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INTERFACE DYNAMICS FOR AN ALLEN–CAHN-TYPE
EQUATION GOVERNING A MATRIX-VALUED FIELD⇤

DONG WANG† , BRAXTON OSTING† , AND XIAO-PING WANG‡

Abstract. We consider the initial value problem for the generalized Allen–Cahn equation,
@t� = �� � "

�2�(�t� � I), x 2 ⌦, t � 0, where � is an n ⇥ n real matrix-valued field, ⌦ is a
two-dimensional square with periodic boundary conditions, and " > 0. This equation is the gradient
flow for the energy, E(�) :=

R 1
2kr�k2F + 1

4"2
k�t�� Ik2F , where k · kF denotes the Frobenius norm.

The primary contribution of this paper is to use asymptotic methods to describe the solution of this
initial value problem. If the initial condition has a single-signed determinant, at each point of the
domain, at a fast O("�2

t) time scale, the solution evolves towards the closest orthogonal matrix.
Then, at the O(t) time scale, the solution evolves according to the On di↵usion equation. Stationary
solutions to the On di↵usion equation are analyzed for n = 2. If the initial condition has regions
where the determinant is positive and negative, a free interface develops. Away from the interface,
in each region, the matrix-valued field behaves as in the single-signed determinant case. At the O(t)
time scale, the interface evolves in the normal direction by curvature. At a slow O("t) time scale,
the interface is driven by curvature and the surface di↵usion of the matrix-valued field. For n = 2,
the interface is driven by curvature and the jump in the squared tangental derivative of the phase
across the interface. In particular, we emphasize that the interface when n � 2 is driven by surface
di↵usion, while for n = 1, the original Allen–Cahn equation, the interface is only driven by mean
curvature. A variety of numerical experiments are performed to verify, support, and illustrate our
analytical results.

Key words. Allen–Cahn equation, asymptotic expansion, free interface dynamics, orthogonal
matrix group
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1. Introduction. We consider the initial value problem for the generalized
Allen–Cahn equation,

(1.1)

(
@tA = �A� "�2A(AtA� I), x 2 ⌦, t > 0,

A(t = 0, x) = A0(x),

where A(t, x) 2 M(n) is a real matrix-valued field and " > 0 is a small parameter. For
simplicity, we take the domain ⌦ to be a two-dimensional square, [�1/2, 1/2]2, with
periodic boundary conditions. It is not di�cult to show that (1.1) is the L2 gradient
flow for the energy,

(1.2) E(A) :=

Z

⌦

1

2
krAk2

F
+ "�2W (A), where W (A) :=

1

4
kAtA� Ik2

F
,

and k · kF denotes the Frobenius norm. Roughly speaking, for " small, the solution to
(1.1) is smoothed by the first term and the second term keeps the pointwise values of
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INTERFACE DYNAMICS FOR A MATRIX-VALUED FIELD 1253

the matrix-valued field near On, the n⇥n orthogonal matrix group. This problem was
first introduced in [14] as a model problem for several applications where a smooth
matrix-valued field arises, including crystallography, where the matrix-valued field
describes the local crystal orientation and inverse problems in image analysis e.g.,
di↵usion tensor MRI or fiber tractography, where it is of interest to estimate a matrix-
or orientation-valued function [13].

In this paper, we use the method of asymptotic expansion to analyze the multi-
scale behavior of the system (1.1) at di↵erent time scales.

It is clear that when n = 1, (1.1) reduces to the original Allen–Cahn equation
[1], which models the behavior of first order phase transitions. In (1.1), because the
reaction rate is large compared to the di↵usion rate, the solution at each point x 2 ⌦
quickly tends to a stable equilibrium state of the reaction process, i.e., a minimum of
W (A). For the case n = 1, the local minima of W (A) are 1 and �1. There are two
cases.

(i) If A0(x) > 0 (or A0(x) < 0, resp.) for every x 2 ⌦, then A(t, x) will tend to
1 (or �1, resp.). In this case, the e↵ect of di↵usion is to only slightly change
the rate at which the solution approaches 1 (or �1, resp.).

(ii) However, if ⌦+ and ⌦� are such that ⌦ = ⌦+ [ ⌦� and ⌦+ \ ⌦� = ; with

(
A0(x) > 0, x 2 ⌦+,

A0(x) < 0, x 2 ⌦�,

then a boundary layer in the solution develops at an interface between the
two subdomains. Through a boundary layer expansion, one can show that
A(t, x) = ±1 for x away from the interface and that the interface evolves in
the normal direction by its mean curvature.

We refer to [2, 3] and references therein for more details on the n = 1 case.
For n � 2, the minimizers of W (A) are elements of On. Recall that

On = SOn [ SO�
n
,

where SOn denotes the special orthogonal group of the orthogonal matrices with
determinant 1 and SO�

n
is the set of orthogonal matrices with determinant �1. In

this paper, we use matched asymptotic expansion methods [8] to show that, as in the
n = 1 case, there are two cases.

(i) If the initial condition A0(x) has either positive or negative determinant for
each x 2 ⌦, then no interface develops. We show in section 2.2 that the
O(t) time dynamics of the leading order solution satisfies the On di↵usion

equation,

@tB(t, x) =
1

2

�
�B(t, x)Bt(t, x)�B(t, x)�Bt(t, x)

�
B(t, x)

with initial condition given by

B(0, x) = ⇧OnA0(x).

Here, and throughout this paper, we use ⇧OnA = argminB2On kA � BkF
to denote the closest point in the orthogonal matrix group to the matrix
A. We show in Proposition 2.2 that the leading order solution remains in
On pointwise for all time t > 0. We discuss stationary solutions to the On

di↵usion equation in section 2.3.
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1254 DONG WANG, BRAXTON OSTING, AND XIAO-PING WANG

(ii) In the second case, the initial condition A0(x) satisfies

(
det(A0(x)) > 0, x 2 ⌦+,

det(A0(x)) < 0, x 2 ⌦�,

for ⌦+ and ⌦� satisfying ⌦ = ⌦+[⌦� and ⌦+\⌦� = ;. In this case, when x
is away from the interface, the behavior is similar to the first case. We derive
a motion law for the interface at two time scales. At the O(t) time scale, the
interface evolves in the normal direction by curvature, as in the n = 1 case;
see section 3.1. At a slow O("t) time scale, we show in section 3.2, for general
n, that the interface is driven by the surface di↵usion of the matrix-valued
field and the curvature. For n = 2, in Proposition 3.3, we show that the
surface di↵usion term can be written as the jump in the squared tangental
derivative of the phase across the interface.
In particular, we emphasize that the interface when n � 2 is driven by surface
di↵usion, while for n = 1, the original Allen–Cahn equation, the interface is
only driven by mean curvature.

The results obtained via asymptotics are verified, supported, and illustrated in sec-
tion 4 through a wide variety of numerical experiments.

The model (1.1) considered in this paper can be viewed as a special case of the
general model studied in [11]. In [11], an energy of the form in (1.2) is considered for
high-dimensional, vector-valued functions and general assumptions on the potential
W . General results for the phase transition of stationary solutions between minima
of W are derived. In the present paper, we consider time dynamics for our specific
model.

Outline. This paper is organized as follows. In section 2, we derive the behavior
of the matrix-valued field satisfying (1.1) if the initial field, A0(x), only takes values
in SOn or SO�

n
. In section 3, we discuss the case when an interface develops between

subdomains where det(A(x, t)) > 0 and det(A(x, t)) < 0. We develop a boundary
layer around the interface and derive the motion of the interface at di↵erent time
scales. Some numerical experiments are performed in section 4. We conclude with a
discussion in section 5.

2. Evolution of an initial matrix-valued field with single-signed deter-
minant. In this section, we discuss the case where the initial matrix-valued field,
A0(x), is continuous and has positive determinant at each point x 2 ⌦. The case
where A0(x) has negative determinant everywhere is analogous. In this case, there is
no interface appearing in the dynamics of the system. We consider the asymptotic
expansion

A = Ā0 + "Ā1 + "2Ā2 + o("2)

and the initial condition A(t, x)|t=0 = A0(x), which we assume to appear at the O(1)
scale. Then, we expand the nonlinear term on the right-hand side of (1.1),

Ā(ĀtĀ� I) = Ā0(Ā
t

0Ā0 � I) + "(Ā0Ā
t

0Ā1 + Ā0Ā
t

1Ā0 + Ā1Ā
t

0Ā0 � Ā1) + "2(Ā0Ā
t

0Ā2

+ Ā0Ā
t

2Ā0 + Ā2Ā
t

0Ā0 + Ā0Ā
t

1Ā1 + Ā1Ā
t

0Ā1 + Ā1Ā
t

1Ā0 � Ā2) + o("2).(2.1)

We take two time scales: t and a fast time scale ⌧1 := "�2t and write

Āi = Āi(x, t, ⌧1), i = 1, 2.
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We have @t = "�2@⌧1 and

(2.2) @tA = "�2@⌧1Ā0 + "�1@⌧1Ā1 + @⌧1Ā2 + @tĀ0 + o(1).

We insert our ansatz into (1.1) and collect terms at each order in ". Using (2.1)
and (2.2) in (1.1) yields

"�2@⌧1Ā0 + "�1@⌧1Ā1 + o("�1)(2.3)

= "�2Ā0(Ā
t

0Ā0 � I) + "�1(Ā0Ā
t

0Ā1 + Ā0Ā
t

1Ā0 + Ā1Ā
t

0Ā0 � Ā1) + o("�1).

2.1. Behavior at the O("�2
t) time scale. Collecting O("�2) terms in (2.3)

yields

(2.4) @⌧1Ā0 = Ā0(Ā
t

0Ā0 � I).

For n = 1, it is well known that the solution of (2.4) approaches 1 if the initial
value is positive and approaches �1 if the initial value is negative as ⌧1 ! 1.

For n � 2, at each point x 2 ⌦, as ⌧1 ! 1, the solution of (2.4) approaches a
matrix in SOn if the initial matrix has a positive determinant and approaches a matrix
in SO�

n
if the initial matrix has a negative determinant, as shown in the following

lemma.

Lemma 2.1. For the dynamic system

@tB = B(BtB � I),

B(t = 0) = B0

for a nonsingular initial n ⇥ n matrix B0 (n � 2), as t ! 1, the solution B(t)
approaches the nearest orthogonal matrix to B0 in the sense of the Frobenius norm,

written ⇧OnB0.

Proof. Write the singular-value decomposition of B0 as B0 = U⌃0V t, where the
diagonal values of ⌃0 are denoted by �0,i (i 2 [n]). Since the right-hand side of the
equation can initially be written as U(⌃0⌃t

0⌃0�⌃0)V t, the solution B(t) also admits
a singular-value decomposition with the same U and V . Then, we can write the
dynamic system as

U(@t⌃)V
t = U(⌃⌃t⌃� ⌃)V t.

For each diagonal element �i (i 2 [n]) in ⌃, we have @t�i = �3
i
��i. Since the �i(0) > 0

for i 2 [n], we have �i(t) ! 1 as t ! 1. That implies, as t ! 1, B(t) approaches
UV t, which is the closest orthogonal matrix to B0; see, e.g., [14, Lemma 1.1].

Collecting O("�1) terms in (2.3) yields

(2.5) @⌧1Ā1 = Ā0Ā
t

0Ā1 + Ā0Ā
t

1Ā0 + Ā1Ā
t

0Ā0 � Ā1.

Since Ā1(0, x) = 0, we have
Ā1(⌧1, x) = 0

is the solution to (2.5).

2.1.1. Summary of the behavior at the O("�2
t) time scale.

1. If the determinant of the initial matrix-valued field is positive for all x 2 ⌦, the
leading order matrix Ā0(⌧1, x) at each point approaches the closest orthogonal
matrix in SOn. If the determinant of the initial matrix-valued field is negative
for all x 2 ⌦, the leading order matrix Ā0(⌧1, x) at each point will approach
the closest orthogonal matrix in SO�

n
.

2. The second order matrix Ā1(⌧1, x) is 0 for any ⌧1 � 0 and x 2 ⌦.
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1256 DONG WANG, BRAXTON OSTING, AND XIAO-PING WANG

2.2. Behavior at the O(t) time scale. Using (2.1) and (2.2) in (1.1), we have
at the time scale O(t),

@tĀ0 + o(1) = "�2Ā0(Ā
t

0Ā0 � I) + "�1(Ā0Ā
t

0Ā1 + Ā0Ā
t

1Ā0 + Ā1Ā
t

0Ā0 � Ā1)

+ (Ā0Ā
t

0Ā2 + Ā0Ā
t

2Ā0 + Ā2Ā
t

0Ā0 + Ā0Ā
t

1Ā1 + Ā1Ā
t

0Ā1 + Ā1Ā
t

1Ā0(2.6)

� Ā2 +�Ā0) + o(1).

Collecting O("�2) terms in (2.6) yields

Ā0(Ā
t

0Ā0 � I) = 0.

Since Ā0 is nonsingular, this implies that

(2.7) Āt

0Ā0 = I = Ā0Ā
t

0.

This means that at each point x 2 ⌦, for any nonsingular initial matrix field, the
leading order Ā0 immediately approaches a matrix field with values in On. This can
be interpreted as the long time behavior of the dynamics at the time scale O("�2t).

Collecting O("�1) terms in (2.6), we obtain

Ā0Ā
t

0Ā1 + Ā0Ā
t

1Ā0 + Ā1Ā
t

0Ā0 � Ā1 = 0.

This is also consistent with the solution Ā1(t, x) = 0 at the O("�2t) time scale.
At O(1) in (2.6), we obtain

@tĀ0 = �Ā0 � Ā2(Ā
t

0Ā0 � I)� Ā1(Ā
t

0Ā1 + Āt

1Ā0)� Ā0(Ā
t

0Ā2 + Āt

2Ā0 + Āt

1Ā1)
(2.8a)

= �Ā0 � (Ā2 + Ā0Ā
t

2Ā0),(2.8b)

where we have used the fact Ā1 = 0. We now take the derivative of (2.7) and use
(2.8b) to obtain

0 = Āt

0(@tĀ0) + (@tĀ0)
tĀ0

= Āt

0(�Ā0)� Āt

0(Ā2 + Ā0Ā
t

2Ā0) + (�Ā0)
tĀ0 � (Āt

2 + Āt

0Ā2Ā
t

0)Ā0.

Using (2.7) and rearranging, we obtain

Āt

0Ā2 + Āt

2Ā0 =
1

2

�
Āt

0(�Ā0) + (�Ā0)
tĀ0

�
.

Multiplying on the left by Ā0 and using (2.7), we insert this back into (2.8b) to obtain

@tĀ0 =
1

2
�Ā0 �

1

2
Ā0(�Ā0)

tĀ0(2.9a)

=
1

2

�
�Ā0Ā

t

0 � Ā0(�Ā0)
t
�
Ā0.(2.9b)

The following proposition shows that if initially @tĀ0 is in SOn pointwise, then it will
remain there for all time t > 0.
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Proposition 2.2. We consider the initial value problem for the On di↵usion

equation,

@tB(t, x) =
1

2

�
�B(t, x)Bt(t, x)�B(t, x)�Bt(t, x)

�
B(t, x),(2.10a)

B(0, x) = B0(x),(2.10b)

where B0 : ⌦ ! On is given. Then B(t, x) 2 On for all t � 0.

Proof. We compute

@t(B
tB) = (@tB)tB +Bt(@tB)

=
1

2
(�B(t, x))t B(t, x)� 1

2
Bt(t, x) (�B(t, x))Bt(t, x)B(t, x)

+
1

2
Bt(t, x) (�B(t, x))� 1

2
Bt(t, x)B(t, x) (�B(t, x))t B(t, x)

= 0.

Remark 2.3. We refer to (2.9) and (2.10) as the On di↵usion equation because it
can be obtained from the di↵usion equation for a matrix-valued field when the matrix
is constrained to be On-valued. That is, introducing a Lagrange multiplier for the
constraint and then solving for it yields precisely this equation.

Remark 2.4. For n = 2 and the ansatz,

B(x, t) =

✓
cos ⌘(x, t) � sin ⌘(x, t)
sin ⌘(x, t) cos ⌘(x, t)

◆
,

we compute

@tB(x, t) = �
✓

sin ⌘(x) cos ⌘(x)
� cos ⌘(x) sin ⌘(x)

◆
@t⌘

and

�B �B(�B)tB = �2

✓
sin ⌘(x) cos ⌘(x)

� cos ⌘(x) sin ⌘(x)

◆
�⌘.

We conclude that B(x, t) satisfies the orthogonal di↵usion equation (2.10) if ⌘t = �⌘.
The spherical di↵usion equation is given by

�t = ��+ |r�|2�;

see, e.g., [9]. Making the ansatz �(x, t) = ei⌘(t,x), we find that ⌘t = �⌘. Thus, we
conclude that the n = 2 orthogonal di↵usion equation (2.10) with initial condition
taking values in SOn is equivalent to the spherical di↵usion equation. Due to this
connection, we refer to ⌘ = ⌘(x, t) as the phase of the matrix-valued field, B(x, t).

2.2.1. Summary of the behavior at the O(t) time scale.
1. The leading order solution Ā0 take values in the orthogonal matrix group for

all time.
2. The second order solution is Ā1 = 0.
3. The time dynamics of Ā0 is governed by the On di↵usion equation,

@tĀ0(t, x) =
1

2

�
�Ā0(t, x)Ā

t

0(t, x)� Ā0(t, x)�Āt

0(t, x)
�
Ā0(t, x),

Ā0(0, x) = ⇧OnA0(x).

Here the initial condition is pointwise the closest point to A0(x) in On.
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2.3. Harmonic orthogonal matrix-valued fields. In this section, we con-
sider stationary solutions of the On di↵usion equation (2.10), which we refer to as
harmonic orthogonal matrix-valued fields, satisfying

(�B)tB �Bt(�B) = 0,(2.11a)

BtB = I.(2.11b)

Note that (2.11a) just states that (�B)tB is a symmetric matrix.
For n = 1, the only solutions are B = ±1.
For n = 2, for unknown phase ⌘ : ⌦ ! R, we consider the SOn ansatz,

(2.12) B(x) =

✓
cos ⌘(x) � sin ⌘(x)
sin ⌘(x) cos ⌘(x)

◆
.

We compute

�B =

✓
� sin ⌘�⌘ � cos ⌘|r⌘|2 � cos ⌘�⌘ + sin ⌘|r⌘|2
cos ⌘�⌘ � sin ⌘|r⌘|2 � sin ⌘�⌘ � cos ⌘|r⌘|2

◆

and

(�B)tB =

✓
�|r⌘|2 �⌘
��⌘ �|r⌘|2

◆
.

We observe that (�B)tB is symmetric if and only if �⌘ = 0. We conclude that there
exists a family of harmonic SOn-valued fields on the torus of the form (2.12) where
the phase is given by

(2.13) ⌘(x1, x2) = 2⇡(n1x1 + n2x2), n1, n2 2 Z.

Several numerical experiments are performed in section 4.2.1 to show that such fields
are stationary for (1.1) and to investigate what happens if perturbations of such fields
are taken as initial conditions.

3. Evolution of an On-valued initial field. We consider an initial condition
A0(x) of (1.1) that satisfies

(3.1)

(
det(A0(x)) > 0, x 2 ⌦+,

det(A0(x)) < 0, x 2 ⌦�,

for ⌦+ and ⌦� satisfying ⌦ = ⌦+ [ ⌦� and ⌦+ \ ⌦� = ;.
Denote � = ⌦̄+ \ ⌦̄� and assume �(t) is a finite collection of simple, closed,

smooth curves in R2 so that we can find a parametric representation, at least locally,
of the form

�(t) = {~'(s, t) : s 2 R1}, ~'(s, t) = ('1(s, t),'2(s, t)).

We assume s to be the arc-length parameter so that we have

~T =
@~'

@s
,

@ ~T

@s
= �~n,

@~n

@s
= ~T ,

where ~T denotes the unit tangent vector, ~n denotes the unit outer normal vector, and
 denotes the curvature (see Figure 1 for a diagram on the unit outer normal vector).
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INTERFACE DYNAMICS FOR A MATRIX-VALUED FIELD 1259

Fig. 1. Diagram for the unit normal vector and unit tangent vector for �. See section 3.

We introduce local coordinates near � as follows. We assume that for every point
x in a neighborhood of �, there is a unique point ~'(s, t) which is the orthogonal
projection of x onto �(t). We then define a unique normal signed distance ⇢(x, t)
from x to �(t), ⇢(x, t) = (x� ~') · ~n. We have a transformation from (x, t) to (s, r, t)
defined by

(3.2) x = ~'(s, t) + r~n(s, t),

where r = ⇢(x, t). We summarize several identities for the transformation from (x, t)
to (s, r, t) in the following lemma. A proof of this lemma can be found in [6].

Lemma 3.1. For the transformation rule defined in (3.2), we have the following

equalities:

1.The normal velocity of � at ~'(s, t) is given by ~v · ~n = �@⇢

@t
.

2. rxs =
1

1+r
~T , �xs = �r @

@s

1
(1+r)3 .

3. rxr = ~n, �xr = 

1+r
.

4. For any function u(x, t) = ũ(s, r, t),

�xu =
1

(1 + r)2
@2ũ

@s2
+

@2ũ

@r2
+



1 + r

@ũ

@r
�

✓
r

(1 + r)3
@

@s

◆
@ũ

@s
.

Below, we study the inner layer expansion to study the behavior around the
interface at the time scales O(t) and O("t).

3.1. Behavior at the O(t) time scale. At the O(t) time scale, when x is away
from the interface �, the behavior exactly reduces to the case studied in section 2.2.
That is corresponding to the outer layer expansion for the system (1.1). We don’t
repeat the calculation and refer the results to the summary in section 2.2.1.

The inner expansion requires rescaling the normal coordinate by z = r

"
. Assume

the expansion of ~'(s, t) and  are

~'(s, t) = ~'0(s, t) + "~'1(s, t) + "2~'2(s, t) + o("2),(3.3)

 = 0 + "1 + "22 + o("2).(3.4)

Writing �x in terms of (s, z) using (3.4) yields

(3.5) �x = "�2@zz + "�10@z + (@ss � (z2
0 � 1)@z) + o(1).

Consider the expansion

(3.6) A(x, t) = Ã(s, z, t) = Ã0(s, z, t) + "Ã1(s, z, t) + "2Ã2(s, z, t) + o("2)
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1260 DONG WANG, BRAXTON OSTING, AND XIAO-PING WANG

and write

(3.7) @tA(x, t) = @tÃ(s, z, t) +
@s

@t
@sÃ(s, z, t) + "�1 @r

@t
@zÃ(s, z, t).

Similarly to (2.1), we have

Ã(ÃtÃ� I) = Ã0(Ã
t

0Ã0 � I) + "(Ã0Ã
t

0Ã1 + Ã0Ã
t

1Ã0 + Ã1Ã
t

0Ã0 � Ã1) + "2(Ã0Ã
t

0Ã2

+ Ã0Ã
t

2Ã0 + Ã2Ã
t

0Ã0 + Ã0Ã
t

1Ã1 + Ã1Ã
t

0Ã1 + Ã1Ã
t

1Ã0 � Ã2) + o("2).(3.8)

Substituting (3.5), (3.6), (3.7), and (3.8) into (1.1) yields

"�1 @r

@t
@zÃ0 + o("�1)

(3.9)

= "�2
⇣
@zzÃ0 � Ã0(Ã

t

0Ã0 � I)
⌘

+ "�1
⇣
0@zÃ0 + @zzÃ1 � (Ã0Ã

t

0Ã1 + Ã0Ã
t

1Ã0 + Ã1Ã
t

0Ã0 � Ã1)
⌘
+ o("�1).

Collecting the O("�2) terms in (3.9), we obtain

@zzÃ0 � Ã0(Ã
t

0Ã0 � I) = 0.(3.10)

Matching the outer expansion gives the boundary conditions

(3.11) lim
z!±1

Ã0 = Ãb

0,

where Ãb
0 2 On. Note that (3.10) is independent of s and thus we solve (3.10) for

each s independently. For n = 2, the following proposition gives the explicit solution
to (3.10) with the boundary conditions in (3.11).

Proposition 3.2. The solution to the second order di↵erential equation for the

2⇥ 2 matrix field, B : R ! M(2),

d2B

dz2
= B(BtB � I),

lim
z!�1

B(z) =


cos(⌘�) sin(⌘�)
sin(⌘�) � cos(⌘�)

�
2 SO�

2 ,

lim
z!+1

B(z) =


cos(⌘+) � sin(⌘+)
sin(⌘+) cos(⌘+)

�
2 SO2,

is given by

B(z) =


cos(⇠1) � sin(⇠1)
sin(⇠1) cos(⇠1)

� "1 0

0 tanh
⇣

zp
2

⌘
#

cos(⇠2) � sin(⇠2)
sin(⇠2) cos(⇠2)

�t
,

where ⇠1 = ⌘�+⌘+

2 and ⇠2 = ⌘��⌘+

2 .

Proof. The proposed solution takes the form B(z) = U1DU t
2, where Ui for i = 1, 2

are matrices in SO2 that are independent of z and

D =

"
1 0

0 tanh
⇣

zp
2

⌘
#D
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is a diagonal matrix. Since �(z) = tanh( zp
2
) satisfies @zz� = �3 � �, we have that

B(z) satisfies the di↵erential equation. Using the two trigonometric identities,

cos ⌘± = cos ⇠1 cos ⇠2 ⌥ sin ⇠1 sin ⇠2,

sin ⌘± = sin ⇠1 cos ⇠2 ± cos ⇠1 sin ⇠2,

B(z) satisfies the boundary conditions as z ! ±1.

Hence, for n = 2, by Proposition 3.2, we explicitly get the solution for (3.10)
coupled with boundary conditions (3.11),

(3.12) Ã0(s, z, t) =


cos(⇠1) � sin(⇠1)
sin(⇠1) cos(⇠1)

� 
1 0
0 tanh( zp

2
)

� 
cos(⇠2) � sin(⇠2)
sin(⇠2) cos(⇠2)

�t
,

where ⇠1 = ⇠1(s, t) and ⇠2 = ⇠2(s, t) are determined from the phase of the outer
solution, Ā0(x, t), for each s and t.

Collecting the O("�1) terms in (3.9) yields

@r

@t
@zÃ0 = 0@zÃ0 + @zzÃ1 � (Ã0Ã

t

0Ã1 + Ã0Ã
t

1Ã0 + Ã1Ã
t

0Ã0 � Ã1).(3.13)

Taking the Frobenius inner product with @zÃ0 on both sides of (3.13) yields
✓
@r

@t
� 0

◆
h@zÃ0, @zÃ0iF =h@zzÃ1, @zÃ0iF

� hÃ0Ã
t

0Ã1 + Ã0Ã
t

1Ã0 + Ã1Ã
t

0Ã0 � Ã1, @zÃ0iF .

We integrate the above equation with respect to z from �1 to 1. Integrating by
parts, we can rewrite the first term on the right-hand side as

Z 1

�1
h@zzÃ1, @zÃ0iF dz =

Z 1

�1
hÃ1, @zzzÃ0iF dz,

where the boundary terms vanish because @zÃ0 = 0 at z = ±1 from the solution
to the leading order expansion and Ā1 = 0 in the outer layer which corresponds to
Ã1 = 0 at z = ±1 from the asymptotic matching. The second term on the right-hand
side can be rewritten as
Z 1

�1
hÃ0Ã

t

0Ã1+Ã0Ã
t

1Ã0+Ã1Ã
t

0Ã0�Ã1, @zÃ0iF dz =

Z 1

�1
hÃ1, @z(Ã0Ã

t

0Ã0�Ã0)iF dz,

where the boundary terms vanish because of Ā1 = 0 in the outer layer. We then
obtain
(3.14)✓

@r

@t
� 0

◆Z 1

�1
h@zÃ0, @zÃ0iF dz =

Z 1

�1

D
Ã1, @z

⇣
@zzÃ0 � (Ã0Ã

t

0Ã0 � Ã0)
⌘E

F

dz.

Denote

(3.15) �(s) :=

Z 1

�1
k@zÃ0k2F dz.

We note that when n = 1, � is the surface tension on the interface between two
di↵erent phases [15]. Since we assume Ã0 2 SOn on one side of �(t) and Ã0 2 SO�

n
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1262 DONG WANG, BRAXTON OSTING, AND XIAO-PING WANG

on the other, we have �(s) > 0. Using (3.10), the right-hand side of (3.14) vanishes
and we have the normal velocity is given by

~v · ~n = �0.

It follows that the interface evolves according to the mean curvature flow along its
normal direction at the O(t) time scale.

3.1.1. Summary of the behavior near the interface at the O(t) time
scale.

1. The leading order solution, Ã0, transitions from a matrix in SO�
n

to a ma-
trix in SOn in the boundary layer of the interface. It satisfies (3.10) with
the boundary conditions in (3.11). For n = 2, the leading order solution is
explicitly given by (3.12).

2. The interface moves in the normal direction by the leading order of curvature,
i.e., ~v · ~n = �0.

3.2. Behavior at the O("t) time scale. Now, we study the behavior at the
time scale O(⌧2), where ⌧2 = "t. Then, we have @t = "@⌧2 .

First, we consider the behavior when x is away from the interface �. Consider
the expansion

(3.16) A(x, t) = Ā0(x, ⌧2) + "Ā1(x, ⌧2) + "2Ā2(x, ⌧2) + o("2)

and insert it into (1.1) to obtain

o(1) = "�2Ā0(Ā
t

0Ā0 � I) + "�1(Ā0Ā
t

0Ā1 + Ā0Ā
t

1Ā0 + Ā1Ā
t

0Ā0 � Ā1) + (Ā0Ā
t

0Ā2

+ Ā0Ā
t

2Ā0 + Ā2Ā
t

0Ā0 + Ā0Ā
t

1Ā1 + Ā1Ā
t

0Ā1 + Ā1Ā
t

1Ā0 � Ā2 +�Ā0) + o(1).

Collecting the terms at di↵erent orders of " and using the behavior at the O(t) time
scale, we obtain that at the O(⌧2) time scale,

(3.17) (�Ā0)
tĀ0 � Āt

0(�Ā0) = 0, Āt

0Ā0 = I, Ā1 = 0, and Ā2 = 0.

For n = 2, as shown in section 2.3, there is an O2 harmonic leading order matrix field,
Ā0, of the form

(3.18) Ā0(x) =


cos(⌘(x)) ⌥ sin(⌘(x))
sin(⌘(x)) ± cos(⌘(x))

�
,

where the phase ⌘(x) satisfies �⌘ = 0. Here, the signs in the second column are
chosen depending on whether x 2 ⌦+ or x 2 ⌦�.

To study the behavior near the interface, we consider the expansion

(3.19) A(x, t) = Ã(s, z, ⌧2) = Ã0(s, z, ⌧2) + "Ã1(s, z, ⌧2) + "2Ã2(s, z, ⌧2) + o("2)

and rewrite (3.7) using ⌧2 = "t to obtain

(3.20) @tA(x, t) = "@⌧2Ã(s, z, ⌧2) + "
@s

@⌧2
@sÃ(s, z, ⌧2) +

@r

@⌧2
@zÃ(s, z, ⌧2).
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Substituting (3.5), (3.8), (3.20), and (3.19) into (1.1), we have

@r

@⌧2
@zÃ0 + o(1)

(3.21)

= "�2
⇣
@zzÃ0 � Ã0(Ã

t

0Ã0 � I)
⌘

+ "�1
⇣
0@zÃ0 + @zzÃ1 � (Ã0Ã

t

0Ã1 + Ã0Ã
t

1Ã0 + Ã1Ã
t

0Ã0 � Ã1)
⌘

+
h
@ssÃ0 � (z2

0 � 1)@zÃ0 + 0@zÃ1 + @zzÃ2

� (Ã0Ã
t

0Ã2 + Ã0Ã
t

2Ã0 + Ã2Ã
t

0Ã0 + Ã0Ã
t

1Ã1 + Ã1Ã
t

0Ã1 + Ã1Ã
t

1Ã0 � Ã2)
i
+ o(1).

Collecting the O("�2) terms in (3.21) yields

@zzÃ0 � Ã0(Ã
t

0Ã0 � I) = 0(3.22)

which is same as (3.10). The boundary conditions at z = ±1 are as in (3.11). Hence,
Ã0(s, z, ⌧2) has the same transition profile as obtained from (3.12) in the boundary
layer.

At O("�1) in (3.21), we have

(3.23) 0@zÃ0 + @zzÃ1 � (Ã0Ã
t

0Ã1 + Ã0Ã
t

1Ã0 + Ã1Ã
t

0Ã0 � Ã1) = 0.

Taking the Frobenius inner product with @zÃ0 on both sides of (3.13) and integrating
both sides with respect to z from �1 to 1 yields

0

Z 1

�1
h@zA0, @zA0iF dz +

Z 1

�1

D
Ã1, @z

⇣
@zzÃ0 � (Ã0Ã

t

0Ã0 � Ã0)
⌘E

F

dz = 0.

Using (3.22) again leads us to

(3.24) 0 = 0.

Inserting (3.24) back into (3.23) yields

@zzÃ1 � (Ã0Ã
t

0Ã1 + Ã0Ã
t

1Ã0 + Ã1Ã
t

0Ã0 � Ã1) = 0.

Coupling with the boundary conditions from the outer expansion, Ã1(s, z, ⌧2) = 0 at
z = ±1 implies that

(3.25) Ã1(s, z, ⌧2) = 0 for any z 2 (�1,1).

Collecting the O(1) terms in (3.21), we obtain

@r

@⌧2
@zÃ0 = @ssÃ0 � (z2

0 � 1)@zÃ0 + 0@zÃ1 + @zzÃ2

� (Ã0Ã
t

0Ã2 + Ã0Ã
t

2Ã0 + Ã2Ã
t

0Ã0 + Ã0Ã
t

1Ã1 + Ã1Ã
t

0Ã1 + Ã1Ã
t

1Ã0 � Ã2).(3.26)

Using (3.24) and (3.25) simplifies (3.26) to

(3.27)
@r

@⌧2
@zÃ0 = @ssÃ0 + 1@zÃ0 + @zzÃ2 � (Ã0Ã

t

0Ã2 + Ã0Ã
t

2Ã0 + Ã2Ã
t

0Ã0 � Ã2).
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Taking the Frobenius inner product with @zÃ0 on both sides of (3.27) and integrating
both sides with respect to z from �1 to 1 yields

✓
@r

@⌧2
� 1

◆Z 1

�1
h@zÃ0, @zÃ0iF dz �

Z 1

�1
h@ssÃ0, @zÃ0iF dz

=

Z 1

�1

D
Ã2, @z

⇣
@zzÃ0 � (Ã0Ã

t

0Ã0 � Ã0)
⌘E

F

dz.

Combining with (3.22) and using the definition of � in (3.15) leads us to

(3.28) ~v · ~n = �1 �
1

�(s)

Z 1

�1
h@ssÃ0, @zÃ0iF dz,

which gives the motion law for the interface at the O(⌧2) time scale.

Proposition 3.3. For n = 2, Ã0 admits the transition profile in (3.12), where

⇠1(s, t) =
⌘�(s,t)+⌘+(s,t)

2 and ⇠2(s, t) =
⌘�(s,t)�⌘+(s,t)

2 . Here, ⌘+(s, t) and ⌘�(s, t) are

determined from the outer solution, Ā0(x, t), as in (3.18). The motion law in (3.28)
simplifies to

(3.29) ~v · ~n = �1 +
1

�̄

⇥
⌘2
s

⇤
�
,

where [⌘2
s
]� = ((@s⌘+(s, t))2 � (@s⌘�(s, t))2) is the jump in the squared tangental

derivative of the phase across the interface � and �̄ = 4
p
2

3 .

Proof. In the transition profile (3.12), we write

Ã0(s, z, t) = U1DU t

2, where D =


1 0
0 �(z)

�
and Ui =


cos(⇠i) � sin(⇠i)
sin(⇠i) cos(⇠i)

�
, i = 1, 2.

Here we write �(z) = tanh
⇣

zp
2

⌘
. We compute

@sUi =


� sin(⇠i) � cos(⇠i)
cos(⇠i) � sin(⇠i)

�
⇠is

and

@2
s
Ui =


� sin(⇠i) � cos(⇠i)
cos(⇠i) � sin(⇠i)

�
⇠iss +


� cos(⇠i) sin(⇠i)
� sin(⇠i) � cos(⇠i)

�
⇠2
is
.

Then we compute

(@sU1)D(@sU
t

2)

=


sin(⇠1) sin(⇠2) + cos(⇠1) cos(⇠2)� � sin(⇠1) cos(⇠2) + cos(⇠1) sin(⇠2)�
� cos(⇠1) sin(⇠2) + sin(⇠1) cos(⇠2)� cos(⇠1) cos(⇠2) + sin(⇠1) sin(⇠2)�

�
⇠1s⇠2s,

(@2
s
U1)DU t

2

=


� sin(⇠1) cos(⇠2) + cos(⇠1) sin(⇠2)� � sin(⇠1) sin(⇠2)� cos(⇠1) cos(⇠2)�
cos(⇠1) cos(⇠2) + sin(⇠1) sin(⇠2)� cos(⇠1) sin(⇠2)� sin(⇠1) cos(⇠2)�

�
⇠1ss

+


� cos(⇠1) cos(⇠2)� sin(⇠1) sin(⇠2)� � cos(⇠1) sin(⇠2) + sin(⇠1) cos(⇠2)�
� sin(⇠1) cos(⇠2) + cos(⇠1) sin(⇠2)� � sin(⇠1) sin(⇠2)� cos(⇠1) cos(⇠2)�

�
⇠21s,
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U1D(@2
s
U t

2)

=


� sin(⇠2) cos(⇠1) + cos(⇠2) sin(⇠1)� cos(⇠1) cos(⇠2) + sin(⇠1) sin(⇠2)�
� sin(⇠1) sin(⇠2)� cos(⇠1) cos(⇠2)� cos(⇠2) sin(⇠1)� sin(⇠2) cos(⇠1)�

�
⇠2ss

+


� cos(⇠1) cos(⇠2)� sin(⇠1) sin(⇠2)� � cos(⇠1) sin(⇠2) + sin(⇠1) cos(⇠2)�
� sin(⇠1) cos(⇠2) + cos(⇠1) sin(⇠2)� � sin(⇠1) sin(⇠2)� cos(⇠1) cos(⇠2)�

�
⇠22s,

and

@zÃ0 =


sin(⇠1) sin(⇠2) � sin(⇠1) cos(⇠2)

� cos(⇠1) sin(⇠2) cos(⇠1) cos(⇠2)

�
�z.

Using Z 1

�1
��z dz =

1

2

Z 1

�1
(�2)z dz = 0 and

Z 1

�1
�z dz = 2

along with the above identities, we have

Z 1

�1
h@ssÃ0, @zÃ0iF dz = 4⇠1s⇠2s

= 4 @s

✓
⌘�(s, t) + ⌘+(s, t)

2

◆
@s

✓
⌘�(s, t)� ⌘+(s, t)

2

◆

= (@s⌘�)
2 � (@s⌘+)

2

= [⌘2
s
]�

and

�(s) =

Z 1

�1
h@zÃ0, @zÃ0iF dz =

Z 1

�1
�2
z
dz =

Z 1

�1

⇣
1� tanh2(z/

p
2)
⌘2

dz =
4
p
2

3
,

which is independent of s and denoted by �̄.

3.2.1. Summary of the behavior at the O("t) time scale.
1. Away from the interface, Ā0, Ā1, and Ā2 satisfy (3.17). In particular, when

n = 2, Ā0 takes the form in (3.18), where the phase ⌘ satisfies �⌘ = 0.
2. The interface moves in the normal direction according to the motion law given

in (3.28). In the case where n = 2, the second term of the motion law is the
jump in the squared tangental derivative of the phase across the interface �
as in (3.29).

4. Numerical experiments. In this section, we perform a variety of numerical
experiments to support, verify, and illustrate our analytical results in sections 2 and
3. The algorithm we use is summarized in section 4.1 and the numerical examples are
described in section 4.2.

4.1. Algorithm to solve (1.1) and implementation details. To numerically
solve (1.1), we use an e�cient di↵usion generated method recently developed in [14].
This method generalizes the Merriman–Bence–Osher method for mean curvature flow
[12] and methods for the Ginzburg–Landau energy [17, 18]. The algorithm alternates
a di↵usion step and a projection step as summarized in Algorithm 4.1. In [14], the
Lyapunov function of Esedoglu and Otto [10] was extended to show that the method is
non-increasing on iterates and, hence, unconditionally stable. It was also proven that
the spatially discretized iterates converge to a stationary solution in a finite number
of iterations. We refer to [14] for more details and properties of the algorithm.
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Algorithm 4.1 A di↵usion generated method for solving (1.1) [14].

Input: a time step ⌧ > 0 and initial condition A0 2 H1(⌦;On).
Output: a sequence of matrix-valued functions As 2 H1(⌦;On), s = 1, 2, . . . that
approximately solve (1.1) at times s⌧ .
Set s = 1
while not converged do
1. Di↵usion Step. Solve the initial value problem for the di↵usion equation until
time ⌧ with initial value given by As�1(x):

@tA(t, x) = �A(t, x)

A(0, x) = As�1(x).

Let Ã(x) = A(⌧, x)
2. Projection Step. Set As(x) = ⇧OnÃ(x)
Set s = s+ 1

We implemented the algorithm in MATLAB. In all experiments, we consider the
case when n = 2 on a flat torus ⌦ = [�1/2, 1/2]2 discretized using 1024⇥1024 uniform
grid points and set ⌧ = 0.015625. The heat di↵usion equation in Algorithm 4.1 is
e�ciently solved using the fast Fourier transform. The convergence criterion of the
algorithm is taken to be

Z

⌦
kAs(x)�As�1(x)kF dx  tol

for tol = 10�6. All reported results were obtained on a laptop with a 2.7 GHz Intel
Core i5 processor and 8 GB of RAM.

Here we visualize an O2 valued field by plotting the vector field generated by
the first column vector. The second column vector is orthogonal to the first and the
direction is indicated by color, when necessary.

4.2. Numerical examples.

4.2.1. Evolution of SOn-valued fields. We first perform a numerical exper-
iment to verify the results in section 2 for the time evolution of a single-signed de-
terminant initial matrix-valued field. Without loss of generality, we consider the case
where the initial matrix-valued field takes values in SOn.

Figures 2 and 3 display the evolution of an SO2 matrix-valued field with the
initial condition given by

(4.1) A0(x) =


cos ⌘(x) � sin ⌘(x)
sin ⌘(x) cos ⌘(x)

�

for di↵erent choices of ⌘ : ⌦ ! R.
In Figure 2, we take

⌘(x) =
⇡

2
sin(2⇡(3x1 + 2x2)) for x = (x1, x2) 2 ⌦.

From Figure 2, we see that the matrix-valued field evolves toward a uniform matrix-
valued field, which, as discussed in section 2.3, is a stationary state of the On di↵usion
equation.
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Fig. 2. Snapshots of the time evolution of an initial SO2 matrix-valued field. The initial field
is given in (4.1) with ⌘(x) = ⇡

2 sin(2⇡(3x1 + 2x2)). See section 4.2.1.

In Figure 3, we set

⌘(x) = 2⇡x1 +
⇡

2
sin(2⇡x1).

We observe that the field evolves toward a field with ⌘(x) = 2⇡x1. Again, since
�⌘ = 0, this is a harmonic orthogonal matrix-valued field; see section 2.3.

To better understand the behavior in Figures 2 and 3, we recall the definition
of the pair of indices of a matrix-valued field discussed in [14]. Let v : ⌦ ! C be a
complex-valued field with no zeros. Let � : [0, 1] ! ⌦ be a closed curve. We define
the index of � with respect to v to be

indv(�) :=
1

2⇡
[arg v(�(1))� arg v(�(0))] .

Clearly the index of � is an integer and varies continuously with deformations to �,
so it depends only on the homotopy class of �. For a torus, we can parameterize the
homotopy classes by the number of times the curve wraps around ⌦ in the x1- and
x2-directions. Furthermore, if we let [�]m,n denote the equivalence class of curves that
wraps around ⌦ m times in the x1-direction and n times in the x2-direction, then it
is not di�cult to see that

indv([�]m,n) = indv([�]1,0)
m + indv([�]0,1)

n.

So we can characterize the index of any curve in terms of the indices of [�]1,0 and
[�]0,1. For a given field v, we let

I = (indv([�]1,0), indv([�]0,1))

be the index pair corresponding to curves that wrap around ⌦ once in the x1- and
x2-directions. For a matrix-valued field A : ⌦ ! SO2 or A : ⌦ ! SO�

2 , we define the
index pair, I, to be the index pair for the first column of A. For example, for the
harmonic orthogonal matrix fields in (2.13), the index pair is I = (n1, n2).

In Figure 2, the index pair for the initial condition is (0, 0) and the field evolves
toward the harmonic orthogonal matrix field with index pair (0, 0), the uniform ma-
trix field. In Figure 3, the index pair for the initial condition is (1, 0) and the field
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Fig. 3. Snapshots of the time evolution of an initial SO2 matrix-valued field. The initial field
is given in (4.1) with ⌘(x) = 2⇡x1 + ⇡

2 sin(2⇡x1). See section 4.2.1.

evolves toward the harmonic orthogonal matrix field with index pair (1, 0). We observe
and generally expect that the index pair is invariant under flow by the On di↵usion
equation.

4.2.2. Evolution of On-valued fields at the O(t) time scale. In this section,
we check the motion law we derived in section 3.1. That is, at the O(t) time scale, if
there is a line defect initially, the motion of the interface is driven by the curvature
at each point. Note that at this time scale, we don’t see the e↵ect from the matrix-
valued field on the motion law of the interface. So we perform two experiments where
the initial condition has the same line defect, but di↵erent initial matrix-valued fields.
Specifically, we choose the following initial condition for di↵erent choices of ⌘ : ⌦ ! R:

A(r, ✓) =

8
>>>><

>>>>:

"
cos ⌘ � sin ⌘

sin ⌘ cos ⌘

#
if r < 0.15 + 0.03 sin(12✓),

"
cos ⌘ sin ⌘

sin ⌘ � cos ⌘

#
otherwise,

(4.2)

where (r, ✓) is the corresponding polar coordinate of x = (x1, x2) 2 ⌦.
In all subsequent figures, the domain is colored by the sign of the determinant of

the matrix. For a matrix field A 2 H1 (⌦;On), we use the convention
x is yellow () det(A(x)) = 1 () A(x) 2 SOn,

x is green () det(A(x)) = �1 () A(x) 2 SO�
n
.
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Fig. 4. Snapshots of the time evolution of an initial O2 matrix-valued field. The initial line
defect is given by r = 0.15 + 0.03 sin(12✓), where (r, ✓) is the corresponding polar coordinate of
(x1, x2). The initial field is given in (4.2) with ⌘(x) = ⇡

2 sin(2⇡x1) in the first column and ⌘(x) =
2⇡x1 in the second column. See section 4.2.2.

In Figure 4, we display several snapshots of the time evolution for two di↵erent
initial conditions. In the first column of Figure 4, the initial field is chosen as in (4.2)
with ⌘(x) = ⇡

2 sin(2⇡x1) and, in the second column, the initial field is ⌘(x) = 2⇡x1.
Hence the pair of indices of the initial field in the first column is (0, 0) and the pair of
indices of the initial field in the second column is (1, 0). In both columns of Figure 4,
we observe that the region where A 2 SOn shrinks with the interface becoming a
circle before vanishing. We observe that the time dynamics of the line defect for the
two di↵erent initial conditions are very close. This is consistent with our analytical
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Fig. 5. Snapshots of the time evolution of an initial O2 matrix-valued field with parallel line
defects. From left to right, the initial fields are given in (4.3) with ⌘1(x1, x2) = ⌘2(x1, x2) =
1, 2⇡x1, 4⇡x1, and ⌘1(x1, x2) = 2⇡x1, ⌘2(x1, x2) = �2⇡x1. See section 4.2.3.

results in section 3.1, that is, at the O(t) time scale, the motion law is the leading
order of the curvature of the line defect, which is independent of the matrix-valued
field. For the evolution in the left column of Figure 4, the field continues to evolve
toward the uniform solution for longer times than shown in the figure.

4.2.3. Evolution of On-valued fields at the O("t) time scale. In this sec-
tion, we check the motion law we derived in section 3.2 at the O("t) time scale. Note
that, at the O("t) time scale, we have that the leading order of the curvature of the
line defect satisfies 0 = 0 and we have �⌘ = 0. Hence, we perform several experi-
ments where the initial condition has two straight parallel line defects. Specifically,
we choose the following initial condition:

A(x1, x2) =

8
>>>><

>>>>:

"
cos ⌘1 � sin ⌘1
sin ⌘1 cos ⌘1

#
if |x2| > 0.25,

"
cos ⌘2 sin ⌘2
sin ⌘2 � cos ⌘2

#
otherwise

(4.3)

for di↵erent choices of ⌘1, ⌘2 : ⌦ ! R satisfying �⌘1 = 0 and �⌘2 = 0.
We first choose ⌘1 and ⌘2 so that ⌘21s = ⌘22s; the parallel line defects are stationary

according to our analytical results in (3.29) in section 3.2. In Figure 5, from left to
right, we set

⌘1(x1, x2) = ⌘2(x1, x2) = 1,

⌘1(x1, x2) = ⌘2(x1, x2) = 2⇡x1,

⌘1(x1, x2) = ⌘2(x1, x2) = 4⇡x1,

⌘1(x1, x2) = 2⇡x1, ⌘2(x1, x2) = �2⇡x1.

Indeed, in Figure 5, all four columns show that the parallel line defects are stationary.
Figures 6 and 7 display snapshots of the time dynamics of the interface at di↵erent

times for two choices of the phases ⌘1 and ⌘2. In Figure 6, we set the initial phases to
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Fig. 6. Snapshots of the time evolution of an initial O2 matrix-valued field with parallel line
defects. The initial field is given in (4.3) with ⌘1 = 2⇡x1 and ⌘2 = 4⇡x1. See section 4.2.3.

Fig. 7. Snapshots of the time evolution of an initial O2 matrix-valued field with parallel line
defects. The initial field is given in (4.3) with ⌘1 = 2⇡x1 and ⌘2 = 8⇡x1. See section 4.2.3.

be ⌘1 = 2⇡x1 and ⌘2 = 4⇡x1. In Figure 7, we set the initial phases to be ⌘1 = 2⇡x1

and ⌘2 = 8⇡x1. Thus, we have [⌘2
s
]� = �12⇡2 in Figure 6 and [⌘2

s
]� = �60⇡2 in

Figure 7. In both figures, we observe that the straight line defects have nonzero
speed along their normal directions. Comparing Figures 6 and 7, we observe that the
speed of the line defect in Figure 7 is about five times the speed of the line defect
in Figure 6. All these observations are consistent with our analytical results on the
motion law (3.29) in section 4.2.3.

Figure 8 displays the snapshots of the time dynamics of the interface at di↵erent
times, where the initial phases are give by ⌘1 = 8⇡x1 and ⌘2 = 2⇡x1. We observe
the dynamics in Figure 8 has an opposite direction to that in Figure 7. This is also
consistent with our analytical result on the motion law (3.29) in section 4.2.3.
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Fig. 8. Snapshots of the time evolution of an initial O2 matrix-valued field with parallel line
defects. The initial field is given in (4.3) with ⌘1 = 8⇡x1 and ⌘2 = 2⇡x1. See section 4.2.3.

5. Conclusion and discussion. In this paper, we used asymptotic methods to
study the initial value problem for the generalized Allen–Cahn equation in (1.1). If the
initial condition has a single-signed determinant, at each point of the domain, at a fast
O("�2t) time scale, the solution evolves towards the closest orthogonal matrix. Then,
at the O(t) time scale, the solution evolves according to the On di↵usion equation
(2.10a). Stationary solutions to the On di↵usion equation were analyzed for n = 2
in section 2.3. If the initial condition has regions where the determinant is positive
and negative, an interface develops. Away from the interface, in each region, the
matrix-valued field behaves as in the single-signed determinant case. At the O(t)
time scale, the interface evolves in the normal direction by curvature. At a slow O("t)
time scale, for n = 2, the interface is driven by curvature and the jump in the squared
tangental derivative of the phase across the interface. In section 4, we conducted
a variety of numerical experiments to verify, support, and illustrate our analytical
results.

In this paper, we have focused on the two-dimensional problem. We expect that
the asymptotic methods in [6, 7] could be used to study higher-dimensional problems.
In this paper, we also only focused on a square with periodic boundary conditions.
We used this to derive harmonic orthogonal matrix-valued fields in section 2.3 and in
the numerical examples in section 4. However, the asymptotic results from sections 2
and 3 apply to other boundary conditions as well.

While our general results hold for all n, there are several places where we focused
on the n = 2 case. In particular, in section 2.3, we derived explicit O2 harmonic fields;
in Proposition 3.2 we explicitly derived the transition profile for the boundary layer;
and in Proposition 3.3, we were able to simplify the expression for the motion law at
the slow O("t) time scale in terms of the jump in the squared tangental derivative of
the phase across the interface. It would be interesting to extend these more explicit
results to n � 3.

Here, we have considered the L2 gradient flow (1.1) of the energy E in (1.2).
An interesting equation would arise from considering the H�1 gradient flow of E,
a generalization of the Cahn–Hilliard equation [15, 6, 7, 4, 5, 19]. Another way to
generalize (1.1) would be to consider multiphase systems as in [16, 3].
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