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INTERFACE DYNAMICS FOR AN ALLEN-CAHN-TYPE
EQUATION GOVERNING A MATRIX-VALUED FIELD*

DONG WANGT, BRAXTON OSTING', AND XIAO-PING WANGH

Abstract. We consider the initial value problem for the generalized Allen—Cahn equation,
h® = A® — e 29(®'D — 1), x € Q, t > 0, where ® is an n X n real matrix-valued field, Q is a
two-dimensional square with periodic boundary conditions, and € > 0. This equation is the gradient
flow for the energy, E(®) := [ %HVCIDH% + éH@tq) —I||%, where || - || p denotes the Frobenius norm.
The primary contribution of this paper is to use asymptotic methods to describe the solution of this
initial value problem. If the initial condition has a single-signed determinant, at each point of the
domain, at a fast O(¢~2t) time scale, the solution evolves towards the closest orthogonal matrix.
Then, at the O(t) time scale, the solution evolves according to the O,, diffusion equation. Stationary
solutions to the O, diffusion equation are analyzed for n = 2. If the initial condition has regions
where the determinant is positive and negative, a free interface develops. Away from the interface,
in each region, the matrix-valued field behaves as in the single-signed determinant case. At the O(t)
time scale, the interface evolves in the normal direction by curvature. At a slow O(et) time scale,
the interface is driven by curvature and the surface diffusion of the matrix-valued field. For n = 2,
the interface is driven by curvature and the jump in the squared tangental derivative of the phase
across the interface. In particular, we emphasize that the interface when n > 2 is driven by surface
diffusion, while for n = 1, the original Allen—Cahn equation, the interface is only driven by mean
curvature. A variety of numerical experiments are performed to verify, support, and illustrate our
analytical results.
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1. Introduction. We consider the initial value problem for the generalized
Allen—Cahn equation,

QA =AA—c2AATA—I), z€Q t>0,

(1.1) A(t =0,z) = Ap(x),

where A(t,z) € M(n) is a real matrix-valued field and € > 0 is a small parameter. For
simplicity, we take the domain € to be a two-dimensional square, [—~1/2,1/2]?, with
periodic boundary conditions. It is not difficult to show that (1.1) is the L? gradient
flow for the energy,

1 1
(12)  E(A) ::/Q§||VAH%+€_2W(A), where W(4) = 1[|4'4 ~ 1|},

and || - || denotes the Frobenius norm. Roughly speaking, for € small, the solution to
(1.1) is smoothed by the first term and the second term keeps the pointwise values of
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the matrix-valued field near O,,, the n x n orthogonal matrix group. This problem was
first introduced in [14] as a model problem for several applications where a smooth
matrix-valued field arises, including crystallography, where the matrix-valued field
describes the local crystal orientation and inverse problems in image analysis e.g.,
diffusion tensor MRI or fiber tractography, where it is of interest to estimate a matrix-
or orientation-valued function [13].
In this paper, we use the method of asymptotic expansion to analyze the multi-
scale behavior of the system (1.1) at different time scales.
It is clear that when n = 1, (1.1) reduces to the original Allen—Cahn equation
[1], which models the behavior of first order phase transitions. In (1.1), because the
reaction rate is large compared to the diffusion rate, the solution at each point = € 2
quickly tends to a stable equilibrium state of the reaction process, i.e., a minimum of
W (A). For the case n = 1, the local minima of W(A) are 1 and —1. There are two
cases.
(i) If Ap(x) > 0 (or Ap(z) < 0, resp.) for every z € €, then A(t, ) will tend to
1 (or —1, resp.). In this case, the effect of diffusion is to only slightly change
the rate at which the solution approaches 1 (or —1, resp.).

(ii) However, if 2, and Q_ are such that Q =Q, UQ_ and QO NQ_ = 0 with

Ao(z) >0, €y,
Ap(z) <0, ze€Q_,

then a boundary layer in the solution develops at an interface between the
two subdomains. Through a boundary layer expansion, one can show that
A(t,z) = £1 for x away from the interface and that the interface evolves in
the normal direction by its mean curvature.
We refer to [2, 3] and references therein for more details on the n = 1 case.
For n > 2, the minimizers of W (A) are elements of O,,. Recall that

On = SO, U SO;,,

where SO, denotes the special orthogonal group of the orthogonal matrices with
determinant 1 and SO, is the set of orthogonal matrices with determinant —1. In
this paper, we use matched asymptotic expansion methods [8] to show that, as in the
n = 1 case, there are two cases.
(i) If the initial condition Ag(x) has either positive or negative determinant for
each z € O, then no interface develops. We show in section 2.2 that the
O(t) time dynamics of the leading order solution satisfies the O,, diffusion
equation,

1
O B(t,z) = B (AB(t,z)B'(t,z) — B(t,z)AB(t,z)) B(t,z)
with initial condition given by
B(0,z) =1Ip, Ao(x).

Here, and throughout this paper, we use Ilp, A = argmingeo, |4 — Bl|r
to denote the closest point in the orthogonal matrix group to the matrix
A. We show in Proposition 2.2 that the leading order solution remains in
O,, pointwise for all time ¢ > 0. We discuss stationary solutions to the O,,
diffusion equation in section 2.3.
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(ii) In the second case, the initial condition Ag(z) satisfies

det(Ap(z)) >0, =€y,
det(Ap(z)) <0, xze€N_,

for Q2 and Q_ satisfying Q = Q, UQ_ and Q. NQ_ = (. In this case, when z
is away from the interface, the behavior is similar to the first case. We derive
a motion law for the interface at two time scales. At the O(t) time scale, the
interface evolves in the normal direction by curvature, as in the n = 1 case;
see section 3.1. At a slow O(et) time scale, we show in section 3.2, for general
n, that the interface is driven by the surface diffusion of the matrix-valued
field and the curvature. For n = 2, in Proposition 3.3, we show that the
surface diffusion term can be written as the jump in the squared tangental
derivative of the phase across the interface.
In particular, we emphasize that the interface when n > 2 is driven by surface
diffusion, while for n = 1, the original Allen—Cahn equation, the interface is
only driven by mean curvature.

The results obtained via asymptotics are verified, supported, and illustrated in sec-

tion 4 through a wide variety of numerical experiments.

The model (1.1) considered in this paper can be viewed as a special case of the
general model studied in [11]. In [11], an energy of the form in (1.2) is considered for
high-dimensional, vector-valued functions and general assumptions on the potential
W. General results for the phase transition of stationary solutions between minima
of W are derived. In the present paper, we consider time dynamics for our specific
model.

Outline. This paper is organized as follows. In section 2, we derive the behavior
of the matrix-valued field satisfying (1.1) if the initial field, Ag(x), only takes values
in SO,, or SO,,. In section 3, we discuss the case when an interface develops between
subdomains where det(A(z,t)) > 0 and det(A(x,t)) < 0. We develop a boundary
layer around the interface and derive the motion of the interface at different time
scales. Some numerical experiments are performed in section 4. We conclude with a
discussion in section 5.

2. Evolution of an initial matrix-valued field with single-signed deter-
minant. In this section, we discuss the case where the initial matrix-valued field,
Ag(x), is continuous and has positive determinant at each point x € Q. The case
where Ag(z) has negative determinant everywhere is analogous. In this case, there is
no interface appearing in the dynamics of the system. We consider the asymptotic
expansion

A= /_10 + 5/_11 + 62142 + 0(62)

and the initial condition A(t, z)|t=0 = Ao(x), which we assume to appear at the O(1)
scale. Then, we expand the nonlinear term on the right-hand side of (1.1),

A(ATA—T) = Ag(AjAg — ) + e(Ao Ah Ay + AgAL Ao + Ay AjAg — Ay) + 2 (Ap Ah Ay
(21) + Aoz‘ié[lo + A2A6AO + AOA§A1 + 12111216;11 + 12111213/710 — 1212) + 0(62).

We take two time scales: t and a fast time scale 7, := ¢~ 2¢ and write

Ai:/L(IE,t,Tl), Z:LQ
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We have 9; = 720, and
(22) Ot A = 6_287—1 /Io + 8_187—1 /11 + (971 AQ + atAO + 0(1)

We insert our ansatz into (1.1) and collect terms at each order in . Using (2.1)
and (2.2) in (1.1) yields

(2.3) e720,, A0+ 0, AL +o(e7 )
= 5721210(1461210 — I) + 871(1401216141 + AOA%A() + AlzzlgAO — Al) + 0(671).

2.1. Behavior at the O(e~2t) time scale. Collecting O(¢~2) terms in (2.3)
yields

(2.4) 0,, Ao = Ag(AbAg - T).

For n = 1, it is well known that the solution of (2.4) approaches 1 if the initial
value is positive and approaches —1 if the initial value is negative as 7 — co.

For n > 2, at each point x € Q, as 71 — o0, the solution of (2.4) approaches a
matrix in SO, if the initial matrix has a positive determinant and approaches a matrix
in SO,; if the initial matrix has a negative determinant, as shown in the following
lemma.

LEMMA 2.1. For the dynamic system
0;B = B(B'B—1I),
B(t=0)= By

for a nonsingular initial n X n matric By (n > 2), as t — oo, the solution B(t)
approaches the nearest orthogonal matriz to By in the sense of the Frobenius norm,
written o, By.

Proof. Write the singular-value decomposition of By as By = UXo V', where the
diagonal values of ¥y are denoted by og; (i € [n]). Since the right-hand side of the
equation can initially be written as U(XqX§30 — X0)V?, the solution B(t) also admits
a singular-value decomposition with the same U and V. Then, we can write the
dynamic system as

U@ D)Vt =U(2X'Y — D)VE
For each diagonal element o; (i € [n]) in 3, we have d;0; = 0 —0;. Since the ¢;(0) > 0
for ¢ € [n], we have o;(t) — 1 as t — oco. That implies, as t — oo, B(t) approaches

UV, which is the closest orthogonal matrix to By; see, e.g., [14, Lemma 1.1]. 0
Collecting O(e~1) terms in (2.3) yields
(2.5) 00, Ay = AgAL Ay + AgAl Ay + Ay AL Ay — A,

Since A;(0,x) = 0, we have

Al (7—17 :E) =0
is the solution to (2.5).

2.1.1. Summary of the behavior at the O(¢~2t) time scale.

1. If the determinant of the initial matrix-valued field is positive for all € §2, the
leading order matrix Ay(71, ) at each point approaches the closest orthogonal
matrix in SO,,. If the determinant of the initial matrix-valued field is negative
for all z € €, the leading order matrix Ay(71,x) at each point will approach
the closest orthogonal matrix in SO, .

2. The second order matrix 14_11(7'1, x) is 0 for any 71 > 0 and x € Q.
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2.2. Behavior at the O(t) time scale. Using (2.1) and (2.2) in (1.1), we have
at the time scale O(t),

QAo+ o(1) = e 2Ag(ALAg — I) + e (AgA§ AL + AgAL Ay + A1 AL Ag — Ay)
(2.6) + (A Ab Ay + Ao A Ag + Ap A Ag + Ap AL Ay + Ay Af Ay + A, AL A,
— AQ + AA()) + 0(1)
Collecting O(e~2) terms in (2.6) yields
Ao(AL Ay — 1) = 0.

Since Ay is nonsingular, this implies that
(2.7) Atdg =1 = AgAl,.
This means that at each point z € €, for any nonsingular initial matrix field, the
leading order Ay immediately approaches a matrix field with values in O,,. This can
be interpreted as the long time behavior of the dynamics at the time scale O(e~2t).

Collecting O(e~1) terms in (2.6), we obtain

A0A6A1 + AoAtIAQ + ALABAO — A1 =0.

This is also consistent with the solution A;(t,z) = 0 at the O(¢~2t) time scale.
At O(1) in (2.6), we obtain

(2.8a)
Ay = AAy — As(AfAg — I) — Ay (A)A; + AT Ag) — Ag(AjAs + AL Ag + AT Ay)
(2.8b) = AAg— (Ay + AgALAy),

where we have used the fact A; = 0. We now take the derivative of (2.7) and use
(2.8b) to obtain

0 = A48, A) + (9, A0)" Aq
= AL(AAy) — Ab(Ay + AgAbAg) + (AAg) Ag — (A + ALALAL) Ay,

Using (2.7) and rearranging, we obtain

ALAy + ALAy = = (AL(AAY) + (AAy)' Ay) |

N | =

Multiplying on the left by Ag and using (2.7), we insert this back into (2.8b) to obtain

_ 1 _ 1 - _ _
(2.9&) (%A() = iAAO — §A0(AA())tA0
1 - _ _ _
(2.9b) =5 (AAg Al — Ag(AAy)!) Ap.

The following proposition shows that if initially 9,4y is in SO,, pointwise, then it will
remain there for all time ¢ > 0.
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PROPOSITION 2.2. We consider the initial value problem for the O, diffusion
equation,
(2.100) 0,B(1z) = % (AB(t,2)B'(t,x) — B(t,2)AB(t,)) B(t,x),
(2.10b) B(0,z) = Bo(x),
where By: Q — O, is given. Then B(t,x) € O,, for allt > 0.
Proof. We compute
9,(B'B) = (0, B)'B + B'(9,B)

1
2

+ %Bt(t, ) (AB(t,z)) — %Bt(t, 2)B(t,z) (AB(t,z))' B(t,z)

(AB(t,2))" Blt,) — 3 B(t,) (AB(1,2)) B(t, ) B(t, )

=0. |

Remark 2.3. We refer to (2.9) and (2.10) as the O,, diffusion equation because it
can be obtained from the diffusion equation for a matrix-valued field when the matrix
is constrained to be Op-valued. That is, introducing a Lagrange multiplier for the
constraint and then solving for it yields precisely this equation.

Remark 2.4. For n = 2 and the ansatz,

Bla.t) = (cos n(z,t) —sinn(z, t)) 7

sinn(xz,t) cosn(x,t)

we compute
_ [ sinn(x)  cosn(z)
9, B(z,t) = (— cosn(z) sinn(x) oem
and

—cosn(x) sinn(z)
We conclude that B(z,t) satisfies the orthogonal diffusion equation (2.10) if 1, = An.
The spherical diffusion equation is given by

¢ = Ao+ [Vo|*9;

see, e.g., [9]. Making the ansatz ¢(z,t) = €*?) we find that 7, = An. Thus, we
conclude that the n = 2 orthogonal diffusion equation (2.10) with initial condition
taking values in SO, is equivalent to the spherical diffusion equation. Due to this
connection, we refer to n = n(x,t) as the phase of the matrix-valued field, B(x,t).

2.2.1. Summary of the behavior at the O(t) time scale.
1. The leading order solution Ay take values in the orthogonal matrix group for
all time.
2. The second order solution is A; = 0.
3. The time dynamics of Ag is governed by the O,, diffusion equation,

AB — B(AB)'B = —2 ( sinn(z) COSW)) An.

0, Ao (t, 7) = % (Ao (t, 2) ALt 2) — Ao(t, ) AAL(E, 2)) Ao(t, @),
/_10 (0, .’[7) = HO" Ao (CL‘)

Here the initial condition is pointwise the closest point to Ag(z) in O,.
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2.3. Harmonic orthogonal matrix-valued fields. In this section, we con-
sider stationary solutions of the O, diffusion equation (2.10), which we refer to as
harmonic orthogonal matriz-valued fields, satisfying

(2.11a) (AB)'B — B'(AB) =0,
(2.11b) B'B=1.
Note that (2.11a) just states that (AB)!B is a symmetric matrix.

For n = 1, the only solutions are B = +1.
For n = 2, for unknown phase n: Q2 — R, we consider the SO,, ansatz,

(2.12) B(z) = (;OI?Z((Q tzzlsnnr(]g)) '

We compute

Ap - (—sinnAn— cosn|Vnl?  —cosnAn + sinn|Vn|?
—\ cosnAn —sinn|Vn|?  —sinnAn — cosn|Vn|?

and

—[Vn[?  Apg >
AB)B = (V1 .
(AB) < —An |Vl

We observe that (AB)!B is symmetric if and only if Anp = 0. We conclude that there
exists a family of harmonic SO,-valued fields on the torus of the form (2.12) where
the phase is given by

(2.13) n(x1,x2) = 2m(nyz1 + N2Za), ni, Ny € Z.

Several numerical experiments are performed in section 4.2.1 to show that such fields
are stationary for (1.1) and to investigate what happens if perturbations of such fields
are taken as initial conditions.

3. Evolution of an O,,-valued initial field. We consider an initial condition
Ap(x) of (1.1) that satisfies

(3.1) {det(Ao(x)) >0, zeQ,

det(Ap(z)) <0, z€Q_,

for Q4 and Q_ satisfying Q =Q, UQ_ and Q. NQ_ = 0.

Denote I' = Q; N Q_ and assume I'(¢) is a finite collection of simple, closed,
smooth curves in R? so that we can find a parametric representation, at least locally,
of the form

L(t) ={3(s,t): s € R}, F(s,t) = (01(5,1), pa(s, 1))
We assume s to be the arc-length parameter so that we have

. 9 oT oR =
T = — _— = — n —_— = T
0s’ Os A s R

where T denotes the unit tangent vector, 77 denotes the unit outer normal vector, and
 denotes the curvature (see Figure 1 for a diagram on the unit outer normal vector).
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Outer layer

Quter layer

Inner layer

FiG. 1. Diagram for the unit normal vector and unit tangent vector for I'. See section 3.

We introduce local coordinates near I' as follows. We assume that for every point
2 in a neighborhood of T, there is a unique point J(s,t) which is the orthogonal
projection of x onto I'(t). We then define a unique normal signed distance p(z,t)
from z to I'(t), p(x,t) = (x — @) - i. We have a transformation from (z,t) to (s,r,)
defined by

(3.2) x = @(s,t) +rii(s,t),

where r = p(x,t). We summarize several identities for the transformation from (z,t)
to (s,r,t) in the following lemma. A proof of this lemma can be found in [6].

LEMMA 3.1. For the transformation rule defined in (3.2), we have the following
equalities:

1.The normal velocity of T' at J(s,t) is given by ¥ -7 = —%.
__1 5 _ 9 1

3. Ver=mn, Apr = Trom-
4. For any function u(x,t) = a(s,r,t),
1 o’u  0*a Kk 0u T Ok 0u
A= —— o —— )
(14+rk)20s2  0r2  1+rkor (1+7rk)3 0s ) 0Os

Below, we study the inner layer expansion to study the behavior around the
interface at the time scales O(t) and O(et).

3.1. Behavior at the O(t) time scale. At the O(¢) time scale, when z is away
from the interface I', the behavior exactly reduces to the case studied in section 2.2.
That is corresponding to the outer layer expansion for the system (1.1). We don’t
repeat the calculation and refer the results to the summary in section 2.2.1.

The inner expansion requires rescaling the normal coordinate by z = £. Assume
the expansion of @(s,t) and k are

(3.3) B(s,t) = Fo(s,t) +ei(s,t) + *Fa(s,1) + 0(e?),
(3.4) K= ko +er1 + e%rg + o(e?).

Writing A, in terms of (s, z) using (3.4) yields
(3.5) A, =720, + e k0. + (055 — (263 — K1)0.) + o(1).
Consider the expansion

(3.6) Az, t) = A(s, z,t) = Ag(s, 2,t) + €A1 (s, 2,t) + €2 Ay(s, 2, 1) + 0(?)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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and write
P _,0r

D5 A(s,2,t) + e 1 =0, A(s, 2, 1).

(3.7) O A(x,t) = D, A(s, 2, t) + 9s o

ot
Similarly to (2.1), we have
AR A — 1) = Ag(At Ao — 1) + e( Ao AL Ay + Ag At Ay + Ay AL Ay — Ay) + c2(Ao AL Ay
(3.8) Ao Al Ao+ Ay Al Ao + AgAl Ay + Ay AL Ay + Ay AL Ag — Ay) + of=2).
Substituting (3.5), (3.6), (3.7), and (3.8) into (1.1) yields

(3.9)
or
-1
T
=72 (0240 — Ag(Ahdo - 1))

0, Ag +o(e™h)

7 (kods Ao + 0. A1 — (Ao Ab Ay + Ao Al Ao + A1 A Ao — A1) +o(e7).
Collecting the O(¢72) terms in (3.9), we obtain
(3.10) 0..Ag — Ag(Ab Ay — 1) = 0.
Matching the outer expansion gives the boundary conditions

(3.11) lim Ay = A),

z—+oo

where A} € O,. Note that (3.10) is independent of s and thus we solve (3.10) for
each s independently. For n = 2, the following proposition gives the explicit solution
to (3.10) with the boundary conditions in (3.11).

PROPOSITION 3.2. The solution to the second order differential equation for the
2 x 2 matriz field, B: R — M(2),

d*B

5 =B(B'B-1),
. _ |cos(n=)  sin(n-) >
Hm, B(=) = [sin(Z-) —coszn—)} =50
. ~ eos(ny) sin(n4.)
Jim B(z) = [sin(m-) cos(n+) } €50

is given by

_ [eose) —sin)] |1 0 feos(&)  —sin(&)]”
B(z) = sin(&;) cos(fl)} [O tanh (% ] {Sin(gg) cos(&) |

where & = "’;ﬂ” and & = =51+

Proof. The proposed solution takes the form B(z) = U; DUE, where U, for i = 1,2
are matrices in SOs that are independent of z and

P lb ()
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3

is a diagonal matrix. Since o(z) = tanh(%) satisfies 0,,0 = 0® — 0, we have that

B(z) satisfies the differential equation. Using the two trigonometric identities,

cos N+ = cos &y cos s Fsinéy sinéo,

sinni = siné; coséy + cos &y sinés,

B(z) satisfies the boundary conditions as z — +oc0. 0

Hence, for n = 2, by Proposition 3.2, we explicitly get the solution for (3.10)
coupled with boundary conditions (3.11),

(3.12)  Ao(s, 21) = cos(&1) —Sin(ﬁl)} [1 0 )} [COS(&) —sin(&)]"

sin(§)  cos(&y) | [0 tanh(Z5)] [sin(&2)  cos(&) |

where & = &1(s,t) and § = &3(s,t) are determined from the phase of the outer
solution, Ag(z,t), for each s and t.
Collecting the O(e~1) terms in (3.9) yields
or

(3.13) aaZAO = KQ&ZAQ + Bzzfll — (AoAéAl + AoAﬁAO + AlAéAO - /11)

Taking the Frobenius inner product with 8, Ay on both sides of (3.13) yields

b . _ . _
(a: - no) (0. Ao, 0. Ag) p =(0.. Ay, 0. Ao)

(A AL Ay + Ao Al Ao + Ay AL Ay — Ay, 0. A0)

We integrate the above equation with respect to z from —oco to oo. Integrating by
parts, we can rewrite the first term on the right-hand side as

/ <azzﬁlaazA0>FdZ = / <AlaazzzA0>Fdza

— 00 — 00

where the boundary terms vanish because 9,Ap = 0 at z = oo from the solution
to the leading order expansion and A; = 0 in the outer layer which corresponds to
A; = 0 at z = +oo from the asymptotic matching. The second term on the right-hand
side can be rewritten as

/ (Ao Al Ay + Ao At Ao+ Ay AL Ao— Ay, 0. Ao pdz / (Ar, 0. (Ao Ab Ao — Ao)) i,

—00 — 00

where the boundary terms vanish because of A; = 0 in the outer layer. We then
obtain

(3.14)
a [e%¢) ~ ~ S - - - o~ o~ ~
(a: - HO) [m<8on,8ZAO>Fdz = /m <A1, 0: (6;2140 — (Ao A5 Ao — Ao))>F dz.
Denote
(3.15) (s = [ 10 Aol

We note that when n = 1, v is the surface tension on the interface between two
different phases [15]. Since we assume Ag € SO,, on one side of I'(t) and Ay € SO,;
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on the other, we have v(s) > 0. Using (3.10), the right-hand side of (3.14) vanishes
and we have the normal velocity is given by

’l_]}'ﬁzfﬁo.

It follows that the interface evolves according to the mean curvature flow along its
normal direction at the O(t) time scale.

3.1.1. Summary of the behavior near the interface at the O(t) time
scale.

1. The leading order solution, Ay, transitions from a matrix in SO, to a ma-
trix in SO,, in the boundary layer of the interface. It satisfies (3.10) with
the boundary conditions in (3.11). For n = 2, the leading order solution is
explicitly given by (3.12).

2. The interface moves in the normal direction by the leading order of curvature,
ie., U1 = —kKog.

3.2. Behavior at the O(et) time scale. Now, we study the behavior at the
time scale O(72), where 7 = et. Then, we have 0; = €0,,.

First, we consider the behavior when z is away from the interface I'. Consider
the expansion

(3.16) Az, t) = Ag(z, ) + Ay (x,72) + €2 Ay(2, ) + 0(e?)
and insert it into (1.1) to obtain

0(1) = 5_240(146/_10 — I) + 5_1(A0A6A1 + AoﬁﬁA_Q + A1A6AQ — Al) + (A()ABAQ
A AL Ay + Ay AL Ay + AgAt Ay + A ALA, + A AL Ay — Ay + AAy) + o(1).

Collecting the terms at different orders of € and using the behavior at the O(t) time
scale, we obtain that at the O(72) time scale,

(317) (AAo)tAO - AB(AA()) = 0, ABAO = I, Al = 0, and 1212 =0.

For n = 2, as shown in section 2.3, there is an O5 harmonic leading order matrix field,
Ap, of the form

(3.18) Ao () Efﬁff;((g)) 13325778)) ’

where the phase n(x) satisfies An = 0. Here, the signs in the second column are

chosen depending on whether z € Q, or z € Q_.
To study the behavior near the interface, we consider the expansion

(3.19) Az, t) = A(s, z, 1) = Ag(s, z,72) + €A1 (5,2, 72) + €2 As(s5, 2, 72) + 0(£?)

and rewrite (3.7) using 7o = &t to obtain

(320) atA(xv t) = 567'214(57 2, 7'2) + gﬁas/i(sa 2, TQ) + ﬁazA(& 2, 7_2)'
87‘2 87'2
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Substituting (3.5), (3.8), (3.20), and (3.19) into (1.1), we have

(3.21)
g—;azﬁo + o(1)
:54(@g%fAM£A07D>
+€%m@%+@Jrﬂ%%L+%£%+A&AﬁA®
+ [assfxo — (2K — k1)D2 Ao + RO, Ay + .. Ay
— (AoAh Az + Ao Ao + Ao AL Ao + A AL Ay + A AYA) + A Al Ao — A3)| + (1),
Collecting the O(¢72) terms in (3.21) yields
(3.22) 0.2 Ay — Ag(ALAg — 1) =0

which is same as (3.10). The boundary conditions at z = o0 are as in (3.11). Hence,
Ay(s,z,7) has the same transition profile as obtained from (3.12) in the boundary
layer.

At O(e71) in (3.21), we have

(3.23) k00, Ag 4+ 0.. A1 — (AgAL AL + AgALAg + AL AL Ay — Ap) = 0.

Taking the Frobenius inner product with 9, Ay on both sides of (3.13) and integrating
both sides with respect to z from —oo to co yields

Iio/ <32A0,8ZA0>FdZ + / </~11, 8Z (Z'szlo — (1210/161210 — AO))>F dZ = 0
Using (3.22) again leads us to
(3.24) ko = 0.

Inserting (3.24) back into (3.23) yields
0. Ay — (Ao Al Ay + Ay Al Ay + Ay AL Ao — Ay) = 0.
Coupling with the boundary conditions from the outer expansion, 1211(8, z,72) =0 at

z = oo implies that

(3.25) Aq(s,2,72) =0 for any z € (—00,00).
Collecting the O(1) terms in (3.21), we obtain

9 . _ . _ .
—a’” 9, Ay = Dys Ao — (22 — K1)Ds Ao + koD Ay + 0., Ay
T2

(3.26) — (AgAL Ay + AgAL Ay + A AL Ag + AgAL Ay + AL ATA, + A AL A — Ay).
Using (3.24) and (3.25) simplifies (3.26) to

or

(3:27) 5

0. Ag = 055 Ap + K10, Ag + 05, Ay — (AgAh Ay + Ag AL Ay + A AL Ay — As).
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Taking the Frobenius inner product with 8, Ay on both sides of (3.27) and integrating
both sides with respect to z from —oo to oo yields

<ar - Kl) / <82A07azAO>FdZ - / <assAOaazAO>FdZ

87’2 — 00 — 00
= Ay,08, (0., A9 — (AgAL Ay — A dz.
| (A0 (0.0~ (Ao - A0))),dz
Combining with (3.22) and using the definition of v in (3.15) leads us to

o Lo
(3.28) = - [ (Oudo. 0. Ao} d

which gives the motion law for the interface at the O(72) time scale.

PROPOSITION 3.3. Forn = 2, Ay admits the transition profile in (3.12), where
& (s, t) = % and &x(s,t) = % Here, n4(s,t) and n_(s,t) are
determined from the outer solution, Ag(xz,t), as in (3.18). The motion law in (3.28)
simplifies to
Lo 1,
(3.29) geil= o

where N2 = ((0sn+(s,1))? — (Osn—(s,1))?) is the jump in the squared tangental
deriwative of the phase across the interface I' and ¥ = %.

Proof. In the transition profile (3.12), we write

Ao(s, z,t) = U DUY, where D = Ll) U?Z)] and U; = Ei’&f; —Czlsf(léf)) L i=1,2.

Here we write o(z) = tanh (%) We compute

~_ |—sin(&)  —cos(&)] .
0sUs = [ cos(&;) sin(fi)} Sis

and
2 _ |—sin&)  —cos(&)| o —cos(&)  sin(&) | .o
0l = { cos(§;)  — Sin(fi)] Siss + [— sin(§;) - COS(&)} &ise

Then we compute
(as Ul )D(as Us)

_ [ sin(&1) sin(&2) + cos(&1) cos(§2)0 —sin(&r) cos(&2) + cos(&q) Sin(fg)a} €160
— cos(&1) sin(&2) + sin(€1) cos(E2)o cos(€1) cos(€a) + sin(&p) sin(E)o | S5

(92U1)DU;
_ { sin(&1) cos(&2) + cos(&1) sin(€2)0 —sin(&y) sin(€2) — cos(€y) cos(&a O':| £
cos(&1) cos(&2) + sin(&1) sin(§2)o cos(&1) sin(§2) — sin(&1) cos(§2)o *

{— cos(£1) cos(€2) — sin(€1) sin(&)0 — cos(&1) sin(&e) + sin(&;) cos(gg)o} ¢
—sin(&;) cos(&2) + cos(€1) sin(€3)a —sin(&y) sin(€2) — cos(&1) cos(&2)o | V187
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D(82U35)
_ {— sin(&2) cos(&1) + cos(&s) sin(&r)o cos(€1) cos(€a) + sin(&q) sin(&2) 0} ¢
—sin@1) sin(€2) — cos(61) cos()o cos(n) sin(&r) — sin(Ea) cos(ér)a) 2
{_ cos(&1) cos(&2) — sin(&1) sin(§2)o — cos(§1) sin(&2) + sin(&1) cos(§2)o } 52
—sin(&1) cos(§2) + cos(&1) sin(§2)o —sin(&;) sin(&a) — cos(&r) cos(&2)a | >

and
<~ | sin(§1)sin(§2)  —sin(&1) cos(&2)
O=Ao = [— COS(lfl) Sinéz) COS(&SCOS(&; } 7%

o0 1 o0 oo
/ Uazdzzi/ (0?). dz=0 and / o, dz =2

along with the above identities, we have

Using

/OO <8351407 az1210>F dz = 4§IS£QS
—4 83 (n—(sat) +77+(8’t)> 85 (77—(5775) ;77+(57t)>

2
= (887]—)2 - (8577+)2
= [773]1“
and
o0 - - oo o0 2 4 2
~v(s) = / (0, A0, 0, A0)F dz z/ o dz :/ (1 - tanh2(z/\/§)) dz = T\[,
which is independent of s and denoted by 7. 0

3.2.1. Summary of the behavior at the O(et) time scale.
1. Away from the interface, Ao, A, and A, satisfy (3.17). In particular, when
n =2, A takes the form in (3.18), where the phase 7 satisfies An = 0.
2. The interface moves in the normal direction according to the motion law given
n (3.28). In the case where n = 2, the second term of the motion law is the
jump in the squared tangental derivative of the phase across the interface I'
as in (3.29).

4. Numerical experiments. In this section, we perform a variety of numerical
experiments to support, verify, and illustrate our analytical results in sections 2 and
3. The algorithm we use is summarized in section 4.1 and the numerical examples are
described in section 4.2.

4.1. Algorithm to solve (1.1) and implementation details. To numerically
solve (1.1), we use an efficient diffusion generated method recently developed in [14].
This method generalizes the Merriman-Bence—Osher method for mean curvature flow
[12] and methods for the Ginzburg-Landau energy [17, 18]. The algorithm alternates
a diffusion step and a projection step as summarized in Algorithm 4.1. In [14], the
Lyapunov function of Esedoglu and Otto [10] was extended to show that the method is
non-increasing on iterates and, hence, unconditionally stable. It was also proven that
the spatially discretized iterates converge to a stationary solution in a finite number
of iterations. We refer to [14] for more details and properties of the algorithm.
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Algorithm 4.1 A diffusion generated method for solving (1.1) [14].

L1)
Input: a time step 7 > 0 and initial condition Ag € H(£;0,,).
Output: a sequence of matrix-valued functions A, € H(Q;0,,), s = 1,2,... that
approximately solve (1.1) at times s7.
Set s=1
while not converged do
1. Diffusion Step. Solve the initial value problem for the diffusion equation until
time 7 with initial value given by As_1(x):

O A(t,x) = AA(t, )
A(0,z) = A1 ().
Let A(x) = A(r, z) B

2. Projection Step. Set A;(x) =1Ip, A(x)
Set s=s+1

We implemented the algorithm in MATLAB. In all experiments, we consider the
case when n = 2 on a flat torus Q = [—1/2,1/2]? discretized using 1024 x 1024 uniform
grid points and set 7 = 0.015625. The heat diffusion equation in Algorithm 4.1 is
efficiently solved using the fast Fourier transform. The convergence criterion of the
algorithm is taken to be

/ |As(x) — As—1(2)||F dz < tol
Q

for tol = 1076, All reported results were obtained on a laptop with a 2.7 GHz Intel
Core i5 processor and 8 GB of RAM.

Here we visualize an Os valued field by plotting the vector field generated by
the first column vector. The second column vector is orthogonal to the first and the
direction is indicated by color, when necessary.

4.2. Numerical examples.

4.2.1. Evolution of SO,,-valued fields. We first perform a numerical exper-
iment to verify the results in section 2 for the time evolution of a single-signed de-
terminant initial matrix-valued field. Without loss of generality, we consider the case
where the initial matrix-valued field takes values in SO,,.

Figures 2 and 3 display the evolution of an SO, matrix-valued field with the
initial condition given by

) Aot =[]~ snnta)

for different choices of n: Q@ — R.
In Figure 2, we take

n(z) = gsin(27(3a:1 + 2z9)) for x = (x1,x2) € Q.
From Figure 2, we see that the matrix-valued field evolves toward a uniform matrix-

valued field, which, as discussed in section 2.3, is a stationary state of the O,, diffusion
equation.
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F1G. 2. Snapshots of the time evolution of an initial SO2 matriz-valued field. The initial field

is given in (4.1) with n(x) = F sin(27(3z1 + 2x2)). See section 4.2.1.

In Figure 3, we set
n(z) = 2rxy + gsin(27rx1).

We observe that the field evolves toward a field with n(x) = 27z;. Again, since
An = 0, this is a harmonic orthogonal matrix-valued field; see section 2.3.

To better understand the behavior in Figures 2 and 3, we recall the definition
of the pair of indices of a matrix-valued field discussed in [14]. Let v: @ — C be a
complex-valued field with no zeros. Let v: [0,1] — ©Q be a closed curve. We define
the index of v with respect to v to be

ind, (7) = 5 [argv((1)) ~ arg o(3(0))]

Clearly the index of « is an integer and varies continuously with deformations to +,
so it depends only on the homotopy class of . For a torus, we can parameterize the
homotopy classes by the number of times the curve wraps around 2 in the - and
xg-directions. Furthermore, if we let [],, ,, denote the equivalence class of curves that
wraps around 2 m times in the x;-direction and n times in the xs-direction, then it
is not difficult to see that

indv(h]m,n) = indv([’Y]l,O)m + indv(['Y]O,l)n~

So we can characterize the index of any curve in terms of the indices of [y]1,¢ and
[Y]o,1- For a given field v, we let

I = (indy ([7]1,0), indy ([¥]0,1))

be the index pair corresponding to curves that wrap around €2 once in the z;- and
xo-directions. For a matrix-valued field A: Q@ — SOz or A: Q — SO;, we define the
index pair, I, to be the index pair for the first column of A. For example, for the
harmonic orthogonal matrix fields in (2.13), the index pair is I = (n1,n2).

In Figure 2, the index pair for the initial condition is (0,0) and the field evolves
toward the harmonic orthogonal matrix field with index pair (0, 0), the uniform ma-
trix field. In Figure 3, the index pair for the initial condition is (1,0) and the field
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F1ac. 3. Snapshots of the time evolution of an initial SO matriz-valued field. The initial field
is given in (4.1) with n(z) = 2nx1 + F sin(27z1). See section 4.2.1.

evolves toward the harmonic orthogonal matrix field with index pair (1,0). We observe
and generally expect that the index pair is invariant under flow by the O,, diffusion
equation.

4.2.2. Evolution of O,,-valued fields at the O(t) time scale. In this section,
we check the motion law we derived in section 3.1. That is, at the O(t) time scale, if
there is a line defect initially, the motion of the interface is driven by the curvature
at each point. Note that at this time scale, we don’t see the effect from the matrix-
valued field on the motion law of the interface. So we perform two experiments where
the initial condition has the same line defect, but different initial matrix-valued fields.
Specifically, we choose the following initial condition for different choices of n7: 2 — R:

COSTE TSN g < 0.15 + 0.03sin(126),

sin Ccos

(4.2) A(r,0) = o
C?S oosma otherwise,

sinn —cosn

where (r, ) is the corresponding polar coordinate of x = (x1,x2) € Q.
In all subsequent figures, the domain is colored by the sign of the determinant of
the matrix. For a matrix field A € H! (Q;0,,), we use the convention
x is yellow <= det(A(z)) =1 — A(x) € SO,,

xis green <= det(A(z))=-1 <<= A(x)e€ SO,,.
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1=0.015625

A

A

1=0.03125 1=0.046875

t=0.21875

Fic. 4. Snapshots of the time evolution of an initial Oz matriz-valued field. The initial line
defect is given by v = 0.15 4+ 0.03sin(120), where (r,0) is the corresponding polar coordinate of
(w1,22). The initial field is given in (4.2) with n(x) = 3 sin(27x1) in the first column and n(z) =
2wz in the second column. See section 4.2.2.

In Figure 4, we display several snapshots of the time evolution for two different
initial conditions. In the first column of Figure 4, the initial field is chosen as in (4.2)
with 7(z) = 7 sin(272;) and, in the second column, the initial field is n(z) = 2mx;.
Hence the pair of indices of the initial field in the first column is (0,0) and the pair of
indices of the initial field in the second column is (1,0). In both columns of Figure 4,
we observe that the region where A € SO, shrinks with the interface becoming a
circle before vanishing. We observe that the time dynamics of the line defect for the

two different initial conditions are very close. This is consistent with our analytical
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we set the initial phases to

9y

times for two choices of the phases n; and 1. In Figure 6
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the dynamics in Figure 8 has an opposite direction to that in Figure 7. This is also

3.29) in section 4.2.3.

(

consistent with our analytical result on the motion law
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t=0 t=0.125 t=0.1875

Fic. 8. Snapshots of the time evolution of an initial Oz matriz-valued field with parallel line
defects. The initial field is given in (4.3) with n1 = 87x1 and n2 = 2wx1. See section 4.2.3.

5. Conclusion and discussion. In this paper, we used asymptotic methods to
study the initial value problem for the generalized Allen-Cahn equation in (1.1). If the
initial condition has a single-signed determinant, at each point of the domain, at a fast
O(e72t) time scale, the solution evolves towards the closest orthogonal matrix. Then,
at the O(t) time scale, the solution evolves according to the O, diffusion equation
(2.10a). Stationary solutions to the O,, diffusion equation were analyzed for n = 2
in section 2.3. If the initial condition has regions where the determinant is positive
and negative, an interface develops. Away from the interface, in each region, the
matrix-valued field behaves as in the single-signed determinant case. At the O(t)
time scale, the interface evolves in the normal direction by curvature. At a slow O(et)
time scale, for n = 2, the interface is driven by curvature and the jump in the squared
tangental derivative of the phase across the interface. In section 4, we conducted
a variety of numerical experiments to verify, support, and illustrate our analytical
results.

In this paper, we have focused on the two-dimensional problem. We expect that
the asymptotic methods in [6, 7] could be used to study higher-dimensional problems.
In this paper, we also only focused on a square with periodic boundary conditions.
We used this to derive harmonic orthogonal matrix-valued fields in section 2.3 and in
the numerical examples in section 4. However, the asymptotic results from sections 2
and 3 apply to other boundary conditions as well.

While our general results hold for all n, there are several places where we focused
on the n = 2 case. In particular, in section 2.3, we derived explicit O2 harmonic fields;
in Proposition 3.2 we explicitly derived the transition profile for the boundary layer;
and in Proposition 3.3, we were able to simplify the expression for the motion law at
the slow O(et) time scale in terms of the jump in the squared tangental derivative of
the phase across the interface. It would be interesting to extend these more explicit
results to n > 3.

Here, we have considered the L? gradient flow (1.1) of the energy E in (1.2).
An interesting equation would arise from considering the H~! gradient flow of E,
a generalization of the Cahn—Hilliard equation [15, 6, 7, 4, 5, 19]. Another way to
generalize (1.1) would be to consider multiphase systems as in [16, 3].
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