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Abstract: Transcriptomic reconstructions without reference (i.e., de novo) are common for data sam-
ples derived from non-model biological systems. These assemblies involve massive parallel short 
read sequence reconstructions from experiments, but they usually employ ad-hoc bioinformatic 
workflows that exhibit limited standardization and customization. The increasing number of tran-
scriptome assembly software continues to provide little room for standardization which is exacer-
bated by the lack of studies on modularity that compare the effects of assembler synergy. We devel-
oped a customizable management workflow for de novo transcriptomics that includes modular 
units for short read cleaning, assembly, validation, annotation, and expression analysis by connect-
ing twenty-five individual bioinformatic tools. With our software tool, we were able to compare the 
assessment scores based on 129 distinct single-, bi- and tri-assembler combinations with diverse k-
mer size selections. Our results demonstrate a drastic increase in the quality of transcriptome as-
semblies with bi- and tri- assembler combinations. We aim for our software to improve de novo 
transcriptome reconstructions for the ever-growing landscape of RNA-seq data derived from non-
model systems. We offer guidance to ensure the most complete transcriptomic reconstructions via 
the inclusion of modular multi-assembly software controlled from a single master console. 
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1. Introduction 
Homemade de novo transcriptomic workflows tend to be idiosyncratic to specific 

study goals, unoptimizable to other studies and, in many cases, left unpublished or buried 
in supplementary materials. We could say Rnnotator [1] in 2010 was the first single-as-
sembler transcriptomic pipeline to be publicly available, while the Oyster River Protocol 
(ORP; [2]) in 2018 was the first multi-assembler pipeline available. This presumed eight-
year period between single- and multi-assembler approaches is odd considering multi-
assembler methods have been shown to produce reconstructions with higher degrees of 
completeness [2]. Nevertheless, the combinations of assemblers that produce the best re-
constructions in the multi-assembly approach are not well explored nor classified. Adding 
to the complexity of the situation, assemblers are routinely updated, and new assemblers 
are created in a timely fashion, making assembler comparisons both a necessity and rou-
tine process. The closest comparison to our workflow would be the ORP; however, it em-
ploys a rigid tri-assembly approach to produce high quality transcriptomes via 
rnaSPAdes (k55, k75; [3]), Trinity (k25; [4]) and Shannon (k75; [2,5]). In comparison, we 
developed an open-source workflow that broadens the k-mers used to up to five total k-
mers per assembler. Our software, Pincho [6], allows the user to design and customize 
their own k-mer list and number of assemblers, among other parameters. 
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To characterize our management software, we present two major goals of this study 
that we sought to complete. The first was to construct a publicly available and customiza-
ble modular management toolkit that could simplify de novo transcriptomic work for data 
scientists. This simplification took place via the amalgamation of well-established and re-
viewed genomic and transcriptomic software centralized in one quick download and even 
faster user implementation options. We customize this workflow with the most common 
software used in de novo transcriptomics along with the modularity to allow simple in-
corporation of new software as future tools become available. Our second goal is to pro-
vide a comprehensive analysis on de novo transcriptome assembler performance individ-
ually and in combination. To our knowledge, this is the first publication on synergistic 
effects of single-, bi-, and tri-assembly combinations between nine distinct de novo and 
reference-guided assemblers aimed to elevate de novo transcriptome quality and com-
pleteness. 

2. Materials and Methods 
2.1. Components of the Pincho Workflow 

Our software supports various applications and automates their parameter, com-
puter resources and output management via Python3 and Bash (Supplementary Figure 
S1). Pincho consists of twenty-five functions which fall under six modules: preprocessing 
(adaptor removal with Trimmomatic [7,8] and error correction via Rcorrector [9,10]); de 
novo assembly (ABySS [11,12], Tadpole [13,14], BinPacker [15,16], IDBA-tran [17,18], 
MEGAHIT [19,20], Oases/Velvet [21,22], rnaSPAdes [3,23], Shannon Cpp [5,24], SPAdes 
[25,26], Trans-ABySS [27,28], TransLig [29,30], and Trinity [4,31], Table 1; post-assembly 
(consensus assembly generation with TransRate [32,33], isolation of short transcripts un-
der bp length threshold and redundancy reduction via CD-HIT [34,35]); assembly assess-
ment (alignments to reference transcriptomes or to the original raw reads via HISAT2 
[36,37], BUSCO [38,39] and TransRate); annotation using a user reference (NCBI BLASTX, 
BLASTN, and BLASTP; [40–42]); and expression analysis (kallisto [43,44] and RSEM 
[45,46], Figure 1 and Supplementary Figure S1). Several important notes: Pincho can pro-
cess Sequence Read Archive (SRA, [47]) data accession numbers via SRAtoolkit [48], Trin-
ity can be run in genome guided mode instead of De novo with help from Samtools [49,50], 
and TransLig was modified to include assembly lengths via SeqKit [51,52]. 

Table 1. De novo Assemblers Utilized in Pincho. 

Assembler Genome or 
Transcriptome K-mer Used K-mer Default Algorithm Version Version 

Release Software Release 
Cite

d 
by 2 

Datasets Explored 

ABySS Genome Adaptive 32 
de Bruijn 
Graph 

v2.2.4 1/30/2020 11/26/2008 
348

1 
Human 

BinPacker Transcriptome 25 25 Splice Graph v1.0 10/17/2019 3/19/2015 95 Human, Mouse, Dog 

IDBA-tran Transcriptome Adaptive 
20, 30,  
40, 50 

de Bruijn 
Graph 

v1.1.3 6/11/2016 6/19/2013 155 Oryza sativa 

MEGAHIT Genome Adaptive 
21, 41,  

61, 81, 99 
de Bruijn 
Graph 

v1.2.9 10/14/2019 9/25/2014 
173

8 
Soil 

Oases/Velvet Transcriptome Adaptive 
19, 21,  

27, 31, 35 
de Bruijn 
Graph 

v0.2.08/ 
v1.2.10 

05-20-
2013/10-17-

2013 

12-11-2011/11-16-
2007 

143
7 

Human, Mouse 

rnaSPAdes Transcriptome Adaptive 
Automated k-

mers 
de Bruijn 
Graph 

v3.14.1 5/2/2020 11/16/2018 122 
Humans, Mouse, 
Corn, Arabidopsis 

Shannon Cpp Transcriptome 25 25 
de Bruijn 
Graph 

v0.4.0 12/19/2019 2/9/2016 27 Human 

SPAdes Genome Adaptive 
21, 33,  

55 
de Bruijn 
Graph 

v3.14.1 5/2/2020 5/7/2012 
126
35 

Escherichia coli, 
Deltaproteobacteria 

Tadpole Genome Adaptive 31 Simple Kmer 
Code 

v38.86 6/13/2020 1/9/2012 437 Fungus, Bacteria, 
Plant, Soil  
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Trans-ABySS Transcriptome Adaptive 32 
de Bruijn 
Graph 

v2.0.1 2/19/2018 6/18/2010 467 Human 

TransLig Transcriptome 31 31 
Line Graph 
Iterations 

v1.3 10/26/2019 11/23/2018 7 Human, Mouse 

Trinity 1 Transcriptome 25 25 
de Bruijn 
Graph 

v2.11.0 6/30/2020 12/3/2010 
117

5 
Drosophila 

melanogaster 
1 genome guided mode available. 2 cited by column updated on 15 June 2021. 

 
Figure 1. Pincho Management Workflow. Software installed in the Pincho workflow v0.1, including 
(A) pre-processing, (B) transcriptome and * genome assemblers, (C) post-processing, (D) assessment 
software, (E) annotation software, and (F) expression analysis software. Modules may begin at any 
position (A–F) but must then process sequentially (i.e., B, C, D…). Possible avenues depicted in 
shorthand, where A:D represents steps A, B, C and D. Any number of items may be called from 
each module (i.e., module B: IDBA-tran, Trans-ABySS, Trinity = 3 items called from module B). 

2.2. Dataset Criteria and Selection 
We analyzed eight distinct non-model datasets from the SRA ([53]; Table 2. We fo-

cused on hyloid anurans (frogs) that have complex and usually large genomes (e.g., ~6.76 
Gb for Dendrobates pumilio, [54]). Data was chosen via the following criteria: (a) publicly 
sourced RNA-seq data, (b) paired-end reads of various insert sizes (Table 2), (c) fastq for-
mat, (d) Illumina sequencing, (e) non-model organisms, (f) data containing a base count 
lower than 2Gb and (g) data that passed Pincho’s rapid assessment with a complete 
BUSCO score greater than 50%. Rapid assessment is composed of fasterq-dump download 
of SRR raw reads, removal of Illumina adaptors, if necessary, from raw data via Trimmo-
matic, assembly of reads via succinct de Bruijn graphs with MEGAHIT and assessment via 
BUSCO scores. Chosen SRA files were analyzed with FastQC [55], revealing that all files 
were adapter free. 

Our datasets are purposely under the standard yield of RNA-seq experiments (2GB 
–4GB), to highlight the potential of the selected assemblers on low yield, low coverage 
datasets. As higher levels of sequencing coverage lead to higher quality NGS data [56], 
we chose NGS data that are most likely to contain low sample coverage owing to low read 
counts [57]. We selected smaller sized files on average 6.88M reads, which is well beneath 
the recommended sequencing read number of 20M [56] to ensure an NGS scenario of low 
coverage. As a balance we made sure that all files were at least above 50% in complete 
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BUSCO scores to avoid scenarios where read coverage was insufficient. Low coverage 
datasets are prone to many types of assembly errors (i.e., fragmentation and incomplete-
ness [32]), which allows us to accurately test the various types of algorithms employed by 
the tested transcriptome assemblers and their abilities to work with problematic datasets. 
It is only under this scope that we can ideally view assembler performance and synergy 
without the reliance on synthetic data. We expect that if assemblers succeed at reconstruct-
ing more from smaller datasets, then they are sensitive enough to use on larger datasets 
as well. 

Table 2. Test NGS Dataset from NCBI SRA database. 

Species Accession BUSCOs 
(%) 1 

Reads 
(M) 

Bases 
(G) 

Read Length 
(bp) 

File Size 
(Mb) 

Tissue 

Allobates femoralis SRR8288062 62.4 3.5 0.8 120 504.4 Skin 
Amazophrynella minuta SRR8288029 70.6 4.4 1.1 120 641.6 Skin 

Dendrobates auratus ERR3155280 91.0 3.3 1.9 294 1000.0 Skin 
Dendrobates imitator ERR3169394 66.3 16.3 1.6 50 782.5 Skin 
Dendrobates sirensis SRR8288043 72.2 4.9 1.2 120 710.7 Skin 

Lithobates catesbeianus SRR4048903 77.6 6.8 1.3 99 558.0 OB 2 

Pyxicephalus adspersus SRR6890710 87.8 10.0 1.5 75 538.8 Testis 
Scinax ruber SRR8288044 73.7 5.8 1.4 120 840.1 Skin 

1 Complete BUSCO using Pincho’s rapid assessment at default settings 2 Olfactory Bulb. 

2.3. Pincho Workflow Implementation 
Raw data was analyzed with the Pincho pipeline with the following configurations: 

SRA accession numbers were used to download data from the SRA database via fasterq-
dump followed by whitespace removal and compression. Leading and lagging low qual-
ity base removal was performed via Trimmomatic, followed by error correction by Rcor-
rector. Transcriptomes were assembled via Trans-ABySS, BinPacker, IDBA-tran, Shannon 
Cpp, rnaSPAdes, TransLig, Trinity, MEGAHIT (positive control) and Tadpole (negative 
control) with adaptive k-mer control enabled. Adaptive k-mer control utilizes a minimum 
k-mer of k21 and four k-mers generated based on their respective maximum insert length 
and middle three quartiles between k21 and the maximum. Consensus assembly genera-
tion was conducted via TransRate. Read mapping was performed via HISAT2 aligner, 
presence of ancestral genes was identified by BUSCO and n50/n90 were calculated via 
TransRate. Assessment was conducted in combinations between the nine assemblers in-
dividually and in groups of two and three. Oases was not utilized in this study due to the 
frequent unresolved bugs associated with the software and its lack of maintenance (last 
major update 20 May 2013). SPAdes and ABySS de novo genome assemblers were not 
utilized in this study as we used their transcriptomic counterparts designed for transcrip-
tome assembly. Both rnaSPAdes and ABySS were demonstrated to outperform SPAdes 
and ABySS, respectively [3,27]. 

2.4. K-mer Size Determination 
K-mer sizes were left to their default values (Table 1) if the assembler only allowed 

one k-mer size as input and assembler runtime was extensive. Therefore, default k-mers 
were used for BinPacker, TransLig, Trinity and Shannon Cpp. Assemblers that allowed 
the selection of multiple k-mer sizes and/or were time efficient were assigned a broad 
range of five k-mer sizes. 

2.5. Assessment Validation 
We utilized three metrics (TransRate, BUSCO, and HISAT2) that best represent the 

quality of a de novo transcriptome. TransRate provides the n50/n90 statistic, among oth-
ers, which is the largest contig size where 50%/90% of bases are contained in transcripts 
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of this length. These n50/n90 scores are often used to ascertain the quality of a reconstruc-
tion, with longer n50/n90 lengths correlating to a more complete assembly. Other assess-
ment metrics include complete BUSCO scores representing percent ancestral transcripts 
present and HISAT2′s overall alignment score which is the percentage of raw data utilized 
within reconstructions. For our workflow, we used BUSCO’s Eukaryota dataset as a ref-
erence. 

Respective assessment scores were judged per assembler as greater than MEGAHIT’s 
assessment scores or less than MEGAHIT’s assessment scores. Assessment scores (AS) 
greater than MEGAHIT were subjected to the following formula: 

× 0.5 (1) 

AS less than MEGAHIT were processed under a different formula to calculate un-
derperformance: 

− × 0.5 (2) 

while scores equal to MEGAHIT were counted as 0. Average assessment scores (AAS) 
were calculated as the average of HISAT2′s overall alignment, complete BUSCO score, 
and TransRate’s n50/n90 scores in a 1:1:1 ratio, so n50 and n90 scores were averaged to-
gether before averaging with the other two assessment scores. Finally, the AAS were nor-
malized between the numbers of 0.5 as overperforming versus MEGAHIT and −0.5 as 
underperforming. 

3. Results 
3.1. Workflow Installation, System Build, and Performance 

Pincho is packaged with an installer script written in Python3 and Bash which will 
install and configure required dependencies in Linux Ubuntu systems. Our workflow re-
quires a minimum of 24 threads and 128GB of memory to run efficiently and is largely 
GPU independent. It is recommended to scale performance parameters evenly if higher 
performance is desired (i.e., 24:128 ratio). Our study was conducted on two new work-
stations including: AMD Ryzen 9 3900X 3.8GHz processor, G.Skill 128GB 4 × 32 D4 3200 
memory modules, and an ASUS TUF GAMING X570-PLUS motherboard. An alternative 
replica build would be to purchase a PowerSpec G464 and upgrade the memory modules 
to a total of 128GB (net price 2200 USD). Our test data ranged in both number of bases and 
file size (Table 1) to provide an accurate depiction of the capacities of our workflow per-
formance. We encountered no errors conducting the study with the parameters stated 
above. Methods can be easily replicated via Pincho’s completely modular user interface. 

3.2. Average Assessment Score Generation 
We utilize three distinct assessment software––HISAT2, TransRate, and BUSCO––to 

derive raw scores for each single-, bi-, and tri- assembly run (see assessment validation in 
methods) and mark their over/underperformance in regard to a MEGAHIT single assem-
bly run. Individual metric scores are normalized to a scale between −0.5 and 0.5, where 0 
is equal to a MEGAHIT single assembly run assessment score. Negative integers denote 
underperformance and positive integers denote overperformance when compared to 
MEGAHIT genome assembler. Individual assessment scores are then averaged together 
respectively to provide an AAS per assembler or assembler group. The following assem-
blers were utilized in this study: Trans-ABySS, BinPacker, IDBA-tran, Shannon Cpp, 
rnaSPAdes, TransLig, Trinity, MEGAHIT, and Tadpole. 
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3.3. Single-Assembly 
According to our combination of assessment software criteria, rnaSPAdes outper-

formed all other assemblers with an AAS of 0.23, followed by Trans-ABySS (AAS: 0.18), 
TransLig (AAS: 0.17), IDBA-tran (AAS: 0.02), BinPacker (AAS: 0.02; Figure 2), and the 
MEGAHIT single-assembly baseline (AAS: 0). Shannon Cpp (AAS: −0.03), Trinity (AAS: 
−0.24), and Tadpole (AAS: −0.50) underperformed relative to the baseline (Figure 2). 
Runtime analysis highlights no correlation between total time consumption and perfor-
mance, as assemblers that required the most time did not produce the best assemblies nor 
vice versa (Supplementary Figure S2). Assessment of raw data from our assessment soft-
ware reveals rnaSPAdes and Trans-ABySS obtained the highest HISAT2 scores (>92%), 
rnaSPAdes and IDBA-tran scored the highest complete BUSCO scores (>199 complete eu-
karyotic ancestral transcripts), and TransLig and BinPacker contained the longest n50/n90 
lengths (>1766bp/>499bp; Figure 3). Alternatively, IDBA-tran and BinPacker obtained the 
lowest HISAT2 scores (<85%), Trinity and Tadpole scored the lowest complete BUSCO 
scores (<169 complete transcripts) and also the shortest n50/n90 lengths (<1021 bp/<286 
bp; Figure 3). 

 
Figure 2. Single-, bi-, and tri-assembly assessment score averages. Average assessment scores from 
single-, bi-, and tri-assembly runs compared to MEGAHIT single-assembly as a baseline score (0). 
Scores lower than 0 underperformed when compared to MEGAHIT single-assembly, whereas, 
scores higher than 0 overperformed. Average assessment scores calculated by the average of 
HISAT2 overall alignment, BUSCO complete score, and TransRate n50 and n90 metrics averaged 
across all files processed. Assemblers utilized are included in the x-axis to denote both their average 
scores for single assembly and their average scores as part of a pair of two or three. Two tailed 
paired T-tests were conducted between single-assembly and bi-assembly, and between bi-assembly 
and tri-assembly. P-values are noted between single- and bi-assembly combinations and between 
bi- and tri-assembly combinations. All comparisons conform to p < 0.05 except for no-significance 
noted between bi- and tri-assembly associated with rnaSPAdes. *** is p < 0.00001, ** is p < 0.001, * is 
p < 0.05, and NS (No Significance) is p > 0.5. P-values are under FDR (False Discovery Rate) correc-
tion. 
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Figure 3. Single-assembly raw average assessment scores. Assessment metrics used in study: 
n50/n90 (via TransRate), complete BUSCOs (via BUSCO), and overall alignment rate (via HISAT2) 
are boxed in. Top two metric scores per assessment criteria are highlighted in green. Bottom two 
metric scores are highlighted in pink. Metrics not boxed in were provided to aid discussion but not 
for the generation of the average assessment scores. 

3.4. Bi-Assembly 
The pairing of assemblers often increased the AAS; however, our negative control 

Tadpole caused a decrease in metric scores of our previous top three single-assemblers: 
rnaSPAdes (Net ∆AAS: −0.06), Trans-ABySS (Net ∆AAS: −0.13), and TransLig (Net ∆AAS: 
−0.18; Figure 4). The combination of TransLig and rnaSPAdes outperformed all other sin-
gle- and bi-assembly combinations achieving an AAS of 0.45 (Figures 2 and 4). Pairings 
between Trans-ABySS and rnaSPAdes achieved the second highest AAS of 0.42 (Figure 
4). Bi-assemblies involving combinations between Tadpole and either Trinity, MEGAHIT, 
Shannon Cpp, Binpacker, or TransLig all underperformed when compared to a MEGA-
HIT single-assembly run (Figure 4). 

 
Figure 4. Bi-assembly assessment scores. Heatmap of bi-assembly assessment scores from 36 com-
binations of 9 assemblers compared to MEGAHIT single-assembly as a baseline score (0). Scores 
lower than 0 underperformed when compared to MEGAHIT single-assembly, whereas, scores 
higher than 0 overperformed. Green denotes a higher assessment score and red denotes a lower 
assessment score among the 36 bi-assembly groups. Shannon denotes Shannon Cpp version. 

3.5. Tri-Assembly 
We observed the highest possible AAS of 0.50 in a tri-assembly approach containing 

Trans-ABySS, rnaSPAdes and TransLig (Figure 5). The higher AAS values are primarily 
located in the highest performing assembler groups: Trans-ABySS, rnaSPAdes, and Trans-
Lig (Figure 5). The lower AAS values are found not only in the negative control Tadpole, 

Single Assembly Raw Assessment Scores

Assembly rnaSPAdes trans-ABySS TransLig IDBA-tran BinPacker Shannon Trinity MEGAHIT Tadpole

n90 317.8 309.9 624.0 433.8 499.5 312.6 285.5 363.9 239.5
n50 1200.8 1410.9 2043.8 1465.4 1766.4 1323.8 1020.1 1152.6 708.4

Complete BUSCOs 199.3 191.5 195.1 201.1 195.8 196.5 168.1 193.9 141.5
Duplicated BUSCOs 10.4 51.5 44.1 199.0 44.0 79.1 19.3 4.5 102.0
Fragmented BUSCOs 35.9 38.9 28.8 33.3 34.0 38.4 54.0 34.5 74.4
Missing BUSCOs 19.9 24.6 31.1 20.6 25.3 20.1 32.9 26.6 39.1

Overall Alignment Rate 0.93 0.94 0.87 0.82 0.84 0.89 0.89 0.90 0.88

Top 2 Metric Scores Bottom 2 Metric Scores Metrics Utilized in Study
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but in Trinity and Shannon Cpp as well. The rnaSPAdes bracket performed the best, yield-
ing the highest AAS, while the Tadpole bracket performed the lowest, yielding the lowest 
AAS on average (Figure 5). The rnaSPAdes bracket also exhibited a smaller distribution 
of AAS, spanning 0.22 to 0.50, with a higher frequency of high AAS than other assembler 
groups (Figure 6). When tri-assembly runs are sorted from lowest AAS to highest, the 
rnaSPAdes group continues to lead the other tri-assembly groups at every datapoint (Sup-
plementary Figure S3). Signs of over/underperformance amongst tri-assembly runs were 
observed, with Tadpole, Trinity, and Shannon Cpp tri-assembly approach underperform-
ing by scoring equal to the MEGAHIT baseline previously set at 0 (Figure 5). 

 
Figure 5. Tri-assembly Scores. Tri-assembly assessment score results from 84 combinations of 9 assemblers, respectively. 
All assembler metrics are compared to over/underperformance to the average MEGAHIT single-assembly score. High-
lighted values range from high average assembly scores up to 0.5 (green) to low average assessment scores down to 0.0 
(red). Metric scores are consistent, with previous figures allowing for cross comparison. 

 
Figure 6. Tri-assembly score distributions. Violin plots representing assessment score frequency and 
distribution among tri-assembly runs. All assembler metrics are compared to over/underperfor-
mance to the average MEGAHIT single-assembly score (0). All tri-assembly scores performed equal 

rnaSPAdes trans-ABySS TransLig
T 0.41 0.32
rS 0.41 0.50 0.41
M 0.47 0.35 0.32 0.47 0.41 0.29 0.47
IDBA 0.45 0.39 0.43 0.33 0.45 0.38 0.38 0.27 0.45 0.32
Sc 0.39 0.29 0.35 0.35 0.24 0.39 0.33 0.32 0.31 0.19 0.38 0.27 0.27
BP 0.46 0.37 0.41 0.39 0.35 0.30 0.46 0.39 0.37 0.31 0.38 0.24 0.45 0.32 0.24 0.22
Tp 0.32 0.22 0.26 0.32 0.22 0.26 0.10 0.32 0.21 0.25 0.14 0.19 0.20 0.06 0.30 0.16 0.19 0.09 0.10
TL 0.50 0.41 0.47 0.45 0.38 0.45 0.30 0.32 0.50 0.41 0.38 0.31 0.38 0.20

tA T M ID Sc BP Tp T rS M ID Sc BP Tp tA T rS M ID Sc BP

MEGAHIT IDBA-tran Shannon Cpp
T 0.32 0.33 0.24
rS 0.47 0.35 0.45 0.39 0.39 0.29
M 0.38 0.28 0.43 0.33 0.18 0.35
ID 0.38 0.28 0.43 0.32 0.21 0.35 0.27
Sc 0.33 0.18 0.35 0.27 0.32 0.21 0.35 0.27
BP 0.39 0.26 0.41 0.28 0.25 0.37 0.25 0.39 0.28 0.25 0.31 0.16 0.35 0.25 0.25
Tp 0.21 0.07 0.26 0.20 0.10 0.14 0.25 0.18 0.32 0.20 0.13 0.20 0.14 0.00 0.22 0.10 0.13 0.09
TL 0.41 0.29 0.47 0.32 0.27 0.32 0.16 0.38 0.27 0.45 0.32 0.27 0.24 0.19 0.31 0.19 0.38 0.27 0.27 0.22 0.09

tA T rS ID Sc BP Tp tA T rS M Sc BP Tp tA T rS M ID BP Tp

BinPacker Trinity Tadpole
T 0.30 0.10 T ----- Trinity
rS 0.46 0.37 0.41 0.32 0.22 rS ----- rnaSPAdes
M 0.39 0.26 0.41 0.32 0.35 0.21 0.07 0.26 M ----- MEGAHIT
ID 0.37 0.25 0.39 0.28 0.33 0.39 0.28 0.25 0.18 0.32 0.20 ID ----- IDBA-tran
Sc 0.31 0.16 0.35 0.25 0.25 0.24 0.29 0.18 0.21 0.14 0.00 0.22 0.10 0.13 Sc ----- Shannon Cpp
BP 0.30 0.37 0.26 0.25 0.16 0.19 0.06 0.26 0.14 0.20 0.09 BP ----- BinPacker
Tp 0.19 0.06 0.26 0.14 0.20 0.09 0.10 0.22 0.07 0.18 0.00 0.06 Tp ----- Tadpole
TL 0.38 0.24 0.45 0.32 0.24 0.22 0.10 0.32 0.41 0.29 0.27 0.19 0.24 0.06 0.20 0.06 0.30 0.16 0.19 0.09 0.10 TL ----- TransLig

tA T rS M ID Sc Tp tA rS M ID Sc BP Tp tA T rS M ID Sc BP tA ----- trans-ABySS



Genes 2021, 12, 953 9 of 13 
 

 

to or greater than the baseline. Higher quality assembler combinations are represented via higher 
numerical scores up to a maximum of 0.5. 

4. Discussion 
4.1. Single-Assembly Mode 

Single-assembler comparisons reared interesting results regarding the efficiency of 
de novo transcriptome assemblers compared to their genomic counterpart. Genome as-
semblers are known for their conservative style for reconstructions, whereas transcrip-
tome assemblers take risks to assemble every transcript isoform identified. It is largely 
due to this deviation between the two software that we see gains or losses in average as-
sessment scores. To further elaborate, isoforms are more common among longer tran-
scripts as there is more genomic material, increasing the probability of the accumulation 
of mutations and change over time. As longer transcript isoforms are added to the assem-
bly, the n50/n90 lengths increase. It also helps generate more ancestral transcripts, as each 
variant has a chance to align to the reference eukaryotic database of ancestral transcripts. 
Finally, more raw data containing variant fragments will be incorporated into the product, 
resulting in a higher HISAT2 alignment score. In summary, de novo transcriptome assem-
blers should be more than capable of outperforming de novo genome assemblers in part 
due to the identification and reconstruction of isoforms, which is why it is so bizarre to 
observe some transcriptome assemblers unable to outperform genome assemblers (i.e., 
MEGAHIT). 

4.1.1. Trinity 
Perhaps the most perplexing of all our results was the tendency for Trinity to under-

perform, as it has long been described in literature to be quite robust at de novo transcrip-
tome assembly. Trinity incorporated roughly 89% of raw data into its assembly, which is 
average among assemblers tested (Figure 3). Trinity’s n50/n90 scores, however, were 
roughly half of what TransLig, a non-adaptive k-mer assembler, produced. The short 
n50/n90 lead us to believe that Trinity may be unable to bridge fragmented transcripts as 
well as other assemblers. Upon examination of the fragmented BUSCO scores, we observe 
that Trinity in fact did fragment more transcripts than other assemblers. 

4.1.2. Shannon Cpp 
Reconstructions produced by Shannon Cpp were fairly close to MEGAHIT’s AAS. 

Shannon Cpp exhibited a higher n50 score than MEGAHIT, but a lower n90 score. Shan-
non Cpp tended to fragment more ancestral genes than MEGAHIT and that higher rate of 
fragmentation may account for the lower n90 score. Shannon Cpp had a higher complete 
BUSCO score than MEGAHIT; however, Shannon Cpp utilized roughly 1% less of the raw 
NGS datasets than MEGAHIT did, leading to a lower average assessment score total. 
Shannon Cpp utilizes a type of information theory algorithm built on a de Bruijn graph 
and we speculate that this algorithm is more conservative than MEGAHITs more normal-
ized de Bruijn graph method, leading to more fragments and less raw NGS integration. 

4.1.3. Tadpole and MEGAHIT 
Tadpole, as a basic assembly tool, is not as complex as the other assemblers and tends 

to create many problematic reconstructions (i.e., chimeras, nonsense repeat sequences, 
etc.). This is evident as Tadpole scored the lowest in every assessment metric, except for 
raw NGS data incorporation. Further exploration of Tadpole assemblies reveals obvious 
mis-assemblies. This was known before the study and is why we chose Tadpole as a neg-
ative control: a metric to use as an indication of poor assembly methodology. In addition, 
we have included what we perceive to be the best genome assembler, MEGAHIT (as a 
single assembler), to act as a baseline for transcriptome assemblies. Genome assemblers 
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tend to be more conservative with their reconstructions and therefore will score moder-
ately well according to assessment software metrics; however, they do not account for 
isoforms which account for large portions of transcriptomes. This allows for transcrip-
tome assemblers to elevate themselves from the MEGAHIT baseline by providing isoform 
assemblies that are of high quality to increase their metric scores higher than that of a 
genome assembler. 

4.1.4. BinPacker 
With the second highest n50/n90 scores and decent complete BUSCOs, BinPacker 

ranks among the top assemblers, but on average, BinPacker’s performance is only slightly 
better than MEGAHIT’s. BinPacker was poor at integrating the raw NGS data into the 
completed reconstruction, scoring among the bottom two in the HISAT2 assessment 
bracket. Data integration depends on the quality of the raw reads, but also whether the 
algorithm designed for the assembler was able to incorporate that read within the assem-
bly. BinPacker underperformed in raw NGS data incorporation; however, TransLig, the 
sequel to BinPacker, improves on this flaw. 

4.1.5. IDBA-Tran 
Suffering from the same issue as BinPacker, IDBA-tran’s low raw NGS data utiliza-

tion rate detracts from its impressive complete BUSCO score and decent n50/n90 metrics. 
Fortunately, its two strengths can carry IDBA-tran over the MEGAHIT baseline, provid-
ing evidence that IDBA-tran provides reconstructions of better quality than a genome as-
sembler. An oddity is IDBA-tran’s tendency to duplicate BUSCOs, which may be caused 
by the addition of five k-mer sizes and the inability for IDBA-tran to reduce redundancy 
among the assembly. 

4.1.6. TranLig, Trans-ABySS, and rnaSPAdes 
Top three de novo assemblers are rnaSPAdes, Trans-ABySS, and TransLig. In single-

assembly comparisons these de novo transcriptome assemblers were able to largely out-
perform the other assemblers in various assessment metrics. Complete BUSCOs and raw 
data utilization rates for rnaSPAdes were both part of the top two metric scores, so it is no 
surprise rnaSPAdes scored the best among the three. rnaSPAdes was also able to produce 
one of the least redundant assemblies. Trans-ABySS incorporated the most NGS data into 
its assembly procedure but was not able to reconstruct as many transcripts as rnaSPAdes 
nor TransLig. TransLig outperformed all assemblers in n50/n90 scores, however its raw 
NGS data utilization was lacking. It is clear from the investigated assessment metrics that 
each of these assemblers excel in one area or another, which is precisely why multi-assem-
bly provides higher quality transcriptomes. 

4.2. Bi-Assembly Mode 
Bi-assembly methods, including Tadpole, led to lower overall assessment scores 

when compared to pairings without Tadpole, cementing the validity of our negative con-
trol. On average, all pairings excluding Tadpole achieved scores greater than the MEGA-
HIT baseline and greater AAS when compared to the single assembly approach. Bi-as-
sembly increased n50/90 scores, complete BUSCOs and overall alignment scores from 
their single assembly counterparts on average. All increases are expected as we nearly 
double the coverage, while including several transcripts that were missed in the single 
assembler methodology. We note a significant increase in AAS from single- to bi-assembly 
approaches across all assemblers. Lastly, we note rnaSPAdes produced the top three bi-
assembly reconstructions, providing further evidence of the positive synergistic effects of 
our top single-assemblers. 
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4.3. Multi-Assembly Mode 
We have demonstrated the potential of utilizing the multi-assembler approach to el-

evate the overall quality of reconstructions across three distinct assessment criteria. We 
highly recommend the usage of Trans-ABySS, rnaSPAdes, and TransLig in combination 
for de novo transcriptome assembly as they provided the highest metric scores. We ob-
serve the highest single-assembly AAS at 0.23, highest bi-assembly at 0.45 and the highest 
tri-assembly at the maximum 0.50 demonstrating that assemblers can not only synergize 
well together, but also that bi-assembly increased the quality of single-assembly by a large 
margin. We observe a significant increase in scores from bi- to tri-assembly as well. Alt-
hough rnaSPAdes observed no significant change in average scores, there was still an in-
crease in the number of novel transcripts recorded (via BUSCO) and this metric alone is 
worth the addition of a third assembler. We advocate for the usage of multi-assembler 
workflows as they provide the best chances of complete assemblies for non-model organ-
isms. 

5. Conclusions 
Over the past ten years, researchers have provided us with an extensive coverage of 

the strengths and weaknesses of the various de novo transcriptome assemblers in single-
assembly approaches. However, there have been scarce publications to date offering a 
comprehensive comparison between multi-assembly approaches. We offer a broad com-
parative review of seven well-maintained de novo transcriptome assemblers and two de 
novo genome assemblers scored via three distinct assessment criteria. All our work was 
completed via a modular pipeline, Pincho, which we contribute to the scientific commu-
nity as a modern modular de novo transcriptomic workflow written in Python3 for Ub-
untu 20.04 Focal Fossa LTS on our GitHub page. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-
4425/12/7/953/s1, Figure S1: Pincho User Interface, Figure S2: Single-assembly runtimes, Figure S3: 
Tri-assembly runs sorted by lowest to highest assessment scores are each uploaded separately from 
main text. 
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