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e Ecological decisions depend on fast, flexible, and robust sensory pro-
cessing

e Raw sensory data are reconfigured into sensory features early in pro-
cessing

e Feature information is routed through parallel pathways that process
and recombine features to control distinct actions

e Modulation and shifting brain states tune decision-making to an ani-
mal’s current demands

e Many questions about how circuits handle mutual feedback with other
animals remain open
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Abstract

The interactions an animal has with its prey, predators, neighbors, and com-
petitors are known as ecological interactions. Making effective decisions dur-
ing these interactions poses fundamental challenges for the nervous system.
Among these are the need to filter relevant information out of complex and
ever-changing sensory scenes, to balance competing objectives, and to gen-
erate robust behavior amid the strong mutual feedbacks that occur during
interactions with other animals. Here, I review recent advancements in the
study of ecological decision-making. Using research with fishes, I illustrate
how knowledge of ethology and brain circuitry are converging to yield a more
holistic understanding of how the brain solves these problems to produce ro-
bust sequences of natural behavior.

Keywords: decision-making, ecological interactions, explore-exploit,
behavioral control, circuits

Introduction

As we move through the world, we change our behavior based on the
sensory stimuli we experience, the physiological states we enter and exit
(e.g., hunger, stress), our encounters with other people, and an ever-evolving
set of short and longer-term goals. Likewise, following an animal around its
natural habitat reveals rich patterns of behavior that include fast and slow
transitions among activities, apparent shifts in priorities, and, importantly,
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diverse interactions with other animals (Fig. 1). The dynamic sequences
of behavior we and other animals produce over the course of a day require
thousands of decisions. Determining how these decisions are made — both
in terms of the behavioral algorithms that map sensory information to one
behavioral action or another, and in terms of the properties of neural circuits
that control these actions — is at the heart of what it means to understand
how the brain generates behavior [1].

The past few years have seen a renaissance of interest in ecological decision-
making, the process by which animals make decisions during natural inter-
actions with prey, predators, neighbors, and competitors. This trend is due,
at least in part, to two recent innovations: qualitative leaps in the precision
with which the actions of unrestrained animals can be measured [2], and
new methods for making in vivo measurements of the nervous system during
naturalistic behavior [3, 4, 5, 6, 7, 8]. Here, I review recent advancements in
our understanding of ecological decision-making. I focus on studies of fishes,
which have served as a model system for researchers seeking to connect neural
circuits with sequences of ecologically meaningful behavior.

Parsing sensory scenes and the cocktail party problem

In nature, animals make decisions across an unthinkably broad range of
sensory conditions. Across all this variability, an animal must retain the abil-
ity to learn about relevant events in the environment such as the approach of
a predator or the actions of nearby conspecifics. Doing so involves identify-
ing and isolating the stream of sensory data relevant to an event of interest
from a complex, dynamic background. This task has been referred to as “the
cocktail party problem” [9], in reference to the challenge of focusing on an
individual speaker amid the din of a crowded cocktail party. The cocktail
party problem is integral to ecological decision-making; without isolating and
spatially localizing sensory input from a given source, processes like feedback
control for pursuing prey [6, 10, 11] or goal-directed escape responses [12]
would be impossible. Through work in fishes, particularly in the visual sys-
tem, a picture of how the brain solves this problem is coming into view (Box
1).

The fish visual system filters sensory scenes through a highly parallelized
processing scheme that adjusts to changing statistics of a visual scene on
timescales ranging from tens of milliseconds [13] to many minutes [10, 14].
The structure of this system reveals two properties likely to be important for
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ecological decision-making. First, raw stimulus measurements are reconfig-
ured into sensory features early in sensory processing, often within or near
the sensory organ itself (Box 1, [13, 15, 16]). Sensory features include things
like the size, motion, and patterning of visual objects. Importantly, the di-
mensionality of feature space is far lower than that of raw visual input space.
Computations to determine which features are relevant and which are not be-
gin almost immediately, through the action of distributed microcircuits that
make comparisons between sensory features over time and across visual space
[13, 15]. The second key property is that sensory features associated with
different types of events in the environment are simultaneously processed
through distinct pathways in the brain [8]. For example, stimuli associated
with prey and stimuli associated with predators are encoded by distinct sets
of retinal ganglion cells, and processed through distinct, spatially segregated
pathways in the tectum (Box 1, [16]). Processing within these parallel path-
ways, and competition between them ultimately determine how the animal
will respond [4, 15, 17, 18].

Ecological decisions must be made quickly [11], but they must also be
robust to complex, dynamic, and often novel sensory scenes. The properties
of the fish visual system suggest a strategy by which the brain overcomes
these challenges. By computing visual features through distributed circuits
in the retina and tectum, information relevant to different types of behav-
ioral actions (e.g. approach or avoid) are extracted simultaneously in a way
that maintains sensitivity to novel stimuli as the scene changes [19, 13]. By
processing these features through distinct pathways, evidence for different
types of ecological events can be accrued rapidly in parallel, compared across
pathways, and used to select an action [18].

Balancing competing objectives: from action-selection to changing
brain states

Tradeoffs are another ubiquitous feature of ecological decision-making.
Tradeoffs in ecological tasks are rarely simple. They often require an animal
choose between engaging in very different types of activities, with costs and
rewards that are experienced over different time horizons [1]. Selecting the
best of a set of alternative actions when feedback is delayed [20], or when
different options produce feedback on different timescales is a notoriously
challenging problem in machine learning. The fact that animals routinely



79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

make such choices during ecological interactions has led to significant interest
in this facet of ecological decision-making.

Explore or exploit. Whether to exploit a known option or to explore
other, less familiar options is a common tradeoff faced during decision-making
[21]. Marques et al. [7] studied this tradeoff using whole-brain imaging
of freely-swimming zebrafish in arenas containing Paramecium prey. They
found that larvae transition between two behavioral states, termed “explo-
ration” and “exploitation,” during which movement and hunting behaviors
differ markedly, and brainwide patterns of neural activity are distinct. The
exploitation state is strongly correlated with activity of a population of neu-
rons in the dorsal raphe nucleus (Box 1 Fig.), and transitions between states
are correlated with activity of a trigger network also involving the dorsal
raphe, which can become active spontaneously or in response to events such
as changing light levels or successful prey capture [7].

Another manifestation of the exploration-exploitation tradeoffs occurs
within natural hunting sequence themselves. When hunting prey, preda-
tors abort a large fraction of pursuits without even attempting to strike prey
22, 23, 10]. In zebrafish, the onset of hunting bouts coincides with elevated
activity of neurons in the nucleus isthmi (NI, Box 1 Fig.), a nucleus that
reciprocally connects to regions of the optic tectum involved in visual pro-
cessing during hunting [23]. The properties of NI connections to the tectum
are consistent with the hypothesis that the NI controls sustained hunting
behavior by enhancing visually-evoked neural activity in tectal pathways,
possibly by enhancing transmission of visual stimuli from RGCs to the optic
tectum. One possible function of this is to tune hunting behavior based on
an animal’s hunger level. For example, hunger-induced recruitment of tectal
neurons that respond to prey-sized moving objects [24] could increase input
from the tectum to the NI when an animal is hungry [10]. NI feedback to
the optic tectum could then cause hungry animals to extend hunting bouts,
as observed in starvation experiments [10].

Feed or flee. In nature, deciding when to continue feeding and when to
flee is a matter of life or death. At the most basic level, balancing this trade-
off requires that an animal distinguish food from threats [18], a task that is
not always as trivial as it might seem [25]. Larval zebrafish exhibit distinct
approach and avoidance behaviors to moving visual objects, and whether the
response is positive (approach) or negative (avoid) depends on the object’s
size [18, 24]. Interestingly, the relationship between object size and behav-
ioral response changes markedly when an animal is hungry. Starved fish

4
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approach small objects more frequently and are less likely to avoid objects of
intermediate size [24]. This hunger-driven shift in behavioral valence is con-
trolled, in part, by hypothalamic-pituitary-adrenal activity, which modulates
size response properties of visually-activated neurons in the optic tectum. In
hungry animals, reduced cortisol and enhanced serotenergic transmission pro-
motes recruitment of additional tectal neurons sensitive to small object sizes
[24]. This increased activity of tectal neurons may act both by heightening
sensitivity to stimuli prey-associated stimuli and by inhibiting a competing
pathway involved in avoidance behavior [18].

Perception of risk. The costs and benefits of making a particular deci-
sion depend not only on an animal’s internal state but also on the external
environment. Changes in decision-making in “risky” versus “safe” environ-
ments are widely documented [26]. But if an animal is to modify its behavior
based on risk, it needs a way to measure risk. One such measure is the pres-
ence of other nearby individuals. Wild coral reef fish feed for shorter periods
of time between retreats to shelter when foraging alone than when they forage
in large groups [27]. When these animals are exposed to acute threats (loom-
ing visual stimuli), responses depend on visual stimuli from the threat and
visual stimuli produced by neighboring individuals [12]. This implies a mech-
anism for tuning escape decisions on a fast timescale based on perception of
neighboring individuals. How might such context-dependent responses be
controlled in the brain? One possibility is that when nearby individuals and
other stimuli are viewed at the same time, competition for salience reduces
the overall likelihood of responding to any of the stimuli. This could occur,
for example, through reciprocal inhibition between competing stimuli within
the retina [15].

On slower timescales, isolation from conspecifics causes oxytocinergic ac-
tivity in the hypothalamus [28]. This activity appears to increase activation
of premotor neurons in the hindbrain including Mauthner cells (Box 1 Fig.)
and other reticulospinal neurons that control motor behavior [29]. Oxytocin-
ergic activity is associated with an increase in defensive behaviors and a
decrease in feeding, suggesting that social isolation may promote behaviors
such as escape responses, but that it also simultaneously suppresses appetite.

To make effective decisions, animals must balance tradeoffs. Doing so re-
quires that the animal account for its current needs as well as how its actions
will influence the likelihood of different outcomes. The latter is determined
at least partly by the state of the environment. A widespread finding is
that internal state controls action-selection not simply by favoring one ac-
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tion or another in the final stages of decision-making, but also by changing
how incoming sensory data are processed [24]. Similar processes may govern
changes in decision-making as the state of the environment changes [29, 28].
An important future step will be determining whether these mechanisms for
tuning responses are simply crude heuristics, or whether they are based on
encodings of the key quantities required to optimally balance tradeoffs: the
quantitative values of different outcomes [30], and the probabilities of those
outcomes given one action or another [21].

Decision-making and mutual feedbacks

Another characteristic of ecological decision-making is that it often in-
volves strong mutual feedbacks between interacting animals. We have all ex-
perienced such feedbacks when trying to avoid colliding with someone walking
in the opposite direction on a sidewalk. You veer left and so does your coun-
terpart. You correct right, and so does she. In the presence of a telephone
pole or a mailbox, this problem does not arise. Such mutual feedbacks occur
during many ecological behaviors including competition for food, hunting
mobile prey (Box 2), and, in an extreme form, during social behaviors such
as schooling [31] and feeding aggregations [27].

Schooling, aggregations, and feedbacks. Grouping with others has
well-documented benefits such as diluting the risk of predation [32], but
neighboring individuals also produce large quantities of sensory stimulation
(33, 34]. Sensory cues from neighbors can be beneficial [31, 32], but they also
create the potential for the actions of an animal to feed back on it through the
responses of its neighbors, a process that can be thought of as an extended
form of reafferrence.

Schooling golden shiners (Notemigonus crysoleucas) make movement de-
cisions based on the spatial locations of nearby individuals using rules that
are consistent with continuous feedback control [35, 36]. By adjusting ac-
celeration, deceleration, and turning based on neighbor locations, animals
maintain fairly consistent positions relative to neighbors [35, 37], potentially
minimizing the risk of creating strong stimuli that could feed back by pro-
ducing large changes in neighbor behavior (but see [38]). More recent work
suggests that the behavioral algorithms that guide movement decisions in
schools can be produced by relatively simple responses to visual stimuli from
neighbors [39, 40, 34], that these algorithms change predictably over ontogeny
[41, 40, 34], and that they appear to be heritable [40]. A heuristic model of



191

192

193

194

195

196

197

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

the core computations involved in visual schooling behavior was recently pro-
posed [42]. However, the details of how these computations may be carried
out in the brain are not yet clear. Interestingly, mutations known to impact
other aspects of social behavior also affect how fish transform stimuli from
neighbors into movement decisions [40]. These disrupted movement rules
alter collective behavior of groups of individuals.

In contrast to the behaviors fish employ during routine swimming, the be-
havioral algorithms used during behaviors such as collective escape responses
can produce strong bursts of sensory stimulation perceptible by neighbors
[39, 43]. During collective escapes, one or several individuals in a group
typically accelerate [44] creating stimuli that can cause cascades of startle
behavior [44, 39, 43]. Notably, the influence of neighbors on any given focal
individual are often highly unequal [39, 43], suggesting that some mecha-
nism for selectively attending to a dominant neighbor [15, 45] or unequally
weighting neighbor stimuli [42] may be important for controlling responses.

Many ecological behaviors involve mutual feedbacks (Box 2). In compar-
ison to other aspects of decision-making, we know relatively little about how
animals control behavior amid such feedbacks. Selective attention [15, 45],
behavioral averaging [42], and forecasting future positions of moving tar-
gets ([46], Box 2) are candidate mechanisms that could help animals retain
behavioral control in these situations. But our understanding of how these
mechanisms are implemented in the brain and integrated to produce behavior
are far from complete.

Conclusions and Outlook

The current resurgence of interest in ecological behavior is exciting, to
be sure. But where will future work on the ethological, computational, and
neural aspects of ecological decision-making lead us? Put another way, by
studying ecological decision-making, what is it, exactly, that we wish to
understand?

One answer is that the ability to produce sequences of effective deci-
sions across a vast range of novel conditions is among the most conspicuous,
yet least understood aspects of natural behavior [1]. By studying ecologi-
cal decision-making, we seek principles of brain function that make this si-
multaneous flexibility, robustness, and generalizeablity possible. Larval fish
produce hunting sequences to capture mobile prey within days of hatching
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[47, 48] even on the first exposure to live prey [49] — a feat tantamount to few-
shot or even zero-shot learning. Likewise, fish respond to novel threat stimuli
by generating escape behaviors that balance competing objectives [15] and
shift seamlessly from one proximate task to another [12] in ways that appear
to sidestep challenges such as constraint violation and catastrophic forgetting
that plague artificial decision-making systems [50, 51|. Here, I have argued
that three general properties of neural circuits help explain how decision-
making in these tasks can be fast, robust, and flexible all at the same time:
distributed computation of sensory features [13, 15], parallel processing of
sets of features by distinct, often competing pathways [8, 16, 18], and slower-
timescale modulation of decision-making circuits based on internal and ex-
ternal states [7, 24, 28]. Are these circuit properties so fundamental that we
should consider them principles of brain organization that enable effective
natural behavior? Further comparative work, as well as targeted computa-
tional studies of these properties could go a long way toward answering this
question.

Recent progress notwithstanding, there remains so much to learn about
how animals make ecological decisions. We need principles to help orga-
nize the central challenges involved in ecological tasks, and the mechanisms
by which nervous systems overcome these challenges. This is particularly
true for decisions that involve interactions with other organisms that are,
themselves, sensing and responding. In nature, interacting brains are the
rule rather than the exception [31, 32]. The strategies the nervous system
has evolved to guide decision-making must, therefore, account in some way
for the decisions of other agents with both aligned and conflicting interests.
While related questions have been addressed through work in social psy-
chology, evolutionary game theory, and collective behavior, we still lack an
understanding of the computational principles that allow the brain to pro-
duce dynamic sequences of decisions amid strong mutual feedbacks. Future
studies are poised to change this, opening up a suite of new and exciting ques-
tions whose answers will teach us much about behavior and brain function

alike.
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% Figures

Figure 1: Shifting priorities and sensory demands during ecological decision-making: (A)
hunting behavior, (B) predator evasion, (C) social interactions.
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Boxes

Box 1. Processing and filtration in the fish visual system.

The fish visual system has become a model for understanding how the
vertebrate nervous system filters and processes sensory scenes. The first layer
of filtration occurs through the spatial organization of sensory receptors. In
the fish eye, photoreceptors with distinct spectral sensitivities are heteroge-
neously distributed across the retina in ways that are matched to the typical
spectral properties of incoming light in different regions of the visual field
([52], Box Fig.). Rather than being transmitted to the brain in raw form,
the information captured by receptors is immediately reorganized into sen-
sory features, for example, the size, motion speed and direction, and local
contrast polarity of a visual object [17, 53]. Cells in the retina also encode
larger-scale features such as spatial patterns and changes in such patterns
[13].

After sensory features are computed, they are transmitted by retinal
ganglion cells (RGCs) in parallel to the brain in a fashion that preserves
the spatial locations of features [54, 55|, but segregates features associated
with events that require different kinds of responses into distinct pathways
8, 16, 17, 18, 53, 54] where features are further processed and recombined
[53]. In the fish tectum (also known as the superior colliculus), a central
relay and processing station for incoming sensory data in the fish midbrain
[56], small size- and motion-selective RGCs terminate in superficial tectal
layers [16], whereas features associated with expanding objects terminate in
deeper tectal layers [57, 16]. Downstream neurons in the tectum integrate
feature-selective inputs from multiple RGC types, and in some cases, sharpen
specificity for certain object features (e.g. specificity to small moving objects;
[16]). Additional modification of tectal processing is provided by other brain
regions including the thalamus [5] and hypothalamus [4]. Another stage of
filtration occurs in premotor regions in the hindbrain, where recurrent [4] and
lateral inhibitory circuit motifs (e.g., between Mauthner cells, [58]) exert ad-
ditional control over whether a given stimulus will lead to motor behaviors,
and what type of motor response will be executed [59]. Finally, whether
an animal responds to a given sequence of stimuli depends on modulation
of decision-making circuits on longer timescales, often across multiple brain
regions [14, 7].

10
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Elements of the fish visual system showing selected structures and brain re-
gions: eye with Retina (R), Retinal Ganglion Cell (RGC), Tectum (T), Thalamus (TH),
Nucleus Isthmi (NI), Dorsal Raphe (DR), and Mauthner Cell (MC). Optic nerve from
right eye projects to the left tectum and only brain regions corresponding to that visual
hemisphere are shown. Retina inset shows heterogeneous distribution of photoreceptor
types across the retina [52] and retinal portion of retinotectal microcircuits, which com-
pute visual features [13] and salience among visual objects [15]. Tectum inset shows RGC
projecting to the tectum. Anterior-posterior and shallow-deep axis of tectal neuropil, and
preventricular neuron (PVN) are also shown. Anatomy reproduced from [7, 16, 23, 56, 58].

Box 2. Hunting and feedback control

Hunting prey is a an ecological task that requires an animal make a
sequence of decisions — detect prey, initiate pursuit, control pursuit move-
ments, and execute a final strike — to receive a reward. Like larvae of other
fish species [47], larval zebrafish hunt live zooplankton, and this behavior has
become a model for understanding behavioral control [53, 6, 48, 49].

Zebrafish hunting bouts follow a characteristic progression. Larvae typi-
cally first respond to prey viewed in the frontal visual field [6, 49, 46]. Follow-
ing prey detection, larvae exhibit characteristic “j-turns” that move the prey

11
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toward the proximal, dorsal region of the visual field. This phase of hunt-
ing also involves convergence of the eyes [53], a behavior that increases the
zone of binocular overlap in the proximal region of the visual field. Hunting
sequences end with either an abort [23] or with a terminal attack maneuver
[6, 10, 46]. Larvae typically launch terminal attacks when prey are within
0.4-0.6 mm of the head, near an azimuthal angle of zero, and located slightly
above them in the water column [6, 46], and larvae will dive if necessary to
position prey in this zone [46]. Importantly, hunting behavior requires visual
feedback, and the removal or temporal disruption of this feedback in virtual
prey experiments results in aborted [6] or disrupted [60] hunting sequences.

Larval fish face a challenging control problem when hunting fast-moving
prey [47, 6], but strong mutual feedbacks between predator and prey are
even more pronounced during hunting behavior of adult fish. When hunting
evasive prey, predatory bluefish (Pomatomus saltatriz) continuously adjust
swimming trajectories as prey move, presumably using visual feedback [61].
Interception trajectories of bluefish are consistent with a strategy known
as “deviated pursuit” in which the pursuer turns continuously to align its
velocity vector with the line-of-sight to the prey plus a small offset angle.
These predators also accelerate to high speeds during the terminal phases of
attacks, possibly in response to evasive maneuvers of prey.

Among the primary challenges bluefish and other predators face when
pursuing evasive prey is that posed by sensory-motor delays: the delay be-
tween perception of sensory stimuli and motor responses to those stimuli [62].
Because of such delays, a predator’s movement at any given time is based on
past observations of prey. Computational models of predator-prey pursuit-
evasion interactions suggest that sensory-motor delays are among the most
important constraints limiting the success of predator attacks [11]. One way
for a predator to cope with delays is to steer based on a prediction of fu-
ture prey locations rather than using only currently perceived prey location.
Bolton et al. [46] found evidence of such prediction in the hunting maneu-
vers of larval zebrafish, which modulate their steering and acceleration based
not only on the locations of moving prey but also on perceived prey motion.
Forecasting the position of a moving object requires that an animal combine
position and velocity information. Although the fish visual system encodes
variables related to these quantities [53], the neural mechanisms through
which these variables are combined to produce a forecast remain unclear.

12
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Recommended reading

** Fernandes et al. 2021: This paper explores the circuit-level mechanisms
of selective attention in larval zebrafish. The authors report both winner-
take-all and averaging strategies implemented in the visual system through
retinotectal and isthmotectal circuits, respectively.

** Sosna et al. 2019: This paper explores the interaction between indi-
vidual behavior and mutual feedback in schools of fish. The authors identify
structural changes in the relative positions of fish in a school after exposure
to a fear-inducing cue. They show how these changes alter sensory feedbacks
among individual animals, thereby modifying group and individual behavior.

** Bolton et al. 2019: This paper investigates hunting behavior of larval
zebrafish with an emphasis on identifying the behavioral algorithms by which
visual input drives movements while hunting fast-moving prey. The authors
provide evidence that prey motion in addition to prey position drive action
selection, suggesting that larval zebrafish may perform a forecast of future
prey positions.

** Marques et al. 2020: This paper investigates patterns of whole-brain
activity associated with distinct behavioral states. The authors identify two
classes of larval zebrafish behavior and find that these correspond to distinct
brain states associated with widespread changes in neural activity throughout
sensory processing regions. They identify a network of neurons including a
population in the dorsal raphe that appears to be involved in triggering
changes in state.

* Johnston et al. 2019: This paper investigates mechanisms for sensitivity
to pattern changes in dynamic scenes. The authors identify a class of retino-
tectal microcircuits that encodes changes in patterns within a visual scene.
They suggest that the simple circuit structure they identify could also serve
as a basis for dynamic predictive coding throughout the nervous system.

* Wang et al. 2020: The authors identify neural populations in the pre-
tectum with large receptive fields concentrated on the lower visual field, and
populations in the optic tectum selective for small objects in the upper nasal
visual field. They provide evidence that pretectal neurons primarily encode
large-field optic flow, indicating a distinct parallel channel from that involved
in prey perception.

* Martin et al. 2021: The authors use empirically-calibrated computa-
tional model of predator-prey interactions to identify constraints on predator
and prey-performance. Their analysis shows that sensory-motor delays fun-

13
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damentally constrain predator performance, but not prey performance.
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