
Information and Inference: A Journal of the IMA (2022) 00, 1–28
https://doi.org/10.1093/imaiai/iaac008

Probabilistic methods for approximate archetypal analysis

Ruijian Han
Department of Statistics, The Chinese University of Hong Kong, Hong Kong, China

Braxton Osting
Department of Mathematics, University of Utah, Salt Lake City, UT, USA

Dong Wang
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China

Guangdong Provincial Key Laboratory of Big Data Computing, The Chinese University of Hong Kong,
Shenzhen, China

and

Yiming Xu
Department of Mathematics, University of Utah, Salt Lake City, UT, USA

Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
†Corresponding author. Email: yxu@math.utah.edu

[Received on 16 August 2021; revised on 11 February 2022; accepted on 16 March 2022]

Archetypal analysis (AA) is an unsupervised learning method for exploratory data analysis. One major
challenge that limits the applicability of AA in practice is the inherent computational complexity of
the existing algorithms. In this paper, we provide a novel approximation approach to partially address
this issue. Utilizing probabilistic ideas from high-dimensional geometry, we introduce two preprocessing
techniques to reduce the dimension and representation cardinality of the data, respectively. We prove that
provided data are approximately embedded in a low-dimensional linear subspace and the convex hull of
the corresponding representations is well approximated by a polytope with a few vertices, our method
can effectively reduce the scaling of AA. Moreover, the solution of the reduced problem is near-optimal
in terms of prediction errors. Our approach can be combined with other acceleration techniques to further
mitigate the intrinsic complexity of AA. We demonstrate the usefulness of our results by applying our
method to summarize several moderately large-scale datasets.

Keywords: alternating minimization; approximate convex hulls; archetypal analysis; dimensionality
reduction; random projections; randomized SVD. 2020 Math Subject Classification: 65F55; 68W20;
68W25; 68W40.

1. Introduction

Archetypal analysis (AA) is an unsupervised learning method introduced by Cutler and Breiman in 1994
[10]. For fixed k ∈ N, the method finds a convex polytope with k vertices, referred to as archetypes, in the
convex hull of the data that explains the most variation of the data. Equivalently, given {xi}i∈[N] ⊂ Rd,
AA can be formulated as the following optimization problem:

min
A∈RN×k

cs ,B∈Rk×N
cs

1√
N

‖X − XAB‖F X = [x1, · · · , xN] ∈ Rd×N , (1.1)

© The Author(s) 2022. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

https://doi.org/10.1093/imaiai/iaac008

2 R. HAN ET AL.

where F denotes the Frobenius norm, and ‘cs’ stands for column stochastic matrices, which are
entry-wise nonnegative matrices with each column summing to 1. The normalization factor 1/

√
N is

introduced for convenience later. To understand this formulation, note that the columns of XA are the
expected archetypes, and the columns of B correspond to the projection coefficients of the columns
of X to the convex hull of the archetypes. Consequently, the objective defined in (1.1) represents the
(average) variation of the data that cannot be explained by the convex combinations of the archetypes.

AA is closely related to other unsupervised learning methods such as the k-means, principal
component analysis (PCA) and nonnegative matrix factorization (NMF) [19, 22]. In fact, AA can be
seen as an interpolation between the k-means and PCA; it has more geometry than the former, while
it is more restrictive than the latter due to additional convexity constraints. This allows AA to produce
more interpretable results in many applications, e.g. in evolutionary biology [38], meanwhile raising
additional questions of increased computational complexity. Under suitable statistical assumptions, the
consistency and convergence of AA are established [33].

Despite offering interpretable results, AA did not gain equal attention compared with its alternatives.
One possible reason, as pointed out in [6], is due to the lack of efficient computational resources
for applying AA to large-scale datasets, which are becoming increasingly ubiquitous in the big-data
era. Indeed, the optimization defined in (1.1) is non-convex, and one common approach to solving
(1.1) is based on an alternating minimization algorithm [10], which will be reviewed in Section 2. The
subproblems in the alternating minimization scheme are equivalent to quadratic programming problems
(see Section 2), which makes the full loop for solving AA computationally intensive for moderately
large dimension d and cardinality N.

The scope of this paper is to provide a promising perspective for addressing the theoretical
computational challenges encountered in solving AA. Instead of focusing on optimizing the subproblem
solvers to accelerate computation, we introduce two separate reduction techniques to downsize the
problem before applying optimization methods to solve (1.1). We show that under appropriate
conditions, a solution of the reduced AA (i) well-approximates the solution of the original problem
(1.1) in terms of prediction error and (ii) can be obtained significantly faster than the original solution.
Our approach relies on a few fundamental results in high-dimensional geometry. Note that our proposed
method is a data preprocessing procedure by nature and complements the many existing methods to
further accelerate computation.

1.1 Related work

Making AA practical for large-scale data analysis has been an active area of research in recent years.
Various approaches have been proposed to attack the problem from different perspectives. For example,
feasible optimization techniques such as projected gradients [31], active-subsets [6] and the Frank-
Wolfe method [4] are considered for accelerating solving the quadratic programming problem in the
alternating minimization scheme. Relaxation methods including decoupling [30] and sparse projections
[1] are concerned with relaxing the alternating minimization into problems that enjoy better scalability
properties. Another direction of work is centered around approximately solving AA by first reducing the
cardinality of the data via sparse representation [27, 40]. Although these approaches are demonstrated
to work well empirically, they either do not address the intrinsic complexity of the problem or lack
theoretical guarantee on the quality of approximation. In the recent work [28], the authors proposed
to use the coreset of the data to reduce the computational complexity of the objective function and
theoretically quantified the approximation error.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

APPROXIMATE ARCHETYPAL ANALYSIS 3

Using approximate isometric embedding to reduce dimensionality is a fruitful idea in data
analysis. The technique has been successfully applied to a variety of problems including least-squares
regression [2, 12], clustering [5, 8, 29], low-rank approximation [7, 18, 41], NMF [14, 34] and tensor
decomposition [3, 44].

1.2 Contributions of this paper

This paper proposes two novel reduction techniques which can be combined with existing approaches
to mitigate the inherent complexity of AA. Both techniques come with theoretical guarantees on their
approximation accuracy. In particular,

• We introduce a data compression technique based on a randomized Krylov subspace method [32] to
reduce data dimension. This procedure allows us to circumvent frequent queries to high-dimensional
data and is new in the context of AA.

• We propose to use random projections to compute an approximate convex hull of the data to reduce
the cardinality of the dictionary to represent archetypes.

• We theoretically analyze the approximation accuracy and time complexity for both techniques.
In particular, we show that the reduced AA gives a near-optimal solution but has significantly
reduced complexity provided that the data are low-dimensional and approximately described by
a few extreme patterns.

Our results yield an approximate algorithm that is capable of dealing with data that are large both in
size and dimension. Numerical experiments are provided, which support and illustrate our theoretical
findings.

1.3 Outline

The rest of the paper is organized as follows. In Section 2, we review the standard alternating
minimization algorithm for solving AA as well as the corresponding computational challenges. In
Section 3 and 4, we introduce two separate randomized techniques to reduce the data dimension and
representation cardinality of the archetypes, respectively. We also quantify the approximation accuracy
and the computational complexity for both techniques. In Section 5, we combine the ideas in Section 3
and 4 to devise an approximate algorithm for AA. We show that the proposed algorithm gives a near-
optimal solution meanwhile having significantly reduced computational complexity for datasets that are
approximately embedded in a low-dimensional subspace and well summarized via a few extreme points.
We numerically verify our results in Section 6.

1.4 Notation

In the rest of the paper, X ∈ Rd×N denotes the data matrix. We always use (A!, B!) to denote a minimizer
to (1.1) and opt(X) = ‖X − XA!B!‖F/

√
N the corresponding optimum value.

Denote [m] = {1, . . . , m} ⊂ N. For a matrix A ∈ Rm×n, we denote by σi(A) the ith largest singular
value of A, and A† the Moore–Penrose pseudoinverse of A. For T1 ⊂ [m] and T2 ⊂ [n], we use notation
A[T1, :], A[−T1, :], A[:, T2] and A[:, −T2] to denote the submatrices formed by taking the rows of A
with indices in T1, the rows of A with indices in [m] \ T1, the columns of A with indices in T2 and the
columns of A with indices in [n] \ T2, respectively. When talking about subspace embedding for A, we

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

4 R. HAN ET AL.

view A as n points A[:, 1], · · · , A[:, n] in the column space of A, i.e. col(A). We use conv(A) and ex(A)

to represent the convex hull of the columns of A and the corresponding extreme points, respectively.
Moreover, O(·), a(n1, · · · , n#) ! b(n1, · · · , n#) and a(n1, · · · , n#) " b(n1, · · · , n#) are standard

notation in complexity theory, where the implicit constants do not depend on the indices n1, · · · , n#.

2. An alternating minimization algorithm for archetypal analysis

In this section, we review an alternating minimization algorithm for solving AA, due to Cutler and
Breiman [10].

Note that (1.1) is a non-convex optimization. However, when fixing A or B and solving for the other,
the problem becomes convex. This observation gives rise to the following alternating minimization
algorithm for computing a stationary solution for (1.1).

The loop in Algorithm 1 updates B and A alternatingly. To analyze the computational complexity of
these subroutines, we formulate the optimization problems in steps 3 and 4 more explicitly as follows.

In step 3, A is fixed and B needs to be updated. If we let Z = XA, then the optimization is equivalent
to computing the projection coefficients for each column in X to conv(Z). In particular, we need to solve
N independent k-dimensional quadratic programming problems

min
b∈Rk ,‖b‖1=1,b≥0

‖Zb − X[:, i]‖2
2 i ∈ [N].

In step 4, B is fixed and A, or equivalently, Z, needs to be updated. Using the Pythagorean theorem,
one can first compute the least-squares solutions

arg min
Z∈Rd×k

‖X − ZB‖2
F = ((BT)†XT)T = XBT(BBT)−1,

then update each column of A by taking projection

min
a∈RN ,‖a‖1=1,a≥0

∥∥∥Xa − XBT(BBT)−1[:, i]
∥∥∥

2

2
i ∈ [k]. (2.1)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

APPROXIMATE ARCHETYPAL ANALYSIS 5

To accelerate computation, rather than updating A at once, one can use a Gauss–Seidel approach to
update the columns of A sequentially [33]

min
a∈RN ,‖a‖1=1,a≥0

∥∥∥∥∥Xa − Di(B[i, :])T

‖B[i, :]‖2
2

∥∥∥∥∥

2

2

i ∈ [k], (2.2)

where Di = X − Z[:, −i]B[−i, :]. The details of deriving (2.2) are given in Appendix A.
Either (2.1) or (2.2) involves solving k quadratic programming problems with variable dimension N.

In the rest of the paper, we will use (2.2) in place of step 4 in Algorithm 1 to update A.
For small k and large N, the computation time in step 3 scales linearly in N (assuming solving a

k-dimensional quadratic programming problem takes constant time). For step 4, the computation time is
approximately equal to a multiplicative constant (k) times the complexity of solving an N-dimensional
quadratic programming problem, which can be computationally infeasible for large N. We will provide
an accelerated approximate scheme for step 4 in Section 4. Moreover, when d is large, taking repeated
numerical operations on X is inconvenient. We will introduce a data dimensionality reduction technique
to address this issue in Section 3.

3. Data dimensionality reduction

We first consider the scenario where the data dimension is large. This may happen, for instance, when
each data point is obtained from the discretization of a continuous function (e.g. time series) or encodes
a high-resolution image. In this case, directly working with the data is inconvenient. Instead, we can
embed X in a lower dimensional space while maintaining the convexity structure of X. This compression
will save us from frequently querying the columns of X in the iterative process for solving (1.1),
which can be computationally expensive. A straightforward idea for embedding is via singular value
decomposition (SVD), which we recall below

Definition 3.1. Suppose rank(X) = r ≤ min{N, d}. The SVD of X is given by X = UΣVT , where
U ∈ Rd×r, V ∈ Rr×N are the left and right singular vector matrices, respectively, and Σ ∈ Rr×r is a
diagonal matrix with diagonal entries arranged in non-increasing order.

Under the columns of U, ΣVT ∈ Rr×N provides a sparse representation for X (since r ≤ d). If we
first embed X in U using SVD and apply AA to ΣVT , then for every feasible (A, B), by the unitary
invariance of Frobenius norm,

∥∥∥ΣVT − ΣVTAB
∥∥∥

2

F
= ‖X − XAB‖2

F , (3.1)

which establishes the equivalence between (1.1) and the AA under the SVD representation.
If X has full rank but possesses low-rank structure, one may use a truncated SVD to further reduce

the data dimension at a minor cost of accuracy, as made precise in the following theorem:

Theorem 3.2. Suppose p ≤ r = rank(X). Denote by Up, Vp the first p columns of U and V,
respectively, and Σp the top p × p submatrix of Σ . Let (Ã, B̃) be a solution to the AA for the truncated

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

6 R. HAN ET AL.

SVD representation of X at pth level

min
A∈RN×k

cs ,B∈Rk×N
cs

1√
N

∥∥∥ΣpVT
p − ΣpVT

p AB
∥∥∥

F
.

Then,
1√
N

∥∥X − XÃB̃
∥∥

F ≤ opt(X) + 4σp+1(X). (3.2)

Proof. Let

Xp := UpΣpVp X−p := X − Xp. (3.3)

By the Eckart–Young theorem [13], Xp is the best rank-p approximation for X in the spectral norm, with
approximation error ‖X−p‖2 = σp+1(X). Let (A!, B!) be a solution to (1.1). Consequently,

‖X − XÃB̃‖F ≤ ‖Xp − XpÃB̃‖F + ‖X−p − X−pÃB̃‖F

≤ ‖Xp − XpA!B!‖F + ‖X−p − X−pÃB̃‖F

≤ ‖X − XA!B!‖F + ‖X−p − X−pA!B!‖F + ‖X−p − X−pÃB̃‖F

≤ ‖X − XA!B!‖F + 2‖X−p‖F + ‖X−pA!B!‖F + ‖X−pÃB̃‖F . (3.4)

Since A!, Ã, B!, B̃ are column stochastic matrices, so are A!B! and ÃB̃. It follows from direct
computation and Cauchy–Schwarz inequality that

‖X−pA!B!‖F =
√∑

i∈[N]

‖X−p(A!B!)[:, i]‖2
2 ≤

√∑

i∈[N]

‖X−p‖2
2‖(A!B!)[:, i]‖2

2

≤
√∑

i∈[N]

‖X−p‖2
2‖(A!B!)[:, i]‖2

1

= ‖X−p‖2

√
N. (3.5)

Similarly,

‖X−pÃB̃‖F ≤ ‖X−p‖2

√
N. (3.6)

Plugging (3.5) and (3.6) into (3.4) and dividing by
√

N yields

1√
N

‖X − XÃB̃‖F ≤ opt(X) + 2√
N

‖X−p‖F + 2‖X−p‖2 ≤ opt(X) + 4‖X−p‖2

= opt(X) + 4σp+1(X),

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

APPROXIMATE ARCHETYPAL ANALYSIS 7

completing the proof. #
Thus, for data X that admits a good low-rank approximation, AA applied to the truncated SVD

representation yields a near-optimal solution in terms of prediction errors. In this case, the data
dimension can be significantly reduced to streamline computation. However, to obtain truncated SVD
representations, one often needs to compute the full SVD of X, which has complexity O(dN min{d, N}).
For large d and N, this procedure is computationally intensive. To address this issue, we consider an
approximate version of the best rank-p approximation without taking the SVD of X.

Definition 3.3. A matrix X̃p is a (1 + ε) rank-p approximation to X if rank(X̃p) ≤ p and

‖X − X̃p‖2 ≤ (1 + ε)‖X − Xp‖2, (3.7)

where Xp is the best rank-p approximation to X as defined in (3.3).

Before turning to discuss how to find such an X̃p, we consider a few consequences assuming
its existence. Similar to the previous discussion, we can apply AA to X̃p, which can be efficiently
represented using the SVD. As will be seen shortly, computing the SVD of X̃p is much cheaper than X

when p is small. On the other hand, let X̃p = ŨpΣ̃pṼT
p be the SVD of X̃p and define

X̃ = Σ̃pṼT
p)⇒ X̃p = ŨpX̃. (3.8)

The following theorem quantifies the approximation error if we use X̃ in place of X for AA:

Theorem 3.4. Let ε > 0. Suppose X̃p is a (1+ε) rank-p approximation to X, and X̃ is the representation
of X̃p under the left singular vectors. Let (Ã, B̃) be a solution to the AA applied to X̃

min
A∈RN×k

cs ,B∈Rk×N
cs

1√
N

∥∥X̃ − X̃AB
∥∥

F . (3.9)

hen,
1√
N

‖X − XÃB̃‖F ≤ opt(X) + 4(1 + ε)σp+1(X).

Proof. Proceeding similarly as proof of Theorem 3.2 with Xp, X−p replaced by X̃p and X̃−p = X − X̃p,
respectively,

1√
N

‖X − XÃB̃‖F ≤ opt(X) + 4‖X̃−p‖(3.7)
2 ≤opt(X) + 4(1 + ε)σp+1(X).

#
Theorem 3.4 implies that for X with small best rank-p approximation error, using the SVD

representation of X̃p will only result in a small impact on prediction accuracy. The following algorithm,
due to Musco and Musco [32], provides a way to compute X̃p (i.e. X̃) via randomized block Krylov
methods. The details of the algorithm are given in Algorithm 2.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

8 R. HAN ET AL.

The following lemma says that, with high probability, X̃p returned by Algorithm 2 is a good
approximation to Xp:

For ε, δ > 0, there exist absolute constants C1, C2 > 0 such that if

s >
C1√

ε
log

(
N
εδ

)
p ≥ C2 log

(
4
δ

)
, (3.10)

hen for with probability at least 1 − δ, the X̃p in Algorithm 2 satisfies (3.7).
Proof. Lemma 3.1 is a probabilistic version of ([32], Theorem 1) where a fixed probability (0.99) is
used instead of 1 − δ for an arbitrary δ. Nevertheless, the proof is the similar except one needs to apply
sharp concentration inequalities to bound extreme singular values of Gaussian matrices ([43], Corollary
7.3.3), ([36], Theorem 1.2) to control the failure probability. #

Remark 3.1. Other randomized low-rank approximation algorithms may also be used in place of
Algorithm 2. For example, one can use the randomized simultaneous iteration to compute X̃p [18;
45]. Under the same approximation error ε and failure probability δ, the sample complexity of this
method has a slightly worse dependence on ε (i.e. s = O(log(N/εδ)/ε)) than (3.10). As such theoretical
discrepancy was also manifested in several empirical studies in [32], we use Algorithm 2 to compute X̃p
in this article.

Remark 3.2. The desired low-rank approximation X̃p is computed under the spectral norm, which is
necessary in the derivation of approximation error in Theorem 3.4. Other randomized algorithms based
on oblivious sketching [8; 37; 45] or leverage score sampling [9] only produce low-rank approximations
under the Frobenius norm. Since an error bound under the Frobenius norm does not imply a similar
bound under the spectral norm, these methods do not directly work for the problem considered in this
paper.

To apply Theorem 3.4, we need to compute the SVD representation of the low-rank approximation
matrix X̃p, that is X̃, rather than X̃p itself; see (3.8). Since the output of Algorithm 2 is the full low-rank
matrix X̃p, finding its SVD representation may incur additional computational cost for our purpose.
However, in Algorithm 2, X̃ can be read off the shelf as

X̃ = Σemd[1 : p, 1 : p](Uemd[:, 1 : p])T , (3.11)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

APPROXIMATE ARCHETYPAL ANALYSIS 9

where Σemd and Uemd are computed in step 4. Thus, the total cost for X̃p is the computational complexity
for the first four steps in Algorithm 2.

Theorem 3.5. Let X̃ be the SVD representation of X̃p in Algorithm 2 as in (3.11). Then, the
computational complexity for X̃ is O(dNps + dp2s2 + Nps min{N, ps}).

Proof. Step 1 in Algorithm 2 generates a random Gaussian matrix which takes time O(Np). Step 2
computes the Krylov subspace basis which takes time O(dNps). The QR decomposition of K in step 3
takes time O(dp2s2). In step 4, we first compute Xemd, which takes time O(dNps), then compute the
SVD of Xemd, which takes time O(Nps·min{N, ps}). Computing X̃ = Σemd[1 : p, 1 : p](Uemd[:, 1 : p])T

takes time O(Np). #

Remark 3.3. When ps + min{d, N}, the computational complexity of X̃ becomes O(dNps), which is
significantly smaller than O(dN min{d, N}).

Setting ε = 1 in Lemma 3.1 and combining Theorem 3.4, we have the following result:

Theorem 3.6. Let X̃ be the SVD representation of X̃p returned by Algorithm 2. Let (Ã, B̃) be a solution
to the AA for X̃

min
A∈RN×k

cs ,B∈Rk×N
cs

1√
N

‖X̃ − X̃AB‖F . (3.12)

For δ > 0, if p satisfies (3.10) and s > C log(N/δ) for some absolute constant C > 0, then with
probability at least 1 − δ,

1√
N

‖X − XÃB̃‖F ≤ opt(X) + 8σp+1(X).

Remark 3.4. Fixing δ small, say δ = 0.01, s = O(log N). The computational complexity of X̃
is O(dNp log N + dp2 log2 N + Np log N min{N, p log N}). Consequently, for data X that can be well
approximated via low-rank matrices with approximation rank p + N, using Algorithm 2 can effectively
reduce the dimension of AA.

4. Representation cardinality reduction

We now consider the situation where the dataset has a large cardinality. In this case, to reduce
computational complexity, we propose to use a parsimonious subset of points in X to approximately
represent conv(X), i.e. we wish to find a small subset T ⊂ [N] such that

conv(XT) ≈ conv(X), (4.1)

where XT := X[:, T] and ≈ will be made rigorous later. We will refer to conv(XT) as an approximate
convex hull of X.

The idea of using subsets of X (i.e. extreme points) to represent conv(X) has been considered in
[27, 40], where exact equality in (4.1) is expected. Here, we only ask for approximate representation of
conv(X) (allowing for a small approximation error), so that it is possible to further reduce the cardinality
of the representation set for the archetypes (Fig. 1).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

10 R. HAN ET AL.

Figure 1. An example of the convex hull (red solid curves) and an approximate convex hull (blue dashed curve) of a randomly
generated dataset.

Similar to the discussion in the previous section, we first give a few consequences assuming XT
exists.

Definition 4.1. We say that XT is an ε-approximate convex hull of X if

dH(conv(XT), conv(X)) ≤ ε, (4.2)

where dH(X, Y) := max
{

supx∈X d(x, Y), supy∈Y d(X, y)
}

is the Hausdorff distance.

Theorem 4.2. For ε > 0 and T ⊆ [N], suppose XT is a (opt(X) · ε)-approximate convex hull of X.
Consider the following AA optimization problem constrained to conv(XT):

min
A∈R|T|×k

cs ,B∈Rk×N
cs

1√
N

‖X − XTAB‖F . (4.3)

Then, the archetype points given by the solution of (4.3) provide a (1+ε)-approximation to the solution
for (1.1) in terms of prediction errors

min
A∈R|T|×k

cs ,B∈Rk×N
cs

1√
N

‖X − XTAB‖F ≤ (1 + ε)opt(X).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

APPROXIMATE ARCHETYPAL ANALYSIS 11

Proof. For an optimal solution (A!, B!) of (1.1) that resides on the boundary of conv(X) (such a solution
always exists [10]), consider the projection of each column of XA! to conv(XT), and denote the projected
points as Z. Note that Z is well-defined as conv(XT) ⊂ conv(X). By the triangle inequality, the distance
between each column of X and conv(Z) is bounded by the sum of the distance between the column of
X and conv(XA!) and dH(XA!, Z). Since XT gives an (opt(X) · ε)-approximate convex hull of X,

dH(XA!, Z) ≤ dH(conv(X), conv(XT)) ≤ ε · opt(X) = ε√
N

‖X − XA!B!‖F . (4.4)

t follows from direct computation that

min
A∈R|T|×k

cs ,B∈Rk×N
cs

1
N

‖X − XTAB‖2
F ≤ min

B∈Rk×N
cs

1
N

‖X − ZB‖2
F

= 1
N

∑

i∈[N]

d(xi, conv(Z))2

≤ 1
N

∑

i∈[N]

(d(xi, conv(XA!)) + dH(XA!, Z))2

≤ (1 + ε)2 · 1
N

‖X − XA!B!‖2
F ,

where the last inequality follows from (4.4) and Cauchy–Schwarz inequality. Taking the square root on
both sides completes the proof. #

Theorem 4.2 establishes an approximate equivalence between the solutions of (4.3) and (1.1) in
terms of objective values. Compared with (1.1), the dimension of A is significantly reduced provided
|T| + N, while the dimension of B stays unchanged.

To see the computational gain brought by working with (4.3), recall the alternating minimization
in Section 2. When B is fixed and A is updated, one needs to solve k quadratic programming problems
with variable dimensions equal to the number of rows of A. For certain optimization methods such as the
ellipsoid method, the complexity of quadratic programming problems with positive-definite quadratic
matrix has weakly polynomial time (of the variable dimension) [24]. Thus, when |T| + N, a notable
acceleration is expected for the subroutine of updating A, which justifies the significance of using a
parsimonious subset of points to represent the archetypes.

On the other hand, when A is fixed and B is updated, one needs to compute the projection of
each column of X to conv(XA). This step is the same in both (1.1) and (4.3) and consists of N-
independent quadratic programming problems with variable dimension k. In this case, it is possible
to take an additional step of acceleration via parallelization combined with the coreset approximation
[28], which reduces the computation of N projection coefficient vectors to a small subset of points
in X with appropriate weights, similar to the ideas of quadrature. Indeed, given a coreset XC ⊂ X
and appropriate weight diagonal matrix W, one can approximate the objective function in (1.1) with
‖WXC − WXAB‖F/

√
N. Note the complexity of the subproblem for updating B in the alternating

minimization algorithm is proportional to the number of points in the objective function. Therefore,
when |XC| + |X|, the step of solving the B-subproblem can be significantly accelerated. Combining
the idea of coreset with (4.4) yields an approximate objective function ‖WXC −WXTAB‖F/

√
N, which

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

12 R. HAN ET AL.

has significantly reduced complexity when solved by the alternating minimization algorithm. The details
are not discussed here.

We next discuss how to find a ‘small’ subset T such that (4.2) is satisfied. Note that to represent
conv(X), it suffices to consider the extreme points of X. In other words, we will find a subset XT ⊂
ex(X) whose convex hull can well approximate conv(X). As will be seen below, this procedure can
be effectively implemented by taking random projections. Indeed, random projections are linear maps
whose inverse image of the extreme points of a convex set are a subset of the extreme points of the
inverse image of that convex set [25]. Similar ideas have been used in the empirical study of AA to seek
extreme points [11, 40].

Finding all the extreme points of conv(X) may itself be computationally demanding unless ex(X) is
small. When conv(X) can be well approximately using a few extreme points, it is desired to single them
out to further shrink the complexity of the problem at a ‘small’ sacrifice of accuracy. To this end, we
need to know which extreme points are more important than the others in terms of composing conv(X).
The following result, which originally appeared in [17], is precisely what is needed here.

Observe that under a random projection v ∈ Sd−1, the points in X have projected values {〈xi, v〉}i∈[N],
which with probability one have a unique maximum. The inverse image of the maximum is an element
in ex(X). Thus, throwing away a null set, we can partition the unit sphere Sd−1 as follows:

Sd−1 =
⊔

x∈ex(X)

Vx Vx = {v ∈ Sd−1 : vTx > vTxi, i ∈ [N]}.

For x ∈ ex(X), its curvature is defined as

κ(x) = |Vx|
|Sd−1| ,

which is the relative area of the directions that distinguish x as the maximum to the unit sphere in Rd.
By definition, points with larger curvature are more likely to be sampled if v is uniformly drawn from
Sd−1; in fact, they are also more ‘important’ as specified by the following lemma ([17], Theorem 3.4):

Lemma 4.1. Let d ≥ 2 and S ⊂ [N]. Suppose that both conv(XS) and conv(X) are non-degenerate (i.e.
with nonempty interior), and R := maxi∈[N] ‖xi‖2. Then,

dH(conv(X), conv(XS)) ≤ min
{√

2π(2ω)
1

d−1 , 2
}

· R ω =
∑

i∈[N]\S

κ(xi). (4.5)

As a result, to compute a sparse approximate convex hull, it suffices to use high-curvature points
to approximately represent conv(X). To find high-curvature points, we apply a Monte-Carlo (MC)
procedure to estimate the curvature of each point and then truncate at some thresholding parameter.
The details are given in Algorithm 3.

A similar MC method based on a different truncation rule has been proposed [17, Algorithm
1), where points are removed whenever their estimated curvatures are below some fixed threshold.
To ensure that the remaining points have large cumulative curvature, this algorithm requires the
thresholding parameter to be overly small, leaving most points unremoved. To facilitate parsimony,
Algorithm 3 first sorts points based on their estimated curvatures, then truncates based on the estimated
cumulative curvatures.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

APPROXIMATE ARCHETYPAL ANALYSIS 13

The computational complexity of Algorithm 3 can be obtained from direct computation.

Theorem 4.3. The computational complexity for Algorithm 3 is O(MNd + N log N).

Proof. The MC procedure in Algorithm 3 (step 2–6) involves M repetitions of computing N d-
dimensional vector inner product and finding the (index of the) maximum of the projected points, which
takes time O(MNd) in total. Step 7 is a simple sorting that has complexity O(N log N) using Merge
sort [23]. #

We will show that for large M, with high probability, the output of Algorithm 3 satisfies (4.2) with
ε = min

{√
2πη

1
d−1 , 2

}
·R. Without loss of generality, in the following discussion, we assume |ex(X)| =

h and

κ(x1) ≥ κ(x2) ≥ · · · ≥ κ(xh) > κ(xh+1) = · · · = κ(xN) = 0. (4.6)

We have the following theorem:

Theorem 4.4. Let T be the subset returned by Algorithm 3, and R = maxi∈[N] ‖xi‖2. Suppose
conv(XD) is non-degenerate for every D ⊂ [N] with |D| > d. Denote q as the smallest integer such
that

∑
i∈[q] κ(xi) ≥ 1 − η/18, i.e.

q := min




j :
∑

i∈[q]

κ(xi) ≥ 1 − η

18




 , (4.7)

and the truncation gap

∆ := κ(xq) − κ(xq+1) > 0.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

14 R. HAN ET AL.

If

M ≥ max
{

324q2

η2 ,
4

∆2

}
log

(
3N√

δ

)
, (4.8)

then with probability at least 1 − δ, |T| ≤ max{q, d + 1} and

dH(conv(XT), conv(X)) ≤ min
{√

2πη
1

d−1 , 2
}

· R. (4.9)

Remark 4.1. Setting the upper bound in (4.9) equal to opt(X)ε yields

M ≥ max

{

324q2
(

2π2R2

opt(X)2ε2

)d−1

,
4

∆2

}

log
(

3N√
δ

)
,

which has an unpleasant but expected exponential dependence on d (curse of dimensionality). For
datasets with low-dimensional structure, i.e. well approximated via rank-p matrices with p + d, it
is possible to use ideas in Section 3 to improve the exponential dimension dependence to p (Algorithm
4).

Proof of Theorem 4.4 Note that step 9 in Algorithm 3 ensures that conv(XT) is non-degenerate.
Therefore, to show (4.9), by (4.5), it suffices to show

∑
i∈[N]\T κ(xi) ≤ η/2, or equivalently,∑

i∈T κ(xi) ≥ 1 − η/2.
We first show that for M satisfying (4.8), with high probability, the estimated curvatures ej/M are

close to their expectations for all reasonably large ej. Note for every j ∈ [q], ej is a sum of M-independent
Bernoulli random variables with parameter κ(xj), and the tail sum

∑
j>q ej is a sum of M-independent

Bernoulli random variables with parameter
∑

j>q κ(xj) < η/18. Thus, by Hoeffding’s inequality [20],

P
[∣∣∣∣

1
M

ej − κ(xj)

∣∣∣∣ ≤ η

18q

]
≥ 1 − 2 exp

(
− Mη2

162q2

)

P





∣∣∣∣∣∣
1
M

∑

j>q

ej −
∑

j>q

κ(xj)

∣∣∣∣∣∣
≤ η

18q



 ≥ 1 − 2 exp
(

− Mη2

162q2

)
.

Taking a union bound over j ∈ [q] and combining the two inequalities yields

P








max
j∈[q]

∣∣∣∣
1
M

ej − κ(xj)

∣∣∣∣ ,

∣∣∣∣∣∣
1
M

∑

j>q

ej −
∑

j>q

κ(xj)

∣∣∣∣∣∣




 ≤ η

18q





≥ 1 − 2(q + 1) exp
(

− Mη2

162q2

)
≥ 1 − 4q exp

(
− Mη2

162q2

)
. (4.10)

The right-hand side in (4.10) can be further lower bounded by 1 − δ/2 if M satisfies (4.8).
We next show that for large M, with high probability, the largest q terms of ej, i.e. e(1), · · · , e(q),

coincide with {xj}j∈[q]. Particularly, denoting the index of e(j) as #j, we will show [q] = {#1, · · · , #q}.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

APPROXIMATE ARCHETYPAL ANALYSIS 15

Note that [q] = {#1, · · · , #q} if and only if the following probabilistic event occurs:

Cq :=
{

min
i≤q

ei > max
j>q

ej

}
.

Since for every i ≤ q and j > q, ei − ej is a sum of M i.i.d. random variables Z, where Z = 1
with probability κ(xi), Z = −1 with probability κ(xj) and Z = 0 otherwise. Thus, we can bound the
probability of Cq from below with another application of Hoeffding’s inequality

P
[
Cq

]
= 1 − P

[
C!

q

]
≥ 1 −

∑

i≤q,j>q

P
[
ei − ej < 0

]

≥ 1 −
∑

i≤q,j>q

P
[
ei − ej − E[ei − ej] < −M∆

]

≥ 1 − h2

4
exp

(
−M∆2

2

)

≥ 1 − N2

4
exp

(
−M∆2

2

)
,

which is lower bounded by δ/2 if M satisfies (4.8). Taking a union bound, for M satisfying (4.8),
both the event in (4.10) and Cq occur with probability at least 1 − δ.

To finish the proof, it suffices to show that conditional on both events, (i)
∑

i∈T κ(xi) ≥ 1 − η/2
and (ii) |T| ≤ max{q, d + 1}. Let T− = T \ {#L}. Conditional on the event in (4.10), it follows from the
stopping rule in Algorithm 3 that

∑

j∈T

κ(xj)
(4.10)
≥

∑

j∈T∩[q]

(
1
M

ej − η

18q

)
+

∑

j∈T∩[N]\[q]

κ(xj)

≥
∑

j∈T∩[q]

(
1
M

ej − η

18q

)
+

∑

j∈[N]\[q]

κ(xj) −
∑

j∈[N]\[q]

κ(xj)

(4.10),(4.7)
≥

∑

j∈T∩[q]

(
1
M

ej − η

18q

)
+

∑

j∈[N]\[q]

1
M

ej − η

18q
− η

18

≥
∑

j∈T∩[q]

(
1
M

ej − η

18q

)
+

∑

j∈T∩[N]\[q]

1
M

ej − η

18q
− η

18

≥ 1 − η

3
− η

18
− η

18q
− η

18
> 1 − η

2
,

which shows that (i) holds true.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

16 R. HAN ET AL.

To show (ii), it suffices to consider the case where min
{
: 1

M

∑
j∈[#] e(j) > 1 − η/3

}
> d+1, since

otherwise L = d + 1 ≤ max{q, d + 1}. In this case, the stopping rule in Algorithm 3 tells us

∑

j∈T−

κ(xj)
(4.10)
≤

∑

j∈T−∩[q]

(
1
M

ej + η

18q

)
+

∑

j∈T−∩[N]\[q]

κ(xj)

(4.7)
≤

∑

j∈T−∩[q]

(
1
M

ej + η

18q

)
+ η

18

≤
∑

j∈T−

1
M

ej + η

18
+ η

18
(4.7)
<

∑

j∈[q]

κ(xj). (4.11)

Further conditioning on Cq, we have T− ⊂ [q] or [q] ⊂ T−. But the latter cannot happen owing to
(4.11). This implies |T| = |T−| + 1 ≤ q = max{q, d + 1}, establishing (ii). #

5. An approximate AA algorithm

Putting results in Section 3 and 4 together, we have the following approximate algorithm for archetypal
analysis (AAA):

Under appropriate assumptions on the input parameters, we have the following guarantee for the
solutions computed by Algorithm 4.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

APPROXIMATE ARCHETYPAL ANALYSIS 17

Theorem 5.1. Under the same assumptions in Theorem 4.4 and p " log(1/δ), if

s ≥ C log
(

N
δ

)
η =

(
opt(X)ε√

2π maxi∈[N] ‖xi‖2

)p−1

(5.1)

M ≥ max
{

324q2

η2 ,
4

∆2

}
log

(
3N√

δ

)
, (5.2)

where C is the same constant as in Theorem 3.6, opt(X) is the optimum value of (1.1), q, ∆ are the
same as defined in Theorem 4.4, then with probability at least 1 − 2δ, |T| ≤ max{q, p + 1}, and the
approximate archetypes XÃ! as well as the coefficient matrix B̃! returned by Algorithm 4 satisfy

1√
N

‖X − XÃ!B̃!‖F ≤ (1 + ε)
(

opt(X) + 8σp+1(X)
)

.

Remark 5.1. According to Theorems 3.5 and 4.3, the computational complexity of data dimensionality
reduction (step 1–5) and representation cardinality reduction (step 6) is O(dNp log N + dp2 log2 N +
Np log N min{N, p log N}) and O(MNp + N log N) = O

(
(q2ε−2(p−1) + ∆−2 + N) log N

)
, respectively.

With probability at least 1 − 2δ, step 6 solves the reduced problem which has data dimension p and
representation cardinality |T| ≤ max{p + 1, q}. Thus, the overall complexity for Algorithm 4 is small if
both p and q are small and ∆ is away from 0. This corresponds to the scenario where X is approximately
low-rank and has most of the curvature concentrated on a small subset.

Proof of Theorem 5.1 Let (A!, B!) and (Ã, B̃) be solutions to (1.1) and

min
A∈RN×k

cs ,B∈Rk×N
cs

1√
N

‖X̃ − X̃AB‖F , (5.3)

respectively. Under the assumptions on η and M, Theorems 4.2 and 4.4 together imply that with
probability at least 1 − δ, |T| ≤ max{p + 1, q} and

‖X̃ − X̃Ã!B̃!‖F ≤ (1 + ε)‖X̃ − X̃ÃB̃‖F ≤ (1 + ε)‖X̃ − X̃A!B!‖F . (5.4)

Let X̃p = ŨpX̃ and X̃p = X − X̃p, where Ũp is the left singular vector matrix of the low-rank
approximation given by Algorithm 2. For s satisfying (5.1), it follows from Lemma 3.1 that with
probability at least 1 − δ,

‖X̃−p‖2 = ‖X − X̃p‖2 ≤ 2‖X − Xp‖2 = 2σp+1(X), (5.5)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

18 R. HAN ET AL.

where Xp is the best rank-p approximation for X. Thus, both (5.4) and (5.5) hold with probability 1−2δ.
Conditioning on (5.4) and (5.5), the rest of the proof is similar to the computation in (3.4)

‖X − XÃ!B̃!‖F ≤ ‖X̃p − X̃pÃ!B̃!‖F + ‖X̃−p − X̃−pÃ!B̃!‖F

= ‖X̃ − X̃Ã!B̃!‖F + ‖X̃−p − X̃−pÃ!B̃!‖F

(5.4)
≤ (1 + ε)‖X̃ − X̃A!B!‖F + ‖X̃−p − X̃−pÃ!B̃!‖F

= (1 + ε)‖X̃p − X̃pA!B!‖F + ‖X̃−p − X̃−pÃ!B̃!‖F

≤ (1 + ε)‖X − XA!B!‖F + (1 + ε)‖X̃−p − X̃−pA!B!‖F + ‖X̃−p − X̃−pÃ!B̃!‖F

(3.5)
≤ (1 + ε)

(
‖X − XA!B!‖F + 2‖X̃−p‖F + 2

√
N‖X̃−p‖2

)

≤ (1 + ε)
(
‖X − XA!B!‖F + 4

√
N‖X̃−p‖2

)

(5.5)
≤ (1 + ε)

(
‖X − XA!B!‖F + 8σp+1(X)

√
N

)
.

Dividing both sides by
√

N yields the desired result. #

6. Numerical experiments

In this section, we apply the proposed algorithm (Algorithm 4) to compute the archetypes for three real
datasets, including a time series dataset and two image datasets. When implementing the alternating
minimization algorithm for solving AA, we use the k-means to find an initial guess for the archetypes;
the subproblems are solved using the existing package ‘quadprog’ [42] in R [35]. The algorithm stops
if the relative objective decrease falls below 1e-3. We will compare the computation time and accuracy
of the following algorithms:

• SVD-AA: Alternating minimization applied to the reduced singular value representation of X as in
(3.1), where truncation keeps 99.99% of the variance of the data. SVD is implemented using the
built-in function ‘svd’ in R.

• AAA: Approximate archetypal analysis (Algorithm 4), with s = 1log N2.

• archetypes: A function for AA in the package archetypes in R [15, 16], whose implementation
is different from Algorithm 1.

To ensure comparability of the results, we do not include other accelerated algorithms such as the active-
subset solver [6] and the coreset approximation [28], which have a different focus as opposed to our
methods. All reported results in this section were obtained on a Macbook Air with an M1 processor and
8GB of RAM.

6.1 S&P 500 cumulative log-returns

The Standard and Poor’s 500 (S&P 500) is a stock market index consisting of 500 large companies
listed on stock exchanges in the USA. It is one of the most commonly used equity indices to evaluate

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

APPROXIMATE ARCHETYPAL ANALYSIS 19

Figure 2. The CLR of 385 S&P 500 stocks from December 2011 to December 2021 (left). Variances of X explained by the k
archetypes identified by AA as a function of k for k = 2, · · · , 8 (right).

the financial market as well as the economy. The companies that are selected for the S&P 500 index
are changing with time. In this example, we consider a dataset comprised of 385 companies that are
in the S&P 500 index by January 2022, with close prices recorded from December 2011 to December
2021. We compute for each column in X a 2515-dimensional time series representing the cumulative
log-return (CLR) of a company over 10 years. The CLR is calculated on a daily basis using the adjusted
prices of stocks. Visualization of the dataset is given in the first plot in Fig. 2. In the rest of the section,
we assume that the CLR of each company in the S&P 500 index can be decomposed with respect to a
few distinct growth patterns that can be identified via AA.

To apply AA, we need to first determine the number of archetypes k. Like other unsupervised
learning methods, there is no principled rule to find the correct number of k for real-life datasets. A
more practical solution is to follow the heuristic ‘elbow rule’ [39] to choose k approximately. In this
case, we apply SVD-AA to find such a k. In particular, we plot the variance of the dataset explained by
the archetypes given by SVD-AA as a function of k (see Fig. 2) and choose k to be the point where the
curve starts to plateau, which is around k = 3.

Setting k = 3, we apply SVD-AA, AAA and archetypes to compute the archetypes for X. The
parameters p, M and η in AAA are set as 20, 10 000 and 0.003 (so that η/3 = 0.001), respectively. Each
experiment is repeated 100 times, with the learned archetypes (in the first 10 experiments), the running
times (elapsed time computed using the ‘system.time()’ function in R) and residuals reported in
Figs 3 and 4, respectively.

It can be seen from Fig. 4 that SVD-AA, as expected, gives the best-computed archetypes in terms of
the residual on average; however, its computation time is significantly longer than the other two methods.
The built-in function archetypes has the worst performance, and its computation time is between the
other two methods. The AAA, which first reduces the dimension of the dataset before applying the
alternating minimization, achieves competitive results with SVD-AA but takes much less time (more
than 30 times faster than SVD-AA). This may be because X is essentially low-dimensional and admits a
parsimonious approximation for its convex hull. A numerical justification for this argument can be seen
from the spectral decay of the sample covariance matrix of X as well as the scatterplot of the reduced
representation of X with respect to the first two principal components (PCs), as illustrated in Fig. 5.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

20 R. HAN ET AL.

Figure 3. Instances of the computed archetypes by SVD-AA, AAA and archetypes in the first 10 experiments.

Figure 4. Boxplots of the running times (left) and residuals (right) of SVD-AA, AAA and archetypes in 100 experiments.

To implement AAA, it is necessary to choose the input parameters in advance. The optimal choice
for the parameters is problem-dependent and often there is no universal tuning strategy for it. The Krylov
subspace parameter s is set as 1log N2 deterministically. We investigate the accuracy/running time
dependence on p, M and η. In particular, we will use the same parameters as in the previous simulation.
Whenever we test the dependence on one parameter, the other two are set fixed. We will test p, M and
η at three different values, respectively, i.e. p = 10, 20, 30, M = 103, 104, 105 and η = 0.3, 0.03, 0.003.
The results are given in Fig. 6.

Figure 6 shows that for the S&P 500 dataset, the accuracy of AAA has a strong dependence on η,
which measures the missing proportion of curvature in the approximate convex hull construction. The
number of random projections M mostly influences the running time while having only a mild impact
on the accuracy when p = 20. The approximation rank p, as long as set reasonably large, is sufficient to
give a good approximation result.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

APPROXIMATE ARCHETYPAL ANALYSIS 21

Figure 5. Variances explained by the first five principal components of X (left). Scatterplot of the reduced representation of X
with respect to the first two principal components (which account for 97% of the variation of the dataset) and its convex hull. The
red triangles are the reduced representation of the three archetypes (right).

In this example, we compare the three archetypes with the same number of centers identified by the
k-means; see the first plot in Fig. 7. It can be seen that the archetypal curves are visually more illustrative
than the centers of the k-means, which share a similar growth pattern with differing slopes. Indeed, the
percentage of variance explained by AA is around 90%; the same number for the k-means and PCA are
64% and 98%, respectively. Visualization of the convex coefficients for each data point with respect to
the three archetypes is given in the ternary plot in Fig. 7. In this case, most of the data fall in the interior
of the simplex, suggesting that the S&P dataset can be well summarized using a polytopic structure.

To further understand the meanings of the three archetypes, for each archetype, we single out the
tickers of the top five companies having the largest component in the following direction

• A1: NFLX: (1, 0, 0), STZ.B: (0.9, 0.1, 0), ILMN: (0.89, 0.03, 0.08), REGN: (0.84, 0.16, 0), FLT:
(0.83, 0.17, 0);

• A2: AMD: (0, 1, 0), FTNT: (0, 0.89, 0.11), ISRG: (0.02, 0.83, 0.15), LRCX: (0.17, 0.83, 0), CPRT:
(0.18, 0.81, 0);

• A3: MRO: (0, 0, 1), DVN: (0, 0, 1), OXY: (0, 0, 1), APA: (0, 0, 1), MOS: (0, 0.03, 0.97).

All the five companies in A3 are in the energy industry (oil, mining, etc.), representing the traditional
aspect of the financial market. Companies in A1 and A2 leave more room for interpretation. In particular,
for A1, NFLX is an entertainment company, STZ.B is a food company (beer and wine), ILMN is a
biotechnology company, REGN is a pharmaceutical company and FLT is a financial service company;
for A2, both AMD and LRCX are in the semiconductor industry, FTNT is a cybersecurity company,
ISRG is a surgical equipment design company and CPRT is a company that provides online vehicle auc-
tion and remarketing services. According to the quant ratings on https://seekingalpha.com/
between 2021 and 2022, all these companies have high profitability; each of these companies has
consecutively ranked above A- and many have been A+ in the three latest reports (the factor grade
ranges from A+ to F). This feature is also manifested in the upward trend in the archetypal curves
associated with A1 and A2. Moreover, they are more resilient than the traditional industries when

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

22 R. HAN ET AL.

Figure 6. Accuracy/running time dependence of AAA algorithm for the S&P 500 dataset with base parameters p = 20, M = 104

and η = 0.003.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

APPROXIMATE ARCHETYPAL ANALYSIS 23

Figure 7. Comparison of the three centers (C1, C2, C3) given by the k-means and the three archetypes (A1, A2, A3) given by the
SVD-AA for the S&P 500 dataset (left). Visualization of the convex combination coefficients of each data point with respect to
the three archetypes (right).

Figure 8. Six images in the dataset with largest component in each archetypal direction identified by AAA (top) compared with
the six images in the dataset closest to the centers of the k-means (bottom).

unexpected events occur (e.g. Covid-19 pandemic in early 2020), as can be seen from the ‘V’ shape
of these curves near Day 2000 in the first plot in Fig. 7. The difference between A1 and A2 is more
difficult to corroborate using recent financial data. From a macroscopic perspective, A1 represents the
more established highly profitable industries in the market; they maintain a steady pace of CLR growth
over time. A2 represents the emerging industries that, while not as profitable as A1, possess relatively
more growth potential. This conclusion can be numerically inspected by comparing the slope of the A1
and A2 curves in Fig. 7.

6.2 Intel image

The Intel Image dataset [21] has been used for multi-class classification in machine learning, and
consists of 24 000 images representing 6 different categories of the scene: ‘Buildings’, ‘Forest’,
‘Glacier’, ‘Mountain’, ‘Sea’ and ‘Street’. Each image is a 150 × 150 pixel color image, which
corresponds to a 67 500-dimensional vector through vectorization and stacking of the pixel matrices
(d = 67 500). We randomly select 3000 samples in the training dataset (N = 3000) and apply AAA

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

24 R. HAN ET AL.

Figure 9. Typical patterns (left) and archetypes (right) idenfied by the k-means and AAA in each label class in the MNIST training
dataset.

to extract representative patterns. Note we could have used the full dataset; however, this would require
using a more efficient optimization solver for the subproblems to ensure the computation is done in a
reasonable time. Since there are 6 different categories of images, we set k = 6. The input parameters
for AAA are chosen as p = 30, M = 104 and η = 0.03. We compare the computed archetypes given by
AAA with the clustering centers given by the k-means in Fig. 8.

In this experiment, the instance running time is 527.356s (107.147s for data dimensionality
reduction, 1.627s for representation cardinality reduction and 418.582s for solving the reduced problem
using Algorithm 1) for AAA, and 151.787s for the k-means. The running times are random due to the
random nature of the algorithms. In this case, the cardinality of the extreme points used to build up the
approximate convex hull is 738. The 6 archetypes account for about 41.2% of the variance of the dataset,
as opposed to 28.3% explained by the k-means. The other two methods, SVD-AA and archetypes, cannot
be implemented within a reasonable time.

For each archetype, we find the image that has the largest component with respect to it in the dataset.
We also identify the images closest to the k-means centers. The results are reported in Fig. 8. According
to the label information, the images on the top and bottom panels in Fig. 8 (from left to right) correspond
to ‘Forest’, ‘Buildings’, ‘Glacier’, ‘Glacier’, ‘Street’, ‘Sea’ and ‘Mountain’, ‘Mountain’, ‘Mountain’,
‘Sea’, ‘Glacier’ and ‘Forest’, respectively. Despite an approximate algorithm, AAA produces more
diversified results than the k-means in terms of image content. The only repetition occurs in the third
and fourth pictures, where both the snow mountains are classified as ‘Glacier’.

6.3 MNIST dataset

The MNIST database [26] is a large database of handwritten digits that is commonly used for both
classification and clustering tasks. Each data point in MNIST is a 28 × 28 gray-scale image (i.e. a

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

APPROXIMATE ARCHETYPAL ANALYSIS 25

784-dimensional vector) representing handwritten digits from 0 to 9. The total size of the training dataset
is 42 000.

In this experiment, we use both the k-means and AA to analyze the data structure in each label
class separately. We first split the training data into 10 different datasets corresponding to labeled digits
0, · · · , 9, respectively, each having a size of around 4000. We apply both the k-means and AAA to the
split datasets to identify the typical patterns and the archetypes, respectively. After running the ‘elbow
inspection’ for the k-means at different labels, we found k = 5 to be a reasonable choice on average. To
be consistent, we also use k = 5 for AAA. Moreover, the other parameters in AAA are set as p = 10,
M = 104 and η = 0.03. As before, in each label class, we find the images in the corresponding datasets
that are closest to the k-means centers as well as have the largest convex combination coefficients with
respect to the archetypes. The results are reported in Fig. 9.

In general, the k-means centers are the images that are representative of each label class. They are
more standard and usually can be distinguished by raws eyes. The approximate archetypes found by
AAA are more extreme in terms of size, shape, position, etc.

Data availability statement

The data underlying this article are available on the referenced online sources and in the supplementary
material.

Acknowledgements

We would like to thank the anonymous referees for their very helpful comments which significantly
improved the presentation of the paper. We would like to thank Yu Zhu for providing us with the S&P
500 dataset and helping clarify some related questions. We also thank Akil Narayan for reading through
an early version of the draft and for providing several constructive comments. Y. Xu would like to
thank the organizers of the MSRI Summer Graduate School on Mathematics of Big Data: Sketching
and (Multi-) Linear Algebra for motivating discussions.

Funding

Hong Kong Research Grants Council (14301821 to R.H.); Direct Grants for Research, The Chinese
University of Hong Kong; National Science Foundation (DMS-1752202 to B.O.); National Natural
Science Foundation of China (12101524 to D.W.); University Development Fund from The Chinese
University of Hong Kong, Shenzhen (UDF01001803 to D.W.); National Science Foundation (DMS-
1848508 to Y.X.).

Reference

1. Abrol, V. & Sharma, P. (2020) A geometric approach to archetypal analysis via sparse projections. in
International Conference on Machine Learning, pp. 42–51. PMLR.

2. Avron, H., Maymounkov, P. & Toledo, S. (2010) Blendenpik: supercharging LAPACK’s least-squares
solver. SIAM J. Sci. Comput., 32, 1217–1236.

3. Battaglino, C., Ballard, G. & Kolda, T. G. (2018) A practical randomized CP tensor decomposition.
SIAM J. Matrix Anal. Appl., 39, 876–901.

4. Bauckhage, C., Kersting, K., Hoppe, F. & Thurau, C. (2015) Archetypal analysis as an autoencoder.
Workshop New Challenges in Neural Computation. Citeseer, p. 8.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

26 R. HAN ET AL.

5. Boutsidis, C., Zouzias, A. & Drineas, P. (2010) Random projections for k-means clustering. Advances in
Neural Information Processing Systems, 23, 298–306.

6. Chen, Y., Mairal, J. & Harchaoui, Z. (2014) Fast and robust archetypal analysis for representation
learning. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1478–
1485.

7. Clarkson, K. L. & Woodruff, D. P. (2017) Low-rank approximation and regression in input sparsity time.
J. ACM, 63, 1–45.

8. Cohen, M. B., Elder, S., Musco, C., Musco, C. & Persu, M. (2015) Dimensionality reduction for k-
means clustering and low rank approximation. in Proceedings of the forty-seventh annual ACM symposium
on Theory of computing, pp. 163–172.

9. Cohen, M. B., Musco, C. & Musco, C. (2017) Input sparsity time low-rank approximation via ridge leverage
score sampling. in Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1758–1777. SIAM.

10. Cutler, A. & Breiman, L. (1994) Archetypal analysis. Dent. Tech., 36, 338–347.
11. Damle, A. & Sun, Y. (2017) A geometric approach to archetypal analysis and nonnegative matrix

factorization. Dent. Tech., 59, 361–370.
12. Drineas, P., Mahoney, M. W., Muthukrishnan, S. & Sarlós, T. (2011) Faster least squares approxima-

tion. Numer. Math., 117, 219–249.
13. Eckart, C. & Young, G. (1936) The approximation of one matrix by another of lower rank. Psychometrika,

1, 211–218.
14. Erichson, N. B., Mendible, A., Wihlborn, S. & Kutz, J. N. (2018) Randomized nonnegative matrix

factorization. Pattern Recognition Letters, 104, 1–7.
15. Eugster, M. J. A. & Leisch, F. (2009) From spider-man to hero – archetypal Analsis in R. J. Stat. Softw.,

30, 1–23.
16. Eugster, M. J. A. & Leisch, F. (2011) Weighted and robust archetypal analysis. Comput. Statist. Data Anal.,

55, 1215–1225.
17. Graham, R. & Oberman, A. M. (2017) Approximate convex hulls: sketching the convex hull using curvature.

arXiv preprint arXiv:1703.01350.
18. Halko, N., Martinsson, P.-G. & Tropp, J. A. (2011) Finding structure with randomness: probabilistic

algorithms for constructing approximate matrix decompositions. SIAM Rev., 53, 217–288.
19. Hastie, T., Tibshirani, R. & Friedman, J. (2001) The Elements of Statistical Learning, Springer Series in

Statistics. New York, NY, USA: Springer New York Inc.
20. Hoeffding, W. (1963) Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc.,

58, 13–30.
21. Intel (2019) Intel Image Classification Challenge. https://www.kaggle.com/puneet6060/intel-image-

classification.
22. Javadi, H. & Montanari, A. (2020) Nonnegative matrix factorization via archetypal analysis. J. Amer.

Statist. Assoc., 115, 896–907.
23. Knuth, D. E. (1997) The art of computer programming, vol. 3. Pearson Education.
24. Kozlov, M. K., Tarasov, S. P. & Khachiyan, L. G. (1979) Polynomial solvability of convex quadratic

programming. Doklady Akademii Nauk, vol. 248. Russian Academy of Sciences, pp. 1049–1051.
25. Lax, P. D. (2002) Functional Analysis. John Wiley & Sons. Inc. Publication.
26. LeCun, Y. (1998) The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/.
27. Mair, S., Boubekki, A. & Brefeld, U. (2017) Frame-based data factorizations. in International Conference

on Machine Learning, pp. 2305–2313. PMLR.
28. Mair, S. & Brefeld, U. (2019) Coresets for archetypal analysis. Advances in Neural Information Processing

Systems, 32, 7247–7255.
29. Makarychev, K., Makarychev, Y. & Razenshteyn, I. (2019) Performance of Johnson-Lindenstrauss

transform for k-means and k-medians clustering. in Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, pp. 1027–1038.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

https://www.kaggle.com/puneet6060/intel-image-classification
https://www.kaggle.com/puneet6060/intel-image-classification
http://yann.lecun.com/exdb/mnist/

APPROXIMATE ARCHETYPAL ANALYSIS 27

30. Mei, J., Wang, C. & Zeng, W. (2018) Online dictionary learning for approximate archetypal analysis. in
Proceedings of the European Conference on Computer Vision (ECCV), pp. 486–501.

31. Mørup, M. & Hansen, L. K. (2012) Archetypal analysis for machine learning and data mining. Neurocom-
puting, 80, 54–63.

32. Musco, C. & Musco, C. (2015) Randomized block Krylov methods for stronger and faster approximate
singular value decomposition. Advances in Neural Information Processing Systems, 2015, 1396–1404.

33. Osting, B., Wang, D., Xu, Y. & Zosso, D. (2021) Consistency of archetypal analysis. SIAM J. Math. Data
Sci., 3, 1–30.

34. Qian, Y., Tan, C., Mamoulis, N. & Cheung, D. W. (2018) Dsanls: Accelerating distributed nonnegative
matrix factorization via sketching. in Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining, pp. 450–458.

35. R Core Team (2020) R: A Language and Environment for Statistical Computing. Vienna, Austria: R
Foundation for Statistical Computing.

36. Rudelson, M. & Vershynin, R. (2008) The Littlewood–Offord problem and invertibility of random
matrices. Adv. Math., 218, 600–633.

37. Sarlos, T. (2006) Improved approximation algorithms for large matrices via random projections. in 2006
47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pp. 143–152. IEEE.

38. Shoval, O., Sheftel, H., Shinar, G., Hart, Y., Ramote, O., Mayo, A., Dekel, E., Kavanagh, K. &
Alon, U. (2012) Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space. Science,
336, 1157–1160.

39. Thorndike, R. L. (1953) Psychometrika, Psychometrika, pp. 267–276.
40. Thurau, C., Kersting, K., Wahabzada, M. & Bauckhage, C. (2011) Convex non-negative matrix

factorization for massive datasets. Knowledge and information systems, 29, 457–478.
41. Tropp, J. A., Yurtsever, A., Udell, M. & Cevher, V. (2017) Practical sketching algorithms for low-rank

matrix approximation. SIAM J. Matrix Anal. Appl., 38, 1454–1485.
42. Turlach, B. A. & Weingessel, A. (2011) Quadprog: functions to solve quadratic programming problems.

R package, version 1.5–4.
43. Vershynin, R. (2018) High-dimensional probability: An introduction with applications in data science, vol.

47. Cambridge university press.
44. Wang, Y., Tung, H.-Y., Smola, A. J. & Anandkumar, A. (2015) Fast and guaranteed tensor decomposition

via sketching. Advances in neural information processing systems, 28, 2512–2520.
45. Woodruff, D. P. (2014) Sketching as a tool for numerical linear algebra. Foundations and trends$. Theoret.

Comput. Sci., 10, 1–157.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

28 R. HAN ET AL.

A. Derivation of (2.2)

The Gauss-Seidel method updates the identified archetypes (i.e. the columns of Z) one at a time. In the
i-th step, the procedure optimizes over the i-th column of Z with the rest kept fixed. It can be verified
from direct computation that for i ∈ [k],

‖X − ZB‖2
F =

∑

j∈[d]

∑

#∈[N]



X[j, #]2 − 2X[j, #]
∑

s∈[k]

Z[j, s]B[s, #] +




∑

s∈[k]

Z[j, s]B[s, #]




2




=
∑

j∈[d]

∑

#∈[N]



(Z[j, i]B[i, #])2 − 2Z[j, i]B[i, #]



X[j, #] −
∑

s3=i

Z[j, s]B[s, #]







 + ∆

= ‖B[i, :]‖2
2

∑

j∈[d]



Z[j, i] − 1

‖B[i, :]‖2
2

∑

#∈[N]

B[i, #]



X[j, #] −
∑

s3=i

Z[j, s]B[s, #]








2

+ ∆

= ‖B[i, :]‖2
2

∥∥∥∥∥Z[:, i] − Di(B[i, :])T

‖B[i, :]‖2
2

∥∥∥∥∥

2

2

+ ∆,

where Di = X − Z[:, −i]B[−i, :] and ∆ collects the terms that do not depend on Z[:, i]. Since Z[:, i] =
XA[:, i], minimizing ‖X − ZB‖2

F is equivalent to solving

min
a∈RN ,‖a‖1=1,a≥0

∥∥∥∥∥Xa − Di(B[i, :])T

‖B[i, :]‖2
2

∥∥∥∥∥

2

2

i ∈ [k]. (A.1)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac008/6576183 by guest on 24 June 2022

	 Probabilistic methods for approximate archetypal analysis
	1. Introduction
	2. An alternating minimization algorithm for archetypal analysis
	3. Data dimensionality reduction
	4. Representation cardinality reduction
	5. An approximate AA algorithm
	6. Numerical experiments

