
GraphLily: Accelerating Graph Linear Algebra on

HBM-Equipped FPGAs

Yuwei Hu, Yixiao Du, Ecenur Ustun, Zhiru Zhang

School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

{yh457, yd383, eu49, zhiruz}@cornell.edu

Abstract—Graph processing is typically memory bound due to low

compute to memory access ratio and irregular data access pattern.

The emerging high-bandwidth memory (HBM) delivers exceptional

bandwidth by providing multiple channels that can service memory

requests concurrently, thus bringing the potential to significantly boost

the performance of graph processing.

This paper proposes GraphLily, a graph linear algebra overlay,

to accelerate graph processing on HBM-equipped FPGAs. GraphLily

supports a rich set of graph algorithms by adopting the GraphBLAS

programming interface, which formulates graph algorithms as sparse lin-

ear algebra operations. GraphLily provides efficient, memory-optimized

accelerators for the two widely-used kernels in GraphBLAS, namely,

sparse-matrix dense-vector multiplication (SpMV) and sparse-matrix

sparse-vector multiplication (SpMSpV). The SpMV accelerator uses a

sparse matrix storage format tailored to HBM that enables streaming,

vectorized accesses to each channel and concurrent accesses to multiple

channels. Besides, the SpMV accelerator exploits data reuse in accesses

of the dense vector by introducing a scalable on-chip buffer design. The

SpMSpV accelerator complements the SpMV accelerator to handle cases

where the input vector has a high sparsity. GraphLily further builds a

middleware to provide runtime support. With this middleware, we can

port existing GraphBLAS programs to FPGAs with slight modifications to

the original code intended for CPU/GPU execution. Evaluation shows that

compared with state-of-the-art graph processing frameworks on CPUs

and GPUs, GraphLily achieves up to 2.5× and 1.1× higher throughput,

while reducing the energy consumption by 8.1× and 2.4×; compared with

prior single-purpose graph accelerators on FPGAs, GraphLily achieves

1.2×–1.9× higher throughput.

I. INTRODUCTION

Graph is a universal representation for encoding relationships (e.g.,

social networks), connections (e.g., road maps), and structures (e.g.,

molecules). As a result, graph processing is almost ubiquitous with

applications in a diverse range of domains [29], [20]. Graph process-

ing is typically memory bound due to low compute to memory access

ratio and irregular data access pattern. There have been continuous

efforts on alleviating the memory bottleneck in graph processing by

compressing the graph storage [30], ensuring streaming accesses [28],

and enhancing locality [37], most of which are conducted on DDR-

equipped systems.

The emerging high-bandwidth memory (HBM) has the potential

to significantly boost the performance of graph processing. HBM

delivers a much higher bandwidth than DDR by providing multiple

channels that can service memory requests concurrently. HBM has

been adopted into modern CPUs (e.g., Intel KNL), GPUs (e.g.,

NVIDIA Titan V), and FPGAs (e.g., Intel Stratix 10 MX, Xilinx

Alveo U280). In particular, HBM-equipped FPGAs stand out as an

appealing platform for accelerating graph processing. Fully unleash-

ing the potential of HBM for accelerating graph processing requires

co-designing the data layout across multiple HBM channels, the par-

allelization strategy, and the hardware architecture. Hence, the ability

of FPGAs to customize the memory system (e.g., building a one-level

large on-chip buffer instead of the deep cache hierarchy on CPUs) and

compute engines (e.g., building a dataflow architecture instead of the

fixed pipeline on CPUs) is crucial. In addition, FPGAs consume less

power than CPUs and GPUs. Furthermore, the increasing availability

of FPGAs in datacenters (e.g., the Microsoft Catapult Project [26])

and clouds (e.g., AWS, Alibaba Cloud, Nimbix) makes using FPGAs

for graph processing viable.

There is an active body of research that attempts to accelerate graph

processing on FPGAs. However, prior efforts either only handle one

specific graph algorithm [40], [39], [36] or require generating/loading

a separate bitstream for each algorithm [22], [23], [5], [41]. The

lack of a unified bitstream for multiple graph algorithms introduces

two major problems: (1) Generating a new bitstream for a graph

algorithm may take hours or days with the current FPGA CAD tools.

(2) Even with pre-compiled bitstreams, the cost of switching them

by reconfiguring an FPGA at run time is quite high—at millisecond

timescale; this is particularly undesired in scenarios where users need

to run multiple graph processing workloads, which are especially

common in the settings of datacenter computing. We argue that

these two problems limit the practical applicability of the existing

approaches to FPGA-based graph processing.

This paper proposes GraphLily, a Graph linear algebra overlay,

to provide efficient and practical acceleration of graph processing

workloads on HBM-equipped FPGAs. An overlay refers to a virtual

hardware architecture that is mapped onto the physical FPGA fabric

[4], [7], [34]; it offers a more constrained configuration space—

and therefore admits much faster compilation with bitstream reuse

across applications in the same domain. The overlay approach is only

feasible when common graph algorithms can be implemented with

a small set of compute primitives (kernels). To this end, GraphLily

adopts the GraphBLAS programming interface [16], an open-source

effort to formulate graph algorithms as sparse linear algebra op-

erations. GraphBLAS represents the topology of a graph (i.e., the

edges) as a sparse adjacency matrix, and the attributes associated

with active vertices (i.e., the frontier) or all vertices as a sparse

or dense vector. There are two dominant kernels in GraphBLAS:

generalized SpMV (sparse-matrix dense-vector multiplication) and

generalized SpMSpV (sparse-matrix sparse-vector multiplication).

Here, “generalized” means that the kernel supports customizable

binary operators and reduction operators beyond multiply and add.1

GraphLily provides efficient, memory-optimized SpMV and SpM-

SpV accelerators conforming to the GraphBLAS interface. The

SpMV accelerator exploits parallelism across rows of the sparse

matrix. There are two major data access patterns: (1) streaming

accesses of the sparse matrix exhibiting no data reuse and (2) random

accesses of the dense vector exhibiting data reuse. To fully utilize

the available bandwidth of HBM for streaming in the sparse matrix,

the SpMV accelerator stores the sparse matrix in a customized

format that allows vectorized accesses to each HBM channel and

concurrent accesses to multiple HBM channels. To exploit the data

1In the remaining discussions, SpMV/SpMSpV refers to generalized Sp-
MV/SpMSpV.



TABLE I: GraphLily achieves higher throughput, bandwidth effi-

ciency, and energy efficiency than GraphIt and GraphBLAST —

Evaluated on PageRank using the orkut graph, which has 3M

vertices and 213M edges. GraphIt runs on a Xeon CPU with 32

threads; GraphBLAST runs on a GTX 1080 Ti GPU. Throughput

is measured by millions of traversed edges per second (MTEPS);

bandwidth efficiency is measured by throughput per GB/s; energy

efficiency is measured by throughput per Watt.

GraphIt GraphBLAST GraphLily

Throughput 2151 4181 5940

Bandwidth (GB/s) 282 484 285

Bandwidth efficiency 7.6 8.6 20.8

Power (Watts) 268 182 49

Energy efficiency 8.0 23.0 121.2

reuse in accesses of the dense vector and avoid excessive random

off-chip accesses, the SpMV accelerator introduces a scalable on-

chip buffer design that combines vector replicating and banking to

feed a large number of processing elements (PEs). Unlike SpMV,

SpMSpV has a lower degree of parallelism and is less bandwidth-

hungry. Therefore, the SpMSpV accelerator is designed to read the

matrix from a regular DDR memory to avoid competing with the

SpMV accelerator for the HBM bandwidth. The SpMSpV accelerator

is faster than the SpMV accelerator when the input vector has a

high sparsity. Both the SpMV and the SpMSpV accelerators support

arbitrarily large graphs (not exceeding the capacity of FPGA device

memory consisting of HBM and DDR) by partitioning the graph.

GraphLily also implements several small kernels (e.g., scalar-vector

add) that are required for the full functionality of GraphBLAS but

less critical to the overall performance. These accelerators in the

GraphLily overlay share FPGA resources (e.g., connections to the

off-chip memory) when feasible; they are developed using the high-

level synthesis (HLS) design methodology.

Performant graph processing on FPGAs requires not only effi-

cient kernel implementations, but also sufficient runtime support.

GraphLily builds a middleware to manage three runtime tasks: (1)

data transfer between the CPU host and the FPGA device; (2) on-

device data transfer between kernels; (3) kernel scheduling, e.g.,

deciding whether to use SpMV or SpMSpV according to the sparsity

of the input vector. The middleware connects the GraphBLAS inter-

face and the hardware accelerators, allowing users to port existing

GraphBLAS programs to FPGAs with slight modifications to the

original code intended for CPU/GPU execution.

We implemented GraphLily on a Xilinx Alveo U280 FPGA,

using 19 HBM channels and one DDR channel delivering 285

GB/s bandwidth in total. GraphLily outperforms strong CPU and

GPU baselines despite running at a much lower frequency (165

MHz). Table I shows the results of PageRank on orkut: com-

pared with GraphIt [38], a domain-specific language and compiler

for graph processing on CPUs, GraphLily achieves 2.8× higher

throughput, 2.7× higher bandwidth efficiency, and 15.2× higher

energy efficiency; compared with GraphBLAST [33], a GraphBLAS-

based graph processing system on GPUs, these numbers are 1.4×,

2.4×, and 5.3×. Evaluation results of more graph algorithms on a

wide collection of datasets consistently confirm the advantages of

GraphLily. We further compare GraphLily with HitGraph [41] and

ThunderGP [5], two prior FPGA graph accelerators that generate

a separate bitstream for each graph algorithm; GraphLily achieves

1.2×–1.9× higher throughput. GraphLily is available in open-source

format at https://github.com/cornell-zhang/GraphLily.

The main contributions of this paper are as follows:

• To the best of our knowledge, GraphLily is the first graph linear

algebra overlay on HBM-equipped FPGAs that can accelerate a

rich set of graph algorithms without the need for re-compiling

and bitstream switching.

• GraphLily provides efficient, memory-optimized SpMV and

SpMSpV accelerators. Specifically, GraphLily co-designs the

sparse matrix storage format, the parallelization strategy, and

the hardware architecture to maximize both off-chip and on-chip

bandwidth utilization.

• GraphLily builds a middleware to provide runtime support

for GraphBLAS-based graph processing on FPGAs. With this

middleware, we are able to port GraphBLAS-based CPU/GPU

implementations of graph algorithms to FPGAs with slight

modifications.

• Experimental results on a variety of graph algorithms and a

wide collection of datasets show that GraphLily achieves higher

throughput, bandwidth efficiency, and energy efficiency than

strong CPU and GPU baselines.

The rest of the paper is organized as follows. Section II reviews the

background of GraphBLAS and explains why HBM-equipped FPGAs

are a promising platform for accelerating GraphBLAS-based graph

processing. Section III presents the system overview of GraphLily.

Section IV and V describe the accelerator design and the middleware

design, respectively. Section VI details the implementation, followed

by evaluation in Section VII. We discuss related work in Section VIII

and summarize in Section IX.

II. BACKGROUND

A. GraphBLAS

GraphBLAS [16] is an open-source effort to define standard

building blocks for graph algorithms in the language of sparse linear

algebra. GraphBLAS enhances the portability of graph algorithms

across different hardware backends, as evidenced by a growing

number of graph processing systems that follow the GraphBLAS

programming interface [8], [1], [33].

The foundation of GraphBLAS is to represent the topology of a

graph as a sparse adjacency matrix. Then, computations on the graph

are mapped to sparse linear algebra operations. Figure 1 illustrates

the mapping from breadth-first search (BFS) to sparse-matrix dense-

vector multiplication (SpMV) and sparse-matrix sparse-vector multi-

plication (SpMSpV). Specifically, pull-based graph traversal, where

every vertex checks whether it has a parent in the frontier (i.e., the

set of vertices visited at the last iteration), is mapped to SpMV; push-

based graph traversal, where each vertex in the frontier looks for its

children, is mapped to SpMSpV [3]. BFS typically applies SpMSpV

at the first few iterations when the frontier is small (i.e., the input

vector has a high sparsity), and switches to SpMV as the frontier

grows (i.e., the input vector becomes denser).

GraphBLAS can express a rich set of graph algorithms by gener-

alizing SpMV/SpMSpV to have customizable binary operators and

reduction operators, which are modeled as semirings. A semiring

is formally defined as a 5-tuple (D,⊗,⊕, I⊗, I⊕), where D is the

domain, ⊗ is the binary operator, ⊕ is the reduction operator, I⊗ is

the identity for ⊗, and I⊕ is the identity for ⊕. The commonly

used semirings are listed in Table II. Arithmetic semiring is the

standard semiring supported by vendor-provided sparse libraries such

as MKL on CPUs and cuSPARSE on GPUs; Boolean semiring is

used in traversal algorithms such as BFS, where visited vertices are

represented by 1 and unvisited vertices are represented by 0; Tropical









1 DenseVector bfs(SparseMatrix Adj, int src, int num_iter) {
2 // Initialize the frontier vector
3 SparseVector frontier = {src};
4 // Initialize the distance vector
5 DenseVector distance(Adj.num_rows);
6 for (int i=0; i<Adj.num_rows; i++) {distance[i] = -1;}
7 distance[src] = 0;
8 for (int iter=1; iter<=num_iter; iter++) {
9 // Perform graph traversal

10 // Use SpMV or SpMSpV depending on the frontier size
11 if (frontier.size > threshold) {
12 frontier = graphblast::SpMV<BoolSemiring>(Adj,
13 frontier, distance);
14 } else {
15 frontier = graphblast::SpMSpV<BoolSemiring>(Adj,
16 frontier, distance);
17 }
18 // Update distance
19 graphblast::Assign(distance, frontier, iter);
20 }
21 return distance;
22 }

(a) GraphBLAST

1 // A graph algorithm is expressed as a collection of modules
2 class BFS : graphlily::ModuleCollection {
3 // Specify the modules and load the bitstream
4 void init() {
5 this->SpMV = graphlily::SpMVModule<BoolSemiring>;
6 this->SpMSpV = graphlily::SpMSpVModule<BoolSemiring>;
7 this->Assign = graphlily::AssignModule;
8 this->load_bitstream("graphlily_overlay.bitstream");
9 }

10 // Format the matrix and send it to the device
11 void prepare_matrix(SparseMatrix Adj) {
12 AdjCPSR = this->SpMV.format(Adj);
13 this->SpMV.to_device(AdjCPSR); // to HBM
14 AdjPackedCSC = this->SpMSpV.format(Adj);
15 this->SpMSpV.to_device(AdjPackedCSC); // to DDR
16 }
17 // Compute BFS by scheduling the modules
18 // The logic is the same as in GraphBLAST
19 DenseVector run(int src, int num_iter) {
20 ...
21 }
22 };

(b) GraphLily

Fig. 7: Example code of BFS.

records at which iteration each vertex is visited. In addition to the

adjacency matrix and the frontier vector, the SpMV/SpMSpV kernel

takes in a third input—a mask vector—to ensure that every vertex

is visited at most once. Despite the difference that GraphBLAST

exposes each kernel as a function call while GraphLily exposes each

kernel as a module, the core part of the code that describes the

computation logic is the same between GraphBLAST and GraphLily.

Therefore, it would not take much effort for users to port code from

GraphBLAST, or other GraphBLAS-based graph processing systems,

to GraphLily. Notably, we were able to port BFS, PageRank, and

SSSP from GraphBLAST to GraphLily in a few hours.

VI. IMPLEMENTATION

We developed the GraphLily overlay using Vivado HLS (high-level

synthesis) in the Vitis toolchain (2019.2). HLS generates hardware

designs from annotated C++ programs, offering significantly higher

productivity over the traditional RTL (register-transfer-level) design

methodology. The overlay implementation takes 3.5K lines of HLS

C++ code.

Designs generated by HLS, however, often suffer frequency degra-

dation due to long wire delays caused by broadcast structures, as

analyzed in [12]. In our case, the large output buffer incurs a high-

fanout broadcast structure. We follow the method proposed in [12] to

reduce wire delays using a pipelined multi-level tree structure. This

optimization increases the frequency from 145 MHz to 165 MHz.

We implemented the overlay on a Xilinx Alveo U280 FPGA.

The overlay uses 16 HBM channels for the CPSR sparse matrix,

three HBM channels for the input vector, the mask vector, and the

output vector, respectively, and one DDR4 channel for the packed

CSC matrix; the total bandwidth is 285 GB/s. The accelerators in

the overlay share AXI interfaces to the three HBM channels that

store the input vector, the mask vector, and the output vector; this

sharing reduces the number of AXI interfaces from 37 to 27. We

tried sharing the output buffer between the SpMV and the SpMSpV

accelerators, but encountered problems in place-and-route, so we end

up using separate output buffers—the one for SpMV is 4 MiB on

URAM, and the one for SpMSpV is 1 MiB on BRAM. The CSVecBuf

is 120 KiB per cluster on URAM. The pack size is 8. We use a

fixed point datatype of 8 integer bits and 24 fractional bits, because

the Alveo U280 FPGA does not have hard floating point arithmetic

cores and synthesizing floating point units exhausts LUT resources.

In the evaluation, we verified that on BFS and SSSP, the fixed point

datatype outputs the same result as the floating point; on PageRank,

the relative difference between the results of the two datatypes is less

than 0.01%. Nevertheless, on FPGA devices that have hard floating

point arithmetic cores, such as Intel Stratix 10 MX, it is preferred to

use floating point. The resource utilization of the overlay is reported

in Table IV.

TABLE IV: Resource utilization of the GraphLily overlay on a

Xilinx Alveo U280 FPGA.

LUT FF DSP BRAM URAM

390K (35.0%) 493K (21.3%) 723 (8.0%) 417 (24.3%) 512 (53.3%)

We implemented the GraphLily middleware based on Xilinx Run-

time Library (XRT). The middleware uses the scalar-vector add kernel

in the GraphLily overlay to do on-device data transfer by setting the

scalar to zero; this method according to our benchmarking is more

than 2× faster than AXI Central DMA2, the default mechanism in

XRT for on-device data transfer.

VII. EVALUATION

A. Experiment Setup

Baselines. For evaluation of single kernels, we compare GraphLily

with vendor-provided sparse libraries, specifically MKL (2019.5)

on the CPU and cuSPARSE (10.1) on the GPU. For evaluation

of graph algorithms, we compare GraphLily with state-of-the-art

graph processing systems, specifically GraphIt [38] on the CPU and

GraphBLAST on the GPU. Both GraphIt and GraphBLAST use the

CSR format for pull and the CSC format for push. We conduct CPU

experiments on a two-socket 32-core 2.8 GHz Intel Xeon Gold 6242

machine with 384 GB DDR4 memory providing 282 GB/s bandwidth.

We conduct GPU experiments on a GTX 1080 Ti card with 3584

CUDA cores running at a peak frequency of 1582 MHz and 11 GB

GDDR5X memory providing 484 GB/s bandwidth.

Metrics. (1) Throughput, measured by millions of traversed edges

per second (MTEPS). We count all the edges of a graph as traversed

edges in both SpMV and SpMSpV. We measure the execution time

by taking the average of 10 runs. In the GPU and FPGA experiments,

the execution time does not include the data transfer overhead from

the host CPU to the GPU/FPGA accelerator over PCIe. (2) Bandwidth

efficiency, measured by throughput per GB/s. (3) Energy efficiency,

measured by throughput per Watt. We query CPU power using

powerstat, GPU using nvidia-smi, and FPGA using xbutil.

2https://www.xilinx.com/products/intellectual-property/axi central dma.
html





TABLE IX: Throughput (MTEPS) of graph algorithms. GI: GraphIt 32 threads, GB: GraphBLAST, GL: GraphLily.

Dataset
BFS PageRank

GI pull GI pull-push GB pull GB pull-push GL pull GL pull-push GI pull GB pull GL pull

googleplus 2296 3615 5804 9378 4626 4999 3452 7635 6252

ogbl-ppa 3047 5279 5482 7117 4460 5111 3622 6274 7092

hollywood 2086 3475 7067 10450 5202 6863 2663 6274 7471

pokec 2086 2960 3140 4222 1539 1965 1793 3522 2933

ogbn-proteins 1125 1422 2409 2799 3419 3644 1093 2536 5290

orkut 1816 3201 2851 4900 3737 4937 2151 4181 5940

Geometric mean 1957 3103 4114 5857 3581 4286 2280 4940 5591

TABLE X: Power consumption (Watts).

GraphIt 32 threads GraphBLAST GraphLily

BFS 264 146 45

PageRank 268 182 49

SSSP 264 164 48

TABLE XI: Comparison with prior FPGA graph accelerators — *

denotes simulated results instead of on-board measurement.

Algorithm Dataset System Throughput (MTEPS) Speedup

BFS hollywood
ThunderGP [5] 5960

1.2×
GraphLily 6863

PageRank

hollywood
ThunderGP [5] 4073

1.8×
GraphLily 7471

rmat21
HitGraph [41] 3410 *

1.4×
GraphLily 4653

SSSP

hollywood
ThunderGP [5] 4909

1.9×
GraphLily 9340

rmat21
HitGraph [41] 4304 *

1.3×
GraphLily 5646

1 no matter at which iteration the vertex is visited. The results

show that GraphLily achieves 1.3× to 1.4× higher throughput than

HitGraph, and 1.2× to 1.9× higher throughput than ThunderGP. The

frequency of GraphLily (165 MHz) is lower than ThunderGP (250

MHz for BFS, 243 MHz for PageRank, 251 MHz for SSSP). The

main reason is that the target platform of ThunderGP, Alveo U250,

has four DDR4 channels evenly distributed across four Super Logic

Regions (SLRs); in contrast, on Alveo U280, all the HBM channels

connect to SLR0, causing severe congestion on SLR0 even with the

coarse-grained floorplanning and pipelining technique of AutoBridge

[11]. To increase the frequency of GraphLily, we plan to enhance

AutoBridge to handle complex designs that utilize a large number of

HBM channels. For GraphLily, a frequency of 225 MHz is required

to saturate the HBM bandwidth; if we consider bank conflicts and

load imbalance, a higher frequency is required.

VIII. RELATED WORK

Workload Acceleration With HBM. Prior efforts have leveraged

the high bandwidth of HBM to accelerate a variety of workloads,

such as stream analytics [21], database algorithms [6], etc. GraphLily

is the first work to accelerate graph processing on HBM-equipped

FPGAs. Our key insight is that the ability of FPGAs to customize

the memory system and compute engines is crucial to fully unleashing

the potential of HBM.

Graph Processing on FPGAs. FPGA-based graph processing is

attractive due to its high efficiency and low power consumption.

A majority of prior FPGA-based graph processing works target a

specific graph algorithm, such as BFS [36], PageRank [40], etc. In

contrast, GraphLily supports a rich set of graph algorithms that can be

expressed with GraphBLAS. Existing FPGA-based graph processing

works that can handle multiple graph algorithms include GraphGen

[22], GraphOps [23], HitGraph [41] and ThunderGP [5]. A unique

advantage of GraphLily over these works is that GraphLily provides

a unified bitstream to handle multiple graph algorithms instead of

generating a separate bitstream for each algorithm.

FPGA Overlays. The idea of customizable soft-core processors on

FPGAs was introduced in [15], [19] and revisited as early examples

of overlay in [34]. The concept of an FPGA overlay was later used

in [4], with the goal of enabling software-inclined users with little

or no hardware expertise to achieve FPGA-targeted acceleration in

a productive manner. A number of overlay architectures have been

proposed for computational patterns such as vector processing [35],

GPU-like SIMT parallelism [2], and deep neural networks [27], [7].

To our knowledge, GraphLily is the first attempt to build an FPGA

overlay for graph processing.

Sparse Formats and Sparse Accelerators. There is an active body

of research on accelerating SpMV [9], sparse-matrix dense-matrix

multiplication (SpMM) [24], and sparse-matrix sparse-matrix multi-

plication (SpGEMM) [31]. The cyclic channel interleaving scheme in

CPSR is adopted from cyclic channel sparse rows (C2SR), a format

proposed for an SpGEMM accelerator [31]. One major difference

between C2SR and CPSR is that C2SR performs vectorized memory

accesses to each single row, while CPSR performs vectorized memory

accesses to packed rows. The latter better exploits the parallelism in

SpMV. CPSR also draws inspiration from compressed interleaved

sparse rows (CISR), a format proposed for an SpMV accelerator [9].

CPSR borrows from CISR the general idea of explicitly encoding

parallelism into the sparse matrix storage format, thus shifting the

complexity of operation scheduling from hardware to software. CPSR

avoids the centralized row decoding in CISR in order to scale to

multiple HBM channels. In addition, our SpMV accelerator differs

from [9] in the vector buffer design.

IX. CONCLUSION

This paper proposes GraphLily, the first graph linear algebra

overlay on HBM-equipped FPGAs. GraphLily unleashes the potential

of HBM for accelerating graph processing by co-designing the data

layout, the parallelization strategy, and the hardware architecture. Fur-

thermore, by adopting the GraphBLAS programming interface and

building a middleware to provide runtime support, GraphLily allows

users to port GraphBLAS-based CPU/GPU implementations of graph

algorithms to FPGAs with slight modifications. Our evaluation on

BFS, PageRank, and SSSP verifies the advantages of GraphLily over

competitive CPU and GPU graph processing systems in throughput,

bandwidth efficiency, and energy efficiency. Future work remains to

increase the frequency of GraphLily using HBM-aware floorplanning

and pipelining, and enhance the SpMSpV accelerator.

ACKNOWLEDGEMENT

This research was supported in part by CRISP, one of six centers in

JUMP, a Semiconductor Research Corporation (SRC) program spon-

sored by DARPA, NSF Awards #1453378, #1909661, and NSF/Intel

CAPA Awards #1723715.



REFERENCES

[1] Graphblas template library. https://github.com/cmu-sei/gbtl, 2018.
[2] Muhammed Al Kadi, Benedikt Janssen, and Michael Huebner. Fgpu:

An simt-architecture for fpgas. Int’l Symp. on Field-Programmable Gate

Arrays (FPGA), 2016.
[3] Scott Beamer, Krste Asanovic, and David Patterson. Direction-

optimizing breadth-first search. Int’l Conf. on High Performance

Computing, Networking, Storage and Analysis (SC), 2012.
[4] Alexander Brant and Guy GF Lemieux. Zuma: An open fpga overlay

architecture. IEEE Symp. on Field Programmable Custom Computing

Machines (FCCM), 2012.
[5] Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong,

and Deming Chen. Thundergp: Hls-based graph processing framework
on fpgas. Int’l Symp. on Field-Programmable Gate Arrays (FPGA),
2021.

[6] Xuntao Cheng, Bingsheng He, Eric Lo, Wei Wang, Shengliang Lu, and
Xinyu Chen. Deploying hash tables on die-stacked high bandwidth
memory. Conf. on Information and Knowledge Management (CIKM),
2019.

[7] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,
Adrian Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alka-
lay, Michael Haselman, et al. Serving dnns in real time at datacenter
scale with project brainwave. IEEE Micro, 2018.

[8] Timothy A Davis. Graph algorithms via suitesparse:graphblas: triangle
counting and k-truss. IEEE High Performance Extreme Computing Conf.

(HPEC), 2018.
[9] Jeremy Fowers, Kalin Ovtcharov, Karin Strauss, Eric S Chung, and Greg

Stitt. A high memory bandwidth fpga accelerator for sparse matrix-
vector multiplication. IEEE Symp. on Field Programmable Custom

Computing Machines (FCCM), 2014.
[10] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and

Carlos Guestrin. Powergraph: Distributed graph-parallel computation
on natural graphs. USENIX Symp. on Operating Systems Design and

Implementation (OSDI), 2012.
[11] Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur

Ustun, Zhiru Zhang, and Jason Cong. Autobridge: Coupling coarse-
grained floorplanning and pipelining for high-frequency hls design on
multi-die fpgas. Int’l Symp. on Field-Programmable Gate Arrays

(FPGA), 2021.
[12] Licheng Guo, Jason Lau, Yuze Chi, Jie Wang, Cody Hao Yu, Zhe

Chen, Zhiru Zhang, and Jason Cong. Analysis and optimization of the
implicit broadcasts in fpga hls to improve maximum frequency. Design

Automation Conf. (DAC), 2020.
[13] Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh,

and P Sadayappan. Adaptive sparse tiling for sparse matrix multipli-
cation. ACM SIGPLAN Conf. on Principles and Practice of Parallel

Programming (PPoPP), 2019.
[14] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu

Ren, Bowen Liu, Michele Catasta, and Jure Leskovec. Open graph
benchmark: Datasets for machine learning on graphs. arXiv preprint

arXiv:2005.00687, 2020.
[15] Christian Iseli and Eduardo Sanchez. Spyder: A reconfigurable vliw

processor using fpgas. IEEE Workshop on FPGAs for Custom Computing

Machines, 1993.
[16] Jeremy Kepner, Peter Aaltonen, David Bader, Aydin Buluç, Franz

Franchetti, John Gilbert, Dylan Hutchison, Manoj Kumar, Andrew
Lumsdaine, Henning Meyerhenke, et al. Mathematical foundations of the
graphblas. IEEE High Performance Extreme Computing Conf. (HPEC),
2016.

[17] Srinidhi Kestur, John D Davis, and Eric S Chung. Towards a universal
fpga matrix-vector multiplication architecture. IEEE Symp. on Field

Programmable Custom Computing Machines (FCCM), 2012.
[18] David R Kincaid, Thomas C Oppe, and David M Young. Itpackv 2d

user’s guide. 1989.
[19] David M Lewis, Marcus H van Ierssel, and Daniel H Wong. A

field programmable accelerator for compiled-code applications. IEEE

Workshop on FPGAs for Custom Computing Machines, 1993.
[20] Robert Ryan McCune, Tim Weninger, and Greg Madey. Thinking like a

vertex: a survey of vertex-centric frameworks for large-scale distributed
graph processing. ACM Computing Surveys, 2015.

[21] Hongyu Miao, Myeongjae Jeon, Gennady Pekhimenko, Kathryn S
McKinley, and Felix Xiaozhu Lin. Streambox-hbm: Stream analytics
on high bandwidth hybrid memory. Int’l Conf. on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), 2019.

[22] Eriko Nurvitadhi, Gabriel Weisz, Yu Wang, Skand Hurkat, Marie
Nguyen, James C Hoe, José F Martı́nez, and Carlos Guestrin. Graphgen:
An fpga framework for vertex-centric graph computation. IEEE Symp.

on Field Programmable Custom Computing Machines (FCCM), 2014.
[23] Tayo Oguntebi and Kunle Olukotun. Graphops: A dataflow library for

graph analytics acceleration. Int’l Symp. on Field-Programmable Gate

Arrays (FPGA), 2016.
[24] Dong-Hyeon Park, Subhankar Pal, Siying Feng, Paul Gao, Jielun Tan,

Austin Rovinski, Shaolin Xie, Chun Zhao, Aporva Amarnath, Timothy
Wesley, et al. A 7.3 m output non-zeros/j, 11.7 m output non-zeros/gb
reconfigurable sparse matrix–matrix multiplication accelerator. IEEE

Journal of Solid-State Circuits (JSSC), 2020.
[25] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher,

M Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth,
Roman Manevich, Mario Méndez-Lojo, et al. The tao of parallelism in
algorithms. ACM SIGPLAN Conf. on Programming Language Design

and Implementation (PLDI), 2011.
[26] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou,

Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-
ers, Gopi Prashanth Gopal, Jan Gray, et al. A reconfigurable fabric for
accelerating large-scale datacenter services. Int’l Symp. on Computer

Architecture (ISCA), 2014.
[27] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou,

Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song, et al. Going deeper
with embedded fpga platform for convolutional neural network. Int’l

Symp. on Field-Programmable Gate Arrays (FPGA), 2016.
[28] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: Edge-

centric graph processing using streaming partitions. Symp. on Operating

Systems Principles (SOSP), 2013.
[29] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and

M Tamer Özsu. The ubiquity of large graphs and surprising challenges
of graph processing. Int’l Conf. on Very Large Data Bases (VLDB),
2017.

[30] Julian Shun, Laxman Dhulipala, and Guy E Blelloch. Smaller and
faster: Parallel processing of compressed graphs with ligra+. The Data

Compression Conf. (DCC), 2015.
[31] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru

Zhang. Matraptor: A sparse-sparse matrix multiplication accelerator
based on row-wise product. Int’l Symp. on Microarchitecture (MICRO),
2020.

[32] Zeke Wang, Hongjing Huang, Jie Zhang, and Gustavo Alonso. Shuhai:
Benchmarking high bandwidth memory on fpgas. IEEE Symp. on Field

Programmable Custom Computing Machines (FCCM), 2020.
[33] Carl Yang, Aydin Buluc, and John D Owens. Graphblast: A high-

performance linear algebra-based graph framework on the gpu. arXiv

preprint arXiv:1908.01407, 2019.
[34] Peter Yiannacouras, J Gregory Steffan, and Jonathan Rose. Exploration

and customization of fpga-based soft processors. IEEE Trans. on

Computer-Aided Design of Integrated Circuits and Systems (TCAD),
2007.

[35] Jason Yu, Guy Lemieux, and Christpher Eagleston. Vector processing
as a soft-core cpu accelerator. Int’l Symp. on Field-Programmable Gate

Arrays (FPGA), 2008.
[36] Jialiang Zhang, Soroosh Khoram, and Jing Li. Boosting the performance

of fpga-based graph processor using hybrid memory cube: A case for
breadth first search. Int’l Symp. on Field-Programmable Gate Arrays

(FPGA), 2017.
[37] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Amaras-

inghe, and Matei Zaharia. Making caches work for graph analytics.
IEEE Int’l Conf. on Big Data, 2017.

[38] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil,
Julian Shun, and Saman Amarasinghe. Graphit: A high-performance
graph dsl. Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA), 2018.
[39] Shijie Zhou, Charalampos Chelmis, and Viktor K Prasanna. Accelerating

large-scale single-source shortest path on fpga. Int’l Parallel and

Distributed Processing Symp. Workshops (IPDPSW), 2015.
[40] Shijie Zhou, Charalampos Chelmis, and Viktor K Prasanna. Optimizing

memory performance for fpga implementation of pagerank. Int’l Conf.

on ReConFigurable Computing and FPGAs (ReConFig), 2015.
[41] Shijie Zhou, Rajgopal Kannan, Viktor K Prasanna, Guna Seetharaman,

and Qing Wu. Hitgraph: High-throughput graph processing framework
on fpga. IEEE Trans. on Parallel and Distributed Systems (TPDS), 2019.


	Introduction
	Background
	GraphBLAS
	Why HBM?

	System Overview
	GraphLily Overlay Design
	SpMV Accelerator
	Sparse Matrix Storage Format
	Accelerator Architecture

	SpMSpV Accelerator
	Sparse Matrix Storage Format
	Accelerator Architecture


	GraphLily Middleware Design
	Implementation
	Evaluation
	Experiment Setup
	Evaluation of Single Kernels
	Evaluation of Graph Algorithms

	Related Work
	Conclusion
	References

