
Distilling Arbitration Logic from Traces using Machine

Learning: A Case Study on NoC

Yuan Zhou
Cornell University

Ithaca, USA

yz882@cornell.edu

Hanyu Wang†
Shanghai Jiao Tong University

Shanghai, China

whynull@sjtu.edu.cn

Jieming Yin
Lehigh University

Bethlehem, USA

yin@lehigh.edu

Zhiru Zhang
Cornell University

Ithaca, USA

zhiruz@cornell.edu

Abstract— Arbitration logic is extensively used in modern computer

architectures to dynamically determine how shared hardware resources

are allocated or accessed. Recent work has shown that machine learning

techniques can learn non-obvious yet effective arbitration policies, which

in simulation demonstrate superior performance over human-designed

heuristics. However, existing methods based on deep learning are too

expensive to be directly implemented as an arbitration unit in hardware.

While some prior efforts managed to manually analyze and reduce a deep

learning model into relatively small circuits in certain cases, such ad hoc

and labor-intensive approaches cannot easily generalize. In this work,

we propose a new methodology to automatically “distill” the arbitration

logic from simulation traces. Starting by training a deep learning model,

we leverage tree-based models as a bridge to convert the more complex

model to a compact logic implementation. This paper presents a case

study of the proposed methodology on a network-on-chip port arbitration

task. Compared with an array of combinational multipliers that exactly

computes the neural network output, our arbitration logic achieves up to

581x area reduction without significant performance degradation. Under

the training traffic, our arbitration logic achieves up to 91x reduction in

average packet latency and up to 5% increase in network throughput

over the FIFO arbitration policy. The distilled arbitration policy is also

able to generalize to different injection rates and traffic patterns.

Index Terms—Network-on-Chip, Machine Learning

I. INTRODUCTION

Resource sharing is common in modern computer systems to

balance performance and hardware cost. In order to maximize

utilization and achieve high performance, the hardware needs to

frequently make arbitration decisions to allocate access to shared

resources on the fly. The design of an effective arbitration unit

often involves intricate trade-offs amongst performance, area, and

power. Traditionally, such arbitration policies and circuits are almost

exclusively designed by humans. However, as modern computer

architectures become increasingly complex and heterogeneous, it is

much more difficult for humans to devise efficient heuristics that can

account for information from various parts of the system.

The recent advances in machine learning (ML) provide an op-

portunity to overcome this challenge. Using ML techniques, an

effective heuristic can be learned by the model from a sufficient

amount of data. Early attempts along this line investigated perceptron

branch predictors [7], [11] and memory controllers using table-based

reinforcement learning algorithms [10], [17]. More recently, there

is an emerging trend of applying deep learning (DL) to tackle the

decision making problems in computer architecture, such as cache

replacement [22], [23], prefetching [8], [31], network-on-chip (NoC)

packet arbitration [30], and NoC dynamic frequency-voltage scal-

ing [32]. In many cases, DL techniques have been shown to achieve a

superior performance in simulation. However, it is not always feasible

to directly use a DL accelerator as an arbitration unit due to its high

overhead in both latency and area. As a result, feature engineering and

manual analysis of neural network models are necessary to convert

†This work was performed while Hanyu was a (remote) research intern
with Cornell University.

Simulation 

Traces

DNN Model

Tree-Based 

Model

Combinational 

Logic

Not directly labeled

RL training

Input collection

Output quantization

Labeled

Supervised training

Regularization

Weight quantization

Fig. 1: Proposed flow of distilling logic from traces. For supervised

tasks, tree models can be directly trained from simulation traces. This

paper focuses on converting deep learning models to circuits.

DL models to affordable arbitration logic implementations. While

such manual conversion is effective for small neural networks, it

quickly becomes intractable when the model becomes complicated

and hard to interpret. A fully automated conversion step is therefore

needed to fill the missing link of applying DL to arbitration problems

in computer architecture.

In this work, we propose to tackle this challenge by leveraging tree-

based models as a bridge between neural network models and circuit

implementations. Figure 1 outlines the proposed approach, where

tree-based models are trained using the outputs of a pre-trained DL

model. Since tree models can be easily converted to circuits, the ar-

bitration logic can be directly “distilled” from simulation traces. This

flow is very suitable for learning arbitration logic because arbitration

policies can be effectively learned using deep reinforcement learning.

Under this scenario, labels are not available during the training

process, and the DL model learns to predict the potential reward

(or priority score) of each legal action. In such cases, converting DL

models into tree models improves the interpretability of the learned

policy, because designers can examine the tree models and check

whether the policy complies with their experience. Depending on the

exact problem setup, CART trees [3], random forests [9], or model

trees [13] can be used to approximate the output of the DL model.

We believe our approach can potentially be applied to many

decision-making problems in computer systems. In this work, we

focus on on-chip networks and present a detailed case study on the

NoC arbitration problem. NoC arbitration is a well-defined problem,

and a good arbitration policy is critical for fairness, bandwidth uti-

lization, and performance [14], [21]. In addition, the arbitration logic

in a NoC router is subject to stringent area and latency constraints, so

it is necessary to generate efficient and high-performance arbitration

logic. Our major technical contributions are threefold:



• We are the first to propose a methodology for automatically

generating compact, application-specific arbitration logic from

simulation traces.

• We present a case study on NoC packet arbitration and compre-

hensively analyze the learned arbitration policy. Specifically, we

found that linear model trees are very suitable for this task and

can be converted to compact arbitration logic.

• The learned arbitration policy achieves up to 91× reduction in

average packet latency and 4.9% increase in network throughput

over the FIFO arbitration policy on the training traffic, and is

able to generalize to different injection rates and traffic patterns.

Compared with the DL agent, the generated arbitration logic

achieves comparable performance with up to 581× area reduction.

II. RELATED WORK

Many critical problems in computer architecture can be effectively

solved using ML. One of the most well-known applications of ML

in computer architecture is probably the perceptron branch predictor,

where a set of perceptrons are continuously updated during CPU

execution to make accurate predictions [11]. Similar ideas are later

applied to cache replacement [24] and prefetching [2]. Another line of

research focuses on using reinforcement learning (RL) to solve typical

arbitration problems, including memory request scheduling [10],

NoC routing policy [6], and cache prefetching [20]. These works

implement their RL agents using Q-tables stored in memories, and

the content of the memories are updated at run time to adapt to

different workloads. The size of the Q-tables is subject to area and

power constraints, which limits the complexity of the policies these

approaches can learn.

With the development of deep learning, recent works explore the

opportunity of applying deep learning techniques to computer archi-

tecture. Hashemi et al. performed a pure theoretical study of applying

long-short term memory (LSTM) to cache prefetching [8]. Zeng et al.

explored a similar idea, but embedded a small LSTM accelerator into

the prefetcher to perform online training and inference [31]. Shi et al.

proposed an LSTM-inspired cache replacement policy implemented

as a support vector machine, where the hardware implementation

and feature representation are designed after carefully examining the

attention coefficients of the LSTM [23]. Zheng et al. proposed to

use deep Q-Networks (DQN) for dynamic frequency-voltage scaling

(DVFS) in a NoC [32]. The latency of the neural network accelerator

is tolerable because the DVFS decisions are made infrequently. Yin

et al. presented a detailed case study on using DQN to learn a NoC

arbitration policy [30]. By analyzing the weights of the trained neural

network and incorporating domain knowledge, the authors were

able to implement effective arbitration policies with small hardware

overheads. Similarly, Sethumurugan et al. derived a cost-effective

cache replacement policy from DQN by manually analyzing the

trained neural network [22]. Notice that when implementing the DL

model as hardware, existing works either directly use an expensive

accelerator, or require extensive manual analysis and optimization to

derive a compact hardware implementation. Our work proposes an

automated approach to generate arbitration logic from data, which

contains a core step of converting a DL model to logic. Specifically,

our case study shows how the proposed approach generates efficient

arbitration logic with a setup similar to [30].

While our approach distills circuits from data and deep learning

models, another relevant line of research focuses on efficient hard-

ware implementation of deep neural networks. LUTNet [27] provides

an efficient way of implementing binarized neural networks [5] on

FPGAs by heavy pruning, fine-tuning, and directly mapping the

XNOR gates in the network to look-up tables (LUTs). LogicNets go

one step further by implementing the accumulation and activation

functions also as LUTs [26]. These techniques are designed for

mapping low-precision networks onto FPGAs, while our approach

maps full-precision networks to ASICs.

III. BACKGROUND

A. NoC Arbitration

In a NoC, routers are interconnected through links. A NoC router

consists of multiple input and output ports. Within each input port,

one or more virtual channels (VCs) are used to store incoming pack-

ets. NoC arbitration occurs when packets from multiple input VCs

compete for the same output port. The arbitration logic determines

which VC is given the priority to use the output port upon contention.

NoC arbitration policy is critical for the network’s performance — a

good policy provides better fairness and achieves low packet latency

as well as high network throughput, while a sub-optimal policy could

buffer an old packet in the network for a long time, resulting in poor

network performance. Round-robin arbitration is a commonly used

policy that guarantees fairness in scheduling by treating each input

port and input VC equally. However, it only considers local fairness

for individual routers, and therefore provides insufficient equality

of service (i.e., link bandwidth allocation becomes more unfair the

longer the routes are). Global-age-based arbitration prioritizes the

packet with the oldest age, thereby providing global fairness and

reducing the variance in packet transit time. Although global-age-

based policy is considered one of the best policies, its hardware cost

is largely impractical for use in on-chip routers [30].

NoC arbitration is a well-defined problem suitable for RL. Yin et

al. presented a case study on learning NoC arbitration policy with

RL, where the RL agent predicts a priority score for each packet

based on information including the packet’s local age, payload size,

and traversed hop count [30]. Since the input space of the RL agent

is concise, it is easier to analyze and understand why the agent makes

a certain decision. In this paper, we use a similar setup to evaluate

and analyze the arbitration logic generated by our approach.

B. Reinforcement Learning

Reinforcement learning is an ML technique commonly used for

decision making problems. During training, the agent interacts with

the environment by observing the environment’s states and immediate

rewards, and learns a policy that maximizes the long-term cumulative

reward. A numerical, scalar reward is returned by the environment for

every action performed by the agent, which is then used by the agent

to update its policy. The agent observes abundant data during training

through repeated interaction with the environment. Although it is not

guaranteed to cover all corner cases, the important common cases

will likely be covered by running a sufficient number of episodes.

A popular reinforcement learning algorithm is Q-learning [28].

In Q-learning, the agent tries to learn a Q-value Q(s, a) for each

state-action pair (s, a), where Q(s, a) corresponds to the cumulative

reward of performing action a under state s. Traditionally, when the

state space and action space are limited, a Q-table can be used to

store the learned Q-values. When the state space becomes large,

deep Q-learning [16] provides a more tractable solution, where a

neural network agent is trained to predict the Q-values. While the

neural network agent in deep Q-learning performs a regression task

of predicting the Q-values, it can also be treated as a classifier because

the policy always selects the action with the highest predicted reward

after being deployed. When converting the agent to logic, the more

hardware-friendly view should be selected. In our case study, we



consider the agent as a regressor and use an additional select-max

unit to choose the best action.

C. Tree-Based ML Models

Tree-based ML models approximate the target function by repeat-

edly partitioning the input space. Common tree-based models include

decision trees [3], random forests [9], gradient boosted trees such as

XGBoost [4], and model trees [13]. In this paper we focus on decision

trees and linear model trees, because these models can be efficiently

implemented in hardware with proper regularization and quantization.

During training, a decision tree or linear model tree is gradually

“grown” by repeatedly partitioning the training data. At the root node,

all the training data is analyzed and a certain gain function is com-

puted to find the best split that maximizes the gain. For classification

problems, the difference of gini impurity or mutual information are

common gain functions, while for regression problems the mean-

squared error between the predictions and ground-truth labels can be

used. After the training data is split into two partitions, the same

process is repeated at the children of the root node, where each

child node only considers one partition of the data. This procedure

is applied recursively until the splitting condition is not met. In this

case, the node where the partitioning process terminates is a leaf

node, and a function is used to fit all training data that arrives at this

node. For decision trees this function is constant, while for linear

model trees this function is a linear function with respect to the input

features. As a result, decision trees naturally learn a step function,

while linear model trees learn piecewise linear functions. The linear

models at the leaves of linear model trees can be fit using common

linear regression or classification techniques. In this work we use

LASSO linear regression [25] to minimize the number of features

used at each leaf node.

IV. DISTILLING ARBITRATION LOGIC FROM DATA

In this section, we introduce the details of our logic distillation

process. As shown in Figure 1, starting from running simulation, the

RL agent is trained to perform arbitration. After the agent learns

an effective policy, the corresponding tree model is trained using

the agent’s outputs as labels, and the trained tree model is then

converted to combinational logic. The area, power, and timing of

the generated arbitration logic can be evaluated by ASIC tools, while

the performance is evaluated through software or RTL simulation.

A. Step 1: Learning an Arbitration Policy

Arbitration policies in computer systems can generally be learned

using RL techniques. We use NoC arbitration as a concrete example

to introduce the key steps of feature construction and training. Similar

approaches should apply to other problems in computer systems.

We use DQN to learn an arbitration policy for NoC routers. Fig-

ure 2 shows the architecture of routers in our simulation framework,

where the same agent is shared by all VCs and all routers. Upon

arbitration, each candidate VC queries the agent and the agent returns

a priority score. Similar to [30], the agent uses four features of the

packet to make predictions: 1) local age, i.e., amount of time the

packet spent at the local router where arbitration takes place; 2)

payload size, i.e., size of the packet in bytes; 3) hop count, i.e.,

number of hops the packet has traversed so far; and 4) distance, i.e.,

number of hops between the current and destination nodes. These

features are integers of fixed bit widths, and are normalized to the

range of [0, 1] when training the neural network agent. At every

output port, the priority scores of the VCs that are not requesting

this port will be masked with zeros, and the output port is granted

VC 0

Agent

Local Age

Payload Size

Hop Count

Distance

Priority 
Score

… … …

Select 

Max
Selected 
Input VC

Output Port M

Target Output Port =

M

0

VC N

Agent

Target Output Port =

M

0

Local Age

Payload Size

Hop Count

Distance

Priority 
Score

Fig. 2: Architecture diagram for router arbitration.

to the VC with the highest priority score 1. The agent is given a

reward of one if it correctly selects the globally oldest packet that is

requesting a specific output port, otherwise a reward of zero is given.

While our reward function optimizes for network latency, designers

can emphasize other QoS metrics by tuning the reward function.

For example, assigning rewards based on router buffer occupancy

emphasizes resource utilization. Through RL, the agent will learn

different policies depending on the reward functions, which will result

in different circuit implementations. The collected simulation trace

contains tuples of 〈current state, action, next state, reward〉, and

is added to a large replay memory. The weights of the agent are

periodically updated by training on randomly sampled data from the

replay memory. Please refer to Section V for more details on the

hyperparameters and training dynamics.

B. Step 2: Selecting the Tree Model

As introduced in Section III-C, decision trees and linear model

trees are of particular interest in our approach because they can be

easily converted to logic. However, these two types of models in-

trinsically learn different types of functions: decision trees learn step

functions, while linear model trees learn piecewise linear functions.

Modern neural networks with ReLU activation functions approximate

any arbitrary target function using piecewise linear functions, so

linear model trees might be a better fit for approximating the outputs

of these neural networks. On the other hand, decision trees are more

suitable for very nonlinear target functions.

Because linear model trees learn a linear function at each leaf node,

they can represent more complicated functions than decision trees at

equal depth. As a result, when implementing the same piecewise

linear function, linear model trees will be shallower and can be

implemented in hardware with potentially smaller area budget (more

details in Section V-A).

C. Step 3: Generating Implementable Logic

The logic generation process starts by training a tree model that

approximates the output of the neural network agent. Decision trees

and linear model trees must be trained in a supervised manner. As

a result, a set of inputs must be collected, and the predicted scores

from the neural network agent are used as labels. If the number of

1For multi-priority traffic, the arbiter selects the “best” packet within each
priority level. With additional logic to enforce proper priority ranking, our
methodology can accommodate this scenario without any major changes.








