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SPECTRAL SPARSIFICATION OF SIMPLICIAL COMPLEXES

FOR CLUSTERING AND LABEL PROPAGATION
⇤

Braxton Osting,† Sourabh Palande,‡ and Bei Wang§

Abstract. As a generalization of the use of graphs to describe pairwise interactions,
simplicial complexes can be used to model higher order interactions between three or more
objects in complex systems. There has been a recent surge in activity to develop data analysis
methods applicable to simplicial complexes, including techniques based on computational
topology, higher order random processes, generalized Cheeger inequalities, isoperimetric
inequalities, and spectral methods. In particular, spectral learning methods (e.g., label
propagation and clustering) that directly operate on simplicial complexes represent a new
direction for analyzing such complex datasets.

To apply spectral learning methods to massive datasets modeled as simplicial com-
plexes, we develop a method for sparsifying simplicial complexes that preserves the spectrum
of the associated Laplacian matrices. We show that the theory of Spielman and Srivastava
for the sparsification of graphs extends to simplicial complexes via the up Laplacian. In
particular, we introduce a generalized effective resistance for simplices, provide an algorithm
for sparsifying simplicial complexes at a fixed dimension, and give a specific version of the
generalized Cheeger inequality for weighted simplicial complexes. Finally, we introduce higher
order generalizations of spectral clustering and label propagation for simplicial complexes
and demonstrate via experiments the utility of the proposed spectral sparsification method
for these applications.

1 Introduction

Understanding massive systems with complex interactions and multiscale dynamics is im-
portant in a variety of social, biological, and technological settings. A common approach to
understanding such a system is to represent it as a graph where vertices represent objects,
and (weighted) edges represent pairwise interactions between the objects. A large arsenal of
methods has been developed to analyze properties of graphs, which can then be combined
with domain-specific knowledge to infer properties of the system being studied. These tools
include graph partitioning and clustering [54, 70, 71], random processes on graphs [32], graph
distances, various measures of graph connectivity [53], combinatorial graph invariants [23],
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and spectral graph theory [15]. In particular, spectral methods for graph-based learning have
had great success due to their efficiency and good theoretical guarantees for applications
ranging from image segmentation [47] to community detection [2]. For example, the spectral
clustering method (see, e.g., [1, 65]) is a graph-based learning method used for the unsuper-
vised clustering task, and label propagation [68, 76] is a graph-based learning method for
semisupervised regression.

Simplicial complexes and data analysis. Although graphs have been used with great
success to describe pairwise interactions between objects in datasets, they fail to capture
higher order interactions that occur between three or more objects. Higher order interactions
in complex datasets can be modeled using simplicial complexes [34, 49]. The recent surge in
activity to develop machine learning methods for data represented by simplicial complexes
has included methods based on computational topology [10, 27, 30, 34], higher order random
processes [7, 33], generalized Cheeger inequalities [35, 67], isoperimetric inequalities [57],
high-dimensional expanders [24, 46, 56], and spectral methods [37]. In particular, topological
data analysis methods using simplicial complexes as the underlying combinatorial structures
have been successfully employed for diverse applications [20, 38, 43, 52, 55, 58, 59, 72].

Learning (indirectly or directly) based on simplicial complexes represents a new
direction that has recently emerged from the confluence of computational topology and
machine learning. This work is ongoing; whereas topological features derived from simplicial
complexes, used as input to machine learning algorithms, have been shown to increase the
predictive power compared to graph-theoretic features [6, 74], interest in developing learning
algorithms that directly operate on simplicial complexes is growing. For example, researchers
have begun to develop mathematical intuition behind higher dimensional notions of spectral
clustering and label propagation [48, 67, 71].

Sparsification of graphs and simplicial complexes. For unstructured graphs repre-
senting massive datasets, the computational costs associated with naïve implementations of
many graph based algorithms are prohibitive. In this scenario, it is useful to approximate
the original graph with one having fewer edges or vertices while preserving certain properties
of interest, known as graph sparsification. A variety of graph sparsification methods have
been developed that allow for both efficient storage and computation [5, 63, 64]; see [4] for a
survey. In particular, Spielman and Srivastava developed a method for graph sparsification
using effective resistances of edges that approximately preserves the spectrum of the graph
Laplacian [63]; their work is most relevant to the results presented in this paper. It is
well known from spectral graph theory that the spectrum of the graph Laplacian bounds
a variety of properties of interest, including the size of cuts (i.e., bottlenecks), clusters
(i.e., communities), distances, various random processes (i.e., PageRank), and combinatorial
properties (e.g., coloring, spanning trees, etc.). It follows that this method [4] can be used to
produce a sparsified graph that contains a great deal of information about the original graph
and, hence, in the graph-based machine learning setting, about the underlying dataset.

Analogously, computational methods that operate on simplicial complexes are severely
limited by the computational costs associated with massive datasets. Although geometric
complexes (embedded in Euclidean space) tend to be naturally sparse, abstract simplicial
complexes coming from data analysis can be dense and do not have natural embeddings in
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Euclidean space. For example, a dense simplicial complex is obtained when representing
functional brain networks using simplicial complexes (e.g., [11, 44, 45]). Here, a brain network
is mapped to a point cloud in a metric space, where network nodes map to points, pairwise
associations between nodes map to distances between pairs of points, and higher order infor-
mation is mapped to higher dimensional simplices [3, 74]. Another motivation for studying
sparsification of simplicial complexes is the fact that high-order tensors (multidimensional
arrays) can be represented by simplicial complexes and vice versa. Just as spectral graph
sparsifiers are useful in matrix decompositions and linear system solvers, one can expect
simplicial complex sparsifiers to be useful in tensor decompositions and multilinear system
solvers.

Several approaches have recently been proposed to sparsify simplicial complexes. One
class of methods, referred to as homological sparsification, involves constructing a sparse
simplicial complex that approximates persistence homology [8, 9, 12, 14, 21, 22, 40, 61, 69].
Persistence homology [28] turns the algebraic concept of homology into a multiscale notion. It
typically operates on a sequence of simplicial complexes (referred to as a filtration), constructs
a series of homology groups, and measures their relevant scales in the filtration. Common
simplicial filtrations arise from Čech or Vietoris-Rips complexes, and most of the homological
sparsification techniques produce sparsified complexes that give guaranteed approximations
to the persistent homology of the unsparsified filtration.

The sparsification processes involve either the removal or subsampling of vertices or
edge contraction from the sparse filtration. It is also possible to sparsify simplicial complexes
using another class of methods called sketching, particularly those applied to tensors. Tensor
decomposition methods have found many applications in machine learning [41], including
recent advancements in tensor sparsification [73, 36, 51, 62] using sampling methods from
randomized linear algebra.

Since many learning methods based on simplicial complexes rely — either explicitly
or implicitly — on the spectral theory for higher order Laplacians, developing methods for
sparsifying simplicial complexes that approximately preserves the spectrum of higher order
Laplacians is desirable.

Contributions. In this paper, motivated by learning based on simplicial complexes, we
develop computational methods for the spectral sparsification of simplicial complexes. In
particular:

• We introduce a generalized effective resistance of simplices by extending the notion of
effective resistance of edges (e.g., [13, 25, 29]); see Section 3.1.

• We extend the methods and analysis of Spielman and Srivastava [63] for sparsifying
graphs to the context of simiplicial complexes at a fixed dimension. We prove that the
spectrum of the up Laplacian is approximately preserved under sparsification in the
sense that the spectrum of the up Laplacian for the sparsified simplicial complex is
controlled by the spectrum of the up Laplacian for the original simplicial complex; see
Theorem 3.1.

• We generalize the Cheeger constant of Gundert and Szedlák for unweighted simplicial
complexes [35] to weighted simplicial complexes and show that the Cheeger constant of
the sparsified simplicial complex is bounded below by a multiplicative factor of the first
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nontrivial eigenvalue of the up Laplacian for the original complex; see Corollary 4.1.
• Our theoretical results are supported by substantial numerical experiments. By extend-

ing spectral learning algorithms such as spectral clustering and label propagation to
simplicial complexes, we demonstrate that preserving the structure of the up Laplacian
via sparsification also preserves the results of these algorithms (Section 5). These
applications exemplify the utility of our spectral sparsification methods.

We proceed as follows: In Section 2 we introduce the notation and give a brief description of
relevant algebraic concepts such as effective resistance and spectral sparsification of graphs.
The theory and algorithm for sparsifying simplicial complexes are presented in Section 3.
We state the implications of the algorithm for a generalized Cheeger cut for the simplicial
complex in Section 4. We showcase experimental results validating our algorithms in Section 5
and conclude with a discussion and some open questions in Section 6.

2 Background

Simplicial complexes. A simplicial complex K is a finite collection of simplices such that
every face of a simplex of K is in K, and the intersection of any two simplices of K is a
face of each of them [49]. The 0-, 1-, and 2-simplices correspond to vertices, edges, and
triangles. An oriented simplex is a simplex with a chosen ordering of its vertices. Consider
an oriented (k + 1)-simplex ⌧ = [v0, . . . , vk+1] of K where v0 < · · · < vk+1 is the vertex
ordering. � = ⌧\{vj} is the k-simplex obtained from ⌧ by omitting vertex vj . The oriented
incidence number [⌧ : �] of a k-simplex � of K is defined as (�1)

j if � = ⌧\{vj} for some
j = 0, . . . , k + 1 and 0 if � 6✓ ⌧ . For the remainder of this paper, we will assume K is
an oriented simplicial complex on a vertex set V = {v1, v2, . . . , vn}. Sk(K) denotes the
collection of all oriented k-simplices of K and nk = |Sk(K)|. The p-skeleton of K is denoted
as K(p)

:=
S

0kp
Sk(K). Let dim (K) denote the dimension of K. For a review of simplicial

complexes, see [31, 34, 49].

Laplace operators on simplicial complexes. The k-th chain group Ck(K) = Ck(K,R)
of a complex K with coefficient R is a vector space over the field R with basis Sk(K). The
k-th cochain group Ck

(K) = Ck
(K,R) is the dual of the chain group, defined by Ck

(K) :=

Hom(Ck(K),R), where Hom(Ck(K),R) denotes all homomorphisms of Ck(K) into R. The
coboundary operator �k : Ck

(K) ! Ck+1
(K) is defined as (�kf)(⌧) =

P
�2Sk

[⌧ : �]f(�).
Let Zk

= Ker(�k) and Bk
= Im(�k�1) denote the groups of k-dimensional cocycles and

k-dimensional coboundaries, respectively. The coboundary operator satisfies the property
�k�k�1 = 0, which implies that Bk ✓ Zk. The boundary operators, �⇤

k
, are the adjoints of

the coboundary operators,

· · · Ck+1
(K)

�k

⌧
�
⇤
k

Ck
(K)

�k�1

⌧
�
⇤
k�1

Ck�1
(K) · · ·

satisfying (�ka, b)Ck+1 = (a, �⇤
k
b)Ck for every a 2 Ck

(K) and b 2 Ck+1
(K), where (·, ·)Ck

denotes the scalar product on the cochain group. We denote by Zk = Ker(�⇤
k
) and Bk =

Im(�⇤
k+1), the groups of k-dimensional cycles and k-dimensional boundaries, respectively.
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Following [37], we define three combinatorial Laplace operators that operate on Ck
(K)

(for the k-th dimension), namely, the up Laplacian,

Lup
k
(K) = �⇤

k
�k,

the down Laplacian, Ldown
k

(K) = �k�1�⇤k�1, and the Laplacian, Lk(K) = Lup
k
(K)+Ldown

k
(K).

All three operators are self-adjoint, non-negative, and compact, and they enjoy a collection
of spectral properties, as detailed in [37]. We restrict our attention to the up Laplacians.

Explicit expression for the up Laplacian. To make the expression of the up Laplacian
explicit, we need to choose a scalar product on the coboundary vector spaces that can be
viewed in terms of weight functions [37]. In particular, the weight function w is evaluated
on the set of all simplices of K, w :

Sdim (K)
k=0 Sk(K) ! R+, where the weight of a simplex

f is w(f) (also denoted as wf ). Let wk : Sk(K) ! R+. Then, Ck
(K) is the space of

real-valued functions on Sk(K), with inner product (a, b)Ck :=
P

f2Sk(K)wk(f)a(f)b(f), for
every a, b 2 Ck

(K).

Choosing the natural bases, we identify each coboundary operator �k with an incidence
matrix Dk. The incidence matrix Dk 2 Rnk+1 ⇥ Rnk encodes which k-simplices are incident
to which (k + 1) simplices in the complex, and is defined as

Dk(i, j) =

8
><

>:

0 if �k

j
is not on the boundary of �k+1

i

1 if �k

j
is coherent with the induced orientation of �k+1

i

�1 if �k

j
is not coherent with the induced orientation of �k+1

i
.

Let DT

k
be the transpose of Dk. Let Wk be the diagonal matrix representing the scalar

product on Ck
(K). The k-dimensional up Laplacian can then be expressed in the chosen

bases as the matrix
Lup
k
(K) = W�1

k
DT

k
Wk+1Dk.

Effective resistance. We quickly review the notation in [63] regarding effective resistance.
Let G = (V,E,w) be a connected weighted undirected graph with n vertices and m edges,
and edge weights we 2 R+. W is an m ⇥m diagonal matrix with W (e, e) = we. Suppose
the edges are oriented arbitrarily. The Laplacian L 2 Rn⇥n of G can be written as

L = BTWB,

where B 2 Rm⇥n is the signed edge-vertex incidence matrix, that is,

B(i, j) =

8
><

>:

0 if vertex j is not on the boundary of edge i

1 if j is i’s head
�1 if j is i’s tail.

The effective resistance Re at an edge e is the energy dissipation (potential difference) when
a unit current is injected at one end and removed at the other end of e [63]. Define the
matrix R := B(L)+BT

= B(BTWB)
+BT , where L+ is the Moore-Penrose pseudoinverse of

L. The diagonal entry R(e, e) of R, is the effective resistance Re across e.
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Using the previous notation for up Laplacians, we can write L = DT

0 W1D0 = W0LK,0,
by setting B = D0 and W = W1. Vertex weights are usually ignored in the graph sparsification
literature, which is equivalent to setting the corresponding weight matrix W0 to the identity.
We can now express R as R1 = D0(L)+DT

0 = D0(DT

0 W1D0)
+DT

0 .

Graph sparsification. There are several different notions of approximation for graph
sparsification, including the following based on spectral properties of the associated graph
Laplacian. We say H = (V, F, u) is a sparse "-approximation of G = (V,E,w) if F ⇢ E and

(1� ")LG � LH � (1 + ")LG, (1)

where LG and LH are the graph Laplacians of G and H, respectively, and the inequalities
are to be understood in the sense of the semidefinite matrix ordering. That is,

(1� ")xTLGx  xTLHx  (1 + ")xTLGx 8x 2 Rn.

3 Sparsification of simplicial complexes

We describe a sparsification algorithm for simplicial complexes and our main theoretical
result (Theorem 3.1) in Section 3.1, whose proof is detailed in Section 3.2.

3.1 Sparsification algorithm

To prove the existence of a sparse "-approximation of simplicial complex, we will follow the
approach of [63] for the analogous problem for graphs.

Generalized effective resistance for simplicial complexes. We define the following
symmetric positive semidefinite matrix:

LK,k = WkLup
k
(K) = DT

k
Wk+1Dk.

To generalize the effective resistance for simplices beyond dimension one (i.e., edges), we
consider the operator Rk : Ck ! Ck, defined by

Rk = Dk�1(LK,k�1)
+DT

k�1 = Dk�1

�
DT

k�1WkDk�1

�+
DT

k�1,

which is the projection onto the image of Dk�1. The generalized effective resistance of the
k-dimensional simplex, f , is defined to be the diagonal entry, Rk(f, f) (also denoted as Rf ).
For k = 1, the generalized effective resistance reduces to the effective resistance for graphs
[29].

Sparsification algorithm. Algorithm 1 is a natural generalization of the Sparsify Al-
gorithm given in [63]. The algorithm sparsifies a given simplicial complex K at a fixed
dimension k (while ignoring all dimensions larger than k). The main idea is to include each
k-simplex f of K in the sparsifier J with a probability proportional to its generalized effective
resistance. Specifially, for a fixed dimension k, the algorithm chooses a random k-simplex

http://jocg.org/


JoCG 11(1), 176–211, 2020 182

Journal of Computational Geometry jocg.org

Algorithm 1: J = Sparsify(K, k, q)

Data: A weighted, oriented simplicial complex K, a dimension k (where
1  k  dim (K)), and an integer q.

Result: A weighted, oriented simplicial complex J that is sparsified at
dimension k, with equivalent (k � 1)-skeleton to K and dim (J) = k.

J := K(k�1)

Sample q k-dimensional simplices independently with replacement according to
the probability

pf =
wk(f)Rk(f, f)P
f
wk(f)Rk(f, f)

,

and add sampled simplices to J with weight wk(f)/qpf . If a simplex is chosen
more than once, the weights are summed.

f of K with probability pf (proportional to wfRf ), and adds f to J with weight wf/qpf .
q samples are taken independently with replacement, summing the weights if a simplex is
chosen more than once. The following theorem (Theorem 3.1) shows that if q is sufficiently
large, the (k � 1)-dimensional up Laplacians of K and J are close:

Theorem 3.1. Let K be a weighted, oriented simpicial complex, and J = Sparsify(K, k, q)
for some fixed k (where 1  k  dim (K)). Suppose K and J have (k � 1)-th up Laplacians
LK := Lup

k�1(K) and LJ := Lup
k�1(J), respectively. Let nk�1 denote the number of (k � 1)-

simplices in K. Fix " > 0 (where 1/
p
nk�1 < "  1), and let q = 9C2nk�1 log nk�1/"2, where

C is an absolute constant. If nk�1 is sufficently large, then with probability at least 1/2,

(1� ")LK � LJ � (1 + ")LK , (2)

where the inequalities are to be understood in the sense of the semidefinite matrix ordering.
Equivalently,

(1� ")xTLKx  xTLJx  (1 + ")xTLKx 8x 2 Rnk�1 .

A proof of Theorem 3.1 is detailed in Section 3.2.

3.2 Proof of Theorem 3.1

In this section, we provide a detailed proof of theorem 3.1. Our proof closely follows the
proof of Spielman and Srivastava [63, Theorem 1].

Following the definitions from Section 3.1, let L = Wk�1LK and L̃ = Wk�1LJ . L
and L̃ are symmetric positive semidefinite matrices. When our sparsification algorithm is
applied to sparsify K at dimension k, all simplices in K of dimensions up to k� 1 are simply
copied to J along with the corresponding weights so that the weight matrix Wk�1 is the
same for K and J . To prove theorem 3.1, we will first establish that

(1� ")L � L̃ � (1 + ")L,
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and then show that (2) holds if and only if the inequality above holds.

Since L is symmetric, positive semidefinite, L+ and Rk are also symmetric positive
semidefinite matrices. We define the matrix ⇧ = W 1/2

k
RkW

1/2
k

.

Lemma 3.1. The matrix ⇧ = W 1/2
k

RkW
1/2
k

defined above has the following properties:

(i) ⇧ is a projection matrix.

(ii) Im(⇧) = Im(W 1/2
k

Dk�1).

(iii) ⇧(f, f) = k⇧(·, f)k2.

(iv) Rank(⇧) = Tr(⇧)  nk�1.

Proof. (i) Observe that

⇧⇧ = (W 1/2
k

Dk�1L+DT

k�1W
1/2
k

)(W 1/2
k

Dk�1L+DT

k�1W
1/2
k

)

= (W 1/2
k

Dk�1L+
)(DT

k�1W
1/2
k

W 1/2
k

Dk�1)(L+DT

k�1W
1/2
k

)

= W 1/2
k

Dk�1L+LL+DT

k�1W
1/2
k

since L = DT

k�1WkDk�1

= W 1/2
k

Dk�1L+DT

k�1W
1/2
k

= ⇧

(ii) First, note that Im(⇧) = Im(W 1/2
k

Dk�1L+DT

k�1W
1/2
k

) ✓ Im(W 1/2
k

Dk�1). Now, for
any vector y 2 Im(W 1/2

k
Dk�1), there exists a vector x ? Ker(W 1/2

k
Dk�1) = Ker(L)

such that y = W 1/2
k

Dk�1x. Then,

⇧y = (W 1/2
k

Dk�1L+DT

k�1W
1/2
k

)(W 1/2
k

Dk�1x)

= (W 1/2
k

Dk�1L+
)(DT

k�1W
1/2
k

W 1/2
k

Dk�1)x

= W 1/2
k

Dk�1L+Lx

= W 1/2
k

Dk�1x

= y.

Therefore, y 2 Im(⇧).

(iii) We have, ⇧(f, f) = ⇧
2
(f, f), and since ⇧ is symmetric,

⇧
2
(f, f) = ⇧(·, f)T⇧(·, f) = k⇧(·, f)k2 .

(iv) Since ⇧
2
= ⇧, all eigenvalues of ⇧ are either 0 or 1. Therefore, Rank(⇧) = Tr(⇧).

And since Dk�1 is an nk ⇥ nk�1 matrix,

dim (Im(⇧)) = dim (Im(W 1/2
k

Dk�1))  nk�1.
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We also define the nk ⇥ nk non-negative, diagonal matrix Qk with entries:

Qk(f, f) =
w̃f

wf

=
# times f is sampled

qpf
,

where the random entry Qk(f, f) captures the “amount” of k-simplex f included in J by
Sparsify. The weight of simplex f in J is w̃f = Qk(f, f)wf . The weight matrix can be
written as W̃k = WkQk = W 1/2

k
QkW

1/2
k

. The (k � 1)-up Laplacian L̃ of the sparse complex
can be written as

L̃ = DT

k�1W̃kDk�1 = DT

k�1(W
1/2
k

QkW
1/2
k

)Dk�1.

The scaling by 1/qpf in Qk ensures that EW̃k = Wk. As a result, we have EQk = I and
EL̃ = L.

Lemma 3.2 (Rudelson and Vershynin [60]). Let p be a probability distribution over ⌦ ✓ Rd

such that supy2⌦ kyk2  M and
��EpyyT

��
2
 1. Let y1, y2, . . . , yq be independent samples

drawn from p. Then

E
�����
1

q

qX

i=1

yiy
T

i � EyyT
�����
2

 min

(
CM

s
log(q)

q
, 1

)
,

where C is an absolute constant.

The matrix ⇧Qk⇧ can be expressed as the average of symmetric rank one matrices:

⇧Qk⇧ =

X

f

Qk(f, f)⇧(·, f)⇧(·, f)T

=

X

f

(# times f is sampled)
qpf

⇧(·, f)⇧(·, f)T

=
1

q

X

f

(# times f is sampled)
⇧(·, f)
p
pf

⇧(·, f)T
p
pf

=
1

q

qX

i=1

yiy
T

i .

Vectors yi are drawn independently with replacement from the distribution

y =
1

p
pf

⇧(·, f) with probability pf .

The expectation of yyT is given by

EyyT =

X

f

pf
⇧(·, f)
p
pf

⇧(·, f)T
p
pf

= ⇧⇧ = ⇧.
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Therefore,
��EyyT

��
2
= k⇧k2 = 1. A bound on the norm of y is given by

1
p
pf

k⇧(·, f)k2 =
p
⇧(f, f)
p
pf

=

sX

f

wfRk(f, f) =
p
Tr(⇧)  nk�1.

Now, using lemma 3.2, with q = 9C2nk�1 lnnk�1/"2, we have

E k⇧Qk⇧k2 = E
�����
1

q

qX

i=1

yiy
T

i

�����
2

 C

s

"2nk�1
ln (9C2nk�1 lnnk�1/"2)

9C2nk�1 lnnk�1
 "

2
,

for sufficiently large nk�1, as " is assumed to be at least 1/
p
nk�1. Then, by Markov’s

inequality, we have k⇧Qk⇧�⇧⇧k2  " with a probability at least 1/2.

Lemma 3.3. Suppose Qk is non-negative diagonal matrix such that k⇧Qk⇧�⇧⇧k2  ".
Then, for all x 2 Rnk�1 ,

(1� ")xTLx  xT L̃x  (1 + ")xTLx

where L = DT

k�1WkDk�1 and L̃ = DT

k�1W
1/2
k

QkW
1/2
k

Dk�1.

Proof. For a symmetric matrix A, kAk2 = supy 6=0
|yTAy|
yT y

. Therefore, the assumption that
k⇧Qk⇧�⇧⇧k2  " is equivalent to

sup

y2Rnk ,y 6=0

|yT⇧(Qk � I)⇧y|
yT y

 ".

Note that if x 2 ker(W 1/2
k

Dk�1), xTLx = xT L̃x = 0 and the claim holds trivially. If
x /2 ker(W 1/2

k
Dk�1), then a vector y = W 1/2

k
Dk�1x is in Im(W 1/2

k
Dk�1). Restricting our

attention to such vectors, we have

sup

y2Im(W
1/2
k Dk�1),y 6=0

|yT⇧(Qk � I)⇧y|
yT y

 ".

However, from lemma 1.2 we have ⇧y = y for any y 2 Im(W 1/2
k

Dk�1). Therefore, we have,

sup

y2Im(W
1/2
k Dk�1),y 6=0

|yT⇧(Qk � I)⇧y|
yT y

= sup

y2Im(W
1/2
k Dk�1),y 6=0

|yT (Qk � I)y|
yT y

= sup

x2Rnk�1 ,W
1/2
k Dk�1x6=0

|xTDT

k�1W
1/2
k

(Qk � I)W 1/2
k

Dk�1x|
xTDT

k�1WkDk�1x

= sup

x2Rnk�1 ,W
1/2
k Dk�1x6=0

|xTDT

k�1W
1/2
k

QkW
1/2
k

Dk�1x� xTDT

k�1WkDk�1x|
xTDT

k�1WkDk�1x

= sup

x2Rnk�1 ,W
1/2
k Dk�1x6=0

|xT L̃x� xTLx|
xTLx .
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Therefore, if k⇧Qk⇧�⇧⇧k2  ", then

sup

x2Rnk�1 ,W
1/2
k Dk�1x 6=0

|xT L̃x� xTLx|
xTLx  ".

Rearranging the terms, we get for all x 2 Rnk�1 ,

(1� ")xTLx  xT L̃x  (1 + ")xTLx,

which is equivalent to
(1� ")L � L̃ � (1 + ")L. (3)

Now, to show that (2) holds, we use the following elementary lemma (whose proof is included
for completeness):

Lemma 3.4. For any symmetric positive semidefinite matrices A and B and any positive
definite diagonal matrix D, we have A ⌫ B if and only if DA ⌫ DB.

Proof. First, assume A ⌫ B. Let C = A� B. Then, C ⌫ 0. Since D is a positive definite
diagonal matrix, D1/2CD1/2 ⌫ 0. However, D1/2CD1/2 is similar to DC because

D1/2CD1/2
= D�1/2

(DC)D1/2.

Therefore, DC has the same eigenvalues as D1/2CD1/2 which means DC ⌫ 0 or equivalently,
DA ⌫ DB.

Now suppose DC ⌫ 0. Then, D1/2CD1/2 ⌫ 0, due to similarity. However,

C = D�1/2
(D1/2CD1/2

)D�1/2,

and therefore C ⌫ 0 or equivalently, A ⌫ B.

We can write the up Laplacians as LK = W�1
k�1L and LJ = W�1

k�1L̃. Since Wk�1 is a
diagonal matrix of positive weights, W�1

k�1 is a positive definite diagonal matrix. Therefore,
according to lemma 3.4, if inequality (3) holds, inequality (2) must hold, i.e.,

(1� ")LK � LJ � (1 + ")LK .

Corollary 3.1. Suppose Zf are numbers satisfying Zf � Rk(f, f)/↵, andP
f
wfZf  ↵

P
f
wfRk(f, f) for some ↵ � 1. If we sample as in Sparsify but take each k-

simplex f with probability p0
f
= wfZf/

P
f
wfZf instead of pf = wfRk(f, f)/

P
f
wfRk(f, f),

then the resulting sparse complex J satisfies

(1� "↵)L � L̃ � (1 + "↵)L.
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Proof. Note that

p0
f
=

wfZfP
f
wfZf

�
wfRk(f, f)↵

↵
P

f
wfRk(f, f)

=
pf
↵2

.

Proceeding as in the proof for theorem 3.1, the new bound on the norm of random vector y
is given by

1q
p0
f

k⇧(·, f)k2 
↵

p
pf

p
⇧(f, f) = ↵

p
Tr(⇧).

Thus, constant factor approximation of generalized effective resistances introduces the same
constant factor, ↵, in the bound on expectation in lemma 3.2, and consequently in the final
inequality, but does not change anything else.

4 Generalized Cheeger inequalities for simplicial complexes

In Section 4.1, we show that the Cheeger constant of the sparsified simplicial complex
is bounded below by a multiplicative factor of the first nontrivial eigenvalue of the up
Laplacian for the original complex (via Theorem 4.2 and Corollary 4.1). We give the proof
of Theorem 4.2 in Section 4.2.

4.1 Cheeger constant of sparsified simplicial complexes

Cheeger constant and inequality for graphs. We begin with the following definition of
the Cheeger constant for an unweighted graph G = (V,E) used by Gundert and Szedlák [35]:

h(G) := min
?(A(V

|V | |E(A, V \A)|
|A| |V \A| , (4)

where E(A, V \A) is the set of edges that connect A ⇢ V to (V \A) ⇢ V . For a weighted
graph, G = (V,E,w), this definition is typically generalized to

h(G) := min
?(A(V

|V |
|A| |V \A|

X

(i,j)2E(A,V \A)

wij . (5)

The Cheeger inequality for graphs takes the form c · �1(LG)  h(G)  C ·
p
�1(LG), where

�1 is the first nontrivial eigenvalue of a graph Laplacian. The constants c and C depend
on the choice of definition for the Cheeger constant and the graph Laplaican; see, e.g., [15,
Chapter 2]. Using the variational formulation for eigenvalues and a suitable test function,
we have no difficulty proving that for the weighted (un-normlized) graph Laplacian, the
lower bound for the Cheeger constant defined in (5) is given by 1

2 · �1(LG)  h(G). Here, we
prove an analogous inequality for weighted simplicial complexes, which we refer to as the
generalized Cheeger inequality. This inequality gives a lower bound on the Cheeger constant;
an upper bound is not possible for weighted simplicial complexes by the argument of Gundert
and Szedlák [35, p.5].

Generalized Cheeger inequality for simplicial complexes of Gundert and Szedlák.

We first recall the generalized Cheeger inequality for simplicial complexes of Gundert and
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Szedlák [35]. For a k-dimensional simplicial complex K, its k-dimensional completion is
defined to be

K̄ := K
[⇢

⌧⇤ 2
✓

V

k + 1

◆
|(⌧⇤\{v}) 2 X, 8v 2 ⌧⇤

�
.

K̄ is the complete k-dimensional complex when K has a complete (k � 1)-skeleton. The
generalized Cheeger constant for unweighted simplicial complexes is defined to be

h(K) := min

V=
Fk

i=0 Ai
Ai 6=?

|V ||F (A0, A1, . . . , Ak)|
|F ⇤(A0, A1, . . . , Ak)|

, (6)

where F (A0, A1, . . . , Ak) and F ⇤
(A0, A1, . . . , Ak) are the sets of all k-simplices of K and K,

respectively, with one vertex in Ai for all 0  i  k.

Theorem 4.1 ([35, Theorem 2]). If �1(LK) is the first nontrivial eigenvalue of the k-th up
Laplacian and if every (k � 1)-face is contained in at most C⇤ k-face of K, then

|V |
(k + 1) C⇤ · �1(LK)  h(K).

Remark. Recall that the Cheeger inequality for graphs includes an upper bound of the
Cheeger constant h(G) in terms of �1(LG). However, as pointed out by Gundert and Szedlák,
�1(LK) = 0 does not imply h(K) = 0 [35]. Therefore, a higher dimensional analogue of
this upper bound of the form h(K)  C · �1(LK)

1
m is not possible. We also remark that an

alternative Cheeger inequality is given in [57].

A generalized Cheeger constant for weighted simplicial complexes. Analogous to
the generalization of the unweighted Cheeger constant in Equation (4) to the weighted
Cheeger constant in Equation (5), we define the generalized Cheeger constant for weighted
simplicial complexes by

h(K) := min

V=
Fk

i=0 Ai
Ai 6=?

|V |
|F ⇤(A0, A1, . . . , Ak)|

X

X2F (A0,A1,...,Ak)

wk(X). (7)

Observe that Equation (7) agrees with Equation (6) in the case when all weights are unity.
The following result can be proved analogously to Theorem 4.1:

Theorem 4.2. Let �1(LK) be the first nontrivial eigenvalue of the (k � 1)-th weighted
up Laplacian LK . If every (k � 1)-face � is contained in at most C⇤ k-faces of K̄ and
wk�1(�) � W ⇤ > 0, then

|V | W ⇤

(k + 1) C⇤ · �1(LK)  h(K).

A proof of Theorem 4.2 is given in Section 4.2. Combining Theorem 3.1 and
Theorem 4.2 leads to the following result:
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Corollary 4.1. In the setting as Theorem 3.1 and Theorem 4.2, we have with probability 1
2

|V | W ⇤

(k + 1) C⇤ (1� ") · �1(LK)  |V | W ⇤

(k + 1) C⇤ · �1(LJ)  h(J).

Thus, the Cheeger constant of the sparsified simplicial complex, J , is bounded below
by a multiplicative factor of the first nontrivial eigenvalue of the up Laplacian for the original
complex, K.

4.2 Proof of Theorem 4.2

Note that Ker(LK) = Ker(�k�1) = Zk�1. Since Bk�1 ✓ Zk�1, the eigenvectors corresponding
to the nonzero eigenvalues of LK are contained in (Bk�1

)
?. By the Hodge decomposition,

we know that (Bk�1
)
?

= Zk�1. Therefore, �1(LK) can be formulated as [35, Section 4,
Equation (2)]

�1(LK) = min
f2Zk�1

(LKf, f)Ck�1

(f, f)Ck�1
, (8)

where (a, b)Ck =
P

�2Sk
wk(�)a(�)b(�) for all a, b 2 Ck is the inner product defined over Ck,

the space of all real valued functions on Sk. We will omit the subscript Ck from here on.
The key idea in the proof is to find a function f 2 Zk�1 such that

(LKf, f)

(f, f)
= h(K).

In order to define such a function, we fix a partition A0, . . . , Ak of the vertex set V of K,
which realizes the minimum in equation 7. We will refer to Ai’s as blocks. For simplicity, we
choose a linear ordering on V such that for all w 2 Ai and v 2 Aj we have w < v if i < j.
To keep the notation simple, we will simply write F and F ⇤ instead of F (A0, . . . , Ak) and
F ⇤

(A0, . . . , Ak). Note that �1(LK) does not depend on the choice of orientation.

Let � = [v0, . . . , vk�1] 2 Sk�1. Then f 2 Ck�1 is defined as

f(�) =

(
(�1)

l|Al| if Al is the unique block not containing any vi

0 otherwise.

Lemma 4.1. Let LK be the (k � 1)-th weighted up Laplacian of K and let f be defined as
above. Then,

(LKf, f) = (�k�1f, �k�1f) = |V |2
X

⌧2F
wk(⌧).

Proof. Consider ⌧ = [v0, . . . , vk] 2 Sk. If ⌧ 2 F , i.e., if vi 2 Ai for all i = 0, . . . , k, then

(�k�1)f(⌧) =
kX

i=0

[⌧ : ⌧\{vi}]f(⌧\{vi}) =
kX

i=0

(�1)
i
(�1)

i|Ai| = |V |.

Now suppose ⌧ 62 F , but vi, vj is the only pair of vertices in the same block. Let vi < vj .
Then by our chosen linear ordering, i+1 = j. If l is not equal to i or i+1, then f(⌧\{vl}) = 0.
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The only nonzero terms are f(⌧\{vi}) = f(⌧\{vj}). However, these terms cancel out because
[⌧ : ⌧\{vi}] = �[⌧ : ⌧\{vi+1}].

If three vertices belong to the same block or if two pairs of vertices belong to the
same blocks, or indeed in any other arrangement not covered before, then we have at least
two empty blocks and f is zero. Therefore,

(�k�1f)(⌧) =

(
|V | if ⌧ 2 F ,

0 otherwise,

and,
(�k�1f, �k�1f) =

X

⌧2F
wk(⌧)((�k�1f)(⌧))

2
= |V |2

X

⌧2F
wk(⌧).

Lemma 4.2. Let f 2 Ck�1 be as previously defined. Then, unique z 2 Zk�1, b 2 Bk�1 such
that f = z + b exist. Furthermore,

�1(LK)  |V |2

(z, z)

X

⌧2F
wk(⌧).

Proof. Since Zk�1 = (Bk�1
)
?, unique cochains z 2 Zk�1 and b 2 Bk�1 such that f = z + b

exist. Also, (LKz, z) = (LKf, f), because b 2 Bk�1 ✓ Ker(LK). The claim now follows from
this fact and using equation 8 and lemma 4.1.

Lemma 4.3. Let f 2 Ck�1 be as previously defined and let g 2 Ck�2 be arbitrary. For
⌧⇤ 2 F ⇤, define

q(⌧⇤, g) :=
X

�✓⌧⇤,�2Sk�1

wk�1(�)

d(�)
(f(�)� �k�2g(�))

2,

where for all � 2 Sk�1, d(�) = |{⌧⇤ ◆ �|⌧⇤ 2 F ⇤}|. Then,

1. (f � �k�2g, f � �k�2g) �
P

⌧⇤2F ⇤ q(⌧⇤, g).

2. For ⌧⇤ = {v0, v1, . . . , vk} 2 F ⇤ with v0 < v1 < · · · < vk,

q(⌧⇤, g) � |V |2
P

k

i=0
d(⌧\{vi})

wk�1(⌧\{vi})

.

Proof. 1. By definition of the inner product,

(f � �k�2g, f � �k�2g) =
X

�2Sk�1

wk�1(�)(f(�)� �k�2g(�))
2.

Now, consider the sum on the right-hand side

X

⌧⇤2F ⇤

q(⌧⇤, g) =
X

⌧⇤2F ⇤

X

�✓⌧⇤,�2Sk�1

wk�1(�)

d(�)
(f(�)� �k�2g(�))

2.
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Note that for any � 2 Sk�1 such that � ✓ ⌧⇤, the corresponding term in the summation
appears exactly d(�) times. If � 6✓ ⌧⇤, then the corresponding term does not appear at
all. Therefore,

X

⌧⇤2F ⇤

q(⌧⇤, g) 
X

�2Sk�1

wk�1(�)(f(�)� �k�2g(�))
2.

2. Let ⌧⇤ = [v0, . . . , vk] 2 F ⇤, such that vi 2 Ai for i = 1, . . . , k. Then,

q(⌧⇤, g) =
kX

i=0

wk�1(⌧⇤\{vi})
d(⌧⇤\{vi})

((�1)
i|Ai|� �k�2g(⌧

⇤\{vi}))2

=

kX

i=0

wk�1(⌧⇤\{vi})
d(⌧⇤\{vi})

(|Ai|� [⌧⇤ : ⌧⇤\{vi}]�k�2g(⌧
⇤\{vi}))2.

Note that the oriented incidence number [⌧⇤ : �] is (�1)
i if � = ⌧⇤\{vi} for i =

1, . . . , k and 0 if � 6✓ ⌧⇤. We also observe that
P

k

i=0[⌧
⇤
: ⌧⇤\{vi}]�k�2g(⌧⇤\{vi}) =

�k�1�k�2g(⌧⇤\{vi}) = 0. Therefore,

q(⌧⇤, g) =
kX

i=0

wk�1(⌧⇤\{vi})
d(⌧⇤\{vi})

|Ai|2.

Now, using the following version of Cauchy-Schwarz inequality (Titu’s lemma / Engel’s
form) for positive real numbers,

kX

i=0

a2
i

bi
� (

P
k

i=0 ai)
2

P
k

i=0 bi
,

we obtain

q(⌧⇤, g) � (
P

k

i=0 |Ai|)2
P

k

i=0
d(⌧\{vi})

wk�1(⌧\{vi})

=
|V |2

P
k

i=0
d(⌧\{vi})

wk�1(⌧\{vi})

.

Finally, from lemma 4.2, recall that f = z + b where z 2 Zk�1 and b 2 Bk�1.
Therefore, some g 2 Ck�2 such that f � z = b = �k�2g exists. By lemma 4.3,

(z, z) = (f � �k�2g, f � �k�2g) �
X

⌧⇤2F ⇤

|V |2
P

k

i=0
d(⌧\{vi})

wk�1(⌧\{vi})

.

Now, if every (k � 1)-face � of K is contained in C⇤ k-faces of K̄ and wk�1(�) � W ⇤, then

kX

i=0

d(⌧\{vi})
wk�1(⌧\{vi})

 (k + 1)
C⇤

W ⇤ ,
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and
(z, z) � |V |2 |F ⇤| W ⇤

(k + 1) C⇤ .

Using this inequality along with lemma 4.2, we can write

�1(LK)  |V |2 (k + 1) C⇤

|V |2 W ⇤ |F ⇤|
X

⌧2F
wk(⌧).

Recall that we defined the function f by fixing a partition A0, . . . , Ak that realizes the
minimum from equation 7, which means

h(K) =
|V |
|F ⇤|

X

⌧2F
wk(⌧),

and we get the stated lower bound on h(K):

|V | W ⇤

(k + 1) C⇤�1(LK)  h(K).

5 Experimental validation

In Section 5.1, we conduct numerical experiments to illustrate the inequalities bounding the
spectrum of the up Laplacian of the sparsified simplicial complex, proven in Theorem 3.1. In
Section 5.2, we extend a well-known graph spectral clustering method to simplicial complexes.
We show that the clusters obtained for sparsified simplicial complexes are similar to those
of the original simplicial complex. In Section 5.3, we show results for label propagation on
simplicial complexes before and after sparsification.

For each section, we also include the analogous results for graphs to serve as a
comparison. We present nothing new in the setting of graphs, Laplacian preservation, spectral
clustering, and label propagation; graph-based results are included solely for comparative
purposes and to help illustrate our results on simplicial complexes in a more familiar context.
We also would like to point out that it is not the focus of this paper to provide the most
efficient implementation or to perform large-scale experiments on spectral sparsification of
simplicial complexes, but rather, to show that such a sparsification is feasible and theoretically
sound. Nevertheless, we have included a discussion on efficient implementations for simplicial
complexes in terms of sparsification, spectral clustering, and label propagation in Appendix
A. In a nutshell, the naïve implementation of spectral clustering is quadratic in the number
of simplices, whereas label propagation is cubic. We can take advantage of sparse matrix
methods (see Appendix A for details); our proposed sparsification method could further
improve these computational complexity estimates.

5.1 Preservation of the spectrum of the up Laplacian for simplicial complexes

Experimental setup. Our experimental setup for sparsifying simplicial complexes is an
extension of that for graphs; therefore, we begin with a review of graph sparsification. In the
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setting of graph sparsification [63], we recall that if a graph H is an "-approximation of a
graph G and n is the number of vertices in H and G, then we have the following inequality:

(1� ")xTLGx  xTLHx  (1 + ")xTLGx, 8x 2 Rn. (9)

Subtracting xTLGx from all terms in this inequality, we obtain

�"xTLGx  xT (LH � LG)x  "xT (LG)x, 8x 2 Rn. (10)

Let �max(LG), �max(LH) and �max(LH � LG) be the maximum eigenvalues of LG and LH

and LH �LG, respectively. Also, let �min(LG) be the minimum eigenvalue of LG. Looking at
the inequality on the right-hand side of (10), after some algebraic manipulations, we obtain

�max(LH � LG) = max
||x||=1

xT (LH � LG)x  " max
||x||=1

xT (LG)x = "�max(LG).

Similarly, for the inequality on the left-hand side of (10), we obtain

0 = �"�min(LG) = �" min
||x||=1

xTLGx = max
||x||=1

�"xTLGx

 max
||x||=1

xT (LH � LG)x = �max(LH � LG).

Together, we have the inequality

0  �max(LH � LG)  "�max(LG). (11)

Moving from graphs to simplicial complexes, we can obtain the analogous inequality in the
setting of simplicial complex sparsification. Let J be a sparsified version of K following the
setting of Theorem 3.1. Suppose for a fixed dimension k (where 1  i  dim (K)), K and J
have (k � 1)-th up Laplacians LK := LK,k�1 and LJ := LJ,k�1, respectively, we have

(1� ")xTLKx  xTLJx  (1 + ")xTLKx, 8x 2 Rnk�1 . (12)

A similar argument leads to the following inequality:

0  �max(LJ � LK)  "�max(LK). (13)

Notice that inequality (11) is a special case of the inequality (13).

Preservation of the spectrum of the sparsified graph Laplacian. To demonstrate
how the spectrum of the graph Laplacian is preserved during graph sparsification, we set
up the following experiments. Note that graph sparsification of large graphs is well known;
the results described here are used for comparative purposes only. In particular, we would
like to give a simple example to compare similar behaviors in preserving the spectrum of up
Laplacian for both graphs and simplicial complexes.

Consider a complete graph G with n0 = 40 vertices and n1 = 780 edges. We run
multiple sparsification processes on this graph G and study the convergence behavior based
on the inequality in (9). For each sparsification process, we use a sequence of sample sizes,
ranging between 10 and 2n1. For each sample size q, we set " =

p
n0 log n0/q by assuming

http://jocg.org/


JoCG 11(1), 176–211, 2020 194

Journal of Computational Geometry jocg.org

200 400 600 800 1000 1200 1400

#samples

�50

0

50

100

150

x
T
L
H
x

xTLHx vs #samples

xTLHx

Average(1 + ✏)xTLGx (top part)

Average(1� ✏)xTLGx (bottom part)

xTLGx

Average xTLHx

200 400 600 800 1000 1200
#samples

0

20

40

60

80

100

λ
m

a
x
(L

H
−
L
G
)

λmax(LH − LG) vs #samples

λmax(LH − LG)

ελmax(LG) (top part)

Average (λmax(LH − LG))

(a) (b)

Figure 1: The results of a numerical experiment illustrating inequalities that control the
spectrum of sparsified graph Laplacians. (a) For an ensemble of vectors, x 2 Sn0 , and
sparsified graphs, H, we plot the terms in inequality (9). (b) For an ensemble of sparsified
graphs, H, we plot the terms in the inequality (11).

that 9C2
= 1 in the hypothesis of Theorem 3.1. As q varies, we correspondingly obtain a

sequence of varying " values.

In particular, we run 25 simulations on G. For each simulation, we fix a unit vector
x uniformly randomly sampled from Sn0 and perform 25 instances of experiments. For each
instance, we apply our sparsification procedure to generate the convergence plot using the
list of fixed sample sizes q and their corresponding "’s. Specifically, for each sample size,
we obtain a sparse graph H and compute xTLHx and �max(LH � LG), and we observe the
convergence behavior of these quantities as the sample size increases.

In Figure 1(a), we show the convergence behavior based on the inequality in (9). For
a single simulation, we compute the point-wise average of xTLHx across the 25 instances, and
we plot these values as a function of the sample size q, which gives rise to a single convergence
curve in aqua. Then, we compute the point-wise average of the aqua curves across all
simulations, producing the red curve. Since each simulation (for a fixed x) has a different
upper bound curve (1� ")xTLGx and lower bound curve (1 + ")xTLGx, respectively (not
shown here), the point-wise average of the upper and lower bound curves across all simulations
is plotted in blue. We observe that, on average, these curves reflect the inequality (9), that is,
the red curve is nested within its approximated theoretical upper and lower bounds in blue.

In Figure 1(b), we illustrate the theoretical upper and lower bounds for �max(LH�LG)

given in inequality (11) as the sample size q increases. In particular, we run a single simulation
with 25 instances, computing �max(LH � LG). Each instance gives us a convergence curve
shown in aqua. We compare the point-wise average of �max(LH � LG) (in red) with its
(approximated) theoretical upper bound in blue and lower bound (i.e., 0, the x-axis). On
average, the experimental results respect the inequality (11). Figure 3(a) illustrates how the
number of edges increases with the number of samples across all instances.
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Preservation of the spectrum of the up Laplacian for a sparsified simplicial com-

plex. To demonstrate that the spectrum of the up Laplacian is preserved during the
sparsification of a simplicial complex, we set up a similar experiment. We start with a
2-dimensional simplicial complex, K, that contains all edges and triangles on n0 = 40 vertices
(with n1 = 780 edges and n2 = 9880 faces) and a sequence of fixed sample sizes q. For each
sample size q, we solve for " =

p
n1 log n1/q assuming that 9C2

= 1 in the hypothesis of
Theorem 3.1, to get the corresponding sequence of " values. With the simplicial complex K
and the sequence of sample sizes fixed, we run 25 simulations, each consisting 25 instances
and a fixed randomly sampled unit vector x as described previously. This time, however, we
sparsify the faces of the simplicial complex by applying Algorithm 1 with k = 2. In Figure 2,
we plot the terms in inequalities describing the spectrum for these sparsified simplicial
complexes.

In Figure 2(a), following the same procedure as for graph sparsification, we obtain a
plot that respects the inequality (12). The curves in aqua show the point-wise average of
xTLJx across all instances in a single simulation, whereas the red curve represents point-wise
average across all instances and all simulations. Since the random vector x is re-sampled
for each simulation, the upper and lower bound curves are different for every simulation. In
Figure 2(a), we plot their point-wise average across all simulations as the upper and lower
bound curves in blue.

In Figure 2(b), to illustrate inequality (13), we run a single simulation with 25

instances. Each instance gives us a sequence of �max(LJ �LK) values as a function of sample
size. We plot them as curves in aqua. We compare the point-wise averages of �max(LJ �LK)

(in red) with its (approximated) theoretical upper and lower bounds in blue. Figure 3(b)
shows how the number of faces scales with the increasing number of samples across all
instances.

5.2 Spectral clustering of simplicial complexes

Spectral clustering can be considered as a class of algorithms with many variations. Here,
we apply spectral clustering to simplicial complexes before and after sparsification. We
demonstrate, via numerical experiments, that preserving the structure of the up Laplacian
via sparsification also preserves the results of spectral clustering on simplicial complexes.

Datasets. For comparative purposes, we consider a graph that contains two complete
subgraphs, with 20 vertices (and 190 edges) each that are connected by 64 = 8 ⇥ 8 edges
spanning across the two subgraphs. We refer to this graph, G, as the dumbbell graph; it has
n0 = 40 vertices and n1 = 444 edges. All edge weights are set to be 1. To compute the
sparsified graph, the number of samples, q, is set to be 0.5n1.

Similarly, we consider a simplicial complex that contains two complete subcomplexes,
with 10 vertices, 45 edges, and 120 triangles each. The two subcomplexes are connected by
16 cross edges and 48 cross triangles so that the simplicial complex is made up of n0 = 20

vertices, n1 = 106 edges, and n2 = 288 triangles. We refer to this simplicial complex, K, as
the dumbbell complex. The weights on all edges and triangles are set to be 1. To compute
the sparsified simplicial complex, the number of samples, q, is set to be 0.75n2. We compare
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Figure 2: The results of a numerical experiment illustrating inequalities that control the
spectrum of the up Laplacian for sparsified simplicial complexes. (a) For an ensemble of
vectors, x 2 Sn1 , and sparsified simplicial complexes, J , we plot the terms in inequality (12).
(b) For an ensemble of sparsified simplicial complexes, J , we plot the terms in the inequality
(13).
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Figure 3: Plots illustrating how (a) the number of edges in the case of graph sparsification
and (b) the number of faces/triangles in the case of simplicial complex sparsification vary
with increasing sample size.

the result of spectral clustering on the dumbbell graph to the result on a dumbbell complex.

Spectral clustering algorithm for graphs. We use the Ng-Jordan-Weiss algorithm [50],
given here as Algorithm 2, to perform spectral clustering of graphs. Let n0 be the number
of vertices in a graph. Recall the affinity matrix A 2 Rn0⇥n0 is a matrix where A(i, j) � 0

captures the affinity (i.e., measure of similarity) between vertex i and vertex j. In our
setting, A(i, j) corresponds to the weight of edge eij in the diagonal edge weight matrix
W1. The graph Laplacian can be written as L = ��A. Furthermore M = I � LN , where
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Algorithm 2: y = Cluster(G, d)

Data: A weighted, undirected graph G with n vertices, and the number of
clusters d.

Result: A vector y containing cluster assignments l 2 {1, 2, . . . , d} for the
vertices of G.

Construct matrix A where A(i, j) = the weight of edge eij , A(i, j) = 0 otherwise.
Compute diagonal matrix � 2 Rn0⇥n0 , where �(j, j) =

P
i
A(i, j).

M = �
�1/2A�

�1/2.
Construct matrix X = [u1u2 · · ·ud] 2 Rn⇥d where ui’s are the eigenvectors
corresponding to the d largest eigenvalues of M (chosen to be orthogonal to
each other in the case of repeated eigenvalues).

Yij = Xij/
⇣P

j
X2

ij

⌘1/2
(normalize rows of X to have unit length).

y = kMeans(Y, d).
Return y as cluster assignments for vertices of G.

LN = �
�1/2L��1/2 is referred to as the normalized graph Laplacian. In the case of a binary

graph (where edge weights are either 0 or 1), the affinity matrix A equals the vertex-vertex
adjacency matrix, and � is the degree matrix with diagonal elements �(j, j) being the
number of edges incident on vertex vj .

To demonstrate the utility of the sparsification, we illustrate the spectral clustering
results before and after graph sparsification in Figure 4 (a)-(b). Since graph sparsification
preserves the spectral properties of graph Laplacian, we expect it to also preserve (to some
extent) the results of spectral methods, such as spectral clustering.

Spectral clustering algorithm for simplicial complexes. We seek to extend the Ng-
Jordan-Weiss algorithm [50] to simplicial complexes, which has not yet been studied. We seek
the simplest generalization by replacing the vertex-vertex affinity matrix with an edge-edge
affinity matrix Ad, where two edges are considered to be adjacent if they are faces of the
same triangle. This definition is a straightforward extension of the adjacency among vertices
in graphs; however, it does not account for the orientation of edges or triangles.

Formally, let n1 be the number of edges. We define the edge-edge affinity matrix
Ad 2 Rn1⇥n1 , where

Ad(i, j) =

(
wf if ei and ej are both edges of triangle f 2 K with weight wf ,
0 otherwise.

We define �d 2 Rn1⇥n1 to be the diagonal matrix with element �d(j, j) being the sum of
A’s j-th column. With Ad and �d defined this way, we can apply the Ng-Jordan-Weiss
algorithm to cluster the edges of the simplicial complex K.

This approach is equivalent to applying spectral clustering to the dual graph of
K. A dual graph G of a given simplicial complex K is created as follows: each edge in K
becomes a vertex in the dual graph G, and there is an edge between two vertices in G if their
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Figure 4: (a)-(b): Spectral clustering of graphs before (a) and after (b) sparsification.
(c)-(d): Spectral clustering of simplicial complexes into two clusters before (c) and after
(d) sparsification. We observe that the clusters are very similar. See Section 5.2 for details.

corresponding edges in K share the same triangle. We then apply spectral clustering to the
dual graph G as usual and obtain the resulting clustering of vertices in G (which correspond
to the clustering of edges in K). To better illustrate our edge clustering results, we visualize
the resulting clusters based upon the dual graph. The results are plotted in Figure 4 (c)-(d)
for two clusters and Figure 5 for three clusters. Applying the spectral algorithm with these
new definitions of Ad and �d results in clusters that agree reasonably well before and after
sparsification.

The affinity matrix, Ad, does not take into consideration the orientation of the edges,
so the above clustering algorithm does not directly rely on the up Laplacian. One can verify
that the dimension 1 up Laplacian can be written as LK,1 = �d/2� Au, where �d is the
diagonal matrix defined previously and the oriented edge-edge affinity matrix, Au 2 Rn1⇥n1 ,
is given by

Au(i, j) =

8
>>>><

>>>>:

�wf edges ei and ej are both faces of the same triangle f and both agree or
disagree with the orientation of their shared triangle,

wf if either ei or ej (but not both) agree with the orientation of f ,
0 if ei and ej are not adjacent.

It follows that Ad = |Au| where the absolute value operation is applied element-wise. The

http://jocg.org/


JoCG 11(1), 176–211, 2020 199

Journal of Computational Geometry jocg.org

0

1
2

3

4

5

6
7

8

9

10

11

12

13
14

15

16

17

18

19

2021

22

23
24

25

26

27

28

29

30

31

3233

34
35

36
37

38

39

40

41

42

43

44

45

46

47

48

49

5051

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77
78

79

80

81

82

83

84

85

86

87

88

89
90

91

92
93

94

95 96

97

98

99

100

101

102

103

104105

0

1
2

3

4

5

6
7

8

9

10

11

12

13
14

15

16

17

18

19

2021

22

23
24

25

26

27

28

29

30

31

3233

34
35

36
37

38

39

40

41

42

43

44

45

46

47

48

49

5051

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77
78

79

80

81

82

83

84

85

86

87

88

89
90

91

92
93

94

95 96

97

98

99

100

101

102

103

104105

(c) (d)

Figure 5: Spectral clustering of simplicial complexes into three clusters before (a) and after
(b) sparsification. See Section 5.2 for details.

relationship between the spectrum of the dual graph Laplacian L = �d�Ad and the spectrum
of up Laplacian, LK,1, used by our sparsification algorithm remains unclear.

5.3 Label propagation

A good example of spectral methods in learning arises from extending label propagation
algorithms on graphs to simplicial complexes, in particular, the work by Mukherjee and
Steenbergen [48]. Specifically, they adapt the label propagation algorithm to higher dimen-
sional walks on oriented edges, and give visual examples of applying label propagation with
the 1-dimensional up Laplacian Lup

1 , down Laplacian Ldown

1 , and Laplacian L1. We envision
label propagation to be generalized to random walks on even higher dimensional simplices,
such as triangles. A direct application of our work is to sparsify the top-dimensional simplices
(e.g., triangles in a 2-dimensional simplicial complex) and examine how label propagation
behaves on these top-dimensional simplices of the sparsified representation.

Similar to the setting of Section 5.2, we apply and generalize a simple version of
label propagation algorithms [75] to the setting of both graphs and simplicial complexes.
In particular, as illustrated in Figure 6, we show via the dual graph representation that
the results obtained from sparsified simplicial complexes are similar to those of the original
simplicial complex. We now describe the algorithmic details.

Label propagation on graphs. Again for comparative purposes, we implement a simplified
version of the iterative label propagation algorithm [75] based on the notion of stochastic
matrix (i.e., random walk matrix) P = A��1, where A is the affinity matrix and � is the
diagonal matrix with diagonal elements �jj =

P
i
A(i, j) (as defined in Section 5.2).

The matrix P represents the transition probabilities of the labels. Given P and
an initial label distribution y, we iteratively multiply the vector y by P . If the graph is
label-connected (i.e., we can always reach a labeled vertex from any unlabeled one), then P t

converges to a stationary distribution x, that is, P tx = x for a large enough t.

Suppose we have two label classes {+1,�1}. Without loss of generality, assume
that first l of the n vertices are assigned labels initially, represented as a length-l vector yl.
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Figure 6: The results of label propagation on simplicial complexes before (a) and after (b)

sparsification. The red and blue colored vertices correspond to fixed edge labels, and the
green and orange colored vertices correspond to propagated edge labels. Blue and green
share the same label, and red and orange share the same label. See Section 5.3 for details.

Algorithm 3: y = PropagateLabels(G,yl)

Data: A weighted, undirected graph G with n vertices, vector yl containing
labels 2 {+1,�1} of first l vertices.

Result: A vector y containing label assignments l 2 {+1,�1} for all the
vertices of G.

Order the vertices of G so that labels yl correspond to the first l vertices.
Construct matrix A where A(i, j) = the weight of edge (i, j), A(i, j) = 0

otherwise.
Compute diagonal matrix � 2 Rn0⇥n0 , where �(j, j) =

P
i
Aij .

P = A�
�1.

Initialize y(0)
= (yl,0), t = 0.

Repeat until convergence:
y(t+1)

= Py(t),

y(t+1)
l

= y(t)
l
.

Return sgn(y(t)
) as label assignments for vertices of G.

Given a graph G(V,E) and labels yl, the simplified version of label propagation algorithm is
outlined in algorithm 3. Consider P to be divided into blocks as follows:

P =

✓
Pll Plu

Pul Puu,

◆

where l and u index the labeled and unlabeled vertices with the number of vertices n0 = l+u.
Let y = (yl,yu) be the labels at convergence; then yu is given by

yu = (I � Puu)
�1Pulyl
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As long as our graph is connected, it is also label-connected and (I � Puu) nonsingular.
Therefore, we can directly compute the labels at convergence without going through the
iterative process described in algorithm 3. As illustrated in Figure 7, we apply the label
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Figure 7: The results of label propagation on the dumbbell graph before (a) and after (b)

sparsification. The red and blue color represent the initial opposite vertex labels, and the
green and orange color correspond to the final propagated vertex labels. Blue and green
share the same label, and red and orange share the same label.

propagation algorithm to the dumbbell graph dataset to demonstrate that preserving the
structure of graph Laplacian via sparsification also preserves the results of label propagation
on graphs.

Label propagation on simplicial complexes. To apply label propagation to our dumbbell
complex example, we extend the label propagation algorithm of [75] to simplicial complexes,
again, by replacing the vertex-vertex affinity matrix with edge-edge affinity matrix Ad. The
resulting stochastic matrix P = Ad�

�1
d

captures the transition probabilities between edges
instead of vertices. Without considering the orientation of edges or triangles, the algorithm
can be considered as applying label propagation to the dual graph of the simplicial complex.

In addition to the example shown in Figure 6, we give a few more instances of the
results of label propagation on the dumbbell complex in Figure 8 with different initial labels.

6 Discussion

We present an algorithm for the simplification of simplicial complexes that preserves the
spectral properties of the up Laplacian. Our work is strongly motivated by the study of an
emerging class of learning algorithms based on simplicial complexes, and in particular, those
spectral algorithms that operate with higher order Laplacians. We would like to understand
the benefits and incurred error when such learning algorithms are applied to sketches of the
data. Several ongoing and future directions are described below.

Challenges for efficient implementation. To compute generalized effective resistances
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Figure 8: More instances of label propagation on the dumbbell complex before (a), (c) and
after (b), (d) sparsification.

of i-simplices of K exactly, we need to solve linear systems involving the up Laplacian. The
best solution is to compute a QR or SVD decomposition of the scaled incidence matrix
W 1/2

i
Di�1, which can be done in O(ni · n2

i�1) time, where ni is the number of i-simplices
and ni�1 is the number of (i� 1)-simplices of K.

Spielman and Srivastava [63] gave an algorithm that can approximate effective
resistances and produce the sparse graph in O(m log(r)/"2) time, where m is the number
of edges, and r is the ratio of the largest to the smallest edge weights. The key to their
algorithm was an efficient SDD solver [66] that approximately solves the linear systems
involving the graph Laplacian in Õ(m log(1/�)), where � is an error parameter. Recent
SDD solvers, also using graph-based preconditioners (low stretch spanning trees, etc.), have
improved the running time even further [39, 18].

However, the up Laplacians LK,i for i � 1 are not diagonally dominant matrices.
Therefore, these fast SDD solvers may not be applied directly to approximate generalized
effective resistance. Although solving linear systems of higher order Laplacians has been
studied for limited classes of complexes [17, 19, 42], no such solvers exist for up Laplacians
of arbitrary (nongeometric) simplicial complexes.

Generalizations of spanning trees to higher dimensions may be useful in constructing
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fast solvers for up Laplacians of arbitrary simplicial complexes. Alternatively, sparsification
using generalized effective resistance can be thought of as a form of leverage score sampling.
Computation of exact leverage scores has the same time complexity as the computation of
exact generalized effective resistance. However, fast algorithms to compute constant factor
approximations to leverage scores [26, 16] exist, which in theory, can run in o(ni · n2

i�1)

time. However, further analysis is required before we can apply any of these approaches to
approximate generalized effective resistances and make claims about the runtime of such
implementations.

Physical meaning of generalized effective resistance. We believe the generalization
of effective resistance to simplicial complexes, introduced in Section 3.1, may find other
applications in analyzing simplicial complexes. Although the generalization is algebraically
straightforward, its interpretation and properties pose many natural and interesting questions.
For example, does it have an interpretation in terms of a random process, such as an effective
commute time as in the case of a graph (see, e.g., [29])? Is it related to minimum spanning
objects in the simplicial complex? Does it play a further role in spectral clustering of
simplicial complexes?

Multilevel and Hodge sparsification. We are also interested in performing multilevel
sparsification of simplicial complexes; for example, we would like to sparsify triangles and
edges simultaneously while preserving spectral properties of the dimension-0 and dimension-1
up Laplacians. Such sparsification is challenging if we would like to simultaneously maintain
structures of simplicial complexes; we may be able to relax our structural constraints to work
with hypergraphs instead. In addition, multilevel sparsification is also related to preserving
the spectral properties of the (Hodge) Laplacian. Finally, we are also interested in deriving
formal connections between homological sparsification and spectral sparsification of simplicial
complexes.
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A Implementation and Execution Rates

We will first take a quick look at the execution rates for the spectral clustering and label
propagation algorithms used in our experiments. It is not our goal to provide efficient
algorithms for spectral clustering or label propagation. We only want to show that, by
reducing nk, the number of k-simplices, our sparsification algorithm can greatly improve the
rate of execution of both spectral clustering and label propagation. Since the spectrum of
LK,k�1 is also approximately preserved, the output clusters or labels are approximately the
same for the original simplicial complex and the sparse complex output by the sparsifier.

A.1 Spectral Clustering

In spectral clustering, our objective is to cluster (k � 1)-simplices of K into d clusters. To
do this, we first compute the eigenvectors corresponding to the d largest eigenvalues of the
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Laplacian of the dual graph and then apply k-means clustering to nk�1 points in Rd formed
by these d eigenvectors. To compute eigenvectors of a sparse, symmetric Laplacian matrix,
one can use ARPACK’s Implicitly Restarted Arnoldi Method (IRAM). The rates of execution
(in flops) for various steps in the algorithm are as follows:

1. Computing Lanczos vectors and tridiagonal matrix - O(nnz · nk�1).

2. Eigendecomposition of the tridiagonal matrix - O(n2
k�1).

3. Computing d eigenvectors of the input matrix - O(nk�1 · d).

4. k-means clustering with the d eigenvectors - O(nk�1 · d · t).

Here nnz is the number of nonzero entries in the input matrix, and t is the number of
iterations required for the k-means (Lloyd’s) algorithm to converge. The input matrix is the
nk�1⇥nk�1 Laplacian of the dual graph. The term O(nnz ·nk�1) dominates the overall cost
since d ⌧ nk�1 < nnz. Our sparsification algorithm can help reduce this cost significantly
by reducing nnz.

A.2 Label Propagation

In the label propagation problem, we are given discrete labels for a small subset of (k � 1)-
simplices of K, and the objective is to learn the labels on the remaining unlabeled (k � 1)-
simplices. Our label propagation algorithm requires constructing the adjacency matrix of
(k � 1)-simplices and then normlizing it to obain the transition probability matrix P , which
can be achieved in O(nk) flops. The algorithm then requires solving the linear system
(I � Puu)yu = Pulyl, where, yl is the vector of known labels, and Puu is the submatrix of P
corresponding to unlabeled (k � 1)-simplices. As long as the simplices are label-connected,
i.e., there is a sequence of k-simplices connecting every unlabeled (k� 1)-simplex to a labeled
(k � 1)-simplex, (I � Puu) is symmetric positive definite. Using conjugate gradients, the
system can be solved in O(nnz · nk�1), where nnz is the number of nonzero entries in P .
Once again, our sparsification algorithm can reduce the cost significantly by reducing nnz,
the number of nonzero entries in P , which is proportional to the number of k-simplices.

A.3 Sparsification

To sparsify a weighted simplicial complex K at dimension k, we need to compute the
generalized effective resistances of the k-simplices, which we defined as the diagonal entries
of matrix Rk = Dk�1(LK,k�1)

+DT

k�1. LK,k�1 is an nk�1 ⇥ nk�1 symmetric positive semi-
definite matrix. Dk�1 is an nk ⇥ nk�1 matrix. Both these matrices can be constructed in
O(nk), where nk is the number of k-simplices of K.

Computing generalized effective resistances exactly. In a naïve implementation, one
would obtain generalized effective resistances by computing Rk as defined. To do that, we
would first need to solve nk linear systems of the form LK,k�1xf = dT

f
, where df is the row

of Dk�1 corresponding to k-simplex f of K. The total cost of obtaining generalized effective
resistances this way is as follows:
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1. Obtain LU or QR decomposition of LK,k�1 - O(n3
k�1).

2. Solve nk linear systems using the decomposition - O(nk · n2
k�1).

3. Compute Rk - O(n2
k
).

4. Obtain q samples with replacement from the probability distribution defined by
generalized effective resistances - O(q) = O(nk�1 log(nk�1)/"2).

Note that " is a fixed error parameter and nk�1 < nk (otherwise, sparsifying at dimension k
would not be necessary). Therefore, the total cost is dominated by the O(nk · n2

k�1) term.

Another possible approach is to look at sparsification by generalized effective resis-
tances as a form of leverage score sampling. For an n⇥ d matrix A, with SVD A = U⌃V T ,
the leverage scores of rows of A are defined as the squared norms of rows of U . To see the
relation between generalized effective resistances and leverage scores, define � = W 1/2

k
Dk�1

to be a scaled incidence matrix with singular value decomposition � = U⌃V T . Note that
LK,k�1 = �

T
�. The sampling probability of an k-dimensional simplex f of K is proportional

to ⇧(f, f) = w(f)Rk(f, f), where ⇧ = W 1/2
k

RkW
1/2
k

is the projection matrix defined in the
proof of theorem 3.1. Then, we have

⇧ = W 1/2
k

Dk�1(LK,k�1)
+DT

k�1W
1/2
k

= �(�
T
�)

+
�
T

= U⌃V T
(V ⌃UTU⌃V T

)
+V ⌃UT

= U⌃V T
(V ⌃

2V T
)
+V ⌃UT

= U⌃V T
(V T

)
+
(⌃

2
)
pinv

(V )
+V ⌃UT

= UUT .

Therefore, diagonal entries of ⇧ are the same as diagonal entries of UUT , which are precisely
the leverage scores of rows of �. Unfortunately, this approach requires computing the singular
value decomposition of the nk ⇥ nk�1 matrix �, which again has the cost O(nk · n2

k�1).

Approximating generalized effective resistances. Corollary 3.1 is a straightforward
generalization of [Spielman and Srivastava[63], Corollary 6]. It shows that a constant factor
approximation of generalized effective resistances is sufficient to obtain a good sparsifier of K.
Using this corollary, Spielman and Srivastava [63] gave an algorithm for graph sparsification
that runs in O(m log(r)/"2) time, where m is the number of edges and r is the ratio of
largest to smallest edge weights. The key to their algorithm was an efficient SDD solver [66]
that approximately solves the linear system involving the graph Laplacian in O(m log(1/�))
where � is an error parameter. More recent SDD solvers, using graph-based preconditioners
(low stretch spanning trees, etc.), have improved the running time even further [39]. The
fastest known SDD solver, proposed by Cohen et al. [18], has O(m · log1/2 n log(1/")) time
complexity for an n⇥ n SDD matrix with m nonzero entries.

However, LK,k�1 for k > 1 is not a diagonally dominant matrix. Therefore, the
fast SDD solvers used to compute effective resistances in graph sparsification cannot be
used directly to compute generalized effective resistance. Solving linear systems in the
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k-dimensional up Laplacian has been studied by Cohen et al. [17] for limited classes of
complexes. A related line of work on spectral algorithms for 2-dimensional truss matrices
was initiated by Daitch and Spielman [19]. However, more analysis is required before we
can apply these approaches to approximate generalized effective resistances for simplices in
arbitrary (nongeometric) simplicial complexes.

Some work has also been done on fast approximation of leverage scores [26, 16].
Given an n⇥ d matrix with n > d, constant factor approximations of its leverage scores can
be computed using randomization techniques like matrix sketching. These algorithms run
in O(nnz · log(n) + d3 · log(d) · log(n). In fact, under certain conditions on n and d, these
methods can approximate leverage scores in o(n · d2). However, further analysis is required
to determine whether our input boundary matrices satisfy the specific assumptions under
which this runtime bound holds. If they do, this runtime would translate to o(nk · n2

k�1) in
our case.
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