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Abstract

We consider the variational foam model, where the goal is to minimize the total surface area

of a collection of bubbles subject to the constraint that the volume of each bubble is pre-

scribed. We apply sharp interface methods to develop an efficient computational method for

this problem. In addition to simulating time dynamics, we also report on stationary states of

this flow for 21 bubbles in two dimensions and 17 bubbles in three dimensions. For

small numbers of bubbles, we recover known analytical results, which we briefly discuss. In

two dimensions, we also recover previous numerical results, computed using other meth-

ods. Particular attention is given to locally optimal foam configurations and heterogeneous

foams, where the volumes of the bubbles are not equal. Configurational transitions are

reported for the quasi-stationary flow where the volume of one of the bubbles is varied and,

for each volume, the stationary state is computed. The results from these numerical experi-

ments are described and accompanied by many figures and videos.

Introduction

We consider the model for a d-dimensional foam (d = 2, 3) comprised of n bubbles, fOig
n
ià1,

each with a prescribed volume,HdÖOiÜ à Vi, that arrange themselves as to minimize the total
surface area,

min
H

dÖOiÜàVi

H
d�1Ö[n

ià1@OiÜ: Ö1Ü

Here we have denoted the d-dimensional Hausdorff measure byHd. Note that in (1), the
interfaces between bubbles and the interface between the bubbles, [n

ià1@Oi and the rest of

Euclidean space, 5d n [n
ià1@Oi, receive equal weight. We refer to stationary solutions of (1) as

stationary n-foams. If the areas are all equal, we say the foam is equal-area and otherwise we
say the foam is heterogeneous. The isoperimetric variational problem (1) is classical; its history
and the state of known results can be found in the recent book [1]. The two-dimensional prob-
lem is discussed in [2–4], the three-dimensional problem is discussed in [5, 6], and the higher-
dimensional n = 2 problem is discussed in [7]. We’ll further review the most relevant of these
results in the Background Section.
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In this paper, we apply sharp interface methods from computational geometry to investi-
gate (1); these methods are described in the Computational Methods Section. In particular,
we study an approximate gradient flow of (1) in dimensions d = 2, 3, which gives the time-
evolution of a foam for a given initial configuration. This corresponds to a volume-con-
strained mean curvature flow of the interfaces between bubbles. Examples of such time-
dynamics for equal-area, two- and three- dimensional foams are given for n = 12 and n = 8
respectively.

We also study stationary foams of the gradient flow. In two dimensions, we recover many
of the results from [3], where candidate solutions for the equal-area problem (1) for many
values of n were found using very different computational methods then the present work.
Stationary configurations of two-dimensional, equal-area n-foams for n = 2, . . ., 21 are
given. Particular emphasis is given to the existence of multiple stationary foams that corre-
spond to geometrically distinct configurations but have similar total surface areas. For exam-
ple, a second two-dimensional, n = 16-foam with slightly larger total perimeter is presented.
Our computational methods also extend to three dimensions; stationary foams for the equal-
area problem for n = 1, . . ., 17 are computed. As far as we know, these results are new for
n� 5.

To further study multiple stationary foams, we consider heterogeneous foams. In particular,
we study the quasi-stationary flow where the area of one of the bubbles is slowly varied and
for each area, the stationary solution is computed. We observe configurational transitions
where there are sudden changes in the stationary foams in this quasi-stationary flow. A com-
parison of two different quasi-stationary flows between an n = 6 and n = 7 equal-area foam is
presented.

Background

In this section, we review some relevant previous results in two and three dimensions.

Two dimensional results

In 1993, Foisy, Alfaro, Brock, Hodges, and Zimba proved that the equal-area 2-foam in two
dimensions is given by two intersecting discs separated by a line so that all angles are 120˚ [2].
In 2004, Wichiramala showed that the equal-area 3-foam in two dimensions is given by three
intersecting discs so that all angles are 120˚ [4]. For a two-dimensional n-foam with n� 4, the
optimal domain isn’t known analytically, but, for small values of n, candidate solutions have
been computed numerically [3].

For all n, necessary conditions for any minimizer are given by Plateau’s laws:

(i). each interface between bubbles has constant curvature and

(ii). interfaces between bubbles meet in threes at vertices with equal angles.

We give a brief and formal derivation of Plateau’s laws here; our goal is to give an accessible
discussion that we can refer to when analyzing the numerical results.

Given n bubbles,O1, . . .,On, with given areas V1, . . ., Vn, i.e.,
R
Oi
dx à Vi, our variational

problem is to find the configuration that has minimal total length of the interface î that sepa-
rates the bubbles. We assume that the bubbles are all contained in a regionO, and denote the
complement of the bubbles inO byO0 à O n [n

ià1Oi. The interface î is the union of the shared

boundaries îi,j between all neighboring domainsOi andOj as well as the outer interfaces îi0 of

the external domainsOi withO0. The total length of the boundary is JÖOiÜ à
Xn

i; jà0
i 6à j

R
Gi;j
ds.
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The variational problem can then be written

minOi
JÖOiÜ

subject to
R
Oi
dx à Vi; i à 1; . . . ; n:

(

Ö2Ü

Interfaces have constant curvature

Introducing the Lagrange multipliers ĕi, we formulate the Lagrangian for (2),

LÖOiÜ à JÖOiÜ á
Xn

ià1

li

Z

Oi

dx� Vi

✓ ◆
Ö3Ü

To see how the Lagrangian in (3) changes as we vary the domains Oi, we first recall the for-
mulas for the shape derivative of the area and perimeter with respect to changes in the domain.
Consider a domain O with piecewise smooth boundary î and let s be the distance along the
boundary. We consider the infinitesimal deformation of the domain in the direction of a veloc-
ity field V, which moves a point x on the boundary î to the point xá ďÖVÖxÜ � n̂ÖxÜÜn̂ÖxÜ,
where ď> 0 is small and n̂ is the normal vector to î. In other words, the point x on the bound-
ary of î is moving in the normal direction at speed ďc(x) where cÖxÜ à VÖxÜ � n̂ÖxÜ. The result-
ing change in the area of O, Ď|O|, and the change in the arc length of î, Ď|î|, are given by

djOj à ď
Z

G
cÖxÜ dsá oÖďÜ; and djGj à ď

Z

G
kÖsÜcÖxÜ dsá oÖďÜ;

where Ĕ(s) denotes the curvature of î.
Using these shape derivatives, and looking for critical points of the Lagrangian L in (3) due

to a variation of the boundary îi,j between Oi and Oj, we arrive at the condition
Z

Gi;j

Öli � lj á ki;jÜcÖsÜ ds à 0; 8i; j à 1; . . . ; n

where Ĕi,j is the curvature of the boundary between domains i and j and c(s) is the speed of var-
iation at the point s on an interface îi,j. Since this condition should hold for all c(s), we arrive
at the optimality condition

ki;j à li � lj à constant Ö4Ü

The optimality condition (4) implies that (i) the outer interfaces îi0 of the external domains
Oi with O0 are arcs of circles, (ii) the shared boundaries îi,j between all neighboring domains
Oi and Oj are arcs of circles, and, in particular, (iii) the interfaces between congruent bubbles
are straight lines. The value of the Lagrange multiplier, ĕi, depends on the size of the domain
Oi as well as on its position in the foam. In particular, the interface between a larger and

smaller bubble should “bend towards” the larger shape. We have that li !
0 jOij ! 1
1 jOij ! 0

(

.

Triple junctions have equal angles

Finding optimal angles between the arcs of three domains that meet at a single point requires a
separate variational argument, analogous to the Weierstrass test [8]. Assume that three bound-
ary arcs î1, î2, and î3 meet at a point z and consider a ball Bď of radius ď centered at z. We
now fix the ball Bď and the three points xi = îi \ @Bď for i = 1, 2, 3. We will minimize the
Lagrangian, L, in (3) by varying the position of z 2 Bď. The change of the areas of the domains

Dynamics and stationary configurations of heterogeneous foams

PLOS ONE | https://doi.org/10.1371/journal.pone.0215836 April 29, 2019 3 / 19

https://doi.org/10.1371/journal.pone.0215836


Oi is O(ď2) while the variation of the boundary lengths is O(ď); therefore the contribution of
the increment of areas within Bď can be neglected. Next, the variation of the interface lengths
are approximated (up to o(ď)) by the variation of distances |xi − z|. We arrive at the local prob-
lem:

min
z

jÖzÜ; where jÖzÜ à
X3

ià1

jxi � zj:

First, we observe that sum of any two angles between î1, î2 and î3 is smaller than 180˚. If
an angle is larger than 180˚, than all three circumferential points x1 and x2 and x3 lie on one
side of the ball in a half-disc. Such a configuration cannot be optimal because all three lengths
can be decreased by simply shifting the point z towards the middle point, x2. If the angles are
such that any two of them are smaller that 180˚, the optimal intersection point z is in the ball B
and may be found from the condition

rjÖzÜ à 0 )
X3

ià1

xi � z
jxi � zj à 0:

That is, the sum of the three unit vectors is zero, which implies that the angle between any
two of them is 120˚. One can also show that in a stationary foam, four or more bubbles cannot
meet at a single point.

Remark 0.1. The honeycomb structure satisfies the necessary conditions for optimality and
is the optimal configuration of equal-area bubbles as n!1 [9].

Three dimensional results

In three dimensions, less is known about optimal foam configurations. The double bubble
conjecture was proven in 2002 by M. Hutchings, F. Morgan, M. Ritore, and A. Ros [6]. The
necessary conditions for any minimizer are referred to as Plateau’s laws:

(i). interfaces between bubbles have constant mean curvature,

(ii). bubbles can meet in threes at 120˚ angles along smooth curves, called Plateau borders,
and

(iii). bubbles can meet in fours and the four corresponding Plateau borders meet pairwise at
angles of cos−1(−1/3)⇡ 109˚.

In what follows, we give a brief and formal derivation of these conditions here; a rigorous
proof was given by Taylor [5].

As in the two-dimensional case, we consider n bubbles O1, . . . On, with given volumes

V1, . . ., Vn, i.e.,
R
Oi
dx à Vi. Our goal is to find the configuration that has minimal total surface

area of the interfaces, î = [îi,j, that separate the bubbles. Again, the interfaces consists of the
shared components îi,j of two neighboring domains Oi and Oj for i, j = 1, . . ., n and the inter-
faces îi,0 of an external bubble Oi with the complement, O0. Introducing a multiplier ĕi for
each volume constraint, the Lagrangian for this variational problem is given by

LÖOiÜ à
Xn

i; j à 0
i 6à j

Z

Gi;j

dsá
Xn

ià1

li

Z

Oi

dx� Vi

✓ ◆
; Ö5Ü

where ds is an element of the interface îi,j.
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Interfaces have constant mean curvature

Taking the shape derivative of the Lagrangian in (5) and looking for critical points, an similar
argument to the one given for two dimensions yields the stationary conditions

ki;j à li � lj on Gi;j:

Here Ĕi,j is the mean curvature of the interface of îi,j (compare with (4)). This condition
states that the mean curvature of each interface, îi,j, is constant.

Remark 0.2. Minimal surfaces are a special case of the problem under study. Here, the con-
straints on volumes are not imposed; therefore the minimal surface problem corresponds to
ĕi = 0, 8i and has the well-known optimality condition: Ĕ = 0.

Three bubbles meeting along a curve

We consider three smooth boundaries @Oi, @Oj, and @Ok intersecting along a curve č, referred to
as a Plateau border. The conditions of optimality at the Plateau border č can be found from local
variations inside an infinitesimal cylinder around the curve. The variation in an infinitesimal cyl-
inder results in a change in the surface area that dominates the change in volume. Therefore, the
necessary condition is identical to the corresponding well-studied condition for the minimal sur-
face problem. At any point of the Plateau border č, the sum of the three normal vectors n̂i to the

intersecting surfaces @Oi is zero and these vectors are orthogonal to the tangent t̂ of č:

X3

ià1

n̂i à 0; n̂i � t̂ à 0; i à 1; 2; 3:

This implies that n̂i � n̂j à � 1
2
; Öi 6à jÜ and the angle between the normals is 120˚.

Four bubbles meeting at a point

Similarly, we can consider a vertex where four bubbles intersect. Again, taking variations
inside an infinitesimal ball around the vertex, we find that the sum of the four tangential vec-

tors t̂ i to the Plateau borders is zero:
P4

ià1 t̂ i à 0: This condition implies that the tangential

vectors are the directions from the center of a regular tetrahedron to its vertices. Thus, t̂ i � t̂ j à
� 1

3
; Öi 6à jÜ and the angle ϕ between any two tangent vectors is � à arccos � 1

3

� �
⇡ 109

�
.

Remark 0.3. Kelvin’s packing of truncated octahedra satisfy the necessary conditions for
optimality [10]. The Weaire–Phelan structure also satisfies the necessary conditions for opti-
mality and is the partition of three dimensional space with smallest known total surface area; it
has 0.3% smaller total surface area than Kelvin’s structure [11].

Computational methods

In this section, we discuss computational methods for the foam model problem (1). Here, the
goal is to find interfaces between adjacent bubbles such that the total interfacial area is minimal
with the constraint that the volume of each bubble is fixed. To design a numerical algorithm
for (1), the first consideration is the method to represent the interfaces between bubbles. For
contrast, we review several choices before describing the method used in the present work.

Previous results

One method, known as the front tracking method, uses a discrete set of points to represent the
interfaces [12]. Then, the energy is minimized by moving the points in the normal direction of

Dynamics and stationary configurations of heterogeneous foams
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the interface subject to some constraints. Although this idea is simple and straightforward, a
number of difficult and complicated issues arise when dealing with multiple bubbles and possi-
ble topological changes, especially in three-dimensional simulations.

In [13], the author developed and implemented a method, referred to as the Surface Evolver,
for solving a class of problems, including (1). A surface in this method is represented by the
union of simplices and physical quantities (e.g., surface tension, crystalline integrands, and
curvature) are computed using finite elements. The surface evolver iteratively moves the verti-
ces using the gradient descent method, thus changing the surface. Although this idea is simple
and straightforward, a number of difficult and complicated issues arise when dealing with
multiple bubbles and possible topological changes.

Another approach is the level set method, where the interfaces is represented by the zero-
level-set of a function φ [14]. This function is evolves in time according to a partial differential
equation of Hamilton-Jacobi type,

@φ
@t
à Vnjrφj:

Here, |�| is the Euclidean norm,r denotes the spatial gradient, and Vn is the normal veloc-
ity. This type of method can easily handle topology changes because the interface is implicitly
determined by the zero-level-set of the function φ. However, it is difficult to deal with the
interface motion near multiple junctions and this type of method also needs to be reinitialized
at each step or after every few steps.

Another option is to use the phase field approach where the interface is represented by
a level-set of an order parameter function, ϕ; see, e.g., [15]. Here, ϕ takes two distinct values
(e.g., ±1) for the two-phase case or several distinct vectors in the multiple-phase case. The func-
tion ϕ then evolves according to the Cahn-Hillard or Allen-Cahn equation, where a potential
enforce that the function ϕ smoothly changes between the distinct values (or vectors) in a
thin ď-neighborhood of the interface. This approach is simple and insensitive to topological
changes. However, if the evolution of multiple junctions with arbitrary surface tensions needs
to be resolved, it is difficult to find a suitable multi-well potential. Also, since it is desirable
for ď to be small, a very fine mesh is needed to resolve the interfacial layer of width ď. Conse-
quently, this algorithm is computationally expensive.

In [3], the authors iterated a shuffling-and-relaxation procedure to gradually find a candi-
date foam. At each iteration, they selected the shortest side and applied to it a neighbor-swap-
ping topological process followed by relaxing the configuration in a quadratic mode. In the
two-dimensional case, many nice candidates for various n are presented in [3]. However, this
method requires a careful choice of both the initial configuration and the shuffling procedure
is heuristic. The candidate configuration highly relied on the initial “circular” configuration.
Also, it appears that this procedure needs a large number of iterations to reach a stationary
candidate. It would be challenging to apply these ideas to the three-dimensional or heteroge-
neous foams.

Computational method

In this paper, we use computational methods that are based on the threshold dynamics methods
developed in [16–19]. Here, n indicator functions are used to denote the respective regions of

each bubble in an n-foam. Additionally, we fix a rectangular box, O ⇢ 5d (d = 2, 3), which
contains the supports of these n indicator functions and add an (n + 1)-th indicator function
to denote the complement of the n-foam. Let u = (u1, u2, � � �, un+1) denote these indicator

Dynamics and stationary configurations of heterogeneous foams
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functions. We define

B à u 2 BVÖOÜ: uiÖxÜ à f0; 1g;
Xná1

ià1

ui à 1; a:e: x 2 O; and
Z

O
uiÖxÜ dx à Vi; i 2 âná 1ä

( )

;

where Vi is the prescribed volume of the i-th bubble for i 2 [n + 1]. The constraints that
ui(x) 2 {0, 1} and ∑i ui = 1 together force the indicator functions to have disjoint support—
which is equivalent to their representative domains being disjoint. We approximate the sur-

face area of the interface between the i-th and j-th bubbles byHd�1Ö@Oi \ @OjÜ ⇡ LÖui; ujÜ,
with

LÖui; ujÜؔ
ÅÅÅ
p
p
ÅÅÅ
t
p
Z

O
uiÖxÜÖGt ⇤ ujÜÖxÜ dx; where GtÖxÜ à

1

Ö4ptÜ
d
2

exp � jxj
2

4t

✓ ◆
: Ö6Ü

The î convergence of (6) to the interfacial area was proven in [19–21]. Using (6), the opti-
mization problem (1) can be approximated as

min
u2B
E
tÖuÜ; where E

tÖuÜ à
Xná1

i; j à 0
i 6à j

LÖui; ujÜ: Ö7Ü

Since the energy functional EtÖuÜ is concave, we can relax the constraint set in (7) to obtain
the equivalent problem [19, 22, 23],

min
u2K
E
tÖuÜ; Ö8Ü

where

K à u 2 BVÖOÜ: uiÖxÜ 2 â0; 1ä;
Xná1

i

ui à 1; a:e: x 2 O; and
Z

O
uiÖxÜ dx à Ai; i 2 âná 1ä

( )

is the convex hull of B. The sequential linear programming approach to minimizing EtÖuÜ is to
consider a sequence of functions fus ؔ Öus

1; us
2; . . . ; us

ná1Üg
1
sà0

which satisfies

usá1 à arg min
u2K
LusÖuÜ Ö9Ü

where Lt
usÖuÜ is the linearization of Et. In this case,

L
t
usÖuÜ à

Xná1

ià1

Z

O
Cs

iÖxÜuiÖxÜ dx; where Cs
i à

Xná1

j à 1
j 6à i

Gt ⇤ us
j à Gt ⇤ Ö1� us

iÜ:

Since us is given, (9) is a linear minimization problem. If we were to neglect the volume
constraints, (9) could be solved point-wisely by setting

usá1
i ÖxÜ à

(
1 if Cs

iÖxÜ à mink2âná1äC
s
kÖxÜ;

0 otherwise:
Ö10Ü

However, this solutions generally doesn’t satisfy the volume constraints.
Motivated by the schemes for the volume-preserving, two-phase flow [24–26], to find a

solution usá1 2 B (i.e., each usá1
i satisfies the corresponding volume constraint), Jacobs et. al.

proposed an efficient auction dynamics scheme to impose the volume constraints for the
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multiphase problem [27]. In particular, they developed a membership auction scheme to find
n + 1 constants ĕi, i 2 [n + 1] such that the solution usá1 2 B can be solved by

usá1
i ÖxÜ à

(
1; if Cs

iÖxÜ á li à mink2âná1ä ÖC
s
kÖxÜ á lkÜ

0; otherwise:
Ö11Ü

The algorithm is summarized in Algorithm 1 and we refer to [27] for details of the
derivation.

The computational complexity of Algorithm 1 is O(nM log M), where n is the number of
bubbles and M is the total number of grid points, which can be seen as follows. In the first step
of Algorithm 1, we calculate n + 1 convolutions, each of which can be efficiently evaluated
using the fast Fourier transform (FFT) with a total computational complexity of O((n + 1)M
log M). In the second step, for each grid point x, we need to sort the value of Fj(x) − ĕj several
times, which can be accomplished using a quick-sort algorithm, with complexity O(M(n + 1)
log(n + 1)). The complexity of the first step dominates.

Algorithm 1 was also proven to be unconditionally stable for any τ> 0 in [27]. In our
implementation, we choose a value for τ as follows. On one hand, the algorithm can easily
become “frozen” if τ is very small because, in the discretized space, τ is so small that no point
can switch from one bubble to another (i.e., ui changes from 0 to 1 or 1 to 0 for some i). On the
other hand, for large τ, the interface easily moves but has large approximation error. In prac-
tice, we set τ⇠ O(Ďx) where Ďx is the mesh size.

Algorithm 1: Auction dynamics algorithm for solving (7) [27, Algorithm 1, 2].
,QSXW� /HW ȍQ EH WKH GLVFUHWL]DWLRQ RI WKH GRPDLQ ȍ� Q EH WKH QXPEHU

RI JULG SRLQWV� u0 à Öu0
1; . . . ; u0

ná1Ü EH WKH LQGLFDWRU IXQFWLRQV IRU
DQ LQLWLDO Q � ��SDUWLWLRQ� Ĳ ! � EH WKH WLPH VWHS� 9L IRU
L 2 >Q � �@ EH WKH SUHVFULEHG YROXPHV� İ� EH WKH LQLWLDO YDOXH
RI İ� Į EH WKH İ�VFDOLQJ IDFWRU� DQG İPLQ EH WKH DXFWLRQ HUURU
WROHUDQFH�

2XWSXW� uS 2 B WKDW PLQLPL]HV ����
6HW V  �
6HW �ď à ďmin=n
ZKLOH QRW FRQYHUJHG GR
�� �'LIIXVLRQ VWHS� &RPSXWH WKH FRHIILFLHQW IXQFWLRQV�

Fi à 1�Cs
i à Gt ⇤ us

i ; i 2 âná 1ä

�� �)LQG Ȝ XVLQJ DXFWLRQ G\QDPLFV�
6HW ȜL  � IRU L 2 >Q � �@
6HW İ  İ�
ZKLOH ď > �ď GR
0DUN DOO [ 2 ȍQ DV XQDVVLJQHG
6HW XL  � IRU L 2 >Q � �@
ZKLOH VRPH [ LV PDUNHG DV XQDVVLJQHG HDFK XQDVVLJQHG GR
IRU HDFK XQDVVLJQHG [ 2 ȍQ GR
&DOFXODWH L⇤ 2 DUJ PD[L2>Q��@ ĭL�[� í ȜL
&DOFXODWH M⇤ 2 DUJ PD[M6àL⇤ ĭM�[� í ȜM DQG VHW

bÖxÜ à li⇤ á ďá ÖFi⇤ ÖxÜ � li⇤ Ü � ÖFj⇤ ÖxÜ � lj⇤ Ü

LI �[ XL⇤�[�  9L⇤ WKHQ
)LQG y à argminz2u�1

i⇤ Ö1Ü
bÖzÜ

6HW XL⇤�\�  � DQG VHW XL⇤�[�  �
0DUN \ DV XQDVVLJQHG DQG PDUN [ DV DVVLJQHG
6HW li⇤ à minz2u�1

i⇤ Ö1Ü
bÖzÜ
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Two-dimensional numerical examples

Time-evolution of foams

For an equal-areal, n = 12-foam, we show the time evolution corresponding to the gradient
flow of the total energy with a random initialization. Here and in subsequent experiments, we
generate the random initialization with volume constraints as follows:

1. Generate a random n-Voronoi tessellation in a smaller box contained in the whole compu-
tational domain and set the complement as n + 1-th Voronoi domain.

2. Set ui à 1= ~Vi, i 2 [N + 1] where ~Vi is the volume of the i-th Voronoi domain.

3. Run Algorithm 1 once to get an n + 1–partition in the computational domain and set the
corresponding indicator functions as the random initial condition.

The energy at each iteration is plotted in Fig 1 with the foam configuration at various itera-
tions. Note that the energy decays very fast; in 108 iterations, the configuration is stationary in
the sense that no grid points are changing bubble membership. After⇡ 50 iterations, the foam
configuration changes very little.

Stationary solutions

We consider two-dimensional equal-area foams and evolve many random initial configura-
tions until stationarity. The random initial configurations are chosen as described above. In

Fig 1. A plot of the energy as a n = 12-foam evolves from a random initialization together with the foam configuration at
various iterations.

https://doi.org/10.1371/journal.pone.0215836.g001
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Fig 2, we plot the n-foams with the smallest total perimeter obtained for n = 2, . . ., 21. These
results reproduce the results in [3]. We make the following observations:

1. In all cases, Plateau’s necessary conditions for optimality are satisfied.

2. For n = 2 and n = 3, we obtain the expected double and triple-bubble configurations.

3. For n-foams with n 5, there are no interior bubbles and for n-foams with n� 6, there
appears to be at least one interior bubble.

4. For n = 6, 7, 8, we obtain n-foams with one interior bubble and n − 1 boundary bubbles.
For n = 6 and n = 8, due to the 120˚ angle condition, the interior bubble is not a polygon,
but has curved boundary.

5. The configurations for some values of n exhibit more symmetry than others. For example,
n = 10, 16, and 20 display additional symmetries.

6. In Fig 3, another stationary equal-area 16-foam is given with slightly larger (numerically
computed) total perimeter than the 16-foam given in Fig 2. It also satisfies Plateau’s laws.
Interestingly, the 16-foam in Fig 3 has more rotational symmetries than the 16-foam in Fig
2. It is also more similar to the 17-foam in Fig 2.

Quasi-stationary flows corresponding to changing bubble size

We consider the configuration transition by increasing volume by dV from only one bubble
with small volume (v) to a fixed V gradually. Then, we add another small bubble on the bound-
ary of the cluster and increase the volume of this small bubble to V gradually. By adding bub-
bles at different positions, we obtain different configuration transitions. Two example quasi-
stationary flows are displayed in Fig 4. In this example, V = 0.4, dV = 0.004, and v = 0.016.
Links to corresponding videos are given in Table 1.

Remark 0.4. The approximationHd�1Ö@Oi \ @OjÜ ⇡ LÖui; ujÜ, where L(ui, uj) is defined in

(6), has O(τ) accuracy. When the volume of one bubble is o(τ), this approximation is not very
accurate. Of course, to resolve a smaller volume, the accuracy could be improved by using a
smaller value of τ. However, for a smaller τ, the mesh must also be refined to avoid freezing at
some non-stationary configuration, which makes the overall algorithm more computationally
expensive. In Fig 4, we use gray rectangular boxes to indicate the regime where the results of
the algorithm are not very convincing for the value τ = 0.0625 used. For example, when there

is only one bubble, the isoperimetric quantity, Perimeter2
Area , should be constant (= 4π) and our

numerical result agrees well with this value outside of the gray region.

Configuration transitions

The problem of finding minimal total perimeter foams (1) possesses several local solutions
corresponding to distinct foam configurations which are well-separated and have almost the
same total perimeter. When the problem is perturbed (e.g., the volume of one of the bubbles
increases or decreases), these local minima vary. As we perturb the problem, we observe config-
uration transitions where a local minima rapidly transitions and converges to another local
minima. This is demonstrated in Fig 4, where there are small jumps in the energy curve. In
this section we further study this phenomena.

Considering a system with 6 bubbles with equal areas V and one small bubble with area v,
we gradually increase the volume of the small bubble to 1.5V and then decrease the volume
of this bubble to the original area v. In Fig 5, we plot the resulting energy plot and selected

Dynamics and stationary configurations of heterogeneous foams

PLOS ONE | https://doi.org/10.1371/journal.pone.0215836 April 29, 2019 10 / 19

https://doi.org/10.1371/journal.pone.0215836


Fig 2. Stationary equal-area n-foams for n = 2, . . .21 with smallest computed total perimeter.

https://doi.org/10.1371/journal.pone.0215836.g002
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configurations in an experiment where V = 0.677, dV = 0.00496, and v = 0.0201. The black line
corresponds to increasing area and the green dashed line corresponds to decreasing area. The
jumps in the black and dashed green lines are positions of configuration transitions. We also
note that the intersection between the black and dashed green lines corresponds to two differ-
ent configurations, as indicated. These two configurations have the same energy and same
bubbles areas. Interestingly, from this experiment, we see that the process of increasing and
decreasing volume is irreversible; one can view this as a type of hysteresis in the sense that
the quasi-stationary flow depends on the initialization. That is, as the volume changes, the
transition between families of local minima depends on whether the volume is increasing or
decreasing.

Also, in Fig 4, we observe different stationary configurations when we add area to one
bubble at different positions. To further study this, starting from the computed stationary

Fig 3. Another stationary equal-area 16-foam with larger total perimeter than the 16-foam displayed in Fig (2).

https://doi.org/10.1371/journal.pone.0215836.g003

Dynamics and stationary configurations of heterogeneous foams

PLOS ONE | https://doi.org/10.1371/journal.pone.0215836 April 29, 2019 12 / 19

https://doi.org/10.1371/journal.pone.0215836.g003
https://doi.org/10.1371/journal.pone.0215836


configuration for an equal-area 7-foam (see Fig 2), V, we gradually add area to one bubble
until the area is 12V. We compare the difference between adding area to the middle bubble
and adding the area to the border bubble. In Fig 6, the black line displays the change in total
perimeter when we increase the area of the middle bubble while the red line displays the
change in total perimeter when we increase the area of a border bubble. Snapshots of the
configuration when increasing the area of the middle bubble are plotted in black and snap-
shots of the configuration when increasing the area of a border bubble are plotted in red.
In this example, V = 0.1474 and dV = 0.02. The links for the corresponding videos are also
given in Fig 6.

Fig 4. Total perimeter for the quasi-stationary flow, where the area of one of the bubbles is slowly varied and for each fixed
area, the stationary solution is computed. When the area reaches V, a new bubble with area v is introduced. The top and bottom
panels correspond to different positions where the new bubble is introduced. The foam configuration at various values of total area is
plotted. Links to videos for this quasi-stationary flow are given in Table 1.

https://doi.org/10.1371/journal.pone.0215836.g004
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Three-dimensional numerical examples

Time-evolution of foams

In Fig 7, for an equal-volume, n = 8-foam, we show the time evolution corresponding to the
gradient flow of the total surface area with a random initialization; the initial configuration
was chosen as in the two-dimensional flow. The energy at each iteration is plotted together
with the foam configuration at various iterations. Note that the energy decays very fast; even in
three-dimensional space, after 533 iterations, the configuration is stationary in the sense that

Table 1.

Quasi-stationary flows corresponding to decreasing the area of one bubble.

Evolution from a 3-foam to a 2-foam: youtu.be/LcX9iVE3cEk

Evolution from a 4-foam to a 3-foam: youtu.be/t44JBQ4Cv9E

Evolution from a 5-foam to a 4-foam: youtu.be/uyRvH9CpQCM

Evolution from a 6-foam to a 5-foam: youtu.be/Fs8XF6aNjEg

Evolution from a 7-foam to a 6-foam: youtu.be/w7p6E2Vcspg

Evolution from a 8-foam to a 7-foam: youtu.be/s0XNdaJP364

Evolution from a 9-foam to a 8-foam: youtu.be/XBiQRvjgDVQ

Quasi-stationary flows corresponding to increasing the area of one bubble.

Evolution from a 2-foam to a 3-foam: youtu.be/dfPmFPD4Atw

Evolution from a 3-foam to a 4-foam: youtu.be/cFHXdMwFo7M

Evolution from a 4-foam to a 5-foam: youtu.be/j7-5L9ff_xg

Evolution from a 5-foam to a 6-foam: youtu.be/m85uyeiQ2BM

youtu.be/0KpHnPKl0tA

youtu.be/jatMSRAxYfQ

Evolution from a 6-foam to a 7-foam: youtu.be/BP0z93JULCE

Links to videos showing the quasi-stationary flow as the area of one bubble is either increased or decreased. Example

foam configurations from this flow are shown in Fig 4.

https://doi.org/10.1371/journal.pone.0215836.t001

Fig 5. Energy plot of increasing and decreasing area with snapshots at different value of area.

https://doi.org/10.1371/journal.pone.0215836.g005
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no grid points are changing bubble membership. After⇡ 150 iterations, the foam configura-
tion changes very little.

Stationary solutions

In Fig 8, we plot the three-dimensional n-foams with smallest total surface area found for
n = 2, . . ., 17. We make the following observations.

1. In all cases, Plateau’s necessary conditions for optimality are satisfied.

2. For n = 2 and n = 3, we obtain the expected double and triple-bubble configurations.

Fig 6. Energy plot of increasing area at different positions with snapshots at different value of area. See S1 Table for links to
videos showing the quasi-stationary flow as the area of one bubble is increased either in the middle or the border.

https://doi.org/10.1371/journal.pone.0215836.g006

Fig 7. A plot of the energy as a n = 8-foam evolves from a random initialization together with the foam
configuration at various iterations.

https://doi.org/10.1371/journal.pone.0215836.g007
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3. For n = 4, the centers of the bubbles form a tetrahedron.

4. For n = 5, 6, 7, the n-foams consist of two vertically-stacked bubbles with n − 2 bubbles
arranged with centers in a regular polygon.

5. For n = 8, we repeated the experiment with random initial conditions 100 times. In 99 of
the experiments, we obtained the 8-foam as shown in Fig 8. In one of the 100 experiments,
we obtained another candidate foam which consists of two vertically-stacked bubbles with 6
bubbles arranged with centers in a regular hexagon as shown in Fig 9. The computed total
surface area of the configuration in Fig 9 is⇡ 3.8% higher than the stationary 8-foam in Fig
8. This foam also satisfies Plateau’s laws. It is interesting that the algorithm converges to this
local minimizer so infrequently, so the basin of attraction for this local minimum is small.

6. For n-foams with n 11, there are no interior bubbles and for n-foams with n� 12, there
appears to be at least one interior bubble.

Fig 8. Stationary equal-volume n-foams for n = 2, . . ., 17 with smallest computed total surface area. See S2 Table for links to
videos illustrating the foam structure.

https://doi.org/10.1371/journal.pone.0215836.g008
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7. The stationary 13-foam is very regular and composed of one interior bubble and 12 bubbles
that are on the boundary. In Fig 10, we plot xy-, xz-, and yz-views of the 13-foam and a par-
tial plot of the foam showing the interior bubble. Interestingly, the interior bubble is very
similar to a regular dodecahedron. We note that, in a regular dodecahedron, the angle
between each two faces is⇡ 117˚; we expect the surface of the interior bubble to be slightly
curved (non-flat).

8. The 15-foam candidate is also very regular and is composed of one interior bubble and 14
bubbles on the boundary. In Fig 11, we plot xy-, xz-, and yz-views of the 15-foam and a par-
tial plot of the foam showing the interior bubble. The interior bubble is very similar to the
truncated hexagonal trapezohedron that appears in the Weaire–Phelan structure. The bub-
bles on the boundary consist of twelve rounded irregular dodecahedron and two rounded
truncated hexagonal trapezohedron.

Discussion

In this paper, we considered the variational foam model (1), where the goal is to minimize the
total surface area of a collection of bubbles subject to the constraint that the volume of each

Fig 9. The left panel shows another stationary equal-area 8-foam with larger total surface area than the 8-foam in Fig 8. The
middle three panels show xy-, xz-, and yz-views of the 8-foam. The right panel shows another view showing the hexagonal shaped
bubble on the top. A corresponding video can be found here: youtu.be/4_uAeq19qJY.

https://doi.org/10.1371/journal.pone.0215836.g009

Fig 10. The first three panels show xy-, xz-, and yz-views of the 13-foam in Fig 8. The right panel shows a dissection of this foam,
exposing the interior bubble, which is a regular dodecahedron.

https://doi.org/10.1371/journal.pone.0215836.g010

Fig 11. The first three panels show xy-, xz-, and yz-views of the 15-foam in Fig 8. The right panel shows a dissection of this foam,
exposing the interior bubble, which is similar to the Weaire–Phelan structure.

https://doi.org/10.1371/journal.pone.0215836.g011
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bubble is prescribed. Sharp interface methods together with an approximation of the interfa-
cial surface area using heat diffusion leads to (9), which can be efficiently solved using the
auction dynamics method developed in [27]. This computational method was then used to
simulate time dynamics of foams in two- and three-dimensions; compute stationary states
of foams in two- and three-dimensions; and study configurational transitions in the quasi-
stationary flow where the volume of one of the bubbles is varied and, for each volume, the sta-
tionary state is computed. The results from these numerical experiments are described and
accompanied by many figures and videos.

The methods considered in this paper could be used to simulate foams where the bubbles
have different surface tensions or different surface mobilities using the modifications devel-
oped in [28].

In Remark 0.4, we observed that for small bubbles, a small time step τ must be used and
consequently a fine mesh. Also, the computational cost for this algorithm increases with the
number of bubbles. Finding ways to extend this method to small bubbles and large number of
bubbles is challenging and beyond the scope of this paper.

One question that we find intriguing is: for fixed k 2 1, how many bubbles in an equal-area
stationary foam are needed before there are k in the interior? In two-dimensions, we observe
that 6 bubbles are needed for one interior bubble, 9 are needed for two, 11 are needed for
three, etc. . .. In three-dimensions, 12 bubbles are needed for one interior bubble. Numerical
evidence suggests that more than 20 bubbles are needed before two interior bubbles appear.

We hope that the numerical experiments conducted in this paper and further experiments
using the methods developed can provide insights for further rigorous geometric results for
this foam model.
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