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• Ecological decisions depend on fast, flexible, and robust sensory pro-
cessing

• Raw sensory data are reconfigured into sensory features early in pro-
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Abstract

The interactions an animal has with its prey, predators, neighbors, and com-
petitors are known as ecological interactions. Making effective decisions dur-
ing these interactions poses fundamental challenges for the nervous system.
Among these are the need to filter relevant information out of complex and
ever-changing sensory scenes, to balance competing objectives, and to gen-
erate robust behavior amid the strong mutual feedbacks that occur during
interactions with other animals. Here, I review recent advancements in the
study of ecological decision-making. Using research with fishes, I illustrate
how knowledge of ethology and brain circuitry are converging to yield a more
holistic understanding of how the brain solves these problems to produce ro-
bust sequences of natural behavior.
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Introduction1

As we move through the world, we change our behavior based on the2

sensory stimuli we experience, the physiological states we enter and exit3

(e.g., hunger, stress), our encounters with other people, and an ever-evolving4

set of short and longer-term goals. Likewise, following an animal around its5

natural habitat reveals rich patterns of behavior that include fast and slow6

transitions among activities, apparent shifts in priorities, and, importantly,7
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diverse interactions with other animals (Fig. 1). The dynamic sequences8

of behavior we and other animals produce over the course of a day require9

thousands of decisions. Determining how these decisions are made – both10

in terms of the behavioral algorithms that map sensory information to one11

behavioral action or another, and in terms of the properties of neural circuits12

that control these actions – is at the heart of what it means to understand13

how the brain generates behavior [1].14

The past few years have seen a renaissance of interest in ecological decision-15

making, the process by which animals make decisions during natural inter-16

actions with prey, predators, neighbors, and competitors. This trend is due,17

at least in part, to two recent innovations: qualitative leaps in the precision18

with which the actions of unrestrained animals can be measured [2], and19

new methods for making in vivo measurements of the nervous system during20

naturalistic behavior [3, 4, 5, 6, 7, 8]. Here, I review recent advancements in21

our understanding of ecological decision-making. I focus on studies of fishes,22

which have served as a model system for researchers seeking to connect neural23

circuits with sequences of ecologically meaningful behavior.24

Parsing sensory scenes and the cocktail party problem25

In nature, animals make decisions across an unthinkably broad range of26

sensory conditions. Across all this variability, an animal must retain the abil-27

ity to learn about relevant events in the environment such as the approach of28

a predator or the actions of nearby conspecifics. Doing so involves identify-29

ing and isolating the stream of sensory data relevant to an event of interest30

from a complex, dynamic background. This task has been referred to as “the31

cocktail party problem” [9], in reference to the challenge of focusing on an32

individual speaker amid the din of a crowded cocktail party. The cocktail33

party problem is integral to ecological decision-making; without isolating and34

spatially localizing sensory input from a given source, processes like feedback35

control for pursuing prey [6, 10, 11] or goal-directed escape responses [12]36

would be impossible. Through work in fishes, particularly in the visual sys-37

tem, a picture of how the brain solves this problem is coming into view (Box38

1).39

The fish visual system filters sensory scenes through a highly parallelized40

processing scheme that adjusts to changing statistics of a visual scene on41

timescales ranging from tens of milliseconds [13] to many minutes [10, 14].42

The structure of this system reveals two properties likely to be important for43
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ecological decision-making. First, raw stimulus measurements are reconfig-44

ured into sensory features early in sensory processing, often within or near45

the sensory organ itself (Box 1, [13, 15, 16]). Sensory features include things46

like the size, motion, and patterning of visual objects. Importantly, the di-47

mensionality of feature space is far lower than that of raw visual input space.48

Computations to determine which features are relevant and which are not be-49

gin almost immediately, through the action of distributed microcircuits that50

make comparisons between sensory features over time and across visual space51

[13, 15]. The second key property is that sensory features associated with52

different types of events in the environment are simultaneously processed53

through distinct pathways in the brain [8]. For example, stimuli associated54

with prey and stimuli associated with predators are encoded by distinct sets55

of retinal ganglion cells, and processed through distinct, spatially segregated56

pathways in the tectum (Box 1, [16]). Processing within these parallel path-57

ways, and competition between them ultimately determine how the animal58

will respond [4, 15, 17, 18].59

Ecological decisions must be made quickly [11], but they must also be60

robust to complex, dynamic, and often novel sensory scenes. The properties61

of the fish visual system suggest a strategy by which the brain overcomes62

these challenges. By computing visual features through distributed circuits63

in the retina and tectum, information relevant to different types of behav-64

ioral actions (e.g. approach or avoid) are extracted simultaneously in a way65

that maintains sensitivity to novel stimuli as the scene changes [19, 13]. By66

processing these features through distinct pathways, evidence for different67

types of ecological events can be accrued rapidly in parallel, compared across68

pathways, and used to select an action [18].69

Balancing competing objectives: from action-selection to changing70

brain states71

Tradeoffs are another ubiquitous feature of ecological decision-making.72

Tradeoffs in ecological tasks are rarely simple. They often require an animal73

choose between engaging in very different types of activities, with costs and74

rewards that are experienced over different time horizons [1]. Selecting the75

best of a set of alternative actions when feedback is delayed [20], or when76

different options produce feedback on different timescales is a notoriously77

challenging problem in machine learning. The fact that animals routinely78
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make such choices during ecological interactions has led to significant interest79

in this facet of ecological decision-making.80

Explore or exploit. Whether to exploit a known option or to explore81

other, less familiar options is a common tradeoff faced during decision-making82

[21]. Marques et al. [7] studied this tradeoff using whole-brain imaging83

of freely-swimming zebrafish in arenas containing Paramecium prey. They84

found that larvae transition between two behavioral states, termed “explo-85

ration” and “exploitation,” during which movement and hunting behaviors86

differ markedly, and brainwide patterns of neural activity are distinct. The87

exploitation state is strongly correlated with activity of a population of neu-88

rons in the dorsal raphe nucleus (Box 1 Fig.), and transitions between states89

are correlated with activity of a trigger network also involving the dorsal90

raphe, which can become active spontaneously or in response to events such91

as changing light levels or successful prey capture [7].92

Another manifestation of the exploration-exploitation tradeoffs occurs93

within natural hunting sequence themselves. When hunting prey, preda-94

tors abort a large fraction of pursuits without even attempting to strike prey95

[22, 23, 10]. In zebrafish, the onset of hunting bouts coincides with elevated96

activity of neurons in the nucleus isthmi (NI, Box 1 Fig.), a nucleus that97

reciprocally connects to regions of the optic tectum involved in visual pro-98

cessing during hunting [23]. The properties of NI connections to the tectum99

are consistent with the hypothesis that the NI controls sustained hunting100

behavior by enhancing visually-evoked neural activity in tectal pathways,101

possibly by enhancing transmission of visual stimuli from RGCs to the optic102

tectum. One possible function of this is to tune hunting behavior based on103

an animal’s hunger level. For example, hunger-induced recruitment of tectal104

neurons that respond to prey-sized moving objects [24] could increase input105

from the tectum to the NI when an animal is hungry [10]. NI feedback to106

the optic tectum could then cause hungry animals to extend hunting bouts,107

as observed in starvation experiments [10].108

Feed or flee. In nature, deciding when to continue feeding and when to109

flee is a matter of life or death. At the most basic level, balancing this trade-110

off requires that an animal distinguish food from threats [18], a task that is111

not always as trivial as it might seem [25]. Larval zebrafish exhibit distinct112

approach and avoidance behaviors to moving visual objects, and whether the113

response is positive (approach) or negative (avoid) depends on the object’s114

size [18, 24]. Interestingly, the relationship between object size and behav-115

ioral response changes markedly when an animal is hungry. Starved fish116

4



approach small objects more frequently and are less likely to avoid objects of117

intermediate size [24]. This hunger-driven shift in behavioral valence is con-118

trolled, in part, by hypothalamic-pituitary-adrenal activity, which modulates119

size response properties of visually-activated neurons in the optic tectum. In120

hungry animals, reduced cortisol and enhanced serotenergic transmission pro-121

motes recruitment of additional tectal neurons sensitive to small object sizes122

[24]. This increased activity of tectal neurons may act both by heightening123

sensitivity to stimuli prey-associated stimuli and by inhibiting a competing124

pathway involved in avoidance behavior [18].125

Perception of risk. The costs and benefits of making a particular deci-126

sion depend not only on an animal’s internal state but also on the external127

environment. Changes in decision-making in “risky” versus “safe” environ-128

ments are widely documented [26]. But if an animal is to modify its behavior129

based on risk, it needs a way to measure risk. One such measure is the pres-130

ence of other nearby individuals. Wild coral reef fish feed for shorter periods131

of time between retreats to shelter when foraging alone than when they forage132

in large groups [27]. When these animals are exposed to acute threats (loom-133

ing visual stimuli), responses depend on visual stimuli from the threat and134

visual stimuli produced by neighboring individuals [12]. This implies a mech-135

anism for tuning escape decisions on a fast timescale based on perception of136

neighboring individuals. How might such context-dependent responses be137

controlled in the brain? One possibility is that when nearby individuals and138

other stimuli are viewed at the same time, competition for salience reduces139

the overall likelihood of responding to any of the stimuli. This could occur,140

for example, through reciprocal inhibition between competing stimuli within141

the retina [15].142

On slower timescales, isolation from conspecifics causes oxytocinergic ac-143

tivity in the hypothalamus [28]. This activity appears to increase activation144

of premotor neurons in the hindbrain including Mauthner cells (Box 1 Fig.)145

and other reticulospinal neurons that control motor behavior [29]. Oxytocin-146

ergic activity is associated with an increase in defensive behaviors and a147

decrease in feeding, suggesting that social isolation may promote behaviors148

such as escape responses, but that it also simultaneously suppresses appetite.149

To make effective decisions, animals must balance tradeoffs. Doing so re-150

quires that the animal account for its current needs as well as how its actions151

will influence the likelihood of different outcomes. The latter is determined152

at least partly by the state of the environment. A widespread finding is153

that internal state controls action-selection not simply by favoring one ac-154
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tion or another in the final stages of decision-making, but also by changing155

how incoming sensory data are processed [24]. Similar processes may govern156

changes in decision-making as the state of the environment changes [29, 28].157

An important future step will be determining whether these mechanisms for158

tuning responses are simply crude heuristics, or whether they are based on159

encodings of the key quantities required to optimally balance tradeoffs: the160

quantitative values of different outcomes [30], and the probabilities of those161

outcomes given one action or another [21].162

Decision-making and mutual feedbacks163

Another characteristic of ecological decision-making is that it often in-164

volves strong mutual feedbacks between interacting animals. We have all ex-165

perienced such feedbacks when trying to avoid colliding with someone walking166

in the opposite direction on a sidewalk. You veer left and so does your coun-167

terpart. You correct right, and so does she. In the presence of a telephone168

pole or a mailbox, this problem does not arise. Such mutual feedbacks occur169

during many ecological behaviors including competition for food, hunting170

mobile prey (Box 2), and, in an extreme form, during social behaviors such171

as schooling [31] and feeding aggregations [27].172

Schooling, aggregations, and feedbacks. Grouping with others has173

well-documented benefits such as diluting the risk of predation [32], but174

neighboring individuals also produce large quantities of sensory stimulation175

[33, 34]. Sensory cues from neighbors can be beneficial [31, 32], but they also176

create the potential for the actions of an animal to feed back on it through the177

responses of its neighbors, a process that can be thought of as an extended178

form of reafferrence.179

Schooling golden shiners (Notemigonus crysoleucas) make movement de-180

cisions based on the spatial locations of nearby individuals using rules that181

are consistent with continuous feedback control [35, 36]. By adjusting ac-182

celeration, deceleration, and turning based on neighbor locations, animals183

maintain fairly consistent positions relative to neighbors [35, 37], potentially184

minimizing the risk of creating strong stimuli that could feed back by pro-185

ducing large changes in neighbor behavior (but see [38]). More recent work186

suggests that the behavioral algorithms that guide movement decisions in187

schools can be produced by relatively simple responses to visual stimuli from188

neighbors [39, 40, 34], that these algorithms change predictably over ontogeny189

[41, 40, 34], and that they appear to be heritable [40]. A heuristic model of190
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the core computations involved in visual schooling behavior was recently pro-191

posed [42]. However, the details of how these computations may be carried192

out in the brain are not yet clear. Interestingly, mutations known to impact193

other aspects of social behavior also affect how fish transform stimuli from194

neighbors into movement decisions [40]. These disrupted movement rules195

alter collective behavior of groups of individuals.196

In contrast to the behaviors fish employ during routine swimming, the be-197

havioral algorithms used during behaviors such as collective escape responses198

can produce strong bursts of sensory stimulation perceptible by neighbors199

[39, 43]. During collective escapes, one or several individuals in a group200

typically accelerate [44] creating stimuli that can cause cascades of startle201

behavior [44, 39, 43]. Notably, the influence of neighbors on any given focal202

individual are often highly unequal [39, 43], suggesting that some mecha-203

nism for selectively attending to a dominant neighbor [15, 45] or unequally204

weighting neighbor stimuli [42] may be important for controlling responses.205

Many ecological behaviors involve mutual feedbacks (Box 2). In compar-206

ison to other aspects of decision-making, we know relatively little about how207

animals control behavior amid such feedbacks. Selective attention [15, 45],208

behavioral averaging [42], and forecasting future positions of moving tar-209

gets ([46], Box 2) are candidate mechanisms that could help animals retain210

behavioral control in these situations. But our understanding of how these211

mechanisms are implemented in the brain and integrated to produce behavior212

are far from complete.213

Conclusions and Outlook214

The current resurgence of interest in ecological behavior is exciting, to215

be sure. But where will future work on the ethological, computational, and216

neural aspects of ecological decision-making lead us? Put another way, by217

studying ecological decision-making, what is it, exactly, that we wish to218

understand?219

One answer is that the ability to produce sequences of effective deci-220

sions across a vast range of novel conditions is among the most conspicuous,221

yet least understood aspects of natural behavior [1]. By studying ecologi-222

cal decision-making, we seek principles of brain function that make this si-223

multaneous flexibility, robustness, and generalizeablity possible. Larval fish224

produce hunting sequences to capture mobile prey within days of hatching225
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[47, 48] even on the first exposure to live prey [49] – a feat tantamount to few-226

shot or even zero-shot learning. Likewise, fish respond to novel threat stimuli227

by generating escape behaviors that balance competing objectives [15] and228

shift seamlessly from one proximate task to another [12] in ways that appear229

to sidestep challenges such as constraint violation and catastrophic forgetting230

that plague artificial decision-making systems [50, 51]. Here, I have argued231

that three general properties of neural circuits help explain how decision-232

making in these tasks can be fast, robust, and flexible all at the same time:233

distributed computation of sensory features [13, 15], parallel processing of234

sets of features by distinct, often competing pathways [8, 16, 18], and slower-235

timescale modulation of decision-making circuits based on internal and ex-236

ternal states [7, 24, 28]. Are these circuit properties so fundamental that we237

should consider them principles of brain organization that enable effective238

natural behavior? Further comparative work, as well as targeted computa-239

tional studies of these properties could go a long way toward answering this240

question.241

Recent progress notwithstanding, there remains so much to learn about242

how animals make ecological decisions. We need principles to help orga-243

nize the central challenges involved in ecological tasks, and the mechanisms244

by which nervous systems overcome these challenges. This is particularly245

true for decisions that involve interactions with other organisms that are,246

themselves, sensing and responding. In nature, interacting brains are the247

rule rather than the exception [31, 32]. The strategies the nervous system248

has evolved to guide decision-making must, therefore, account in some way249

for the decisions of other agents with both aligned and conflicting interests.250

While related questions have been addressed through work in social psy-251

chology, evolutionary game theory, and collective behavior, we still lack an252

understanding of the computational principles that allow the brain to pro-253

duce dynamic sequences of decisions amid strong mutual feedbacks. Future254

studies are poised to change this, opening up a suite of new and exciting ques-255

tions whose answers will teach us much about behavior and brain function256

alike.257
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Figures262

Figure 1: Shifting priorities and sensory demands during ecological decision-making: (A)
hunting behavior, (B) predator evasion, (C) social interactions.
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Boxes263

Box 1. Processing and filtration in the fish visual system.264

The fish visual system has become a model for understanding how the265

vertebrate nervous system filters and processes sensory scenes. The first layer266

of filtration occurs through the spatial organization of sensory receptors. In267

the fish eye, photoreceptors with distinct spectral sensitivities are heteroge-268

neously distributed across the retina in ways that are matched to the typical269

spectral properties of incoming light in different regions of the visual field270

([52], Box Fig.). Rather than being transmitted to the brain in raw form,271

the information captured by receptors is immediately reorganized into sen-272

sory features, for example, the size, motion speed and direction, and local273

contrast polarity of a visual object [17, 53]. Cells in the retina also encode274

larger-scale features such as spatial patterns and changes in such patterns275

[13].276

After sensory features are computed, they are transmitted by retinal277

ganglion cells (RGCs) in parallel to the brain in a fashion that preserves278

the spatial locations of features [54, 55], but segregates features associated279

with events that require different kinds of responses into distinct pathways280

[8, 16, 17, 18, 53, 54] where features are further processed and recombined281

[53]. In the fish tectum (also known as the superior colliculus), a central282

relay and processing station for incoming sensory data in the fish midbrain283

[56], small size- and motion-selective RGCs terminate in superficial tectal284

layers [16], whereas features associated with expanding objects terminate in285

deeper tectal layers [57, 16]. Downstream neurons in the tectum integrate286

feature-selective inputs from multiple RGC types, and in some cases, sharpen287

specificity for certain object features (e.g. specificity to small moving objects;288

[16]). Additional modification of tectal processing is provided by other brain289

regions including the thalamus [5] and hypothalamus [4]. Another stage of290

filtration occurs in premotor regions in the hindbrain, where recurrent [4] and291

lateral inhibitory circuit motifs (e.g., between Mauthner cells, [58]) exert ad-292

ditional control over whether a given stimulus will lead to motor behaviors,293

and what type of motor response will be executed [59]. Finally, whether294

an animal responds to a given sequence of stimuli depends on modulation295

of decision-making circuits on longer timescales, often across multiple brain296

regions [14, 7].297
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Elements of the fish visual system showing selected structures and brain re-
gions: eye with Retina (R), Retinal Ganglion Cell (RGC), Tectum (T), Thalamus (TH),
Nucleus Isthmi (NI), Dorsal Raphe (DR), and Mauthner Cell (MC). Optic nerve from
right eye projects to the left tectum and only brain regions corresponding to that visual
hemisphere are shown. Retina inset shows heterogeneous distribution of photoreceptor
types across the retina [52] and retinal portion of retinotectal microcircuits, which com-
pute visual features [13] and salience among visual objects [15]. Tectum inset shows RGC
projecting to the tectum. Anterior-posterior and shallow-deep axis of tectal neuropil, and
preventricular neuron (PVN) are also shown. Anatomy reproduced from [7, 16, 23, 56, 58].

Box 2. Hunting and feedback control298

Hunting prey is a an ecological task that requires an animal make a299

sequence of decisions – detect prey, initiate pursuit, control pursuit move-300

ments, and execute a final strike – to receive a reward. Like larvae of other301

fish species [47], larval zebrafish hunt live zooplankton, and this behavior has302

become a model for understanding behavioral control [53, 6, 48, 49].303

Zebrafish hunting bouts follow a characteristic progression. Larvae typi-304

cally first respond to prey viewed in the frontal visual field [6, 49, 46]. Follow-305

ing prey detection, larvae exhibit characteristic “j-turns” that move the prey306
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toward the proximal, dorsal region of the visual field. This phase of hunt-307

ing also involves convergence of the eyes [53], a behavior that increases the308

zone of binocular overlap in the proximal region of the visual field. Hunting309

sequences end with either an abort [23] or with a terminal attack maneuver310

[6, 10, 46]. Larvae typically launch terminal attacks when prey are within311

0.4-0.6 mm of the head, near an azimuthal angle of zero, and located slightly312

above them in the water column [6, 46], and larvae will dive if necessary to313

position prey in this zone [46]. Importantly, hunting behavior requires visual314

feedback, and the removal or temporal disruption of this feedback in virtual315

prey experiments results in aborted [6] or disrupted [60] hunting sequences.316

Larval fish face a challenging control problem when hunting fast-moving317

prey [47, 6], but strong mutual feedbacks between predator and prey are318

even more pronounced during hunting behavior of adult fish. When hunting319

evasive prey, predatory bluefish (Pomatomus saltatrix ) continuously adjust320

swimming trajectories as prey move, presumably using visual feedback [61].321

Interception trajectories of bluefish are consistent with a strategy known322

as “deviated pursuit” in which the pursuer turns continuously to align its323

velocity vector with the line-of-sight to the prey plus a small offset angle.324

These predators also accelerate to high speeds during the terminal phases of325

attacks, possibly in response to evasive maneuvers of prey.326

Among the primary challenges bluefish and other predators face when327

pursuing evasive prey is that posed by sensory-motor delays: the delay be-328

tween perception of sensory stimuli and motor responses to those stimuli [62].329

Because of such delays, a predator’s movement at any given time is based on330

past observations of prey. Computational models of predator-prey pursuit-331

evasion interactions suggest that sensory-motor delays are among the most332

important constraints limiting the success of predator attacks [11]. One way333

for a predator to cope with delays is to steer based on a prediction of fu-334

ture prey locations rather than using only currently perceived prey location.335

Bolton et al. [46] found evidence of such prediction in the hunting maneu-336

vers of larval zebrafish, which modulate their steering and acceleration based337

not only on the locations of moving prey but also on perceived prey motion.338

Forecasting the position of a moving object requires that an animal combine339

position and velocity information. Although the fish visual system encodes340

variables related to these quantities [53], the neural mechanisms through341

which these variables are combined to produce a forecast remain unclear.342
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Recommended reading343

•• Fernandes et al. 2021: This paper explores the circuit-level mechanisms344

of selective attention in larval zebrafish. The authors report both winner-345

take-all and averaging strategies implemented in the visual system through346

retinotectal and isthmotectal circuits, respectively.347

•• Sosna et al. 2019: This paper explores the interaction between indi-348

vidual behavior and mutual feedback in schools of fish. The authors identify349

structural changes in the relative positions of fish in a school after exposure350

to a fear-inducing cue. They show how these changes alter sensory feedbacks351

among individual animals, thereby modifying group and individual behavior.352

•• Bolton et al. 2019: This paper investigates hunting behavior of larval353

zebrafish with an emphasis on identifying the behavioral algorithms by which354

visual input drives movements while hunting fast-moving prey. The authors355

provide evidence that prey motion in addition to prey position drive action356

selection, suggesting that larval zebrafish may perform a forecast of future357

prey positions.358

•• Marques et al. 2020: This paper investigates patterns of whole-brain359

activity associated with distinct behavioral states. The authors identify two360

classes of larval zebrafish behavior and find that these correspond to distinct361

brain states associated with widespread changes in neural activity throughout362

sensory processing regions. They identify a network of neurons including a363

population in the dorsal raphe that appears to be involved in triggering364

changes in state.365

• Johnston et al. 2019: This paper investigates mechanisms for sensitivity366

to pattern changes in dynamic scenes. The authors identify a class of retino-367

tectal microcircuits that encodes changes in patterns within a visual scene.368

They suggest that the simple circuit structure they identify could also serve369

as a basis for dynamic predictive coding throughout the nervous system.370

• Wang et al. 2020: The authors identify neural populations in the pre-371

tectum with large receptive fields concentrated on the lower visual field, and372

populations in the optic tectum selective for small objects in the upper nasal373

visual field. They provide evidence that pretectal neurons primarily encode374

large-field optic flow, indicating a distinct parallel channel from that involved375

in prey perception.376

• Martin et al. 2021: The authors use empirically-calibrated computa-377

tional model of predator-prey interactions to identify constraints on predator378

and prey-performance. Their analysis shows that sensory-motor delays fun-379
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damentally constrain predator performance, but not prey performance.380
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