. We can write

Hi =

x̄ = (x1, . . . , xd) ∈ Rd :
∑
j∈[d]

ai,jxj�ibi

 ,

where ai,j, bi ∈ R and �i ∈ {>,≥} for i ∈ [s], j ∈ [d] depending on
whether Hi is an open or a closed half-space.

Every polytope F ∈ F is of the form
⋂
i∈[s](ȳi + Hi) for some

(ȳ1, . . . , ȳs) ∈ Rsd, where ȳi + Hi is the translate of Hi by the vec-
tor ȳi = (yi,1, . . . , yi,d) ∈ Rd, i.e.

ȳi +Hi =

x̄ ∈ Rd :
∑
j∈[d]

ai,jxj +
∑
j∈[d]

(−ai,j)yj�ibi

 .

Then the incidence relation between points in Rd and polytopes in
F can be identified with the semilinear set(x̄; (yi,j)i∈[s],j∈[d]

)
∈ Rd × Rsd :

∧
i∈[s]

∑
j∈[d]

ai,jxj +
∑
j∈[d]

(−ai,j)yi,j�ibi


defined by s linear inequalities. The conclusion now follows by Corol-
lary 2.36 with r = 2. �

In particular, we get a bound for the original question that motivated
this paper.

Corollary 2.38. Let Fd be the family of all (closed or open) boxes
in Rd. Then for every k there exists some α = α(d, k) satisfying the
following.

For any set P of n1 points in Rd and any set F of n2 boxes in Fd,
if the incidence graph on P × F is Kk,k-free, then it contains at most

αn log2d n incidences.

Proof. Immediate from Corollary 2.37, since we have 2d half-spaces
in Rd so that every box in Rd is cut out by the intersection of their
translates. �

3. Lower bounds

While we do not know if the bound β(2, s) ≤ s in Theorem 2.17 is
optimal, in this section we show that at least the logarithmic factor
is unavoidable already for the incidence relation between points and
dyadic boxes in R2.

We describe a slightly more general construction first. Fix d ∈ N>0.
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Definition 3.1. Given finite tuples p̄ = (p1, . . . , pn), q̄ = (q1, . . . , qn)
and r̄ = (r1, . . . , rm) with pi, qi, ri ∈ Rd, say pi = (pi,1, . . . , pi,d), qi =
(qi,1, . . . , qi,d), ri = (ri,1, . . . , ri,d), we say that p̄ and q̄ have the same
order-type over r̄ if

pi,j�pi′,j′ ⇐⇒ qi,j�qi′,j′ and

pi,j�rk,j′ ⇐⇒ qi,j�rk,j′

for all � ∈ {<,>,=}, 1 ≤ i, i′ ≤ n, 1 ≤ j, j′ ≤ d and 1 ≤ k ≤ m.

In other words, the tuples (pi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ d) and (qi,j :
1 ≤ i ≤ n, 1 ≤ j ≤ d) have the same quantifier-free type over the set
{ri,j : 1 ≤ i ≤ m, 1 ≤ j ≤ d} in the structure (R, <).

Remark 3.2. Assume that P = {p1, . . . , pn} ⊆ Rd is a finite set of
points and B is a finite set of d-dimensional open boxes with axis-
parallel sides, with I incidences between P and B.

(1) By perturbing P and B slightly, we may assume that for every
1 ≤ j ≤ d, all points in P have pairwise distinct jth coordinates
p1,j, . . . , pn,j, and none of the points in P belongs to the border of
any of the boxes in B, while the incidence graph between P and B
remains unchanged.

(2) Let r̄ be the tuple listing all corners of all boxes in B. If P ′ =
{p′1, . . . , p′n} ⊆ Rd is an arbitrary set of points with the same order-
type as P over r̄, then the incidence graph on P ×B is isomorphic
to the incidence graph on P ′ ×B.

We have the following lemma for combining point-box incidence con-
figurations in a higher-dimensional space.

Lemma 3.3. Given any d, n1, n2, n
′
1, n

′
2,m,m

′ ∈ N>0, assume that:

(1) there exists a set of points P d−1 ⊆ Rd−1 with |P d−1| = n1 and a
set of (d − 1)-dimensional boxes Bd−1 with |Bd−1| = n2, with m
incidences between them, and the incidence graph K2,2-free;

(2) there exists a set of points P d ⊆ Rd with |P d| = n′1 and a set of
d-dimensional boxes Bd with |Bd| = n′2, with m′ incidences between
them and the incidence graph K2,2-free.

Then there exists a set of points P ⊆ Rd with |P | = n1n
′
1 and a set

of d-dimensional boxes B with |B| = n1n
′
2 + n′1n2, so that there are

n1m
′ + mn′1 incidences between P and B and their incidence graph is

still K2,2-free.

Proof. By Remark 3.2(1) we may assume that for every 1 ≤ j ≤ d,
all points in P d have pairwise distinct jth coordinates, for every 1 ≤
j ≤ d−1 all points in P d−1 have pairwise distinct jth coordinates, and
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none of the points is on the border of any of the boxes. Write P d−1 as
p1, . . . , pn1 . Let r̄ be the tuple listing all corners of all boxes in Bd−1.

Using this, for each pi we can choose a very small (d−1)-dimensional
box βi with pi ∈ βi and such that: for any choice of points p′i ∈
βi, 1 ≤ i ≤ n1, we have that (p′1, . . . , p

′
n1

) has the same order-type as
(p1, . . . , pn1) over r̄. In particular, all the βi’s are pairwise disjoint,
and the incidence graph between P d−1 and Bd−1 is isomorphic to the
incidence graph between (p′i, . . . , p

′
n1

) and Bd−1 by Remark 3.2(2).
Contracting and translating while keeping the dth coordinate un-

changed, for each 1 ≤ i ≤ n1 we can find a copy (P d
i , B

d
i ) of the

configuration (P d, Bd) entirely contained in the box βi × R, that is:

• all points in P d
i and boxes in Bd

i are contained in βi × R;
• the incidence graph on (P d

i , B
d
i ) is isomorphic to the incidence graph

on (P d, Bd);
• for all i, the dth coordinate of every point in P d

i is the same as the
dth coordinate of the corresponding point in P d.

Let P :=
⋃

1≤i≤n1
P d
i and B′ :=

⋃
1≤i≤n1

Bd
i , then |P | = n1n

′
1, |B′| =

n1n
′
2 and there are n1m

′ incidences between P and B′.
Write P d as q1, . . . , qn′1 and Bd−1 as c1, . . . , cn2 . As all of the dth

coordinates of the points in P d are pairwise disjoint, for each 1 ≤ j ≤ n′1
we can choose a small interval Ij ⊆ R with qj,d ∈ Ij, and so that all of
the intervals Ij, 1 ≤ j ≤ n′1 are pairwise disjoint. For each 1 ≤ j ≤ n′1
and cl ∈ Bd−1, we consider the d-dimensional box cj,l := cl × Ij. Let
Bj := {cj,l : 1 ≤ l ≤ n2}. For each 1 ≤ i ≤ n1 and 1 ≤ j ≤ n′1,
(βi×R)∩ (Rd−1× Ij) contains exactly one point qi,j (given by the copy
of qj in P d

i ), and the projection q′i,j of qi,j onto the first d−1 coordinates
is in βi. Hence the incidence graph between P and Bj is isomorphic to
the incidence graph between P d−1 and Bd−1 by the choice of the βi’s,
in particular the number of incidences is m.

Finally, let B := B′ ∪
⋃

1≤j≤n′1
Bj, then |B| = n1n

′
2 + n′1n2. Note

that cj,l ∩ cj′,l′ = ∅ for j 6= j′ and any l, l′, i.e. no box in Bj intersects
any of the boxes in Bj′ for j 6= j′. It is now not hard to check that the
incidence graph between P and B is K2,2-free (by construction and the
assumptions of K2,2-freeness of (P d, Bd) and (P d−1, Bd−1)), and that
there are n1m

′ +mn′1 incidences between P and B. �

Remark 3.4. It follows from the proof that if all the boxes in Bd−1 and
Bd are dyadic (see Definition 4.6), then we can choose the boxes in B
to be dyadic as well.
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Proposition 3.5. For any ` ∈ N, there exist a set P of `` points and
a set B of `` dyadic boxes in R2 such that their incidence graph is
K2,2-free and the number of incidences is ```.

In particular, substituting n := ``, this shows that the number of

incidences grows as Ω
(
n logn

log logn

)
.

Proof. Given d, assume that there exist K2,2-free ‘point – dyadic box’
configurations satisfying (1) and (2) in Lemma 3.3 for some parameters
d, n1, n2, n

′
1, n

′
2,m,m

′. Then, for any j ∈ N, we can iterate the lemma
j times and find a K2,2-free ‘point – dyadic box’ configuration in Rd

with nj1n
′
1 points, nj1n

′
2 + jnj−1

1 n′1n2 dyadic boxes (Remark 3.4), and
nj1m

′ + jnj−1
1 n′1m incidences.

In particular, let d = 2 and let ` be arbitrary. We can start with
n1 = `, n2 = 1,m = ` (one dyadic interval containing n1 points in R)
and n′1 = 1, n′2 = 0,m′ = 0 (one point and zero dyadic boxes in R2).
Taking j := `, we then find a K2,2-free configuration with `` points, ``

dyadic boxes and ``` incidences. Hence for n := kk, we have n points,

n boxes and Ω
(
n logn

log logn

)
incidences. �

Remark 3.6. We remark that the construction in Lemma 3.3 cannot
produce a K2,2-free configuration with more than O

(
n logn

log logn

)
inci-

dences in Rd for any d.

Indeed, using the “coordinates”
(

log n′1,
n′2
n′1
, m
′

n′1

)
instead of (n′1, n

′
2,m

′),

where the coordinates correspond to the number of points, boxes and

incidences respectively, the lemma says that if
(

log n1,
n2

n1
, m
n1

)
is at-

tainable in d − 1 dimensions and
(

log n′1,
n′2
n′1
, m
′

n′1

)
is attainable in d

dimensions, then
(

log n′1 + log n1,
n′2
n′1

+ n2

n1
, m
′

n′1
+ m

n1

)
is attainable in d

dimensions. Thus, one adds the vector
(
n2

n1
, m
n1

)
to
(
n′2
n′1
, m
′

n′1

)
. We want

to maximize the second coordinate of this vector while keeping the first
coordinate below 1, and the optimal way to do it essentially is to add n1

times the vector
(

1
n1
, 1
)

, which increases log n′1 by n1 log n1 and gives

the logn
log logn

lower bound.

We thus ask whether in the ‘point-box’ incidence bound in Rd the
power of log n has to grow with the dimension d (see Problem 1.3).

4. Dyadic rectangles

In this section we strengthen the bound on the number of incidences
with rectangles on the plane with axis-parallel sides given by Corollary
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2.38, i.e., Ok

(
n log4 n

)
, in the special case of dyadic rectangles, using

a different argument (which relies on a certain partial order specific to
the dyadic case).

4.1. Locally d-linear orders. Throughout this section, let (P,≤) be
a partially ordered set of size at most n1, and let L be a collection of
subsets of P (possibly with repetitions) of size at most n2. As before,
we let n = n1 + n2.

Definition 4.1. We say that a set S ⊆ P is d-linear if it contains no
antichains of size greater than d, and (P,≤) is locally d-linear if any
interval [a, b] = {x ∈ P : a ≤ x ≤ b} is d-linear.

Note that d-linearity is preserved under removing points from P .

Definition 4.2. The collection L is said to be a Kk,k-free arrangement
if for any a1 6= . . . 6= ak ∈ P , there are at most k − 1 sets from L
containing all of them simultaneously.

Observe that if one removes any number of points from P , or removes
any number of sets from L, one still obtains a Kk,k-free arrangement.
We now state the main theorem of this section.

Theorem 4.3. Suppose (P,<) is locally d-linear, and L is a Kk,k-free
arrangement of d-linear subsets of P . Then∑

`∈L

|`| = Od,k

(
n

log(100 + n1)

log log(100 + n1)

)
.

To prove Theorem 4.3, we first need some definitions and a lemma.
If x ∈ P , define a parent of x to be an element y ∈ P with y > x
and no element between x and y, and similarly define a child of x to
be an element z ∈ P with z < x and no element between z and x.
We say that z is a strict t-descendant of x if there are some elements
z0 = x > z1 > . . . > zt = z such that zi+1 is a child of zi, and that z is
a t-descendant of x if it is a strict s-descendant for some 0 ≤ s ≤ t.

Lemma 4.4. Fix d, k ∈ N. Let L be a Kk,k-free arrangement of d-linear
subsets of P , and let m > 0. Let P ′ denote the set of all elements in
P which have a (k − 1)-descendant with more than m children. Then∑

`∈L

|`| ≤
∑
`∈L

|` ∩ P ′|+ d(k − 1)|L|+ (k − 1)mk−1(|P | − |P ′|).
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Proof. Let P ′′ := P\P ′ denote the set of elements x ∈ P such that
every (k − 1)-descendant of x has at most m children. Then we can
rearrange the desired inequality as∑

`∈L

|` ∩ P ′′| ≤ d(k − 1)|L|+ (k − 1)mk−1|P ′′|.

The quantity
∑

`∈L |` ∩ P ′′| is counting incidences (x, `) where ` ∈ L
and x ∈ P ′′ ∩ `.

Given ` ∈ L, call a point x ∈ ` low if x has no descending chain
of length k − 1 under it in `. Every ` can contain at most d(k − 1)
low points. Indeed, as ` is d-linear, it has at most d minimal elements.
Removing them, we obtain a d-linear set `1 ⊆ ` such that every point in
it contains an element under it in `, and `1 itself has at most d minimal
elements. Remove them to obtain a d-linear set `2 ⊆ `1 such that each
point in it contains a descending chain of length 2 under it in `, etc.

Hence each ` ∈ L contributes at most d(k−1) incidences with its low
points, giving a total contribution of at most d(k−1)|L| to the sum. If
x is not a low point on `, then there are some z1 < . . . < zk−1 < x in `,
with each one a child of the next one. As L is a Kk,k-free arrangement,
among the sets ` ∈ L there are at most k − 1 containing all these
points. By definition of P ′′, for each x ∈ P ′′ there are at most mk−1

choices for such tuples (z1, . . . , zk−1). Hence x is incident to at most
(k− 1)mk−1 sets ` ∈ L for which it is not low, and the total number of
contributions of incidences in this case is at most (k − 1)mk−1|P ′′|, so
the claim follows. �

Now we prove Theorem 4.3. Let t be a natural number to be chosen
later, and m > 0 be another parameter to be chosen later. Define the
subsets

P = P0 ⊃ P1 ⊃ · · · ⊃ Pt

of P by defining P0 := P , and for each i = 0, . . . , t − 1, defining Pi+1

to be the set of points in Pi that have a (k − 1)-descendant with more
than m children in (Pi, <). By the above lemma, we have∑
`∈L

|` ∩ Pi| ≤
∑
`∈L

|` ∩ Pi+1|+ d(k − 1)|L|+ (k − 1)mk−1(|Pi| − |Pi+1|)

for all i = 0, . . . , t− 1, and hence on telescoping∑
`∈L

|`| ≤
∑
`∈L

|` ∩ Pt|+ d(k − 1)t|L|+ (k − 1)mk−1n1.

Claim 4.5. Let x be a point in Pt. Then it has at least mt

(kdk)t−1 distinct

descendants in P .
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Proof. By definition of Pt there is some (k − 1)-descendant x′ ∈ Pt−1

of x which has at least m children in Pt−1. Let St−1 ⊆ Pt−1 denote
the set of children of x′, so |St−1| ≥ m. By reverse induction for
i = t−1, t−2, . . . , 0 we choose sets Si ⊆ Pi of descendants of x so that

|Si−1| ≥ |Si|m
kdk

. Then |S0| ≥ mt

(kdk)t−1 , as wanted.

Let Si be given. By definition of Pi and pigeonhole principle, there

is some 0 ≤ s ≤ k − 1 and S ′i ⊆ Si such that |S ′i| ≥
|Si|
k

and every
y ∈ S ′i has a strict s-descendant zy ∈ Pi−1 with at least m children in
Pi−1. Fix a path Iy of length s connecting y to zy, and for 0 ≤ r ≤ s
let zry denote the rth element on the path Iy (so z0

y = y, zsy = zy and

zr+1
y is a child of zry). Let Ir := {zry : y ∈ S ′i}, so I0 = S ′i. Then

|Ir+1| ≥ |Ir|
d

(otherwise there is some element z ∈ Ir+1 which has at
least d+ 1 different parents in Ir, which would then form an antichain
of size d+ 1 contradicting local d-linearity of P ). Hence

|Is| ≥ |I
0|
ds
≥ |S

′
i|

dk−1
≥ |Si|
kdk−1

.

Now by hypothesis every element in Is has at least m children in Pi−1,
denote the set of all the children of the elements in Is by Si−1 ⊆ Pi−1.

Then, again by d-linearity, |Si−1| ≥ |Is|m
d
≥ |Si|m

kdk
. �

Thus if we choose m, t so that( m

kdk

)t
> n1

then we will get a contradiction, unless Pt is empty. We conclude, for
such m and t, that∑

`∈L

|`| ≤ d(k − 1)t|L|+ (k − 1)mk−1n1.

If we take m :=
(

c log(100+n1)
log log(100+n1)

) 1
k−1

and t to be the integer part of
c log(100+n1)

log log(100+n1)
, and assume that c is sufficiently large relatively to k and

d, then the claim follows.

4.2. Reduction for dyadic rectangles.

Definition 4.6. (1) Define a dyadic interval to be a half-open interval
I of the form I = [s2t, (s+ 1)2t) for integers s, t; we use |I| = 2t to
denote the length of such an interval.

(2) Define a dyadic box in Rd (dyadic rectangle when d = 2) to be a
product I1 × . . .× Id of dyadic intervals.
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Note that if two dyadic intervals intersect, then one must be con-
tained in the other.

Theorem 4.7. Fix k ∈ N. Assume we have a collection P of n1 points
in R2 and a collection R of n2 dyadic rectangles in R2, with the property
that the incidence graph contains no Kk,k, and n = n1 + n2. Then the
number of incidences (p, I × J) with p ∈ P and p ∈ I × J ∈ R is at
most

Ok

(
n

log(100 + n1)

log log(100 + n1)

)
.

Proof. Suppose that we have some nested dyadic rectangles D1 ⊇ D2 ⊇
. . . ⊇ Dk in R. As the incidence graph is Kk,k-free by hypothesis,
Dk may contain at most (k − 1) points from P . Removing all such
rectangles repeatedly we loose only (k− 1)n2 incidences, and thus may
assume that any nested sequence in R is of length at most k − 1.
In particular, any rectangle can be repeated at most k − 1 times in
R. Then, possibly increasing the number of incidences by a multiple
(k − 1), we may assume that there are no repetitions in R.

We now define a relation ≤ on R by declaring I×J ≤ I ′×J ′ if I ⊆ I ′

and J ⊇ J ′. This is a locally (k−1)-linear partial order (by the previous
paragraph: antisymmetry holds as there are no repetitions in R, and
using that all rectangles are dyadic, any antichain of size k inside an
interval would give a nested sequence of rectangles of length k).

For each point p in P , let `p be a subset of R consisting of all those
rectangles in R that contain p; then `p is a (k − 1)-linear set (again,
any antichain gives a nested sequence of rectangles of the same length).
Finally, p ∈ R ⇐⇒ R ∈ `p, hence the collection {`p : p ∈ P} is a
Kk,k-free arrangement and the claim now follows from Theorem 4.3
with d := k − 1. �

Remark 4.8. For a non-dyadic rectangle R, let 0.99R denote the rec-
tangle with the same center as R, but whose lengths and heights have
been shrunk by a factor of 0.99. Define a “good incidence” to be a
pair (p,R) where p is a point lying in 0.99R, not just in R. Then the
dyadic bound in Theorem 4.7 implies that for a family of arbitrary
(not necessarily dyadic) rectangles with no Kk,k’s, one still gets the

O
(

n logn
log logn

)
-type bound for the number of good incidences.

The reason is as follows. First we can randomly translate and dilate
(non-isotropically, with the horizontal and vertical coordinates dilated
separately) the configuration of points and rectangles by some trans-
lation parameter and a pair of dilation parameters (s, t) for each of
the coordinates. While there is no invariant probability measure on
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the space of dilatations, one can for instance pick a large number N
(much larger than the number of points and rectangles, etc.), dilate
horizontally by a random dilation between 1/N and N (using say the
dt/t Haar measure) making (with positive probability) the horizontal
side length close to a power of two; then a vertical dilation will achieve
a similar effect for the vertical side length; and then translate by a
random amount in [−N,N ]2 (chosen uniformly at random) placing the
rectangle very close to a dyadic one with positive probability. If R is a
rectangle that is randomly dilated and translated this way, then with
probability > 10−10, there will be a dyadic rectangle R′ stuck between
R and 0.99R. If the original rectangles have no Kk,k, then neither
will these new dyadic rectangles. The expected number of incidences
amongst the dyadic rectangles is at least 10−10 times the number of
good incidences amongst the original rectangles. Hence any incidence
bound we get on dyadic rectangles implies the corresponding bound for
good incidences for non-dyadic rectangles (losing a factor of 1010).

5. A connection to model-theoretic linearity

In this section we obtain a stronger bound in Theorem 2.17 (without
the logarithmic factor) under a stronger assumption that the whole
semilinear relation X is Kk,...,k-free (Corollary 5.12). And we show
that if this stronger bound doesn’t hold for a given semialgebraic rela-
tion, then the field operations can be recovered from this relation (see
Corollary 5.14 for the precise statement). These results are deduced
in Section 5.2 from a more general model-theoretic theorem proved in
Section 5.1.

5.1. Main theorem. We recall some standard model-theoretic nota-
tion and definitions, and refer to [12] for a general introduction to
model theory, and to [2] for further details on geometric structures.

Recall that acl denotes the algebraic closure operator, i.e. if M =
(M, . . .) is a first-order structure, A ⊆M and a is a finite tuple in M ,
then a ∈ acl(A) if it belongs to some finite A-definable subset of M |a|

(this generalizes linear span in vector spaces and algebraic closure in
fields). Throughout this section we follow the standard model theoretic
notation: depending on the context, writing BC denotes either the
union of two subsets B,C of M , or the tuple obtained by concatenating
the (possibly infinite) tuples B,C of elements of M .

Definition 5.1. A complete first-order theory T in a language L is
geometric if for any model M = (M, . . .) |= T we have the following.

(1) The algebraic closure in M satisfies the Exchange Principle:
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if a, b are singletons inM, A ⊆M and b ∈ acl(A, a) \ acl(A), then
a ∈ acl(A, b).

(2) T eliminates ∃∞ quantifier :
for every L-formula ϕ(x, y) with x a single variable and y a tuple
of variables there exists some k ∈ N such that for every b ∈M |y|, if
ϕ(x, b) has more than k solutions in M , then it has infinitely many
solutions in M .

In models of a geometric theory, the algebraic closure operator acl
gives rise to a matroid, and given a a finite tuple in M and A ⊆
M , dim(a/A) is the minimal cardinality of a subtuple a′ of a so that
acl(a ∪ A) = acl(a′ ∪ A) (in an algebraically closed field, this is just
the transcendence degree of a over the field generated by A). Finally,
given a finite tuple a and sets C,B ⊆ M , we write a |̂

C
B to denote

that dim (a/BC) = dim (a/C).

Remark 5.2. If T is geometric, then it is easy to check that |̂ is an
independence relation, i.e. it satisfies the following properties for all
tuples a, a′, b, b′, d and C,D ⊆M :

• a |̂
C
b ⇐⇒ acl(a, C) |̂

C
acl(b, C);

• (extension) if a |̂
C
b and d is arbitrary, then there exists some a′ so

that a′ |̂
C
bd and a′ ≡Cb a (which means that a′ belongs to exactly

the same Cb-definable subsets of M |a| as a).
• (monotonicity) aa′ |̂

C
bb′ =⇒ a |̂

C
b;

• (symmetry) a |̂
C
b =⇒ b |̂

C
a;

• (transitivity) a |̂
D
bb′ ⇐⇒ a |̂

Db
b′ and a |̂

D
b;

• (non-degeneracy) if a |̂
C
b and d ∈ acl(a, C) ∩ acl(b, C), then d ∈

acl(C).

The following property expresses that the matroid defined by the
algebraic closure is linear, in the sense that the closure operator behaves
more like span in vector spaces, as opposed to algebraic closure in fields.

Definition 5.3. [2, Definition 2.1] A geometric theory T is weakly
locally modular if for any saturated M |= T and A,B small subsets of
M there exists some small set C |̂ ∅AB such that A |̂

acl(AC)∩acl(BC)
B.

Recall that a linearly ordered structureM = (M,<, . . .) is o-minimal
if every definable subset of M is a finite union of intervals (see e.g. [18]).

Example 5.4. [2, Section 3.2] An o-minimal structure is linear (i.e. any
normal interpretable family of plane curves in T has dimension ≤ 1) if
and only if it is weakly locally modular.
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In particular, every theory of an ordered vector space over an ordered
division ring is weakly locally modular (so Theorem 5.6 applies to semi-
linear relations).

The following is a key model-theoretic lemma.

Lemma 5.5. Assume that T is geometric and weakly locally modular,
and M = (M, . . .) |= T is ℵ1-saturated. Assume that E ⊆ Md1 ×
. . . × Mdr is an r-ary relation defined by a formula with parameters
in a finite tuple b, and E contains no r-grid A =

∏
i∈[r] Ai with each

Ai ⊆ Mdi infinite. Then for any (a1, . . . , ar) ∈ E there exists some
i ∈ [r] so that ai ∈ acl ({aj : j ∈ [r] \ {i}} , b).

Proof of Lemma 5.5. Assume not, then there exist some (a1, . . . , ar) in
M such that (a1, . . . , ar) ∈ E, but ai /∈ acl (a 6=i, b) for every i ∈ [r],
where a 6=i := {aj : j ∈ [r] \ {i}}.

By weak local modularity, for each i ∈ [r] there exists some small set
Ci ⊆M so that

Ci |̂
∅
{a1, . . . , ar} ∪ {b} and ai |̂

acl(ai,Ci)∩acl(a6=i,b,Ci)

a 6=ib.

By extension of |̂ , we may assume that Ci |̂ ∅ a1, . . . , ar, b, C<i
for all i ∈ [r]. Hence by transitivity C |̂ ∅ a1, . . . , ar, b, where C :=⋃
i∈[r] Ci.

Let D :=
⋂
i∈[r] acl (a 6=i, b, C).

Claim (A). For every i ∈ [r], ai |̂ D a 6=i.

Proof. Fix i ∈ [r]. As C |̂ ∅ a1, . . . , ar, b and ai |̂ acl(ai,Ci)∩acl(a6=i,b,Ci)
a6=ib,

by symmetry and transitivity we have

ai |̂
acl(ai,Ci)∩acl(a6=i,b,Ci)

a6=ibC.

Note that acl(ai, Ci) ⊆ acl(a 6=j, C) for every i 6= j ∈ [r], hence
acl(ai, Ci) ∩ acl(a 6=i, b, Ci) ⊆ D, and clearly D ⊆ acl(a 6=i, b, C). Hence
ai |̂ D a 6=ibC, and in particular ai |̂ D a 6=i. �

Claim (B). For every i ∈ [r], ai /∈ acl(D).

Proof. Fix i ∈ [r]. Then acl(D) ⊆ acl(a 6=i, b, C) by definition. But
as C |̂

a6=ib
ai by transitivity, if ai ∈ acl(a 6=i, b, C) then we would get

ai ∈ acl(a 6=i, b), contradicting the assumption. �

By induction we will choose sequences of tuples ᾱi = (ati)t∈N, i ∈ [r]
in M such that for every i ∈ [r] we have:
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(1) ati ≡Dᾱ<ia>i
ai for all t ∈ N;

(2) ati 6= asi (as tuples) for all s 6= t ∈ N;
(3) ᾱi |̂ D ᾱ<ia>i.

Fix i ∈ [r], and assume that we already chose some sequences āj for
1 ≤ j < i satisfying (1)–(3).

Claim (C). We have ai |̂ D ᾱ<ia>i.

Proof. If i = 1, this claim becomes ai |̂ D a 6=i, hence holds by Claim

(A). So assume i ≥ 2. We will show by induction that for each l =
1, . . . , i− 1 we have

ᾱi−1 . . . ᾱi−l |̂
D

ᾱ<i−la>i−1.

For l = 1 this is equivalent to ᾱi−1 |̂ D ᾱ<i−1a>i−1, which holds by

(3) for i − 1. So we assume this holds for l < i − 1, that is we have
ᾱi−1 . . . ᾱi−l |̂ D ᾱ<i−la>i−1, and show it for l + 1. By assumption and
transitivity we have

ᾱi−1 . . . ᾱi−l |̂
Dᾱi−(l+1)

ᾱ<i−(l+1)a>i−1.

Also ᾱi−(l+1) |̂ D ᾱ<i−(l+1)a>i−1 by (3) for i−(l+1) < i. Then by tran-

sitivity again ᾱi−1 . . . ᾱi−lᾱi−(l+1) |̂ D ᾱ<i−(l+1)a>i−1, which concludes
the inductive step.

In particular, for l = i−1 we get ᾱ<i |̂ D a>i−1, that is ᾱ<i |̂ D aia>i.
By transitivity and Claim (A) this implies ᾱ<ia>i |̂ D ai, and we con-
clude by symmetry. �

Using Claim (C) and extension of |̂ , we can choose a sequence

ᾱi = (ati)t∈N so that ati ≡Dᾱ<ia>i
ai and ati |̂ D ᾱ<ia>ia

<t
i for every

t ∈ N. By Claim (B) we have ai /∈ acl(D), hence ati /∈ acl(D), hence ati /∈
acl (ᾱ<i, a>i, a

<t
i ), so in particular all the tuples (ati)t∈N are pairwise-

distinct and ᾱi satisfies (1) and (2). By symmetry and transitivity
of |̂ we get ᾱi |̂ D ᾱ<ia>i. This concludes the inductive step in the
construction of the sequences.

Finally, as (1) holds for all i ∈ [r] and b is contained in D, it follows
that (at11 , . . . , a

tr
r ) ≡b (a1, . . . , ar), and hence (at11 , . . . , a

tr
r ) ∈ E for every

(t1, . . . , tr) ∈ Nr. By (1) each of the sets {ati : t ∈ N} , i ∈ [r] is infinite
— contradicting the assumption on E. This concludes the proof of the
lemma. �

Theorem 5.6. Assume that T is a geometric, weakly locally modular
theory, and M |= T . Assume that r ∈ N≥2 and ϕ(x̄1, . . . , x̄r, ȳ) is an
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L-formula without parameters, with |x̄i| = di, |ȳ| = e. Then there exists
some α = α(ϕ) ∈ R>0 satisfying the following.

Given b ∈M e, consider the r-ary relation

Eb :=
{

(a1, . . . , ar) ∈Md1 × . . .×Mdr :M |= ϕ(a1, . . . , ar, b)
}
.

Then for every b ∈ M e, exactly one of the following two cases must
occur:

(1) Eb is not Kk,...,k-free for any k ∈ N;
(2) for any finite r-grid B ⊆

∏
i∈[r] M

di we have

|Eb ∩B| ≤ αδrr−1(B).

Proof. Assume that N = (N, . . .) is an elementary extension ofM and
b ∈M e. Then, for a fixed k ∈ N,

Eb = {(a1, . . . , ar) ∈Md1 × . . .×Mdr :M |= ϕ(a1, . . . , ar, b)}

is Kk,...,k-free if and only if

E ′b = {(a1, . . . , ar) ∈ Nd1 × . . .×Ndr : N |= ϕ(a1, . . . , ar, b)}

is Kk,...,k-free, as this can be expressed by a first-order formula ψ(y)
and M |= ψ(b) ⇐⇒ N |= ψ(b). Similarly, for a fixed α ∈ R,
|Eb ∩ B| ≤ αδrr−1(B) for every finite r-grid B ⊆

∏
i∈[r] M

di if and only

if |E ′b ∩ B| ≤ αδrr−1(B) for every finite r-grid B ⊆
∏

i∈[r] N
di (as for

every fixed sizes of B1, . . . , Br this condition can be expressed by a
first-order formula). Hence, passing to an elementary extension, we
may assume that M is ℵ1-saturated.

As T eliminates ∃∞, there exists some m = m(ϕ) ∈ N such that for
any i ∈ [r], b ∈M e and tuple ā :=

(
aj ∈Mdj : j ∈ [r] \ {i}

)
, the fiber

Ei
ā;b :=

{
a∗ ∈Mdi :M |= ϕ(a1, . . . , ai−1, a

∗, ai+1, . . . , ar; b)
}

is finite if and only if it has size ≤ m.
Given an arbitrary b ∈ M e such that Eb is Kk,...,k-free, Lemma 5.5

and compactness imply that for every tuple (a1, . . . , ar) ∈ Eb, there
exists some i ∈ [r] such that the fiber Ei

ā;b is finite, hence |Ei
ā;b| ≤ m.

This easily implies that for any finite r-grid B ⊆
∏

i∈[r] M
di we have

|Eb ∩B| ≤ mδrr−1(B). �

Remark 5.7. In the binary case, a similar observation was made by
Evans in the context of certain stable theories [8, Proposition 3.1].

Restricting to distal structures, we can relax the assumption “Eb
is Kk,...,k-free for some k” to “Eb does not contain a direct product
of infinite sets” in Theorem 5.6 (we refer to e.g. the introduction in
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[5] or [3] for a general discussion of model-theoretic distality and its
connections to combinatorics).

Corollary 5.8. Assume that T is a distal, geometric, weakly locally
modular theory, M |= T , r ∈ N≥2 and ϕ(x̄1, . . . , x̄r, ȳ) is an L-formula
without parameters, with |x̄i| = di, |ȳ| = e. Then there exists some
α = α(ϕ) ∈ R>0 satisfying the following.

Assume that b ∈ M e and the r-ary relation Eb does not contain an
r-grid A =

∏
i∈[r] Ai with each Ai ⊆ Mdi infinite. Then |Eb ∩ B| ≤

αδrr−1(B) for any finite r-grid B.

Proof. By [3, Theorem 5.12], ifM is a distal structure with elimination
of ∃∞, then there exists some k = k(ϕ) ∈ N such that for every b ∈M e,
Eb is not Kk,...,k-free if and only if

∏
i∈[r] Ai ⊆ Eb for some infinite

Ai ⊆Mdi . The conclusion now follows by Theorem 5.6. �

Remark 5.9. Weaker bounds for non-cartesian relations definable in
arbitrary distal theories are established in [4,?chernikov2021model].

Now we show that in the o-minimal case, this result actually charac-
terizes weak local modularity. By the trichotomy theorem in o-minimal
structures [15] we have the following equivalence.

Fact 5.10. Let M be an o-minimal (ℵ1-)saturated structure. The fol-
lowing are equivalent:

• M is not linear (see Example 5.4);
• M is not weakly locally modular;
• there exists a real closed field definable in M.

Corollary 5.11. Let M be an o-minimal structure. The following are
equivalent:

(1) M is weakly locally modular;
(2) Corollary 5.8 holds in M;
(3) for every d1, d2 ∈ N and every definable (with parameters) X ⊆

Md1×Md2, if X is Kk,k-free for some k ∈ N, then there exist some
β < 4

3
and α such that: for any n and Bi ⊆ Mdi with |Bi| = n we

have

|X ∩B1 ×B2| ≤ αnβ;

(4) there is no infinite field definable in M.

Proof. (1) ⇒ (2) by Corollary 5.8, and (2) ⇒ (3) is obvious.
(3)⇒ (4) Assume thatR is an infinite field definable inM, char(R) =

0 by o-minimality. Then the point-line incidence relation on R2 cor-
responds to a K2,2-free definable relation E ⊆ Md × Md for some



30 A. BASIT, A. CHERNIKOV, S. STARCHENKO, T.TAO, AND C.-M.TRAN

d. By the standard lower bound for Szemerédi-Trotter, the number of
incidences satisfies Ω(n4/3), hence E cannot satisfy (3).

(4) ⇒ (1) If M is not weakly locally modular, by Fact 5.10 a real
closed field R is definable in M. �

5.2. Applications to semialgebraic relations.

Corollary 5.12. Assume that X ⊆ Rd =
∏

i∈[r] Rdi is semilinear and

X does not contain a direct product of r infinite sets (e.g. if X is Kk,...,k-
free for some k). Then there exists some α = α(X) so that for any

r-hypergraph H of the form
(
V1, . . . , Vr;X ∩

∏
i∈[r] Vi

)
for some finite

Vi ⊆ Rdi, with
∑r

i=1 |Vi| = n, we have |E| ≤ αnr−1.

Proof. As every o-minimal structure is distal and every semilinear rela-
tion is definable in an ordered vector space over R which is o-minimal
and locally modular (Example 5.4), the result follows by Corollary
5.8. �

We recall the following special case of the trichotomy theorem in
o-minimal structures restricted to semialgebraic relations.

Fact 5.13. [13, Theorem 1.3] Let X ⊆ Rn be a semialgebraic but not
semilinear set. Then × �[0,1]2 (i.e. the graph of multiplication restricted
to the unit box) is definable in the first-order structure (R, <,+, X).

Using it, we have the following more explicit variant of Corollary
5.11 in the semialgebraic case.

Corollary 5.14. Let X ⊆ Rd be a semialgebraic set, and consider
the first-order structure M = (R, <,+, X). Then the following are
equivalent.

(1) For any r ∈ N and any r-ary relation Y ⊆
∏

i∈[r] Rdi not containing

an r-grid A =
∏

i∈[r] Ai with each Ai ⊆ Rdi infinite, there exists

some α ∈ R so that |Y ∩B| ≤ αδrr−1(B) for every finite r-grid B.
(2) For every d1, d2 ∈ N and Y ⊆ Rd1×Rd2 definable (with parameters)

inM, if Y is Kk,k-free for some k ∈ N, then there exist some β < 4
3

and α such that: for any n and Bi ⊆ Rdi with |Bi| = n we have

|X ∩B1 ×B2| ≤ αnβ.

(3) × �[0,1]2 is not definable in M.

Proof. (1) ⇒ (2) is obvious.
(2) ⇒ (3) Using × �[0,1]2 , the K2,2-free point-line incidence relation

in R2 is definable restricted to [0, 1]2, and the standard configurations
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witnessing the lower bound in Szemerédi-Trotter can be scaled down
to the unit box.

(3) ⇒ (1) Assume that (1) does not hold in (R, <,+, X). Then nec-
essarily some Y definable in (R, <,+, X) is not semilinear by Corollary
5.12. By Fact 5.13, if Y is not semilinear then × �[0,1]2 is definable in
the structure (R, <,+, Y ), hence in (R, <,+, X). �
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