

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. APPLIED DYNAMICAL SYSTEMS © 2022 Society for Industrial and Applied Mathematics
Vol. 21, No. 1, pp. 33–59

A Nonautonomous Equation Discovery Method for Time Signal Classification⇤

Ryeongkyung Yoon† , Harish S. Bhat‡ , and Braxton Osting†

Abstract. Certain neural network architectures, in the infinite-depth limit, lead to systems of nonlinear di↵er-

ential equations. Motivated by this idea, we develop a framework for analyzing time signals based on

nonautonomous dynamical systems. We view the time signal as a forcing function for a dynamical

system that governs a time-evolving hidden variable. As in equation discovery, the dynamical system

is represented using a dictionary of functions and the coe�cients are learned from data. This frame-

work is applied to the time signal classification problem. We show how gradients can be e�ciently

computed using the adjoint method, and we apply methods from dynamical systems to establish

stability of the classifier. Through a variety of experiments, on both synthetic and real datasets, we

show that the proposed method uses orders of magnitude fewer parameters than competing methods,

while achieving comparable accuracy. We created the synthetic datasets using dynamical systems

of increasing complexity; though the ground truth vector fields are often polynomials, we find con-

sistently that a Fourier dictionary yields the best results. We also demonstrate how the proposed

method yields graphical interpretability in the form of phase portraits.

Key words. time signal analysis, classification, equation discovery, neural networks, adjoint method

AMS subject classifications. 34H05, 68T07, 62L10

DOI. 10.1137/21M1405216

1. Introduction. Time series classification has been applied in a variety of fields including
predicting the genre of music based on a sound recording [36], recognizing human activity using
mobile sensors [37], diagnosing disease based on electrical biosignals (e.g., EEG, ECG, and
EMG) [35, 33, 34], detecting natural phenomena such as earthquakes or volcanic eruptions
using geophysical signals [26], and automatically distinguishing between mosquito species
using wing-beat recordings [8].

One promising approach to time series classification involves recurrent neural networks
(RNNs) [29, 9], which are now commonly used to process sequential data. For input data,
xt 2 Rn and a hidden state vector ht 2 Rm (typically initialized with h0 = 0), a traditional
sequence-to-label RNN architecture can be represented abstractly as a discrete-time map:

ht = f(ht�1, xt; ✓) for t 2 [T](1.1)

with parameter vector ✓—see [13, eq. (10.5)]. The output layer is then formulated as ŷ =
�(AhT + b), where � is a user-specified activation function, and for classification problems, �

⇤Received by the editors March 15, 2021; accepted for publication (in revised form) by K. Josic August 31, 2021;
published electronically January 4, 2022.

https://doi.org/10.1137/21M1405216
Funding: The work of the second author was partially supported by NSF DMS 17-23272. The work of the first

and third authors were partially supported by NSF grant DMS 17-52202.
†Department of Mathematics, University of Utah, Salt Lake City, UT 84112 USA (rkyoon@math.utah.edu, osting@

math.utah.edu).
‡Department of Applied Mathematics, University of California, Merced, CA 95344 USA (hbhat@ucmerced.edu).

33

D
ow

nl
oa

de
d

06
/2

4/
22

 to
 1

28
.1

10
.1

84
.5

5
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/21M1405216
mailto:rkyoon@math.utah.edu
mailto:osting@math.utah.edu
mailto:osting@math.utah.edu
mailto:hbhat@ucmerced.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

34 R. YOON, H. S. BHAT, AND B. OSTING

is typically the softmax function. To train an RNN, we learn parameters ✓, A, and b. RNNs
are Turing complete; for any function F computable by a Turing machine, there exists a
finite RNN that can compute F [31, 32]. Note also that (1.1) encapsulates a large class of
discrete-time, nonautonomous dynamical systems with state variable ht and forcing xt. Given
their universality and capacity, it is not surprising that RNNs can serve as accurate models
for sequential data, including time series [1, Chap. 7]. However, RNNs can be di�cult to
train due to long-term dependencies and su↵er from computational issues in backpropagation
through time, called exploding or vanishing gradients [25]. Gated RNNs, such as the long
short-term memory (LSTM) network, were developed in [16] to overcome the challenge of
long-term dependencies.

In this paper, we propose a nonautonomous dynamical systems framework that addresses
challenges in training RNNs. Note that we distinguish between time signals and time series;
time signals are continuous in time, while time series are discrete in time. Frequently time
series are obtained from sampling a time signal at discrete times. The time signal classification

problem is to learn a mapping that assigns a distribution over labels y 2 R|Y| to a vector-
valued, continuous-time signal x : [0, T]! Rn. Here Y is a finite set of labels.

From (1.1), we derive a continuous-time model as follows. We first insert N � 1 hidden
layers between ht�1 and ht and consider the discrete-time map

ht = f(ht�1/N , xt; ✓) for t = i/N with i 2 [NT].(1.2)

When N = 1, we recover (1.1). For N � 1, the model has a deep hidden-to-hidden transition
[24]; N layers must be traversed to go from ht�1 to ht. Next,

ht = ht�1/N +N�1�(ht�1/N , xt; ✓) for t = i/N with i 2 [NT].(1.3)

Finally, we take the infinite-depth limit N ! 1 and obtain the central equation in the
nonautonomous equation discovery (NAED) method :

d

dt
h(t) = � (h(t), x(t); ✓) for t 2 [0, T].(1.4)

We view the input signal x(t) as a forcing term in a nonautonomous dynamical system gov-
erning a hidden variable h : [0, T] ! Rm. We introduce a function ⇡ : Rm ! R|Y| to assign a
class label to the hidden variable evaluated at the final time, ŷ = ⇡ (h(T)). The objective is
to learn the right-hand-side �, parameterized by ✓, and the function ⇡, so that given a new
time signal x(t), t 2 [0, T], we can estimate its class label, y.

In the NAED method, we represent the right-hand-side function � using a predetermined
dictionary, a set of candidate functions, which is su�ciently large to capture a wide class
of dynamics. There is a variety of choices for dictionaries; here we employ polynomial and
Fourier basis functions. See Figure 1 for an illustration of (1.4) with (3.2)—our model for �
which is linear in the parameters to be learned—in the special case of a quadratic polynomial
dictionary. In addition to a general NAED method, we also propose a sparse NAED method,
which drops less relevant dictionary functions from the learned expression of the classifier.
By iteratively thresholding the dictionary coe�cients, we improve generalizability (reduce
overfitting), robustness to noise, and interpretability of learned dynamics.D

ow
nl

oa
de

d
06

/2
4/

22
 to

 1
28

.1
10

.1
84

.5
5

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NAED METHOD FOR TIME SIGNAL CLASSIFICATION 35

d

dt

2

4
h1

h2

h3

3

5

| {z }
h(t)

= �(h, x; ✓) =

2 6 6 6 6 6 6 4

�3,:

�2,:

�1,:

3 7 7 7 7 7 7 5

2

666666666666664

1
h1

h2

h3

h2
1/2

h1h2

h1h3

h2
2/2

h2h3

h2
3/2

3

777777777777775

| {z }
⌅(h)

+



B3,:

B2,:

B1,:

�


x1

x2

�

|{z}
x(t)

1

Figure 1. We illustrate the hidden state model (1.4) together with �(h, x; ✓) = �⌅(h) + Bx—see (3.2)—
and ⌅ set to a polynomial dictionary. In section 4, we refer to this as a Poly (3, 2) dictionary; m = 3 is the
dimension of h, while k = 2 means that the dictionary includes terms up to quadratic order. The matrices �
and B have dimensions 3 ⇥ 10 and 3 ⇥ 2, respectively; the colored bars, labeled �i,: and Bi,:, denote the ith
rows of these matrices. Note that the right-hand-side � can be nonlinear in h while remaining linear in the
parameters � and B that we seek to learn. The total set of parameters for the NAED model is ⇥ = {�, B,A, b},
where A and b are defined in (3.1c).

In section 3, we describe the NAED method in more detail, including an e�cient com-
putation of the gradient of the loss function using the adjoint method. In practice, we are
given a time series, which we think of as a discretized time signal and we must also discretize
the dynamical system to obtain a discrete-time approximation of the hidden variable. In this
paper, we employ the optimize-then-discretize approach, where the gradient is computed an-
alytically (see Theorem 3.3) using the continuous-time hidden variable and input time signal,
and then evaluated using the time series and discretized hidden variable. This in contrast to
a discretize-then-optimize approach that begins with discrete-time models such as (1.1), and
then optimizes using gradients computed via backpropagation-through-time.

In section 3, we prove several theoretical results about the NAED method. We prove a suf-
ficient condition for existence/uniqueness of the proposed method’s solutions (Theorem 3.2).
We also quantify the method’s stability, that is, we show that the outputs of the classifier are
stable with respect to both deterministic and random perturbations (Theorems 3.4, 3.5).

In section 4, we report the results of several computational experiments that demonstrate
the competitive performance of NAED with respect to RNN-based methods. We carry out
these experiments both for synthetic data and for real data from the UCR Time Series Classi-
fication Archive [7]. In these experiments, NAED achieves accuracy similar to or better than
RNN methods (including LSTM and chaos free network (CFN) architectures) and neural con-
trolled di↵erential equations (NCDE). We also show how the NAED method finds a principled
and parsimonious dictionary representation of the dynamical system’s vector field by training
orders of magnitude fewer parameters. NAED seeks to blend the high accuracy of deep RNN
architectures with the interpretability of continuous-time dynamical system methods. In par-
ticular, we illustrate that trained NAED models can be interpreted graphically using phase
portraits.

We conclude in section 5 with a discussion of the NAED method and ideas for future
directions.D

ow
nl

oa
de

d
06

/2
4/

22
 to

 1
28

.1
10

.1
84

.5
5

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

36 R. YOON, H. S. BHAT, AND B. OSTING

2. Related work. In this section, we discuss two motivations for the NAED method: an
infinite-depth, continuous-time limit of RNNs and the equation discovery method.

2.1. Dynamical systems and RNNs. Continuous-time RNNs were proposed by Hopfield
[17] and studied by many authors—see [11, 2] and references therein. Early continuous-time
RNNs were proposed as models of associative memory and hence are not directly comparable to
the classifiers studied here. Still, early continuous-time RNNs share two features with NAED:
the models are expressed as systems of nonlinear di↵erential equations, and inputs are treated
as nonautonomous forcing terms. Compared to NAED, early continuous-time RNNs have a
rigid right-hand-side structure that guarantees Lyapunov stability of the unforced system [17].
In contrast, NAED has a flexible right-hand side � that we can often represent as a sparse
linear combination of dictionary functions.

More recently, there has been a growing literature that connects deep and recurrent neural
networks with ordinary di↵erential equations (ODEs). One branch of this literature seeks to
apply ideas from dynamical systems theory to determine stable feedforward architectures [14],
RNNs that do not exhibit chaotic dynamics [21], and RNNs that are constrained to be linearly
stable [5]. The RNNs considered in these works [21, 5] do not involve ODEs.

Another branch stems from neural ODEs or ODE-Nets [6]. We view both NAED and
neural ODEs as infinite-depth limits of deep networks that are trained via the adjoint method
rather than backpropagation. In neural ODEs, the vector field is typically modeled using a
(static) feedforward neural network (rather than with a dictionary), and the input is used
as an initial condition (rather than a forcing term) to the ODE system. Recent e↵orts have
sought to make neural ODE techniques more practical for large-scale problems [10, 12, 27]
and also to better understand the learning of genuinely continuous-time dynamics [23]; we
may be able to apply similar ideas to NAED in future work.

Recently, there has been some e↵ort to generalize neural ODE models to the RNN context.
Instead of relying purely on ODEs as in NAED, [28] combines ODE-Net and RNN layers.
We also find continuous-time versions of GRU and LSTM models [3, 18, 15]. Compared
with NAED, these architectures have more constraints on the right-hand-side vector field �.
Finally, the NAED dynamical system (1.4) can be viewed as a special case of the recently
proposed NCDE model [20]. Compared with NAED, the controlled di↵erential equation allows
for more general dependency of the hidden state h(t) on the input x(t). While NCDE uses a
neural network model of the vector field, NAED uses a dictionary.

2.2. Equation discovery. The dictionary representation of the vector field � is motivated
by the literature on equation discovery [4]. The problem formulation and goal in equation
discovery di↵ers from ours; there one assumes that the data consists of observations of the state
vector h(t) of a continuous-time dynamical system. Using this data, the goal is to learn the
vector field �. This is a nonparametric regression problem, equivalent to finding a system of
ODEs that fit the observations h(t). The sparse identification of nonlinear dynamics (SINDy)
method assumes that � can be represented as a sparse linear combination of elements from
a dictionary ⌅ [4]. In SINDy, training proceeds via an iteratively thresholded least squares
method whose convergence has been established [38].

In both the general NAED method (Algorithm 3.1) and the sparse NAED method (Al-
gorithm 3.2), we generalize SINDy in the following way: we do not assume access to h(t) atD

ow
nl

oa
de

d
06

/2
4/

22
 to

 1
28

.1
10

.1
84

.5
5

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NAED METHOD FOR TIME SIGNAL CLASSIFICATION 37

all, but rather the forcing function x(t). Learning � is a byproduct of our method, but the
goal is to train a model whose predictions ŷ match the true labels y. In Algorithm 3.2, we
retain the iterative thresholding step from SINDy. However, in Algorithm 3.1—the algorithm
that we use in all of the examples in subsection 4.2—we do not promote sparsity of any of the
coe�cient matrices. As we show, even with dense coe�cient matrices, representing � with a
dictionary requires fewer parameters than with a neural network.

3. NAED method. In this section, we describe our proposed NAED method for time
series classification, a gradient-based method for training it, our choice of dictionary in the
NAED method, stability of the classifier, and a sparse version of the method.

3.1. NAED model for time signal classification. We assume that we are given data of
the form {xi, Ti, yi}i2[N], where xi : [0, Ti]! Rn is a time signal and yi 2 R|Y| is a probability
mass function over the classes. In practice, yi will be a unit vector and argmaxj [yi]j will be
the class or label. Note that we allow for the possibility that the time signals have di↵erent
lengths. We consider the following nonautonomous dynamical system:

d

dt
hi(t) = � (hi(t), xi(t); ✓) , t 2 [0, T],(3.1a)

hi(0) = h0.(3.1b)

For each time signal xi(t), we interpret the solution to (3.1), hi(t) 2 Rm 8t 2 [0, Ti], as a
time-dependent hidden variable that is being forced by the function xi(t). The solution at
time Ti is used to make a class prediction ŷi via

ŷi = � (Ahi(Ti) + b) ,(3.1c)

where A 2 R|Y|⇥m, b 2 R|Y|, and � : R|Y| ! R|Y| is the softmax function, defined by [�(x)]i =
exiP
j e

xj .

We parameterize the vector field � : Rm ⇥ Rn ! Rm using a dictionary D = {⇠j}j2[d],
with ⇠j : Rm ! R. We discuss specific choices for the dictionary, D, in subsection 3.3, but we
have in mind, e.g., multivariate polynomials. Let ✓ = (�, B). Concatenating the dictionary
elements in a dictionary, ⌅(h) = (⇠1(h), ⇠2(h), . . . , ⇠d(h)) 2 Rd, we write

�(h, x; ✓) = �⌅(h) +Bx,(3.2)

where � 2 Rm⇥d and B 2 Rm⇥n are unknown coe�cients.
To train the classifier, we must learn ✓ = (�, B), determining � via (3.2), together with

the parameters A and b in (3.1c). We frame this learning problem as one of minimizing the
following cross-entropy loss between labels yi and predictions ŷi. For a regularization term
R(⇥), the objective function is then

J(⇥) = � 1

N

X

i2[N]

X

j2Y
[yi]j log[ŷi]j +R(⇥)(3.3a)

= � 1

N

X

i2[N]

X

j2Y
[yi]j log[� (Ahi(Ti) + b)]j +R(⇥),(3.3b)

D
ow

nl
oa

de
d

06
/2

4/
22

 to
 1

28
.1

10
.1

84
.5

5
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

38 R. YOON, H. S. BHAT, AND B. OSTING

where ⇥ = {�, B,A, b} represents all parameters to be learned. It is understood that hi
satisfies (3.1) for the forcing xi(t), t 2 [0, Ti].

Remark 3.1. The regularization term, R(⇥), in (3.3) could be Tikhonov (`2) or sparsity
promoting (e.g., `1). In our numerical experiments, we use a relatively small dictionary
and, for simplicity, take R = 0. In subsection 3.5, we will discuss a di↵erent approach to
regularization.

An important consideration is whether there exists a solution of the dynamical system in
(3.1) with right-hand side given by (3.2). The following theorem gives a su�cient condition
for the existence and uniqueness of a solution.

Theorem 3.2. Assume x : [0, t]! Rn
is a continuous function. Let K ⇢ Rm

be a compact

set containing the initial point h0 such that ⇠i : Rm ! R is a locally Lipschitz continuous

function on K with Lipschitz constant L for every i 2 [d], i.e., 8h1, h2 2 K, |⇠i(h1)�⇠i(h2)| 
Lkh1 � h2k. Then there is an " > 0 such that the initial value problem in (3.1) has a unique

solution defined on the interval [�", "].

Proof. Let �(h, x(t)) be rewritten as �(h, t) = �(h, x(t)). For some r > 0 and a > 0,
define Br = {kh� h0k  r} ⇢ K, Ia = {|t|  a}. Since x is continuous in time, there exists a
constant M > 0 such that

M = max
(h,t)2Br⇥Ia

k�(h, t)k.

Also for every t 2 Ia, h 7! �(h, t) satisfies the local Lipschitz condition on K: for every
h1, h2 2 Br,

k�(h1, t)� �(h2, t)k = k�(⌅(h1)� ⌅(h2))k
 k�k k(⌅(h1)� ⌅(h2))k  dLk�k kh1 � h2k.

From the existence/uniqueness theorem in ODEs (see, e.g., [30, Theorem 3.2]), there exists a
unique solution to (3.1) on the interval [�", "], where " is chosen as " = min{a, r

M , 1
2dk�kL}.

3.2. Gradient computation and the adjoint method. For the NAED time signal classi-
fier, training can be formulated as the ODE-constrained optimization problem,

min
⇥={�,B,A,b}

J(⇥),(3.4)

subject to (3.1) where the objective function J(⇥) is defined in (3.3). To employ a gradient-
based optimization method, we need to compute r⇥J . However, directly computing the
gradient of J with respect to ⇥ is complicated and computationally expensive because J
involves hi(Ti;⇥), the solution to (3.1) at time t = Ti. An alternative method to compute
r⇥J is to use the adjoint method, as we do in the following theorem.

Theorem 3.3. The gradients of the objective function in (3.3) with respect to the unknown

parameters, � 2 Rm⇥d
, B 2 Rm⇥n

, A 2 R|Y|⇥m
, and b 2 R|Y|

, are given by

D
ow

nl
oa

de
d

06
/2

4/
22

 to
 1

28
.1

10
.1

84
.5

5
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NAED METHOD FOR TIME SIGNAL CLASSIFICATION 39

r�J = �
X

i2[N]

Z Ti

0
�i(t)⌅(hi(t))

t dt+r�R,(3.5a)

rBJ = �
X

i2[N]

Z Ti

0
�i(t)xi(t)

t dt+rBR,(3.5b)

rAJ = � 1

N

X

i2[N]

(yi � �(Ahi(Ti) + b))hi(Ti)
t +rAR,(3.5c)

rbJ = � 1

N

X

i2[N]

(yi � �(Ahi(Ti) + b)) +rbR,(3.5d)

where �i(t) for t 2 [0, Ti] is a solution to the adjoint equation,

d

dt
�i(t) = �[�Dh⌅(h)]

t�i(t),(3.6a)

�i(Ti) = �
1

N
At(yi � �(Ahi(Ti) + b)).(3.6b)

Proof. We introduce the Lagrange multipliers, �i : [0, Ti] ! Rm, for i 2 [N], and the
Lagrangian,

L(⇥, hi,�i) = J(⇥) +
X

i2[N]

Z Ti

0
�t
i(t)

⇣
ḣi(t)� �(hi(t), xi(t))

⌘
dt

= J(⇥) +
X

i2[N]

�t
i(Ti)hi(Ti)�

Z Ti

0
�̇t
i(t)hi(t) + �t

i(t)�(hi(t), xi(t)) dt.

Here, we have used integration by parts to rewrite the Lagrangian. Taking the variation of
the Lagrangian with respect to hk(t) gives

�L = @hk(Tk)J�hk(Tk) + �t
k(Tk)�hk(Tk)�

Z Tk

0

⇣
�̇t
k(t) + �t

kDh�
⌘
�hk(t) dt,

where Dh� = �Dh⌅(h) is the Jacobian of � with respect to the h. Setting the variation to
zero, we find that �k(t) satisfies the adjoint equation given in (3.6).

The gradients of the objective in (3.5) are then obtained by taking the partial derivatives
of the Lagrangian with respect to the unknown parameters, ⇥ = {�, B,A, b}. The gradients
with respect to � and B are given by

r�J = r�L = �
X

i2[N]

Z Ti

0
�i(t)⌅(hi(t))

t dt+r�R,

rBJ = rBL = �
X

i2[N]

Z Ti

0
�i(t)xi(t)

t dt+rBR.

D
ow

nl
oa

de
d

06
/2

4/
22

 to
 1

28
.1

10
.1

84
.5

5
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

40 R. YOON, H. S. BHAT, AND B. OSTING

For the cross-entropy loss function in (3.3), a short computation shows that

rAJ = � 1

N

X

i2[N]

(yi � �(Ahi(Ti) + b))hi(Ti)
t +rAR,

rbJ = � 1

N

X

i2[N]

(yi � �(Ahi(Ti) + b)) +rbR.

Combining these results concludes the proof.

The gradients from Theorem 3.3 are used with an optimization method to minimize the
cross-entropy loss function (3.4) and thereby train the model.

3.3. Dictionary choice. In the NAED model, the right-hand side of the dynamical system
is given by �(h, x; ✓) = �⌅(h) + Bx; see (3.2). The first term is a linear combination of
dictionary functions, ⌅(h) = (⇠1(h), ⇠2(h), . . . , ⇠d(h)) 2 Rd. There is tremendous freedom in
selecting the dictionary functions and this choice is paramount to the model. We tested NAED
using two di↵erent dictionaries, a polynomial dictionary and a Fourier dictionary, described
now in turn.

The polynomial dictionary consists of all possible polynomials of h 2 Rm up to kth
order. For h 2 Rm, the dictionary is ⌅(h) = [1, P1(h), P2(h), . . . Pk(h)], where Pk(h) is a
basis for homogeneous polynomials of degree k. In this section, we use subscripts to denote
scalar components of a vector, e.g., h = [h1, h2, . . . , hm]. We choose the basis Pk(h) to
consist of the (k+m�1

m�1) basis elements of the form 1
↵1!···↵m!h

↵1
1 · · ·h↵m

m , where
Pm

i=1 ↵i = k,
as appearing in Taylor’s theorem. For instance, if m = 2, P2(h) refers to the quadratic
polynomials P2(h) = [h21/2, h1h2, h

2
2/2]. In Figure 1, we illustrate the hidden state model for

the polynomial dictionary of order k = 2, in the case where m = 3 (i.e., with h 2 R3).
Alternatively, we can consider a Fourier dictionary. Using separation of variables for

a function F : Rm ! R, we write F (h) = f1(h1)f2(h2) · · · fm(hm), where fi : R ! R for
i = 1, . . . ,m. We approximate fi(x) by a finite linear combination of Fourier basis functions,
fi(x) = ai0 +

PK
k=1 a

i
k cos (2⇡kx/L) + bik sin (2⇡kx/L) , where L is the period of fi(x). Each

row of the vector �⌅(h) appearing in the right-hand side of the dynamical system (3.1) can
be written as

Qm
i=1 fi(hi), where the coe�cients ai0, a

i
k, and bik correspond to entries of �. In

other words, our dictionary D consists of functions given by the outer product of harmonic
functions,

⌅(h) =

0

@
sin

⇣
2⇡k1h1/L

⌘

cos
⇣
2⇡k1h1/L

⌘

1

A⌦

0

@
sin

⇣
2⇡k2h2/L

⌘

cos
⇣
2⇡k2h2/L

⌘

1

A⌦ · · ·⌦

0

@
sin

⇣
2⇡kmhm/L

⌘

cos
⇣
2⇡kmhm/L

⌘

1

A ,

where ki 2 [K]. For instance, for m = 2, and K = 1, the dictionary consists of the following
nine functions:

⌅(h) =
h
1, cos (2⇡h1/L) , sin (2⇡h1/L) , cos (2⇡h2/L) , sin (2⇡h2/L) , cos (2⇡h1/L) cos (2⇡h2/L) ,

sin (2⇡h1/L) cos (2⇡h2/L) , cos (2⇡h1/L) sin (2⇡h2/L) , sin (2⇡h1/L) sin (2⇡h2/L)
i
.

By the Stone–Weierstrass theorem, the polynomial dictionary and Fourier dictionary are
dense in the space of continuous functions and L2, in the limiting case where k ! 1 and

D
ow

nl
oa

de
d

06
/2

4/
22

 to
 1

28
.1

10
.1

84
.5

5
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NAED METHOD FOR TIME SIGNAL CLASSIFICATION 41

K ! 1, respectively. By choosing these parameters su�ciently large, all smooth dynamical
systems can be represented as accurately as is needed.

We would like to apply Theorem 3.2 to guarantee the existence of a unique solution to
(3.1). Assuming that the time signal x is continuous, it is enough to choose a dictionary
that satisfies the Lipschitz continuity assumption. If we use the Fourier dictionary, then the
Lipschitz constant is approximately L ⇡ 2⇡K

L . In this case, our model (3.1) has a unique
solution until time T , provided we initialize � with su�ciently small values. On the other
hand, if we use the polynomial dictionary, there are two cases. If only linear terms are used in
the dictionary, then the right-hand side is Lipschitz continuous and a unique solution exists
on the time interval [0, T]. However, if we use higher-order polynomials in the dictionary, the
right-hand side is only locally Lipschitz and Theorem 3.2 can only guarantee a solution on
a short time interval; the solution may blow up in finite time. In the numerical results in
section 4, we will observe that models with the Fourier dictionary are generally more accurate
and less sensitive to initialization than models with a nonlinear Polynomial dictionary. In
algorithm Algorithm 3.1, we present the process of training the general NAED method.

3.4. Stability of the NAED method. Dynamical systems theory can be used to prove

that a given NAED classifier x
C7�! y is stable to noise; below we do this for both deterministic

and stochastic perturbations. For p 2 [1,1), let Lp([0, T];Rn) denote the Bochner space of

continuous Rn-valued functions with norm kxkLp([0,T];Rn) := (
R T
0 |x(t)|pdt)

1
p .

Theorem 3.4. Consider a NAED classifier C : L1 ([0, T];Rn) ! R|Y|
, equipped with a dic-

tionary ⌅ : Rm ! Rd
that is Lipschitz continuous with constant L. The classifier C is Lipschitz

continuous with constant L > 0 defined in the proof. That is, if we have a time signal x(t)
and a noise corrupted version, x̃(t) = x(t) + ⌘(t), then |C (x̃)� C (x)|  Lk⌘kL1([0,T];Rn).

Algorithm 3.1. General NAED method for time signal classification

Input: initial parameters, ⇥ = {�, B,A, b}.
for epoch = 1, . . . , Nepoch: do

Shu✏e data and create batches of size Nbatch

for each batch: do
(Solve the forward ODE for hi) For the current parameters � and B, solve
the forward ODE in (3.1), i.e., for each example i 2 [Nbatch] and discrete times tk,
k 2 [K], find hi(tk).

(Make predictions) Assign predictions via (3.1c), i.e., ŷi = �(Ahi(T) + b).

(Solve the adjoint equation for �i) Use the hidden state at the final time hi(T)
to compute the terminal condition and solve the backward ODE in (3.6), i.e., for
each example i 2 [Nbatch] and discrete times tk, k 2 [K], find �i(tk).

(Compute gradients) Using hi(tk) and �i(tk), evaluate the gradient of the ob-
jective function with respect to the parameters r⇥J , as in (3.5).

(Update parameters) Use a gradient-based optimization method, e.g., ADAM
method or gradient descent, to update the parameters, ⇥.

D
ow

nl
oa

de
d

06
/2

4/
22

 to
 1

28
.1

10
.1

84
.5

5
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

42 R. YOON, H. S. BHAT, AND B. OSTING

Proof. In the NAED method with dictionary ⌅, the unperturbed and perturbed hidden
variables, h and h̃, satisfy

d

dt
h = �⌅(h) +Bx,

d

dt
h̃ = �⌅(h̃) +Bx̃

with h(0) = h̃(0) = h0. Let L denote the Lipschitz constant for the dictionary ⌅. Subtracting
these equations, we estimate

|h(t)� h̃(t)| 
Z t

0
Lk�k |h(⌧)� h̃(⌧)| d⌧ +

Z t

0
kBk |⌘(⌧)| d⌧.

Since
R t
0 kBk |⌘(⌧)| d⌧ is a nondecreasing function, Gronwall’s inequality yields

|h(T)� h̃(T)|  kBk
✓Z T

0
|⌘(⌧)| d⌧

◆
eLTk�k = C

Z T

0
|⌘(⌧)| d⌧,

where C = kBkeLTk�k. The softmax prediction function in (3.1c) is Lipschitz continuous with
constant that we denote by L�. We have

|C (x̃)� C (x)|  L�|h̃(T)� h(T)|  Lk⌘kL1([0,T];Rn),(3.7)

where L = L�C, as desired.

Theorem 3.5. Consider a NAED classifier C : L1 ([0, T];Rn) ! R|Y|
, equipped with a dic-

tionary ⌅ : Rm ! Rd
that is Lipschitz continuous with constant L. Let Wt denote the

Wiener process in Rd
. Consider a time signal x(t) and a version corrupted by Gaussian

white noise, x̃(t) = x(t) + ⌘(t), where ⌘(t)dt = dWt. Then |C (x̃) � C (x)|  L sup0sT |Ws|
and P (|C (x̃)� C (x)| � r)  2de�r2/2dTL2

, with constant L > 0 defined in the proof.

Proof. In the NAED method with dictionary ⌅, the unperturbed and perturbed hidden
variables, h and h̃, satisfy

h(t) = h0 +

Z t

0
�⌅(h(⌧)) d⌧ +B

Z t

0
x(⌧) d⌧,

h̃(t) = h0 +

Z t

0
�⌅(h̃(⌧)) d⌧ +B

Z t

0
x(⌧) d⌧ +B

Z t

0
dW⌧

with h(0) = h̃(0) = h0. Subtracting these equations, we first obtain

|h̃(t)� h(t)| =
����
Z t

0
�
h
⌅(h(⌧))� ⌅(h̃(⌧))

i
d⌧ +BWt

���� .

Let L denote the Lipschitz constant for the dictionary ⌅. We estimate

|h̃(t)� h(t)| 
Z t

0
Lk�k |h(⌧)� h̃(⌧)| d⌧ + kBk|Wt|


Z t

0
Lk�k |h(⌧)� h̃(⌧)| d⌧ + kBk sup

0st
|Ws|.

D
ow

nl
oa

de
d

06
/2

4/
22

 to
 1

28
.1

10
.1

84
.5

5
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NAED METHOD FOR TIME SIGNAL CLASSIFICATION 43

The continuity of Wt implies the continuity of sup0st |Ws|. Note that sup0st |Ws| is
nondecreasing. Hence Gronwall’s inequality yields

|h̃(T)� h(T)|  kBk sup
0sT

|Ws|eLTk�k = C sup
0sT

|Ws|,

where C = kBkeLTk�k. We combine this with the Lipschitz bound on softmax:

|C (x̃)� C (x)|  L�|h̃(T)� h(T)|  L sup
0sT

|Ws|,(3.8)

where L = L�C as before.
The remaining estimates can be derived from the density computed in [19, sect. 2.8A]; for

clarity, we provide a self-contained treatment. Let Bt denote the Wiener process in R, and
let ⌧z = min{t : Bt = z}, a first passage time. Then

P (Bt � z) = P (Bt � z | ⌧z  t)| {z }
I

P (⌧z  t) + P (Bt � z | ⌧z > t)| {z }
II

P (⌧z > t).

By symmetry of Bt, term I is 1/2; by continuity of Bt, term II is 0. Hence P (⌧z  t) =
2P (Bt � z) = erfc(z(2t)�1/2), where erfc is the complementary error function. Now using the
reflection principle, we have

P

✓
sup

0sT
|Bs| � z

◆
 2P

✓
sup

0sT
Bs � z

◆

 2P (⌧z  T)

 2 erfc(z(2T)�1/2)

 2e�z2/(2T).

Let Wt,j denote the jth coordinate of Wt; each Wt,j is an independent one-dimensional Wiener
process. With |w|p denoting the p-norm of the vector w 2 Rd, we have |w| = |w|2  d1/2|w|1.
Putting these facts together, we estimate

P

✓
sup

0sT
|Ws| � z

◆
 P

✓
sup

0sT
|Ws|1 � zd�1/2

◆

 P

✓
sup

1jd
sup

0sT
|Ws,j | � zd�1/2

◆

 dP

✓
sup

0sT
|Bs| � zd�1/2

◆

 2de�z2/(2dT).

Combining this with (3.7) yields the conclusion of the theorem.

Theorems 3.4 and 3.5 can be further interpreted in terms of classification stability as
follows. Suppose that for a given time series, x, the NAED classifier gives the estimate
ŷ = C (x) (a probability vector). Further, suppose that maxi C (x)i is uniquely attained soD

ow
nl

oa
de

d
06

/2
4/

22
 to

 1
28

.1
10

.1
84

.5
5

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

44 R. YOON, H. S. BHAT, AND B. OSTING

that the distance between C (x) and the decision boundary is positive. Then there exists a
positive constant, " > 0, such that for any corrupted time signal x̃(t) = x(t) + ⌘(t) with
k⌘k  " the two estimates C (x) and C (x̃) have the same maximum component, and so the
assigned class does not change for the corrupted time signal. Here, the corruption can be
either deterministic (Theorem 3.4) or stochastic (Theorem 3.5).

3.5. Sparse NAED method. The main task in our proposed learning method is to find
the right-hand side of the underlying nonautonomous dynamical system in (3.2), where the
right-hand side is assumed to be a linear combination of dictionary terms. Here we explore
the idea of imposing sparsity on the dictionary coe�cients, with the goal of finding a simple

representation of the underlying dynamics. As in equation discovery methods, we are moti-
vated by the observation that most equations describing physical phenomena involve only a
few relevant terms so that the right-hand side is sparse in the set of all possible functions.
Imposing this assumption, we learn a model that balances accuracy and parsimony. Addition-
ally, the sparsity assumption on the dictionary coe�cients helps to prevent overfitting on the
training dataset, leading to a method that is more robust to noise. Moreover, by assuming
sparsity, we also obtain more interpretable dynamical models.

To develop a practical method to promote sparsity in the dictionary coe�cients, we adopt
the idea of iterative thresholding from [4, 38]. The resulting algorithm is given in Algo-
rithm 3.2. In Algorithm 3.2, entries of � with magnitude less than ⌫ > 0 are thresholded
to zero. This procedure is repeated until � has converged. In general, increasing ⌫ trades
accuracy for sparsity. The optimal value of ⌫ will thus depend on the problem and data at
hand. In practice, we use cross-validation to tune the value of ⌫; we find that the convergence
of the algorithm depends on the value of ⌫. We examine the e↵ectiveness of Algorithm 3.2
using the perturbed dataset in subsection 4.3 and the real dataset in subsection 4.4.

4. Computational experiments. In this section, we demonstrate our proposed NAED
method on a variety of datasets: synthetic datasets derived from dynamical systems and par-
tial di↵erential equations (subsection 4.2), a noisy synthetic dataset derived from a dynamical
system (subsection 4.3), and UCR archive datasets (subsection 4.4). We demonstrate that
our method is interpretable and attains results with accuracy comparable to or better than
the RNN, LSTM, CFN, and NCDE methods, using substantially fewer parameters. Next we
describe details of our implementation; our source code is available online.1

4.1. Implementation details. We implemented the NAED and sparse NAED methods,
described in section 3, using TensorFlow; pseudocode for these two algorithms is given in
Algorithms 3.1 and 3.2.

To solve the optimization problem, we used the mini-batched ADAM optimizer with gra-
dient computed as in Theorem 3.3. For each epoch, we shu✏ed the data using the Tensorflow
function tf.random.shuffle and split the training data into small batches that were used
to compute the gradients and update the parameters. For the synthetic datasets, we used
batch size 800 and for the UCR datasets, we used batch size 200, 20, 50, and 50, respectively.
We used a learning rate 2 {0.001, 0.005, 0.01, 0.05, 0.1, 0.5} and report the results of the best
performance.

1
https://github.com/rkyoon12/NAED.D

ow
nl

oa
de

d
06

/2
4/

22
 to

 1
28

.1
10

.1
84

.5
5

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://github.com/rkyoon12/NAED

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NAED METHOD FOR TIME SIGNAL CLASSIFICATION 45

Algorithm 3.2. Sparse NAED method for time signal classification. The modification to
the NAED method, Algorithm 3.1, is the threshold step.

Input: initial parameters, ⇥ = {�, B,A, b} and cuto↵ value, ⌫ > 0.
for epoch = 1, . . . , Nepoch: do

Shu✏e data and create batches of size Nbatch

for each batch: do
(Solve the forward ODE for hi) For the current parameters � and B, solve
the forward ODE in (3.1), i.e., for each example i 2 [Nbatch] and discrete times tk,
k 2 [K], find hi(tk).

(Make predictions) Assign predictions via (3.1c), i.e., ŷi = �(Ahi(T) + b).

(Solve the adjoint equation for �i) Use the hidden state at the final time hi(T)
to compute the terminal condition and solve the backward ODE in (3.6), i.e., for
each example i 2 [Nbatch] and discrete times tk, k 2 [K], find �i(tk).

(Compute gradients) Using hi(tk) and �i(tk), evaluate the gradient of the ob-
jective function with respect to the parameters r⇥J , as in (3.5).

(Update parameters) Use a gradient-based optimization method, e.g., ADAM
method or gradient descent, to update the parameters, ⇥.

(Threshold step) We threshold the � parameter values by setting

�ij
(
�ij if |�ij | � ⌫,

0 if |�ij | < ⌫.

The gradient computation requires us to solve both the forward ODE (3.1) for h : [0, T]!
Rm and the adjoint ODE (3.6) for � : [0, T]! Rm. To approximate the solution of the forward
and adjoint ODEs, we used the fourth-order Runge–Kutta (RK4) method, implemented via
tfs.integrate.odeint_fixed in the tensorflow_scientific library. To approximate x(t)
at times t not in the sampled time series data, we use linear interpolation

x(t) ⇡ (tn+1 � t)xn + (t� tn)xn+1

tn+1 � tn
, tn  t  tn+1.

In all numerical examples we fixed the initial condition for the hidden state in (3.1b) to be
h0 = 0.

For each dataset, we train the NAED model several times for di↵erent dimensions, m,
of the hidden state, largest degree of polynomials k, or maximum multiplier of Fourier basis
terms K. We report the results for several such models.

Initialization. As described at the end of subsection 3.3, the choice of dictionary functions
and coe�cients has a significant e↵ect on the convergence of the method. In particular, large
values of � can cause the solution of the forward ODE (3.1) to blow up in finite time. The time
duration ", as guaranteed by Theorem 3.2 for a bounded solution, is inversely proportional
to the norm of � and B. Hence we initialize parameters to be small to guarantee a boundedD

ow
nl

oa
de

d
06

/2
4/

22
 to

 1
28

.1
10

.1
84

.5
5

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

46 R. YOON, H. S. BHAT, AND B. OSTING

solution to (3.1) until the final time T . Let U [r, s] denote the uniform distribution on the
interval [r, s]. For either the linear polynomial dictionary or the Fourier basis dictionary, the
Lipschitz constant for each dictionary function is approximately L ⇡ 1, so we initialize the

parameters �, B,A
iid⇠ U [�1, 1] and b

iid⇠ U [0, 1]. When the dictionary involves higher-degree

polynomials, we initialize �, B
iid⇠ U [�0.1, 0.1] and A, b

iid⇠ U [�1, 1].
Competing methods and hyperparameters. We implemented the RNN and LSTM methods

in TensorFlow, using tf.keras.sequential, keras.layers.rnn, and keras.layers.LSTM.
Using the description in [21], we developed our own implementation of the CFN method in
TensorFlow. We trained the NCDE method using the published code [20]; we implemented
this in PyTorch using the torchcde library. We trained these competing methods using the
cross-entropy loss function, the ADAM optimization method, and the default initialization.
The models were trained until convergence of the loss function. For the RNN, LSTM, CFN,
and NCDE methods, we conducted extensive parameter sweeps to select hyperparameters
such as network depth (number of layers) and width (number of units per layer). For each
dataset, and for each of these four methods, we report the best result that we found.

4.2. Synthetic datasets.

4.2.1. Forced harmonic oscillator. We consider a forced oscillator with position u(t)
satisfying

ü+ �u̇+ !2u = x(t),(4.1a)

u(0) = u̇(0) = 0,(4.1b)

where � is the damping coe�cient, !2 is the undamped angular frequency, and x(t) is a
specified forcing. To form the ground truth labels, we record whether the position of u(T) at
the final time t = T is positive or negative,

y =

(
(1, 0), u(T) > 0,

(0, 1), u(T) < 0.
(4.2)

With the above framework, we generate a synthetic dataset as follows. Fix K 2 N, � > 0,
! > 0, and T > 0. For a forcing of the form x(t) =

PK
k=1Ak sin(↵kt), t 2 [0, T], where Ak are

randomly chosen amplitudes and ↵k are randomly chosen forcing frequencies, we numerically
solve (4.1) for u(t), t 2 (0, T] and compute y via (4.2). We choose K = 2, � = 0.2, ! = 1,

T = 10, Ak
iid⇠ N (0, 1), and ↵k

iid⇠ N (0, 1). In this paper, we use N (µ,�2) to denote the
normal distribution with mean µ and variance �2. The process is repeated N = 10000 times
to create a dataset with 8000 training examples and 2000 test examples.

In Table 1, we tabulate the accuracy and number of trained parameters for various methods
on this dataset. The total number of parameters for the NAED method is given by

#params = dim(�) + dim(B) + dim(A) + dim(b) = d⇥m+ n⇥m+m⇥ |Y|+ |Y|.

In the first column of Table 1, additional information about each method is summarized.
For the NAED method with polynomial dictionary, the parenthetical numbers are (# ofD

ow
nl

oa
de

d
06

/2
4/

22
 to

 1
28

.1
10

.1
84

.5
5

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NAED METHOD FOR TIME SIGNAL CLASSIFICATION 47

Table 1
A comparison of the accuracy (training and test datasets) and number of parameters for various methods on

the synthetic dataset based on the forced harmonic oscillator. In this and in subsequent tables, we use boldface
to indicate methods with the highest accuracy. NAED refers to Algorithm 3.1 with no sparsity promotion. See
subsection 4.2.1.

Methods Train Test # params

NAED Poly (2,1) 0.9994 0.9905 14

NAED Poly (3,1) 0.9831 0.9585 23

NAED Poly (4,1) 0.9800 0.9040 34

NAED Poly (2,2) 0.9817 0.9700 20

NAED Fourier (2,1) 0.9614 0.9670 26

NAED Fourier (2,2) 0.9365 0.9345 58

RNN (1,5) 0.9741 0.9715 41

LSTM (1,5) 0.9791 0.9750 146

CFN (7,5) 0.9113 0.9180 891

NCDE (32,32-1) 0.9919 0.9854 1221

units in hidden layer, maximum degree of polynomial in dictionary). The first row block of
Table 1 is for the NAED method while varying either the dimension of the hidden units or
the maximum degree of the polynomial entries. We observe that the polynomial dictionary
with a two-dimensional hidden state and polynomials up to degree one produces the best
accuracy. This model also has the smallest number of parameters of all methods tested. This
result might be expected as it agrees with the ground truth model (harmonic oscillator) up
to conjugation by an orthogonal matrix. For the NAED method with the Fourier dictionary,
the parenthetical numbers refer to (# of units in hidden layer, largest multiplier K) where
the dictionary consists of Fourier terms with frequency ! = L

K , . . . , L. It is natural to choose
L = 10 because we handle the hidden state h on the time interval [0, 10]. For the RNN, LSTM,
and CFN methods, the parenthetical numbers represent (# of hidden layers, # of units). For
the NCDE method, the parenthetical numbers represent (# of units, width-depth of neural
network for vector field). As described in subsection 4.1, for the RNN, LSTM, CFN, and
NCDE methods, we carried out repeated runs with di↵erent values of these hyperparameters,
but we report only the hyperparameters that yield the best test accuracy. We observe that
all methods performed remarkably well for this simple dataset.

We can visualize our model using phase portraits; examples are given in Figure 2. Here,
the black arrows represent the autonomous part of the learned vector field, h 7! �⌅(h).
Also plotted in color are solution trajectories, all of which begin at the origin. The final
positions at T = 10 are indicated by a square. The class associated with each sample is
indicated in the legend. The classification decision is made using the final state of a trajectory
via the probability vector, ŷ = � (Ah(T) + b). Writing Ah(T) + b = A

�
h(T) +A�1b

�
=

A (h(T)� h0) where h0 = �A�1b, we see that the softmax function is being applied to the

vector (
at1(h(T)�h0)
at2(h(T)�h0)

), where ai is the ith row of A. We can visualize this decision in Figure 2

as follows. We draw the two rows of A as green vectors. These vectors partition R2 into two
regions (each representing a class); we shade the region representing class 0 in red and that of
class 1 in blue. In Figure 2, we observe that the final states of the chosen trajectories belong
to the correctly identified partition component.D

ow
nl

oa
de

d
06

/2
4/

22
 to

 1
28

.1
10

.1
84

.5
5

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

48 R. YOON, H. S. BHAT, AND B. OSTING

(a) (b)

(c) (d)

Figure 2. In four subplots, labeled (a)–(d), we plot the vector field h 7! �⌅(h) in (3.1) for di↵erent choices
of dictionary ⌅. In each plot, two example solution trajectories are given (one for each class), vectors used for
the decision are drawn, and the class regions are shaded in red and blue. (a) Polynomial dictionary with ground
truth initialization. (b) Polynomial dictionary with random initialization. (c) Fourier dictionary with K = 1.
(d) Fourier dictionary with K = 2. See subsection 4.2.1 for details.

We now remark on the identifiability of our model. Recall that a statistical model is
said to be identifiable if the parameter values uniquely determine the probability distribution
of the data. For an identifiable model, it is in principle possible to learn the ground truth
parameters used to construct the data. Also recall that the goal of our algorithm is not to
learn the mapping h 7! �⌅(h), but rather to learn the mapping x 7! y. Since only the
solution of the forward ODE at the final time is used to make this prediction, the learned
vector field can di↵er from the ground truth vector field; our model is not identifiable. If
we consider Figure 2(b), the learned vector field closely agrees with the ground truth vector
field (a), up to conjugation by an orthogonal matrix; the eigenvalues of �⌅(h) for in (a) are
�0.1± i0.995, which are close to the eigenvalues of �⌅(h) for (b), given by �0.1015± i1.001.
However, the vector fields in (c) and (d) are seen to di↵er from (a) considerably. Nevertheless,
for the example trajectories shown in each subplot, the class is correctly predicted (e.g., red
trajectory terminates in the red region). So, despite these di↵erences in the vector fields, the
classification accuracy for each of the four models is quite good (see Table 1).

By using the adjoint method to train the NAED method, we avoid the exploding/vanishing
gradient problem that often arises when training RNNs. To demonstrate this and also to showD

ow
nl

oa
de

d
06

/2
4/

22
 to

 1
28

.1
10

.1
84

.5
5

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NAED METHOD FOR TIME SIGNAL CLASSIFICATION 49

that the NAED method captures long-term dependencies in the data, we perform the following
experiment. We again generate synthetic data using the forced harmonic oscillator (4.1) and
assign the labels ŷ using the position of u(T). Here we take a larger final time, T = 100
(compared to T = 10 previously), while keeping the time step dt = 0.1 the same as before. The
result is sequential data that is 10 times as long as that considered before. We then train the
NAED, RNN, and NCDE methods on the data. With the same set of hyperparameters (entries
of the dictionary for NAED and depth and width of networks for RNN/NCDE), we found
that the NAED method still achieves similar accuracy as before, 0.9937/0.9890 (train/test),
whereas the performance of other methods is degraded; the accuracy of RNN is 0.8313/0.8020,
and the accuracy of NCDE is 0.5699/0.5299. To improve the performance of these methods,
we can adjust the architecture of the models by increasing the depth and width of layers.
Nevertheless, the best accuracy we found for the RNN and NCDE methods, respectively, is
0.8950/0.8888 and 0.6637/0.6399. These results indicate that the NAED method can compute
gradients stably across long intervals of time and that it can model long-term dependencies.

4.2.2. Forced Van der Pol oscillator. Consider the forced Van der Pol oscillator with
position u(t) satisfying

ü� µ(1� u2)u̇+ u = x(t),(4.3a)

u(0) = u̇(0) = 0,(4.3b)

where µ = 0.3 controls the strength of nonlinear damping. We choose the forcing x(t) as in
subsection 4.2.1 and, at time T = 10, we define the label y as in (4.2).

As shown in Table 2, the best accuracy for the forced Van der Pol dataset is obtained
with the Fourier (2,2) dictionary. It is a remarkable result in that NAED uses only 58 param-
eters. On the other hand, the second best result trains roughly 20 times more parameters.
Since the true system is nonlinear, it is not surprising to see strong performance from the
Fourier dictionaries, which contain sums and products of trigonometric functions. Due to the
presence of nonlinear polynomials in the Van der Pol system, we might expect that the best
dictionary would be the Poly (2,3) dictionary. However, as discussed in subsection 3.3, the

Table 2
A comparison of the accuracy and number of parameters for various methods on the forced Van der Pol

synthetic dataset. NAED refers to Algorithm 3.1 with no sparsity promotion. See subsection 4.2.2.

Method Train Test # params

NAED Poly (2,1) 0.9030 0.854 14

NAED Poly (3,1) 0.9100 0.8675 23

NAED Poly (4,1) 0.8790 0.882 34

NAED Poly (2,2) 0.7458 0.765 20

NAED Poly (2,3) 0.8237 0.8215 28

NAED Fourier (2,1) 0.9045 0.8975 26

NAED Fourier (2,2) 0.9830 0.9860 58

RNN (5,7) 0.9729 0.9600 491

LSTM (1,5) 0.9603 0.9495 146

CFN (7,5) 0.9345 0.9350 1177

NCDE (32, 32-1) 0.9821 0.9745 1221

D
ow

nl
oa

de
d

06
/2

4/
22

 to
 1

28
.1

10
.1

84
.5

5
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

50 R. YOON, H. S. BHAT, AND B. OSTING

nonlinear entries in the dictionary cause the right-hand side of (3.1) to be only locally Lip-
schitz continuous, so that Theorem 3.2 can only guarantee a solution on a short time interval.
Since the class prediction is made using (3.1c), i.e., it depends on the hidden variable h(t)
at time t = T , premature blowup of solutions spoils the learning process. The first block in
Table 2 shows that linear polynomial dictionaries beat nonlinear ones. We obtained the best
accuracy with a more complex Fourier dictionary; both Fourier dictionaries outperformed all
polynomial dictionaries on this problem.

4.2.3. Forced Lorenz system. Consider the forced nonlinear Lorenz system with positive
parameters (�, ⇢,�):

u̇1 = �(u2 � u3) + x(t),(4.4a)

u̇2 = u1(⇢� u3)� u2,(4.4b)

u̇3 = u1u2 � �u3,(4.4c)

u1(0) = u2(0) = u3(0) = 1.(4.4d)

The first coordinate is forced by x(t) = 4
PK

k=1Ak sin(↵kt), t 2 [0, T], where Ak
iid⇠ N (0, 1)

and ak
iid⇠ N (0, 1). Using the position of u1(t) at the final time T = 10, we define the label y

as in (4.2). To generate the synthetic data, we choose parameters � = 5,� = 1.3, and ⇢ = 10.
This dataset has a class imbalance: the training data consist of 6348 and 1652 instances in
classes 0 and 1, respectively, and the test data contain 1566 and 434 instances in classes 0 and
1, respectively.

As shown in Table 3, the highest accuracy for di↵erent choices of dictionaries and parame-
ters in the NAED method is obtained by Fourier (3,1). This result demonstrates that complex
dictionary entries are required to capture the nonlinearity in the underlying dynamics. It is
remarkable that the NAED methods produced comparable results to the other methods using
far fewer parameters, although it does not exceed the classification accuracy of the LSTM
method.

Table 3
A comparison of the accuracy and number of parameters for various methods on the synthetic dataset based

on the forced Lorenz equation. NAED refers to Algorithm 3.1 with no sparsity promotion. See subsection 4.2.3.

Method Train Test # params

NAED Poly (2,1) 0.8388 0.8365 14

NAED Poly (3,1) 0.8252 0.8160 23

NAED Poly (4,1) 0.8321 0.8215 34

NAED Poly (2,2) 0.8522 0.847 20

NAED Poly (3,2) 0.8546 0.8535 41

NAED Fourier (2,1) 0.8861 0.8945 26

NAED Fourier (3,1) 0.9051 0.9050 92

NAED Fourier (2,2) 0.8517 0.8439 58

RNN (2,10) 0.7937 0.7799 341

LSTM (1,10) 0.9306 0.9359 491

CFN (2,10) 0.8080 0.7965 781

NCDE (16,16-1) 0.9434 0.9369 595

D
ow

nl
oa

de
d

06
/2

4/
22

 to
 1

28
.1

10
.1

84
.5

5
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NAED METHOD FOR TIME SIGNAL CLASSIFICATION 51

4.2.4. Forced Lotka–Volterra equations. Consider the forced Lotka–Volterra system,

u̇1 = ↵u1 � �x(t)u1u2,(4.5a)

u̇2 = �x(t)u1u2 � �u2,(4.5b)

with initial condition (u1(0), u2(0)) = (5, 4), x(t) = (
PK

k=1Ak sin(↵kt))2 � 0 and param-

eters (↵,�, �, �) = (0.8, 0.1, 0.01, 1.1). We sample Ak, ak
iid⇠ N (0, 0.5). After numerically

solving up to time T = 10, we set the ground truth label y via the indicator function for
argmax(u1(T), u2(T)). Here x(t) appears as a coe�cient in the nonlinear terms. If we intro-
duce the additional variable u3(t) = x(t), the forcing occurs linearly,

u̇1 = ↵u1 � u1u2u3, u1(0) = 5,

u̇2 = u1u2u3 � �u2, u2(0) = 4,

u̇3 = ẋ(t), u3(0) = x(0) = 0.

This system suggests that we consider ẋ(t) as the time series input data. Hence we train the
model using, in turn, either x(t) or ẋ(t) as the input. We generate ẋ(t) using the derivative
of x(t) computed by hand.

The top table in Table 4 shows results with x(t) as input, while the bottom table shows
results with ẋ(t) as input. Comparing these two tables, we see that across all dictionaries and
hyperparameters, the NAED method performs better with ẋ(t) as input. We find that the
NAED method with Fourier dictionary yields similar or better results than other methods
regardless of whether x(t) or ẋ(t) is used as input.

Table 4
A comparison of the accuracy and number of parameters for various methods on the synthetic dataset

based on the forced Lotka–Volterra equation. Each table presents results trained by input data x(t) and ẋ(t),
respectively. NAED refers to Algorithm 3.1 with no sparsity promotion. See subsection 4.2.4.

Method Train Test # params

NAED Poly (2,1) 0.8835 0.8860 14

NAED Poly (2,3) 0.8785 0.8835 28

NAED Fourier (2,1) 0.9600 0.9539 26

NAED Fourier (3,1) 0.9805 0.9739 92

RNN (5,32) 0.8192 0.8045 9441

LSTM (1,47) 0.9614 0.9595 9260

CFN (5,20) 0.9295 0.9184 9081

NCDE (32,32-1) 0.9838 0.9789 1221

Method Train Test # params

NAED Poly (2,1) 0.9109 0.850 14

NAED Poly (3,3) 0.9538 0.9435 71

NAED Fourier (2,1) 0.9737 0.9660 26

NAED Fourier (3,1) 0.9536 0.9505 92

NAED Fourier (2,2) 0.9717 0.9670 58

RNN (5,30) 0.9256 0.9225 8311

LSTM (2,20) 0.9684 0.9670 5082

CFN (3,20) 0.9409 0.9275 5001

NCDE (32,32-1) 0.9786 0.9720 1221

D
ow

nl
oa

de
d

06
/2

4/
22

 to
 1

28
.1

10
.1

84
.5

5
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

52 R. YOON, H. S. BHAT, AND B. OSTING

4.2.5. Stochastic gated partial di↵usion equation. Consider the one-dimensional sto-
chastic gated partial di↵usion equation [22],

ut(z, t) = uzz(z, t), z 2 [0, 1], t 2 [0, 1],

uz(0, t) = 0, z = 0,

x(t)u(1, t) + (1� x(t))uz(1, t) = 0, z = 1,

u(z, 0) = u0(z), t = 0.

At z = 0, we impose the reflecting (Neumann) boundary condition. At z = 1, we impose the
switching (time-dependent Robin) boundary condition, where 8t 2 [0, 1] we have x(t) 2 {0, 1},
a switching function. For the initial condition, we use an approximation to the Dirac delta

�(z � 0.5), given by u0(z) = 1p
2⇡�2

exp(� (z�0.5)2

2�2), where � = 0.1. The solution has an

interpretation in terms of a particle experiencing Brownian motion on the interval. The
probability of finding the particle at time t and position z is given by u(z, t). The initial
condition is interpreted as the particles all starting near z = 0.5. The boundary condition
at z = 1 has the interpretation that when x(t) = 1 a particle leaves the interval when it
reaches the boundary, and when x(t) = 0 the particles are reflected. The proportion of
particles remaining in the interval at time t, referred to as the survival probability, is given
by S(t) =

R 1
0 u(z, t) dz. For a given switching function x(t), we assign a label y based on the

survival probability at time t = 1,

y =

(
(1, 0), S(1) < 1

2 ,

(0, 1), S(1) � 1
2 .

(4.6)

The classification problem seeks the mapping from the switching function x(t) to the binary
class y.

We generate a synthetic dataset for this problem with 8000 training examples and 2000
testing examples as follows. To generate each switching function x(t) we choose an integer,
q, between 0 and 10 uniformly. We then randomly select q times in the interval [0, 1] and
starting with x(t) = 0, we set x(t) to alternate between 0 and 1 at these times. For each
switching function, x(t), we approximately solve the heat equation for u(z, t) as follows. We
apply a forward di↵erence in time and a second-order central di↵erence scheme for the space
derivative. We use a spatial discretization size of dx = 0.05 and temporal step size of dt = 0.01.
To obtain roughly balanced class sizes, we choose the di↵usion coe�cient to be  = 0.165. For
this choice of parameters, the CFL condition  (dt)

(dx)2 ⇡ 0.66 < 1 is satisfied, so the numerical

method is stable. The solution at time t = 1 is used to define the label y as in (4.6).
A comparison of the accuracy of various methods is given in Table 5. As shown in the first

block of Table 5, the proposed NAED method works well on this dataset generated using a
partial di↵usion equation. Among the several choices of entries for the dictionary, we achieve
the best accuracy with the Fourier (2-1) dictionary. The NAED method provides comparable
accuracy to other methods with substantially fewer parameters.

4.3. Synthetic dataset with noise. In this section, we train the sparse NAED method
(see subsection 3.5) and show the robustness of this method on a noisy dataset. To gener-

D
ow

nl
oa

de
d

06
/2

4/
22

 to
 1

28
.1

10
.1

84
.5

5
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NAED METHOD FOR TIME SIGNAL CLASSIFICATION 53

Table 5
A comparison of the accuracy and number of parameters for various methods on the synthetic dataset

based on the stochastic gated di↵usion equation. NAED refers to Algorithm 3.1 with no sparsity promotion.
See subsection 4.2.5.

Method Train Test # params

NAED Poly (2,1) 0.9203 0.9155 14

NAED Fourier (2,1) 0.9582 0.9570 26

NAED Fourier (2,2) 0.9523 0.9515 58

RNN (3,10) 0.9550 0.9570 146

LSTM (1,5) 0.9805 0.9799 146

CFN (2,3) 0.9440 0.9309 88

NCDE (32,32-1) 0.9785 0.9750 1221

Table 6
A comparison of the accuracy and number of nonzero (nnz) parameters for various methods on the synthetic

dataset based on the forced harmonic oscillator with noise. NAED refers to Algorithm 3.1 with no sparsity
promotion, while Sparse NAED refers to Algorithm 3.2. See subsection 4.3.

Methods Train Test # nnz params

NAED Poly (2,1) 0.7580 0.7505 6

Sparse NAED Poly (2,1) 0.7618 0.7605 3

NAED Fourier (2,1) 0.9192 0.9155 18

Sparse NAED Fourier (2,1) 0.9311 0.928 6

NAED Fourier (2,2) 0.9523 0.9515 50

Sparse NAED (2,2) 0.9670 0.9645 16

RNN (2,10) 0.9557 0.9530 341

LSTM (2,10) 0.9615 0.9595 1342

CFN (2,10) 0.9230 0.9180 781

NCDE (16,16-1) 0.9789 0.9674 595

ate the noisy data, we contaminate the forced harmonic oscillator input/forcing x(t) from
subsection 4.2.1 with noise:

x̃(t) = x(t) + ⌘(t), ⌘(t)
iid⇠ N (0, 10�4),

where ⌘(t) is a Gaussian process, mutually independent for di↵erent t. Noise is added to the
original data x(t) 2 [�5.8, 5.6] for t 2 [0, T].

For the noisy data, we apply the sparse NAED method within a cross-validation loop
to select ⌫. For each value of ⌫ 2 {0.01, 0.03, 0.05, 0.1, 0.5, 1}, and within each fold of five-
fold cross-validation, we train with Algorithm 3.2 until convergence. We then choose ⌫ to
minimize the cross-validation test error. The last column of Table 6 records the number of
nonzero entries in the trained �. As shown in each block of Table 6, the performance of
the sparse NAED method tends to be slightly better than that of competing methods. In
particular, the sparse Fourier (2-2) method achieves the best test error with substantially
fewer parameters than competing RNN methods. In this synthetic example, the underlying
dynamical system does possess a sparse representation.

4.4. UCR archive datasets. In this section, we compare NAED with four competing
methods (RNN, LSTM, CFN, and NCDE) on four univariate time series datasets from the
UCR archive [7]. Unlike the datasets considered above, these datasets do not arise throughD

ow
nl

oa
de

d
06

/2
4/

22
 to

 1
28

.1
10

.1
84

.5
5

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

54 R. YOON, H. S. BHAT, AND B. OSTING

numerical solutions of di↵erential equations. For all methods, we follow training, initialization,
and hyperparameter selection procedures described in subsection 4.1. In particular, we have
trained repeatedly with di↵erent choices of hyperparameters. For all methods considered, we
report only the results corresponding to hyperparameters that maximize test accuracy.

For the general NAED method (Algorithm 3.1), hyperparameters relate to the dimension
m of the hidden variable h(t) and the size d of the dictionary ⌅(h). For the sparse NAED
method (Algorithm 3.2), we also search for an optimal value of ⌫, the thresholding parameter.
For the RNN, LSTM, and CFN methods, we varied the depth (number of layers) and width
(number of units per layer). For NCDE, we trained with either 32 or 64 hidden channels;
the vector field is represented using a feedforward neural network with one hidden layer with
either 64 or 128 units.

For each method, we report the best results obtained, the optimal set of hyperparameters,
and the total number of model parameters in Table 7. In Figure 3, we show an example
trajectory for each class and use colored partitions to denote the classification regions and
decision boundaries.

The Two Patterns dataset is synthetically generated and has 1000 training and 4000
test samples. There are four balanced classes and the sequence length for all samples is
128. As recorded in Table 7, NAED achieves its highest accuracy when we use a Fourier
(2,1) dictionary. Compared with other methods, the NAED method provides slightly lower
accuracy but is still close to 100% on both train and test data.

The Plane dataset contains outlines of airplanes measured by a sensor. The classification
problem is to distinguish the type of airplane where there are seven airplane shape classes:
Mirage, Eurofighter, F-14 wings closed, F-14 wings opened, Harrier, F-22, and F-15. There
are 105 instances in both the training and test sets, each having length 144. As presented
in Table 7, the NAED method with Fourier (2,1) dictionary surpasses the test accuracy of
RNN, LSTM, and CFN. It does this even with 100 to 200 times fewer parameters than these
competing methods. The NCDE method is the best on this dataset; it has over 200 times

Table 7
A comparison of the accuracy and number of parameters for various methods on four UCR archive datasets.

For the Two Patterns and Plane datasets, NAED refers to Algorithm 3.1; for the Kitchen Appliance and
Computer datasets, NAED refers to Algorithm 3.2 with iterative thresholding. See subsection 4.4.

Dataset RNN LSTM CFN NCDE NAED

U
C
R

a
r
c
h
i
v
e

Two Patterns test 0.7630 1.0000 0.9900 0.8420 0.9760

train/test : 1000/4000 train 0.7473 1.0000 1.0000 0.8330 0.9815

4 classes info (5-24-5,428) (1-35-5,324) (3-20-5,064) (64-128-17,030) (2-1-32)

Plane test 0.7048 0.4762 0.4000 0.8571 0.7714

train/test : 105/105 train 0.7429 0.4952 0.5524 0.8095 0.7523

7 classes info (5-10-3,867) (5-10-3,917) (5-20-9,205) (32-64-8,905) (2-1-41)

Kitchen Appliance test 0.5973 0.6027 0.5760 0.5306 0.6133
train/test : 375/375 train 0.6027 0.5813 0.5467 0.5040 0.6053

3 classes info (5-10-993) (5-10-3,873) (2-5-228) (64-64-8,645) (2-1-29)

Computer test 0.5800 0.6640 0.6199 0.6520 0.6599

train/test : 250/250 train 0.5960 0.6280 0.6199 0.6800 0.6200

2 classes info (1-5-47) (1-3-68) (2-2-45) (64-128-16,835) (2-2-58)

D
ow

nl
oa

de
d

06
/2

4/
22

 to
 1

28
.1

10
.1

84
.5

5
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NAED METHOD FOR TIME SIGNAL CLASSIFICATION 55

(a) (b)

(c) (d)

Figure 3. In four subplots, labeled (a)–(d), we plot the vector field h 7! �⌅(h) in (3.1) trained on di↵erent
UCR archive datasets. In each plot, example solution trajectories for each class are displayed and the classi-
fication partition is colored. (a) Two Patterns dataset using NAED with Fourier dictionary with K = 1. (b)

Two Patterns dataset using NAED with Fourier dictionary with K = 2. (c) Plane dataset using NAED with
Fourier dictionary with K = 1. (d) Kitchen Appliance dataset using sparse NAED with Fourier dictionary
with K = 1 and ⌫ = 0.03.

more parameters than NAED. This dataset shows that NAED works well on a multiclass
classification problem.

The Kitchen Appliance dataset is behavioral data recorded from 251 households and mea-
sured by a device in two-minute intervals over a month. Each series has length 720. This
problems classifies how consumers use electricity within their homes, so there are three classes:
Kettle, Microwave, and Toaster. This data contains 375 instances in the training and test
sets. In Table 7, sparse NAED with a Fourier (2,1) dictionary returns the best accuracy on
this dataset with only 29 parameters. Here, the cuto↵ value is set to ⌫ = 0.03 and two entries
of � are dropped to zero.

In Figure 3(d), we observe that some of the trajectories appear to jump in the phase
plot. Since the trajectory is a solution to a forced dynamical system, very strong or highly
oscillatory forcing can cause this type of behavior.

The Computer dataset consists of 250 train and test instances for a consumer’s electricity
usage behavior in a home. Each sample consists of recordings made every two minutes over
a month so that total length is 720. There are two classes: Desktop and Laptop. According
to Table 7, the best accuracy is obtained by the LSTM method. Sparse NAED with FourierD

ow
nl

oa
de

d
06

/2
4/

22
 to

 1
28

.1
10

.1
84

.5
5

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

56 R. YOON, H. S. BHAT, AND B. OSTING

(2,2) dictionary and cuto↵ value ⌫ = 0.05 nearly matches the LSTM’s accuracy. The imposed
sparsity condition replaces 16 entries in � with zero; consequently, the trained vector field is
relatively simple and interpretable.

For the Kitchen Appliance dataset, NAED achieves the best test set results; for the re-
maining three datasets, NAED’s parameter count is on average >200 times less than that
of the method with the best test set performance. For the first three datasets considered in
Table 7, NAED is the only method that achieves competitive test accuracies with a small
number of parameters. For Computer, the parameter counts for NAED and LSTM are simi-
lar. Based on the RNN results here, we conjecture that NAED underfits this dataset; a more
scalable implementation of the NAED method would enable us to explore larger values of the
dimension of h and the largest Fourier multiplier K.

As we described in section 3, the NAED method learns a representation of the underlying
vector field based on a prespecified dictionary. With polynomial or harmonic basis functions,
these vector fields can be approximated using only a few terms. By promoting sparsity,
Algorithm 3.2 can further enhance parsimony. As shown in experiments, competing methods
require at least 2 times and up to 500 times the number of parameters required by NAED.

5. Discussion. In this paper, we developed a framework for analyzing time signals based
on nonautonomous dynamical systems. A time signal, x(t), is interpreted as a forcing function
for a dynamical system (3.1) that governs a time-evolving hidden variable, h(t). As in equation
discovery, the dynamical system is represented using a dictionary of prespecified candidate
functions and the coe�cients are learned from data. We refer to the resulting model as
nonautonomous equation discovery, or NAED. This framework is applied to the time signal
classification problem, where the hidden variable, at a final time, h(t = T), is used to make a
prediction via the composition of the softmax function and an a�ne function. Using a cross-
entropy loss function, we train the NAED model using a gradient-based optimization method,
where the gradients are e�ciently computed using the adjoint method; see Theorem 3.3.

Through a variety of experiments—on both synthetic and real datasets—we demonstrated
that the NAED method achieves accuracy that is comparable to RNN, LSTM, CFN, and
NCDE methods on binary and multiclass classification problems; see section 4. Note that
[20] shows that NCDE itself outperforms other RNN architectures, including continuous-
time/ODE-like GRU models [3, 18] and a method that merges an RNN with a neural ODE
[28]. The NAED method generally requires far fewer parameters than neural network–based
methods and the number of parameters can further be reduced by using a sparse version of
the algorithm; see Algorithm 3.2. We also show in subsection 4.4 that sparsity improves the
trainability of the method and its robustness to noise in the data. Finally, by construction,
our method is interpretable using the theory of dynamical systems. For example, using phase
plots, we can visualize the trajectories of the underlying dynamical system and how they
navigate the decision boundaries between classes.

Since our model is built on dynamical systems, we can generate synthetic labeled data
from a dynamical system and then pose the inverse problem of trying to recover the ground-
truth labels from the data. For a synthetic dataset based on the forced harmonic oscillator
(subsection 4.2.1), we showed that the NAED method for classification is not generally iden-
tifiable, i.e., the method does not always recover the ground truth parameters. However, inD

ow
nl

oa
de

d
06

/2
4/

22
 to

 1
28

.1
10

.1
84

.5
5

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NAED METHOD FOR TIME SIGNAL CLASSIFICATION 57

the case of a linear dictionary, we recover the ground truth parameters up to conjugation by
an orthogonal matrix.

There is a variety of natural future directions for this work. Since the NAED method
is built on dynamical systems, we could use dynamical systems theory to further analyze
a particular trained NAED model. For example, one could use stability theory to further
sharpen and generalize the misclassification estimates in Theorems 3.4 and 3.5. To enhance
the method’s ability to deal with noisy time signals, one could combine the NAED method
with filtering methods (e.g., the Kalman filter). Since we interpret time signals as continuous
objects and discretize within the method (the optimize-then-discretize approach), multiscale
methods could be used in training. A slight generalization of the model would be to let
B in (3.2) be a parameterized operator, B =

PK
k=0Bk@k

t , where Bk 2 Rm⇥n are unknown
coe�cients. In the forced Lotka–Volterra equations (subsection 4.2.4), we considered using as
forcing either x or ẋ and this generalization would avoid this. Another generalization would
be to use the hidden state over the entire interval [0, T], rather than just the final time; that
is, rather than (3.1c), we could assign labels using an integral operator

ŷi = �

✓Z T

0
A(t)hi(t) + b(t) dt

◆
,

where A : [0, T] 7! R|Y|⇥m, b : [0, T] 7! R|Y|, and � : R|Y| ! R|Y| is the softmax function.
Finally, the NAED framework developed here could be applied to other time signal analysis
tasks, such as prediction and forecasting, classification, segmentation, and denoising.

Acknowledgments. We would like to thank Dong Wang and Rebecca Hardenbrook for
helpful discussions in the early stages of this work. We would also like to thank the anonymous
referees for their helpful comments.

REFERENCES

[1] C. Aggarwal, Neural Networks and Deep Learning: A Textbook, Springer, New York, 2018, https:

//books.google.com/books?id=achqDwAAQBAJ.

[2] R. D. Beer, On the dynamics of small continuous-time recurrent neural networks, Adapt. Behav., 3

(1995), pp. 469–509, https://doi.org/10.1177/105971239500300405.

[3] E. D. Brouwer, J. Simm, A. Arany, and Y. Moreau, GRU-ODE-Bayes: Continuous modeling of
sporadically-observed time series, in Advances in Neural Information Processing Systems, vol. 32,

2019, pp. 7377–7388.

[4] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering governing equations from data by sparse
identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci. USA, 113 (2016), pp. 3932–3937,

https://doi.org/10.1073/pnas.1517384113.

[5] B. Chang, M. Chen, E. Haber, and E. H. Chi, Antisymmetricrnn: A dynamical system view on recur-
rent neural networks, in Proceedings of the 7th International Conference on Learning Representations,

2019.

[6] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, Neural ordinary di↵erential equa-
tions, in Advances in Neural Information Processing Systems, vol. 31, S. Bengio, H. M. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds., 2018, pp. 6572–6583.

[7] H. A. Dau, E. Keogh, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi, C. A. Ratanamahatana,
Yanping, B. Hu, N. Begum, A. Bagnall, A. Mueen, G. Batista, and Hexagon-ML, The UCR
Time Series Classification Archive, https://www.cs.ucr.edu/⇠eamonn/time series data 2018/, 2018.D

ow
nl

oa
de

d
06

/2
4/

22
 to

 1
28

.1
10

.1
84

.5
5

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://books.google.com/books?id=achqDwAAQBAJ
https://books.google.com/books?id=achqDwAAQBAJ
https://doi.org/10.1177/105971239500300405
https://doi.org/10.1073/pnas.1517384113
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

58 R. YOON, H. S. BHAT, AND B. OSTING

[8] E. Fanioudakis, M. Geismar, and I. Potamitis, Mosquito wingbeat analysis and classification using
deep learning, in Proceedings of the 26th European Signal Processing Conference, IEEE, 2018, https:

//doi.org/10.23919/eusipco.2018.8553542.

[9] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, Deep learning for time
series classification: A review, Data Min. Knowl. Discov., 33 (2019), pp. 917–963, https://doi.org/

10.1007/s10618-019-00619-1.

[10] C. Finlay, J. Jacobsen, L. Nurbekyan, and A. M. Oberman, How to train your neural ODE, in
Proceedings of the International Conference on Machine Learning, 2020.

[11] K. Funahashi and Y. Nakamura, Approximation of dynamical systems by continuous time recurrent
neural networks, Neural Networks, 6 (1993), pp. 801–806.

[12] A. Ghosh, H. S. Behl, E. Dupont, P. H. S. Torr, and V. Namboodiri, STEER : Simple temporal
regularization for neural odes, in Advances in Neural Information Processing Systems, vol. 33, 2020.

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, Cambridge, MA, 2016.

[14] E. Haber and L. Ruthotto, Stable architectures for deep neural networks, Inverse Problems, 34 (2017),

014004, https://doi.org/10.1088/1361-6420/aa9a90.

[15] M. Habiba and B. A. Pearlmutter, Neural Ordinary Di↵erential Equation Based Recurrent Neural
Network Model, CoRR, https://arxiv.org/abs/2005.09807, 2020.

[16] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput., 9 (1997), pp. 1735–

1780, https://doi.org/10.1162/neco.1997.9.8.1735.

[17] J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-
state neurons, Proc. Natl. Acad. Sci., 81 (1984), pp. 3088–3092, https://doi.org/10.1073/pnas.81.10.

3088.

[18] I. D. Jordan, P. A. Sokól, and I. M. Park, Gated Recurrent Units Viewed Through the Lens of
Continuous Time Dynamical Systems, CoRR, http://arxiv.org/abs/1906.01005, 2019.

[19] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer, New York, 1991.

[20] P. Kidger, J. Morrill, J. Foster, and T. J. Lyons, Neural controlled di↵erential equations for
irregular time series, in Advances in Neural Information Processing Systems, vol. 33, 2020.

[21] T. Laurent and J. von Brecht, A recurrent neural network without chaos, in Proceedings of the 5th

International Conference on Learning Representations, 2017.

[22] S. D. Lawley, Blowup from randomly switching between stable boundary conditions for the heat equation,
Commun. Math. Sci., 16 (2018), pp. 1133–1156, https://doi.org/10.4310/cms.2018.v16.n4.a9.

[23] K. Ott, P. Katiyar, P. Hennig, and M. Tiemann, When are Neural ODE Solutions Proper ODEs?,
CoRR, https://arxiv.org/abs/2007.15386, 2020.

[24] R. Pascanu, Ç. Gülçehre, K. Cho, and Y. Bengio, How to construct deep recurrent neural networks,
in Proceedings of the 2nd International Conference on Learning Representations, Y. Bengio and

Y. LeCun, eds., 2014.

[25] R. Pascanu, T. Mikolov, and Y. Bengio, On the di�culty of training recurrent neural networks, in
Proceedings of Machine Learning Research, vol. 28, S. Dasgupta and D. McAllester, eds., PMLR,

2013, pp. 1310–1318, http://proceedings.mlr.press/v28/pascanu13.html.

[26] M. M. Poulton, Neural networks as an intelligence amplification tool: A review of applications, Geo-

physics, 67 (2002), pp. 979–993.

[27] A. Quaglino, M. Gallieri, J. Masci, and J. Koutńık, SNODE: Spectral discretization of neural
ODEs for system identification, in Proceedings of the 8th International Conference on Learning Rep-

resentations, 2020.

[28] Y. Rubanova, R. T. Q. Chen, and D. K. Duvenaud, Latent ordinary di↵erential equations for
irregularly-sampled time series, in Advances in Neural Information Processing Systems, vol. 32,

H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, eds., 2019,

pp. 5320–5330.

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Representations by Back-propagating
Errors, Nature, 323 (1986), pp. 533–536.

[30] T. C. Sideris, Ordinary Di↵erential Equations and Dynamical Systems, Springer, New York, 2013,

https://doi.org/10.2991/978-94-6239-021-8.

[31] H. Siegelmann and E. Sontag, Turing computability with neural nets, Appl. Math. Lett., 4 (1991),

pp. 77–80.

D
ow

nl
oa

de
d

06
/2

4/
22

 to
 1

28
.1

10
.1

84
.5

5
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.23919/eusipco.2018.8553542
https://doi.org/10.23919/eusipco.2018.8553542
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1088/1361-6420/aa9a90
https://arxiv.org/abs/2005.09807
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1073/pnas.81.10.3088
https://doi.org/10.1073/pnas.81.10.3088
http://arxiv.org/abs/1906.01005
https://doi.org/10.4310/cms.2018.v16.n4.a9
https://arxiv.org/abs/2007.15386
http://proceedings.mlr.press/v28/pascanu13.html
https://doi.org/10.2991/978-94-6239-021-8

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

NAED METHOD FOR TIME SIGNAL CLASSIFICATION 59

[32] H. T. Siegelmann and E. D. Sontag, On the computational power of neural nets, J. Comput. System

Sci., 50 (1995), pp. 132–150.

[33] E. B. M. Tamil, N. H. Kamarudin, R. Salleh, and A. M. Tamil, A review on feature extraction &
classification techniques for biosignal processing (part I: Electrocardiogram), in IFMBE Proceedings,

Springer, Berlin, 2008, pp. 107–112, https://doi.org/10.1007/978-3-540-69139-6 31.

[34] E. M. Tamil, N. S. Bashar, M. Y. I. Idris, and A. M. Tamil, A review on feature extraction &
classification techniques for biosignal processing (Part III: Electromyogram), in IFMBE Proceedings,

Springer, Berlin, 2008, pp. 117–121, https://doi.org/10.1007/978-3-540-69139-6 33.

[35] E. M. Tamil, H. M. Radzi, M. Y. I. Idris, and A. M. Tamil, A review on feature extraction & classi-
fication techniques for biosignal processing (Part II: Electroencephalography), in IFMBE Proceedings,

Springer, Berlin, 2008, pp. 113–116, https://doi.org/10.1007/978-3-540-69139-6 32.

[36] G. Tzanetakis and P. Cook, Musical genre classification of audio signals, IEEE Trans. Speech Audio

Process., 10 (2002), pp. 293–302, https://doi.org/10.1109/tsa.2002.800560.

[37] M. Zeng, L. T. Nguyen, B. Yu, O. J. Mengshoel, J. Zhu, P. Wu, and J. Zhang, Convolu-
tional neural networks for human activity recognition using mobile sensors, in Proceedings of the

6th International Conference on Mobile Computing, Applications and Services, 2014, pp. 197–205,

https://doi.org/10.4108/icst.mobicase.2014.257786.

[38] L. Zhang and H. Schaeffer, On the convergence of the SINDy algorithm, Multiscale Model. Simul.,

17 (2019), pp. 948–972, https://doi.org/10.1137/18m1189828.

D
ow

nl
oa

de
d

06
/2

4/
22

 to
 1

28
.1

10
.1

84
.5

5
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1007/978-3-540-69139-6_31
https://doi.org/10.1007/978-3-540-69139-6_33
https://doi.org/10.1007/978-3-540-69139-6_32
https://doi.org/10.1109/tsa.2002.800560
https://doi.org/10.4108/icst.mobicase.2014.257786
https://doi.org/10.1137/18m1189828

	Introduction
	Related work
	Dynamical systems and RNNs
	Equation discovery

	NAED method
	NAED model for time signal classification
	Gradient computation and the adjoint method
	Dictionary choice
	Stability of the NAED method
	Sparse NAED method

	Computational experiments
	Implementation details
	Synthetic datasets
	 Forced harmonic oscillator
	 Forced Van der Pol oscillator
	 Forced Lorenz system
	Forced Lotka–Volterra equations
	Stochastic gated partial diffusion equation

	Synthetic dataset with noise
	UCR archive datasets

	Discussion

