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Abstract: Transcriptomic reconstructions without reference (i.e., de novo) are common for data sam-
ples derived from non-model biological systems. These assemblies involve massive parallel short
read sequence reconstructions from experiments, but they usually employ ad-hoc bioinformatic
workflows that exhibit limited standardization and customization. The increasing number of tran-
scriptome assembly software continues to provide little room for standardization which is exacer-
bated by the lack of studies on modularity that compare the effects of assembler synergy. We devel-
oped a customizable management workflow for de novo transcriptomics that includes modular
units for short read cleaning, assembly, validation, annotation, and expression analysis by connect-
ing twenty-five individual bioinformatic tools. With our software tool, we were able to compare the
assessment scores based on 129 distinct single-, bi- and tri-assembler combinations with diverse k-
mer size selections. Our results demonstrate a drastic increase in the quality of transcriptome as-
semblies with bi- and tri- assembler combinations. We aim for our software to improve de novo
transcriptome reconstructions for the ever-growing landscape of RNA-seq data derived from non-
model systems. We offer guidance to ensure the most complete transcriptomic reconstructions via
the inclusion of modular multi-assembly software controlled from a single master console.

Keywords: NGS; RNA-sequencing; transcriptome assembly; software management; automation

1. Introduction

Homemade de novo transcriptomic workflows tend to be idiosyncratic to specific
study goals, unoptimizable to other studies and, in many cases, left unpublished or buried
in supplementary materials. We could say Rnnotator [1] in 2010 was the first single-as-
sembler transcriptomic pipeline to be publicly available, while the Oyster River Protocol
(ORP; [2]) in 2018 was the first multi-assembler pipeline available. This presumed eight-
year period between single- and multi-assembler approaches is odd considering multi-
assembler methods have been shown to produce reconstructions with higher degrees of
completeness [2]. Nevertheless, the combinations of assemblers that produce the best re-
constructions in the multi-assembly approach are not well explored nor classified. Adding
to the complexity of the situation, assemblers are routinely updated, and new assemblers
are created in a timely fashion, making assembler comparisons both a necessity and rou-
tine process. The closest comparison to our workflow would be the ORP; however, it em-
ploys a rigid tri-assembly approach to produce high quality transcriptomes via
rnaSPAdes (k55, k75; [3]), Trinity (k25; [4]) and Shannon (k75; [2,5]). In comparison, we
developed an open-source workflow that broadens the k-mers used to up to five total k-
mers per assembler. Our software, Pincho [6], allows the user to design and customize
their own k-mer list and number of assemblers, among other parameters.
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To characterize our management software, we present two major goals of this study
that we sought to complete. The first was to construct a publicly available and customiza-
ble modular management toolkit that could simplify de novo transcriptomic work for data
scientists. This simplification took place via the amalgamation of well-established and re-
viewed genomic and transcriptomic software centralized in one quick download and even
faster user implementation options. We customize this workflow with the most common
software used in de novo transcriptomics along with the modularity to allow simple in-
corporation of new software as future tools become available. Our second goal is to pro-
vide a comprehensive analysis on de novo transcriptome assembler performance individ-
ually and in combination. To our knowledge, this is the first publication on synergistic
effects of single-, bi-, and tri-assembly combinations between nine distinct de novo and
reference-guided assemblers aimed to elevate de novo transcriptome quality and com-
pleteness.

2. Materials and Methods
2.1. Components of the Pincho Workflow

Our software supports various applications and automates their parameter, com-
puter resources and output management via Python3 and Bash (Supplementary Figure
S1). Pincho consists of twenty-five functions which fall under six modules: preprocessing
(adaptor removal with Trimmomatic [7,8] and error correction via Rcorrector [9,10]); de
novo assembly (ABySS [11,12], Tadpole [13,14], BinPacker [15,16], IDBA-tran [17,18],
MEGAHIT [19,20], Oases/Velvet [21,22], rnaSPAdes [3,23], Shannon Cpp [5,24], SPAdes
[25,26], Trans-ABySS [27,28], TransLig [29,30], and Trinity [4,31], Table 1; post-assembly
(consensus assembly generation with TransRate [32,33], isolation of short transcripts un-
der bp length threshold and redundancy reduction via CD-HIT [34,35]); assembly assess-
ment (alignments to reference transcriptomes or to the original raw reads via HISAT2
[36,37], BUSCO [38,39] and TransRate); annotation using a user reference (NCBI BLASTX,
BLASTN, and BLASTP; [40-42]); and expression analysis (kallisto [43,44] and RSEM
[45,46], Figure 1 and Supplementary Figure S1). Several important notes: Pincho can pro-
cess Sequence Read Archive (SRA, [47]) data accession numbers via SRAtoolkit [48], Trin-
ity can be run in genome guided mode instead of De novo with help from Samtools [49,50],
and TransLig was modified to include assembly lengths via SeqKit [51,52].

Table 1. De novo Assemblers Utilized in Pincho.

. Cite
Assembler Genor‘ne " K-mer Used K-mer Default Algorithm  Version Version Software Release d Datasets Explored
Transcriptome Release by
ABySS Genome Adaptive 32 déf;;z" V224 1/30/2020  11/26/2008 318 Human
BinPacker Transcriptome 25 25 Splice Graph v1.0 10/17/2019 3/19/2015 95 Human, Mouse, Dog
. . 20, 30, de Bruijn .
IDBA-tran Transcriptome Adaptive 40,50 Graph v1.1.3 6/11/2016 6/19/2013 155 Oryza sativa
. 21, 41, de Bruijn 173 .
MEGAHIT Genome Adaptive 61,81, 99 Graph v1.29 10/14/2019 9/25/2014 8 Soil
19,21 de Bruijn ~ v0.2.08/ 05-20- 45 11-2011/11-16- 143
Oases/Velvet ~ Transcriptome  Adaptive 27,31, 35 Graph v1.2.10 201%11(;-17- 2007 - Human, Mouse
rnaSPAdes Transcriptome Adaptive Automated k- de Bruijn v3.14.1 5/2/2020 11/16/2018 122 Humans, Mousg,
mers Graph Corn, Arabidopsis
. de Bruijn
Shannon Cpp  Transcriptome 25 25 Graph v0.4.0 12/19/2019 2/9/2016 27 Human
X 21, 33, de Bruijn 126 Escherichia coli,
SPAdes Genome Adaptive 55 Graph v3.14.1 5/2/2020 5/7/2012 35 Deltaproteobacteria
Tadpole Genome Adaptive 31 Simple Kmer (5066 6/13/2020 192012 437 Tunsus Bacteria,

Code Plant, Soil
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de Bruijn

Trans-ABySS  Transcriptome  Adaptive 32 Graph v2.01  2/19/2018 6/18/2010 467 Human
. . Line Graph
TransLig Transcriptome 31 31 . v13 10/26/2019 11/23/2018 7  Human, Mouse
Iterations
Trinity!  Transcriptome 25 25 de Bruijn ) 110 6/30/2020 125010 17 Drosophila
Graph 5 melanogaster

! genome guided mode available. 2 cited by column updated on 15 June 2021.
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Figure 1. Pincho Management Workflow. Software installed in the Pincho workflow v0.1, including
(A) pre-processing, (B) transcriptome and * genome assemblers, (C) post-processing, (D) assessment
software, (E) annotation software, and (F) expression analysis software. Modules may begin at any
position (A-F) but must then process sequentially (i.e., B, C, D...). Possible avenues depicted in
shorthand, where A:D represents steps A, B, C and D. Any number of items may be called from
each module (i.e., module B: IDBA-tran, Trans-ABySS, Trinity = 3 items called from module B).

2.2. Dataset Criteria and Selection

We analyzed eight distinct non-model datasets from the SRA ([53]; Table 2. We fo-
cused on hyloid anurans (frogs) that have complex and usually large genomes (e.g., ~6.76
Gb for Dendrobates pumilio, [54]). Data was chosen via the following criteria: (a) publicly
sourced RNA-seq data, (b) paired-end reads of various insert sizes (Table 2), (c) fastq for-
mat, (d) [llumina sequencing, (e) non-model organisms, (f) data containing a base count
lower than 2Gb and (g) data that passed Pincho’s rapid assessment with a complete
BUSCO score greater than 50%. Rapid assessment is composed of fasterq-dump download
of SRR raw reads, removal of lllumina adaptors, if necessary, from raw data via Trimmo-
matic, assembly of reads via succinct de Bruijn graphs with MEGAHIT and assessment via
BUSCO scores. Chosen SRA files were analyzed with FastQC [55], revealing that all files
were adapter free.

Our datasets are purposely under the standard yield of RNA-seq experiments (2GB
—4GB), to highlight the potential of the selected assemblers on low yield, low coverage
datasets. As higher levels of sequencing coverage lead to higher quality NGS data [56],
we chose NGS data that are most likely to contain low sample coverage owing to low read
counts [57]. We selected smaller sized files on average 6.88M reads, which is well beneath
the recommended sequencing read number of 20M [56] to ensure an NGS scenario of low
coverage. As a balance we made sure that all files were at least above 50% in complete
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BUSCO scores to avoid scenarios where read coverage was insufficient. Low coverage
datasets are prone to many types of assembly errors (i.e., fragmentation and incomplete-
ness [32]), which allows us to accurately test the various types of algorithms employed by
the tested transcriptome assemblers and their abilities to work with problematic datasets.
It is only under this scope that we can ideally view assembler performance and synergy
without the reliance on synthetic data. We expect that if assemblers succeed at reconstruct-
ing more from smaller datasets, then they are sensitive enough to use on larger datasets
as well.

Table 2. Test NGS Dataset from NCBI SRA database.

BUSCOs Reads Bases Read Length File Size

Species Accession (%) 1 ™M (G (bp) (Mb) Tissue
Allobates femoralis ~ SRR8288062 62.4 3.5 0.8 120 504.4 Skin
Amazophrynella minuta SRR8288029 70.6 4.4 1.1 120 641.6 Skin
Dendrobates auratus  ERR3155280 91.0 3.3 1.9 294 1000.0 Skin
Dendrobates imitator  ERR3169394 66.3 16.3 1.6 50 782.5 Skin
Dendrobates sirensis ~ SRR8288043 72.2 49 1.2 120 710.7 Skin
Lithobates catesbeianus SRR4048903 77.6 6.8 1.3 99 558.0 OB?
Pyxicephalus adspersus SRR6890710 87.8 100 1.5 75 538.8 Testis
Scinax ruber SRR8288044 73.7 5.8 1.4 120 840.1 Skin

! Complete BUSCO using Pincho’s rapid assessment at default settings 2 Olfactory Bulb.

2.3. Pincho Workflow Implementation

Raw data was analyzed with the Pincho pipeline with the following configurations:
SRA accession numbers were used to download data from the SRA database via fasterq-
dump followed by whitespace removal and compression. Leading and lagging low qual-
ity base removal was performed via Trimmomatic, followed by error correction by Rcor-
rector. Transcriptomes were assembled via Trans-ABySS, BinPacker, IDBA-tran, Shannon
Cpp, rmnaSPAdes, TransLig, Trinity, MEGAHIT (positive control) and Tadpole (negative
control) with adaptive k-mer control enabled. Adaptive k-mer control utilizes a minimum
k-mer of k21 and four k-mers generated based on their respective maximum insert length
and middle three quartiles between k21 and the maximum. Consensus assembly genera-
tion was conducted via TransRate. Read mapping was performed via HISAT2 aligner,
presence of ancestral genes was identified by BUSCO and n50/n90 were calculated via
TransRate. Assessment was conducted in combinations between the nine assemblers in-
dividually and in groups of two and three. Oases was not utilized in this study due to the
frequent unresolved bugs associated with the software and its lack of maintenance (last
major update 20 May 2013). SPAdes and ABySS de novo genome assemblers were not
utilized in this study as we used their transcriptomic counterparts designed for transcrip-
tome assembly. Both rnaSPAdes and ABySS were demonstrated to outperform SPAdes
and ABySS, respectively [3,27].

2.4. K-mer Size Determination

K-mer sizes were left to their default values (Table 1) if the assembler only allowed
one k-mer size as input and assembler runtime was extensive. Therefore, default k-mers
were used for BinPacker, TransLig, Trinity and Shannon Cpp. Assemblers that allowed
the selection of multiple k-mer sizes and/or were time efficient were assigned a broad
range of five k-mer sizes.

2.5. Assessment Validation

We utilized three metrics (TransRate, BUSCO, and HISAT?2) that best represent the
quality of a de novo transcriptome. TransRate provides the n50/n90 statistic, among oth-
ers, which is the largest contig size where 50%/90% of bases are contained in transcripts
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of this length. These n50/n90 scores are often used to ascertain the quality of a reconstruc-
tion, with longer n50/n90 lengths correlating to a more complete assembly. Other assess-
ment metrics include complete BUSCO scores representing percent ancestral transcripts
present and HISAT2's overall alignment score which is the percentage of raw data utilized
within reconstructions. For our workflow, we used BUSCO’s Eukaryota dataset as a ref-
erence.

Respective assessment scores were judged per assembler as greater than MEGAHIT’s
assessment scores or less than MEGAHIT’s assessment scores. Assessment scores (AS)
greater than MEGAHIT were subjected to the following formula:

x 0.5 M

AS less than MEGAHIT were processed under a different formula to calculate un-
derperformance:

—x0.5 )
while scores equal to MEGAHIT were counted as 0. Average assessment scores (AAS)
were calculated as the average of HISAT2's overall alignment, complete BUSCO score,
and TransRate’s n50/n90 scores in a 1:1:1 ratio, so n50 and n90 scores were averaged to-
gether before averaging with the other two assessment scores. Finally, the AAS were nor-
malized between the numbers of 0.5 as overperforming versus MEGAHIT and -0.5 as
underperforming.

3. Results
3.1. Workflow Installation, System Build, and Performance

Pincho is packaged with an installer script written in Python3 and Bash which will
install and configure required dependencies in Linux Ubuntu systems. Our workflow re-
quires a minimum of 24 threads and 128GB of memory to run efficiently and is largely
GPU independent. It is recommended to scale performance parameters evenly if higher
performance is desired (i.e., 24:128 ratio). Our study was conducted on two new work-
stations including: AMD Ryzen 9 3900X 3.8GHz processor, G.Skill 128GB 4 x 32 D4 3200
memory modules, and an ASUS TUF GAMING X570-PLUS motherboard. An alternative
replica build would be to purchase a PowerSpec G464 and upgrade the memory modules
to a total of 128GB (net price 2200 USD). Our test data ranged in both number of bases and
file size (Table 1) to provide an accurate depiction of the capacities of our workflow per-
formance. We encountered no errors conducting the study with the parameters stated
above. Methods can be easily replicated via Pincho’s completely modular user interface.

3.2. Average Assessment Score Generation

We utilize three distinct assessment software—HISAT?2, TransRate, and BUSCO—to
derive raw scores for each single-, bi-, and tri- assembly run (see assessment validation in
methods) and mark their over/underperformance in regard to a MEGAHIT single assem-
bly run. Individual metric scores are normalized to a scale between —0.5 and 0.5, where 0
is equal to a MEGAHIT single assembly run assessment score. Negative integers denote
underperformance and positive integers denote overperformance when compared to
MEGAHIT genome assembler. Individual assessment scores are then averaged together
respectively to provide an AAS per assembler or assembler group. The following assem-
blers were utilized in this study: Trans-ABySS, BinPacker, IDBA-tran, Shannon Cpp,
rnaSPAdes, TransLig, Trinity, MEGAHIT, and Tadpole.
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3.3. Single-Assembly

According to our combination of assessment software criteria, rnaSPAdes outper-
formed all other assemblers with an AAS of 0.23, followed by Trans-ABySS (AAS: 0.18),
TransLig (AAS: 0.17), IDBA-tran (AAS: 0.02), BinPacker (AAS: 0.02; Figure 2), and the
MEGAHIT single-assembly baseline (AAS: 0). Shannon Cpp (AAS: —0.03), Trinity (AAS:
-0.24), and Tadpole (AAS: —0.50) underperformed relative to the baseline (Figure 2).
Runtime analysis highlights no correlation between total time consumption and perfor-
mance, as assemblers that required the most time did not produce the best assemblies nor
vice versa (Supplementary Figure 52). Assessment of raw data from our assessment soft-
ware reveals rnaSPAdes and Trans-ABySS obtained the highest HISAT2 scores (>92%),
rnaSPAdes and IDBA-tran scored the highest complete BUSCO scores (>199 complete eu-
karyotic ancestral transcripts), and TransLig and BinPacker contained the longest n50/n90
lengths (>1766bp/>499bp; Figure 3). Alternatively, IDBA-tran and BinPacker obtained the
lowest HISAT2 scores (<85%), Trinity and Tadpole scored the lowest complete BUSCO
scores (<169 complete transcripts) and also the shortest n50/n90 lengths (<1021 bp/<286
bp; Figure 3).
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Figure 2. Single-, bi-, and tri-assembly assessment score averages. Average assessment scores from
single-, bi-, and tri-assembly runs compared to MEGAHIT single-assembly as a baseline score (0).
Scores lower than 0 underperformed when compared to MEGAHIT single-assembly, whereas,
scores higher than 0 overperformed. Average assessment scores calculated by the average of
HISAT?2 overall alignment, BUSCO complete score, and TransRate n50 and n90 metrics averaged
across all files processed. Assemblers utilized are included in the x-axis to denote both their average
scores for single assembly and their average scores as part of a pair of two or three. Two tailed
paired T-tests were conducted between single-assembly and bi-assembly, and between bi-assembly
and tri-assembly. P-values are noted between single- and bi-assembly combinations and between
bi- and tri-assembly combinations. All comparisons conform to p < 0.05 except for no-significance
noted between bi- and tri-assembly associated with rnaSPAdes. *** is p < 0.00001, ** is p < 0.001, * is
p <0.05, and NS (No Significance) is p > 0.5. P-values are under FDR (False Discovery Rate) correc-
tion.
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Single Assembly Raw Assessment Scores

Assembly rnaSPAdes trans-ABySS  TransLig IDBA-tran BinPacker Shannon Trinity MEGAHIT Tadpole
n90 317.8 309.9 624.0 433.8 499.5 312.6 285.5 363.9 239.5
n50 1200.8 1410.9 2043.8 1465.4 1766.4 1323.8 1020.1 1152.6 708.4
Complete BUSCOs | 199.3 191.5 195.1 201.1 195.8 196.5 168.1 193.9 141.5|
Duplicated BUSCOs 10.4 51.5 441 199.0 44.0 79.1 19.3 4.5 102.0
Fragmented BUSCOs 35.9 38.9 28.8 333 34.0 38.4 54.0 34.5 74.4
Missing BUSCOs 19.9 246 311 20.6 253 201 32.9 26.6 39.1
Overall Alignment Rate | 0.93 0.94 0.87 0.82 0.84 0.89 0.89 0.90 0.88]
Top 2 Metric Scores Bottom 2 Metric Scores [Metrics Utilized in Study |

Figure 3. Single-assembly raw average assessment scores. Assessment metrics used in study:
n50/n90 (via TransRate), complete BUSCOs (via BUSCO), and overall alignment rate (via HISAT2)
are boxed in. Top two metric scores per assessment criteria are highlighted in green. Bottom two
metric scores are highlighted in pink. Metrics not boxed in were provided to aid discussion but not
for the generation of the average assessment scores.

3.4. Bi-Assembly

The pairing of assemblers often increased the AAS; however, our negative control
Tadpole caused a decrease in metric scores of our previous top three single-assemblers:
rnaSPAdes (Net AAAS: -0.06), Trans-ABySS (Net AAAS: —0.13), and TransLig (Net AAAS:
-0.18; Figure 4). The combination of TransLig and rnaSPAdes outperformed all other sin-
gle- and bi-assembly combinations achieving an AAS of 0.45 (Figures 2 and 4). Pairings
between Trans-ABySS and rnaSPAdes achieved the second highest AAS of 0.42 (Figure
4). Bi-assemblies involving combinations between Tadpole and either Trinity, MEGAHIT,
Shannon Cpp, Binpacker, or TransLig all underperformed when compared to a MEGA-
HIT single-assembly run (Figure 4).

trans-ABySS Trinity maSPAdes MEGAHIT  IDBA-ran Shannon BinPacker Tadpole

TransLig

Tadpole

BinPacker

Shannon

IDBA-tran

MEGAHIT

maSPAdes

Trinity

Figure 4. Bi-assembly assessment scores. Heatmap of bi-assembly assessment scores from 36 com-
binations of 9 assemblers compared to MEGAHIT single-assembly as a baseline score (0). Scores
lower than 0 underperformed when compared to MEGAHIT single-assembly, whereas, scores
higher than 0 overperformed. Green denotes a higher assessment score and red denotes a lower
assessment score among the 36 bi-assembly groups. Shannon denotes Shannon Cpp version.

3.5. Tri-Assembly

We observed the highest possible AAS of 0.50 in a tri-assembly approach containing
Trans-ABySS, rnaSPAdes and TransLig (Figure 5). The higher AAS values are primarily
located in the highest performing assembler groups: Trans-ABySS, rnaSPAdes, and Trans-
Lig (Figure 5). The lower AAS values are found not only in the negative control Tadpole,
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but in Trinity and Shannon Cpp as well. The rnaSPAdes bracket performed the best, yield-
ing the highest AAS, while the Tadpole bracket performed the lowest, yielding the lowest
AAS on average (Figure 5). The rnaSPAdes bracket also exhibited a smaller distribution
of AAS, spanning 0.22 to 0.50, with a higher frequency of high AAS than other assembler
groups (Figure 6). When tri-assembly runs are sorted from lowest AAS to highest, the
rnaSPAdes group continues to lead the other tri-assembly groups at every datapoint (Sup-
plementary Figure S3). Signs of over/underperformance amongst tri-assembly runs were
observed, with Tadpole, Trinity, and Shannon Cpp tri-assembly approach underperform-
ing by scoring equal to the MEGAHIT baseline previously set at 0 (Figure 5).

rnaSPAdes trans-ABySS TransLig
0.41 0.32
0.41 0.50 0.41
0.47 0.35 0.32[0:47 0.41 0.290.47
0.45 0.39 0.43 0.33 045 0.38 0.38 0.27 045 0.32
0.39 0.29 0.35 0.35 0.24 0.39 0.33 0.32 0.31 0.19 0.38 0.27 0.27
046 0.37 0.41 0.39 0.35 0.30 (046 0.39 0.37 0.31 0.38 0.240.45 0.32 0.24 0.22
0.32 0.22 0.26 0.32 0.22 0.26 0.10 0.32 0.21 0.25 0.14 0.19 0.20 [0.06 0.30 0.16 0.19 0.09 0.10
050 0.41 0.47 045 0.38 0.45 0.30 0.32[0:50 0.41 0.38 0.31 0.38 0.20
tA T M DD Sc BP Tp T rS M ID Sc BP Tp tA T S M DD Sc BP
MEGAHIT IDBA-tran Shannon Cpp
0.32 0.33 0.24
0.47 0.35 0.45 0.39 0.39 0.29
0.38 0.280.43 0.33 0.18 0.35
0.38 0.280.43 032 0.21 0.35 0.27
0.33 0.18 0.35 0.27 0.32 021 0.35 0.27
0.39 0.26 0.41 0.28 0.25 0.37 0.25 0.39 0.28 0.25 0.31 0.16 0.35 0.25 0.25
0.210.07 0.26 0.20 0.10 0.14 0.25 0.18 0.32 0.20 0.13 0.20 0.14 [0.00/ 0.22 0.10 0.13 0.09
041 0.29 047 0.32 0.27 0.32 0.16 0.38 0.27 045 0.32 0.27 0.24 0.19 0.31 0.19 0.38 0.27 0.27 0.220.09
tA T S ID Sc BP Tp tA T S M Sc BP Tp tA T S M DD BP Tp
BinPacker Trinity Tadpole
0.30 0.10 T - Trinity
0.46 0.37 0.41 0.32 0.22 1S rnaSPAdes
0.39 0.26 0.41 0.32 0.35 0.21/0.07 0.26 M MEGAHIT
0.37 0.25 0.39 0.28 0.33 0.39 0.28 0.25 0.18 0.32 0.20 D - IDBA-tran
0.31 0.16 0.35 0.25 0.25 0.24 0.29 0.18 0.21 0.14 (0,00 0.22 0.10 0.13 Sc - Shannon Cpp
0.30 0.37 0.26 0.25 0.16 0.19 [0.06 0.26 0.14 0.20 0.09 BP - BinPacker
0.19 [0.06 0.26 0.14 0.20 0.09 0.10 0.22 0.07 0.180.00 0.06 Tp - Tadpole
0.38 0.24 0.45 0.32 0.24 0.22 0.10 0.32 041 0.29 0.27 0.19 0.24[0.06 0.20 [0.06 0.30 0.16 0.19 0.09 0.10 L TransLig
tA T s M D Sc Tp tA 1S M D Sc BP Tp tA T s M ID Sc BP tA trans-ABySS

Figure 5. Tri-assembly Scores. Tri-assembly assessment score results from 84 combinations of 9 assemblers, respectively.
All assembler metrics are compared to over/underperformance to the average MEGAHIT single-assembly score. High-
lighted values range from high average assembly scores up to 0.5 (green) to low average assessment scores down to 0.0
(red). Metric scores are consistent, with previous figures allowing for cross comparison.

rnaSPAdes — N\

trans-ABySS V-—-—\,__-—-—
TranslLig
MEGAHIT

IDBA-tran —_——
BinPacker
Trinity — — - o o -3
Shannon Cpp <~
Tadpole =——— o o <]
0 0.1 0.2 0.3 0.4 0.5

Combined Assessment Scores Compared to MEGAHIT

Figure 6. Tri-assembly score distributions. Violin plots representing assessment score frequency and
distribution among tri-assembly runs. All assembler metrics are compared to over/underperfor-
mance to the average MEGAHIT single-assembly score (0). All tri-assembly scores performed equal
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to or greater than the baseline. Higher quality assembler combinations are represented via higher
numerical scores up to a maximum of 0.5.

4. Discussion
4.1. Single-Assembly Mode

Single-assembler comparisons reared interesting results regarding the efficiency of
de novo transcriptome assemblers compared to their genomic counterpart. Genome as-
semblers are known for their conservative style for reconstructions, whereas transcrip-
tome assemblers take risks to assemble every transcript isoform identified. It is largely
due to this deviation between the two software that we see gains or losses in average as-
sessment scores. To further elaborate, isoforms are more common among longer tran-
scripts as there is more genomic material, increasing the probability of the accumulation
of mutations and change over time. As longer transcript isoforms are added to the assem-
bly, the n50/n90 lengths increase. It also helps generate more ancestral transcripts, as each
variant has a chance to align to the reference eukaryotic database of ancestral transcripts.
Finally, more raw data containing variant fragments will be incorporated into the product,
resulting in a higher HISAT2 alignment score. In summary, de novo transcriptome assem-
blers should be more than capable of outperforming de novo genome assemblers in part
due to the identification and reconstruction of isoforms, which is why it is so bizarre to
observe some transcriptome assemblers unable to outperform genome assemblers (i.e.,
MEGAHIT).

4.1.1. Trinity

Perhaps the most perplexing of all our results was the tendency for Trinity to under-
perform, as it has long been described in literature to be quite robust at de novo transcrip-
tome assembly. Trinity incorporated roughly 89% of raw data into its assembly, which is
average among assemblers tested (Figure 3). Trinity’s n50/n90 scores, however, were
roughly half of what TransLig, a non-adaptive k-mer assembler, produced. The short
n50/n90 lead us to believe that Trinity may be unable to bridge fragmented transcripts as
well as other assemblers. Upon examination of the fragmented BUSCO scores, we observe
that Trinity in fact did fragment more transcripts than other assemblers.

4.1.2. Shannon Cpp

Reconstructions produced by Shannon Cpp were fairly close to MEGAHIT’s AAS.
Shannon Cpp exhibited a higher n50 score than MEGAHIT, but a lower n90 score. Shan-
non Cpp tended to fragment more ancestral genes than MEGAHIT and that higher rate of
fragmentation may account for the lower n90 score. Shannon Cpp had a higher complete
BUSCO score than MEGAHIT; however, Shannon Cpp utilized roughly 1% less of the raw
NGS datasets than MEGAHIT did, leading to a lower average assessment score total.
Shannon Cpp utilizes a type of information theory algorithm built on a de Bruijn graph
and we speculate that this algorithm is more conservative than MEGAHITs more normal-
ized de Bruijn graph method, leading to more fragments and less raw NGS integration.

4.1.3. Tadpole and MEGAHIT

Tadpole, as a basic assembly tool, is not as complex as the other assemblers and tends
to create many problematic reconstructions (i.e., chimeras, nonsense repeat sequences,
etc.). This is evident as Tadpole scored the lowest in every assessment metric, except for
raw NGS data incorporation. Further exploration of Tadpole assemblies reveals obvious
mis-assemblies. This was known before the study and is why we chose Tadpole as a neg-
ative control: a metric to use as an indication of poor assembly methodology. In addition,
we have included what we perceive to be the best genome assembler, MEGAHIT (as a
single assembler), to act as a baseline for transcriptome assemblies. Genome assemblers
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tend to be more conservative with their reconstructions and therefore will score moder-
ately well according to assessment software metrics; however, they do not account for
isoforms which account for large portions of transcriptomes. This allows for transcrip-
tome assemblers to elevate themselves from the MEGAHIT baseline by providing isoform
assemblies that are of high quality to increase their metric scores higher than that of a
genome assembler.

4.1.4. BinPacker

With the second highest n50/n90 scores and decent complete BUSCOs, BinPacker
ranks among the top assemblers, but on average, BinPacker’s performance is only slightly
better than MEGAHIT’s. BinPacker was poor at integrating the raw NGS data into the
completed reconstruction, scoring among the bottom two in the HISAT2 assessment
bracket. Data integration depends on the quality of the raw reads, but also whether the
algorithm designed for the assembler was able to incorporate that read within the assem-
bly. BinPacker underperformed in raw NGS data incorporation; however, TransLig, the
sequel to BinPacker, improves on this flaw.

4.1.5. IDBA-Tran

Suffering from the same issue as BinPacker, IDBA-tran’s low raw NGS data utiliza-
tion rate detracts from its impressive complete BUSCO score and decent n50/n90 metrics.
Fortunately, its two strengths can carry IDBA-tran over the MEGAHIT baseline, provid-
ing evidence that IDBA-tran provides reconstructions of better quality than a genome as-
sembler. An oddity is IDBA-tran’s tendency to duplicate BUSCOs, which may be caused
by the addition of five k-mer sizes and the inability for IDBA-tran to reduce redundancy
among the assembly.

4.1.6. TranLig, Trans-ABySS, and rnaSPAdes

Top three de novo assemblers are rnaSPAdes, Trans-ABySS, and TransLig. In single-
assembly comparisons these de novo transcriptome assemblers were able to largely out-
perform the other assemblers in various assessment metrics. Complete BUSCOs and raw
data utilization rates for rnaSPAdes were both part of the top two metric scores, so it is no
surprise rnaSPAdes scored the best among the three. rnaSPAdes was also able to produce
one of the least redundant assemblies. Trans-ABySS incorporated the most NGS data into
its assembly procedure but was not able to reconstruct as many transcripts as rnaSPAdes
nor TransLig. TransLig outperformed all assemblers in n50/n90 scores, however its raw
NGS data utilization was lacking. It is clear from the investigated assessment metrics that
each of these assemblers excel in one area or another, which is precisely why multi-assem-
bly provides higher quality transcriptomes.

4.2. Bi-Assembly Mode

Bi-assembly methods, including Tadpole, led to lower overall assessment scores
when compared to pairings without Tadpole, cementing the validity of our negative con-
trol. On average, all pairings excluding Tadpole achieved scores greater than the MEGA-
HIT baseline and greater AAS when compared to the single assembly approach. Bi-as-
sembly increased n50/90 scores, complete BUSCOs and overall alignment scores from
their single assembly counterparts on average. All increases are expected as we nearly
double the coverage, while including several transcripts that were missed in the single
assembler methodology. We note a significant increase in AAS from single- to bi-assembly
approaches across all assemblers. Lastly, we note rnaSPAdes produced the top three bi-
assembly reconstructions, providing further evidence of the positive synergistic effects of
our top single-assemblers.
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4.3. Multi-Assembly Mode

We have demonstrated the potential of utilizing the multi-assembler approach to el-
evate the overall quality of reconstructions across three distinct assessment criteria. We
highly recommend the usage of Trans-ABySS, rnaSPAdes, and TransLig in combination
for de novo transcriptome assembly as they provided the highest metric scores. We ob-
serve the highest single-assembly AAS at 0.23, highest bi-assembly at 0.45 and the highest
tri-assembly at the maximum 0.50 demonstrating that assemblers can not only synergize
well together, but also that bi-assembly increased the quality of single-assembly by a large
margin. We observe a significant increase in scores from bi- to tri-assembly as well. Alt-
hough rnaSPAdes observed no significant change in average scores, there was still an in-
crease in the number of novel transcripts recorded (via BUSCO) and this metric alone is
worth the addition of a third assembler. We advocate for the usage of multi-assembler
workflows as they provide the best chances of complete assemblies for non-model organ-
isms.

5. Conclusions

Over the past ten years, researchers have provided us with an extensive coverage of
the strengths and weaknesses of the various de novo transcriptome assemblers in single-
assembly approaches. However, there have been scarce publications to date offering a
comprehensive comparison between multi-assembly approaches. We offer a broad com-
parative review of seven well-maintained de novo transcriptome assemblers and two de
novo genome assemblers scored via three distinct assessment criteria. All our work was
completed via a modular pipeline, Pincho, which we contribute to the scientific commu-
nity as a modern modular de novo transcriptomic workflow written in Python3 for Ub-
untu 20.04 Focal Fossa LTS on our GitHub page.

Supplementary Materials: The following are available online at www.mdpi.com/2073-
4425/12/7/953/s1, Figure S1: Pincho User Interface, Figure S2: Single-assembly runtimes, Figure S3:
Tri-assembly runs sorted by lowest to highest assessment scores are each uploaded separately from
main text.
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