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Abstract10

A typestate specification indicates which behaviors of an object are permitted in each of the11

object’s states. In the general case, soundly checking a typestate specification requires precise12

information about aliasing (i.e., an alias or pointer analysis), which is computationally expensive.13

This requirement has hindered the adoption of sound typestate analyses in practice.14

This paper identifies accumulation typestate specifications, which are the subset of typestate15

specifications that can be soundly checked without any information about aliasing. An accumulation16

typestate specification can be checked instead by an accumulation analysis: a simple, fast dataflow17

analysis that conservatively approximates the operations that have been performed on an object.18

This paper formalizes the notions of accumulation analysis and accumulation typestate specifica-19

tion. It proves that accumulation typestate specifications are exactly those typestate specifications20

that can be checked soundly without aliasing information. Further, 41% of the typestate specifications21

that appear in the research literature are accumulation typestate specifications.22
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1 Introduction30

A typestate specification [58] associates a finite-state machine (FSM) with program values of31

a given type. As a value transitions through the states of the FSM, different operations are32

enabled or disabled; that is, the FSM encodes a behavioral specification for the type.33

A typestate analysis checks that a program follows a typestate specification—that is, the34

program does not attempt to perform a disabled operation. Typestate analyses are well-35

studied in the literature, and have been deployed for many purposes, including enforcing a36

locking discipline [28, 17], verification of Windows device drivers [12], and preventing security37

vulnerabilities [50]. However, sound typestate analyses—those with no false negatives—are38

rarely deployed in practice; for example, a recent paper [21] describing how AWS has deployed39

a typestate-based analysis at cloud-scale explicitly omits soundness as a goal. However,40

building a sound analysis is an important goal: without a soundness guarantee, an analysis41

might find some bugs, but could not guarantee that no more bugs remain.42

A key barrier to sound typestate analyses is the need to reason about aliasing. Consider43

the classic example [28, 70, 59, 25, 29, 62, 67, 57, 69, 66, 1, 49, 16, 38, 2, 15, 72, 19, 20] of a44
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Figure 1 The typestate automaton for a File object that can be re-opened after being closed.
This typestate specification is not an accumulation typestate system: soundly enforcing it statically
requires an alias analysis.

File object, whose typestate is specified in Figure 1, and the following program in a Java-like45

imperative language:46

47

1 File f = new File (...);48

2 f.open ();49

3 File g = f; // f and g are aliases after this line is executed50

4 g.close ();51

5 f.read (); // an error occurs when this line is executed52
53

On line 3, the shared object—which both aliases f and g refer to—is in the open typestate.54

When g.close() is called on line 4, the state of the underlying object transitions to the55

closed state. It is therefore an error when f.read() is called on line 5. However, if a static56

typestate analysis analyzing this program does not consider that f and g are aliased, then the57

analysis’s estimate of f’s typestate does not transition to the closed state, and the analysis58

unsoundly concludes that the call on line 5 is safe—that is, the analysis suffers from a false59

negative.60

For a sound typestate analysis, there are two high-level approaches to handling aliasing:61

restrict how the programmer creates aliases (e.g., via ownership types [14, 55] or access62

permissions [7]), or use a sound inter-procedural may-alias analysis that conservatively over-63

approximates which program variables might be aliases. In practical imperative programming64

languages with unrestricted aliasing, inter-procedural may-alias analysis is NP-hard [41], and65

scaling alias analysis to real programs while maintaining acceptable precision remains an66

open research problem. State-of-the-art analyses often run for an hour or more on practical67

programs [60].68

In recent work [35, 37], we proposed bespoke accumulation analyses that soundly and69

modularly solve specific problems traditionally addressed with typestate. An accumulation70

analysis collects operations—corresponding to typestate transitions—that have definitely71

occurred on a given program expression. For example, an accumulation analysis could check72

the property “before calling read() on a File, call open().” The accumulation analysis would73

record on which expressions open() had definitely been called, and forbid calls to read()74

that did not occur via such expressions. Note that this is a weaker property than the full75

specification in Figure 1—it does not forbid “read after close” defects.76

Unlike a traditional typestate analysis, an accumulation analysis is sound without any77
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aliasing information. This means that checking a specification with an accumulation analysis78

is cheaper—often by an order of magnitude or more—than checking that same specification79

with a general-purpose typestate analysis. Further, effective incremental analysis—i.e.,80

modularity—is possible for an accumulation analysis, because no whole-program alias analysis81

is needed. Practical accumulation analyses do use limited, cheap, local aliasing information82

to improve precision; see Section 5.1. A practical accumulation analysis using limited aliasing83

information is sound because no aliasing information at all is required for soundness.84

Our prior work argued informally that our accumulation analyses are sound, despite85

their lack of alias reasoning, due to the monotonicity of the particular typestate properties86

being checked. However, we neither formalized our arguments nor generalized our arguments87

beyond the specific problems that we targeted. Though our prior work has demonstrated88

good empirical results—running quickly and finding many real bugs—its soundness claim89

relies on accumulation analyses being sound without any aliasing information.90

The primary goals of this paper are to prove that accumulation analysis does not require91

aliasing information, to demarcate exactly those typestate specifications that can be soundly92

checked via an accumulation analysis, and to explore how common such specifications are.93

Our hope is that analysis designers facing typestate-like problems in the future can use our94

work to determine whether the property they are interested in is an accumulation property,95

and hence could be verified without resorting to an expensive, whole-program alias analysis.96

Our contributions are:97

a formal definition of an accumulation analysis (Section 3.1);98

a formal definition of an accumulation typestate system, and a proof that the properties99

checkable via accumulation analysis are all accumulation typestate properties (Section 3.2);100

a proof that a typestate system can be checked soundly by a typestate analysis that does101

no aliasing reasoning if and only if it is an accumulation typestate system (Section 3.3);102

a literature survey of work on typestate analysis, from which we collected 1,355 typestate103

specifications and determined that 41% of them are accumulation typestate specifications104

(Section 4); and105

a discussion of the practical issues related to implementing a useful accumulation analysis,106

and an implementation of a generic accumulation analysis (Section 5).107

2 Background: What Is Typestate?108

In a standard type system, the type of an expression is immutable throughout the program109

and the set of operations available on the expression is correspondingly immutable. However,110

type systems fail to capture the behavioral specifications of many real-world objects that111

change over time. For example, a chess pawn might become a queen and gain new movement112

operations, a caterpillar might become a chrysalis and lose the ability to crawl before113

eventually becoming a butterfly and gaining the ability to fly, or a File might be opened and114

gain the ability to be read. In each of these examples, the logical identity of the object stays115

the same, but its state—and what that state enables it to do—changes. Typestate [58] extends116

types to account for possible state changes by encoding the various states and behaviors of a117

type as a finite-state machine—the typestate automaton for that type. Formally:118

I Definition 1. A typestate automaton A = (Σ, S, s0, δ, e) for type τ is a finite-state119

machine. The language Σ is the set of operations, such as method calls, that can be performed120

on τ . The states S are called typestates; s0 ∈ S is the initial state. The edges defined by the121

transition table δ are called transitions and correspond to the effect of operations. There is a122

distinguished error state e ∈ S. Each typestate has k = |Σ| outgoing transitions; none, some,123

ECOOP 2022
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or all of these transitions may be to the error state e or may be self-loops. The error state e124

has only self-loops—that is, the error state is a trap state.125

At every step during the execution of a program, each value/object of type τ is in one of126

the typestates of the typestate system.127

I Definition 2. An operation is an event that may cause an object to change state. Every128

type has a set of operations that can be performed on it, but not all operations are necessarily129

legal in all states. Traditionally, operations are method calls. However, they can be generalized130

to include any other event, such as assigning a field or a reference going out of scope.131

Without loss of generality, we represent typestate automata as having no distinguished132

accepting states (or, equivalently, all non-error states are accepting). If a typestate automaton133

were to have one or more accepting states, we could transform it to have no accepting states134

but encode the same behavioral specification in the following way: add a “go out of scope”135

transition to each typestate; in accepting states (and the error state), this is a self-loop136

transition, but in non-accepting states, this is a transition to the error state.137

I Definition 3. A typestate system is the pair of a typestate automaton and the corres-138

ponding type τ whose safe usage it encodes.139

As an example of a typestate system, Figure 1 shows the automaton, and the type is File.140

Note how each edge is labeled with the corresponding operation. A double circle around the141

state represents the distinguished error state e. We always draw all transitions, with the142

exception of those from the error state (which are, by definition, always self-loops).143

This paper considers only static typestate analyses. Dynamic run-time monitoring to144

detect typestate violations exists, but a run-time monitor—like any dynamic analysis—cannot145

prevent errors before they happen. See Section 6 for more details on related techniques that146

are outside the scope of the present work.147

3 Definitions and Proofs148

This section has three goals. First, Section 3.1 formally defines accumulation analysis in a149

way that is consistent with prior work. Second, Section 3.2 defines an accumulation typestate150

system and shows that every accumulation analysis has a corresponding accumulation151

typestate system. Finally, Section 3.3 proves that accumulation typestate systems are exactly152

those typestate systems that can be soundly checked by a static typestate analysis with no153

aliasing information—that is, a typestate-like analysis that assumes that no aliasing occurs154

in the program.155

3.1 Accumulation Analysis156

First, we formalize the notion of an accumulation analysis, as used in prior work [35, 37]:1157

I Definition 4. An accumulation analysis is a static program analysis that approximates,158

for each in-scope expression x of type τ at each program point, a set of operations S that159

have definitely occurred on the value to which x refers.160

An accumulation analysis has one or more goals. A goal is a pair 〈g, E〉 where g is the161

goal operation and E is a set of enabling operations.162

1 Our definition is consistent with but not identical to the definitions used in prior work. See Section 6.1.
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Informally, an accumulation analysis enforces that a goal operation g does not occur until163

after every enabling operation e ∈ E for g has already occurred.164

An operation in an accumulation analysis is defined identically to an operation in a165

typestate automaton (Definition 2).166

I Definition 5. A sound accumulation analysis must issue an error if some goal opera-167

tion may occur before its enabling operations. More formally, it must issue an error if, for168

some expression x of type τ and some operation g, both of the following are true:169

1. There exists at least one goal 〈g, _〉—that is, g is a goal operation.170

2. There exists an execution of the program where the set of operations S that have actually171

occurred on the value of x before an occurrence of g on x is not a superset of one of the172

enabling sets for g. That is, where there does not exist some goal 〈g, E〉 such that S ⊇ E.173

Intuitively, a sound accumulation analysis is “accumulating” enabling operations, and174

once everything in the enabling set is accumulated, there is no way to “disable” the goal175

operation. For example, if g is a goal operation for some goal 〈g, E〉, an object must first176

perform some set of operations to make g legal (i.e., the operations in E), and once g becomes177

legal, it stays legal.178

Note that soundness, as in Definition 5, only precludes false negative warnings. It says179

nothing about whether the accumulation analysis might issue a false positive, and a trivially-180

sound “accumulation analysis” could simply issue an error any time a goal operation might181

be executed. In practice, a useful accumulation analysis tracks whether the transitions in an182

enabling set have occurred, and it permits the goal operation if they have.183

Note that if an accumulation analysis has multiple goals, their goal operations may or184

may not be the same. Multiple goals with the same goal operation are useful to express185

disjunctive specifications. For example, prior work [35] used the disjunctive specification186

“call either withOwners() or withImageIds() before calling describeImages().”187

3.2 Relationship Between Typestate and Accumulation188

Next, we need to describe the relationship between a typestate system and an accumulation189

analysis. As an aid to doing so, we introduce the following:190

I Definition 6. An error-inducing sequence in a typestate automaton T is a sequence191

of transitions S = t1, . . . , ti such that T is in the error state after all transitions in S are192

applied (and not before).193

I Definition 7. An accumulation typestate system is a typestate system such that for194

any error-inducing sequence S = t1, . . . , ti, all subsequences (including both contiguous and195

non-contiguous subsequences) of S that end in ti also result in the typestate automaton being196

in the error typestate. That is, all subsequences of S that end in ti are also error-inducing.197

Intuitively, an accumulation typestate system is any typestate system whose error-inducing198

paths are closed under subsequence so long as the final error-inducing operation is held199

constant. That is, removing operations from the beginning or middle of an error-inducing200

sequence always produces another error-inducing sequence.201

Note that a vacuous sound typestate analysis such as “issue an error at every program202

statement” is trivially enforcing an accumulation typestate system. The typestate automaton203

that such an analysis enforces only has transitions to the error state, so all sequences are204

error-inducing.205

ECOOP 2022
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Algorithm 1 A decision procedure for checking whether or not a given typestate automaton T

is an accumulation typestate automaton. The complexity of the algorithm is O(max(n log n, en))
where n is the number of states and e is the number of edges.

1: procedure IsAccumulation(T )

2: // FindErrorInducingTransitions returns all transitions into the error state.

3: U ← FindErrorInducingTransitions(T )

4: // E and Esubseq are finite-state automata. ∀ X, Union(∅, X) = X.

5: E ← ∅

6: Esubseq ← ∅

7: for ui ∈ U do

8: // ErrorInducingAutomatonVia is an automaton that accepts a sequence of

9: // transitions S iff S followed by ui causes an error in the original automaton T .

10: // Its implementation contains two steps: (1) modify T so that states from which

11: // ui is error-inducing are accepting, and then (2) minimize and return the result.

12: Ei ← ErrorInducingAutomatonVia(ui, T )

13: // Subsequences produces the automaton that accepts the subsequence language

14: // for the input automaton, which Higman’s theorem guarantees exists.

15: Esubseq(i) ← Subsequences(Ei)

16: // Concat produces an automaton that accepts iff it receives a sequence

17: // that the input automaton accepts followed by the concatenated transition.

18: E ← Union(E, Concat(Ei, ui))

19: Esubseq ← Union(Esubseq, Concat(Esubseq(i), ui))

20: // AcceptSameLanguage is true iff the two automata accept the same language.

21: return AcceptSameLanguage(E, Esubseq)

This definition leads to a decision procedure (Algorithm 1) for determining whether a206

given typestate system T is an accumulation typestate system. Consider all error-inducing207

operations U = {u1, . . . , un}. The elements of U are the final transitions for every error-208

inducing sequence in the automaton of T . For any ui ∈ U , let Ei be the language2 of the209

error-inducing sequences of operations in T that end in ui, with the last transition removed210

(i.e., the ui transition that leads to the error typestate). Let Esubseq(i) be the language of211

subsequences of Ei. Let E =
⋃n

i=1 Ei ∗ ui and Esubseq =
⋃n

i=1 Esubseq(i) ∗ ui. That is, E is212

the union of all error-inducing paths in T , and Esubseq is the union of all subsequences of213

error-inducing paths in T that end in the same transition as the corresponding error-inducing214

path from which they were derived. By Definition 7, if and only if E and Esubseq recognize215

the same language, T is an accumulation typestate system.216

It is easy to check whether E and Esubseq recognize the same language, because both are217

regular. E is regular, because it can be recognized by T ’s automaton, if the error typestate is218

converted to an accepting state. Since there are finitely-many operations, any Ei and Esubseq(i)219

have a finite alphabet. Higman’s theorem [31] says that the language of the subsequences220

of any language over a finite-alphabet is regular. Therefore, any Esubseq(i) is also regular.221

Esubseq is regular because regular languages are closed under both union and concatenation.222

So, the procedure for checking whether a typestate automaton is an accumulation typestate223

automaton is as easy as checking whether the two finite state machines for E and Esubseq224

2 Throughout, we will abuse notation and refer to both languages and their corresponding language-
recognizers by the same name.
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recognize the same language.225

I Theorem 8. Every accumulation analysis has a corresponding accumulation typestate226

system.227

Proof. Consider some accumulation analysis acc with goals (g1, E1), . . . , (gn, En) over type228

τ . The corresponding accumulation typestate system is the pair of the type τ and the229

accumulation typestate automaton constructed by the following procedure:230

1. Create an error state error with a self-loop transition for each operation on τ .231

2. Let PE be the powerset of E, where E =
⋃n

i=1 Ei is the union of the enabling sets232

E1, . . . , En. For each element S of PE , create a corresponding state and label it with S.233

Note that S refers to both the member of PE and the corresponding state.234

3. Make the state that is labeled by the empty set be the start state of the automaton.235

4. For each state S ∈ PE and for each transition te ∈ E, add a transition from state S to236

state S ∪ {te} labeled te. (This transition might be a self-loop.)237

5. Let G = {g1, . . . , gn} be the set of goal transitions. For each element gi of G and for each238

state S ∈ PE :239

If there exists a goal 〈gi, Ei〉 such that Ei ⊆ S,240

then add a self-loop transition to S labeled gi if it does not already have a241

transition labeled gi. (It might have such a transition if gi is both an enabling242

transition and a goal transition.)243

Else if such a goal does not exist,244

add a transition from S to the error state labeled gi, removing a transition labeled245

gi if one already exists.246

6. For each operation t on τ such that t /∈ G and t /∈ E—that is, for each operation that is247

neither a goal operation nor an enabling operation—add a self-loop transition labeled t248

to each non-error state. (Recall that the error state already has self-loop transitions for249

each operation, added in step 1.)250

The resulting accumulation typestate automaton encodes the same behavior as the original251

accumulation analysis. J252

Note that this construction is a existence proof, not an efficient translation: it does induce253

an exponential blowup in the number of states. A practical accumulation analysis does not254

track states directly—rather, it tracks only the enabling sets—so state explosion is not a255

problem in practice.256

3.3 Soundness Without Aliasing257

This section proves that accumulation typestate systems are exactly the typestate systems258

that are soundly checkable without reasoning about aliasing (i.e., by a typestate analysis259

with no aliasing information, which we will formally define in Definition 14):260

I Theorem 9. A typestate system T = (A, τ) is an accumulation typestate system if and261

only if there exists a typestate analysis with no aliasing information that can soundly check262

T .263

The high-level intuition behind the proof of Theorem 9 is the consequence of two facts:264

without using aliasing information, a typestate analysis observes only a subsequence of265

the actual operations that are applied to the object to which some expression refers, and266

accumulation typestate automata are exactly those that are error-closed under sub-267

sequence, when the last transition is held constant.268

ECOOP 2022
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The formal proof is split into Lemmas 16 and 17 (which are the forward and backward269

directions of the bi-implication respectively), and appears in Section 3.3.2. Section 3.3.1270

defines the supporting machinery of the proof: the language, relevant definitions, etc.271

Accumulation analyses as defined in Section 3.1 (and therefore as defined in prior272

work [35, 37]) are sound without access to aliasing information:273

I Corollary 10. An accumulation analysis, even without aliasing information, is sound.274

Proof. Convert the accumulation analysis to an accumulation typestate system via the275

procedure in the proof of Theorem 8. By Theorem 9, the accumulation typestate system can276

be soundly checked. J277

An important consequence of the ability to soundly check an accumulation typestate278

system with no aliasing information is that approaches that utilize limited aliasing inform-279

ation are also sound. In practice, analyses can compute inexpensive, typically local, alias280

information to improve precision (i.e., to avoid issuing false positive warnings); see Section 5.1.281

3.3.1 Preliminaries282

This section introduces the machinery used to prove Theorem 9.283

3.3.1.1 Language284

We will prove Theorem 9 over a core calculus that represents a simple imperative programming285

language. This language contains the essential parts of a programming language related to286

typestate checking and aliasing—method calls, fields, and assignments.287

A program P in this language is a statement s of one of the following kinds:288

an assignment: xi := xj .289

a field load: xi := xj.fk.290

a field store: xi.fj := xk.291

a method call: xi.mj().292

a statement sequence: si ; sj .293

Source code variables range from x_1 to x_n, where n is some positive integer. Statements294

may only refer to variables in that range. There is a single type T . Each variable refers to a295

value—that is, a particular object instance—of type T . We use xi, xj , . . . as metavariables for296

arbitrary variables in the range x_1,. . .,x_n. T has methods m_1 to m_k and a corresponding297

typestate automaton A whose k operations are exactly the methods m_1 to m_k. A method call298

statement can only refer to methods in T . We use mi, mj , . . . as metavariables for arbitrary299

methods in T . Each object of type T has fields f_1 to f_m, where m is some positive integer.300

Load and store statements may only refer to fields in this range. Each field refers to some301

value of type T . We use fi, fj , . . . as metavariables for arbitrary fields in T .302

To simplify the presentation and proofs, this language lacks conditionals, loops, method303

bodies, return values, etc.—which makes precise alias and typestate analysis trivial. However,304

our algorithms are general (they do not take advantage of the straight-line nature of the305

code) and can be extended to a richer language without changing the essence of the proof.306

Section 5.2 discusses practical concerns when implementing an accumulation analysis for a307

real programming language.308
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〈ρ, σ, τ〉 ` xi := xj ⇓ 〈ρ[xi 7→ ρ(xj)], σ, τ〉
ASSIGN

〈ρ, σ, τ〉 ` xi := xj .fk ⇓ 〈ρ[xi 7→ σ(〈ρ(xj), fk〉)], σ, τ〉
LOAD

〈ρ, σ, τ〉 ` xi.fj := xk ⇓ 〈ρ, σ[〈ρ(xi), fj〉 7→ ρ(xk)], τ〉
STORE

〈ρ, σ, τ〉 ` t′ = succ(τ(ρ(xi)), mj , A) t′ 6= error

〈ρ, σ, τ〉 ` xi.mj() ⇓ 〈ρ, σ, τ [ρ(xi) 7→ t′]〉
CALL

〈ρ, σ, τ〉 ` si ⇓ 〈ρ
′, σ′, τ ′〉 〈ρ′, σ′, τ ′〉 ` sj ⇓ 〈ρ

′′, σ′′, τ ′′〉

〈ρ, σ, τ〉 ` si; sj ⇓ 〈ρ
′′, σ′′, τ ′′〉

SEQ

Figure 2 The big-step dynamic semantics of the language expressed as inference rules. The
notation µ[x 7→ y] means that the map µ is updated so that x maps to y. M ` s ⇓ M ′ means that
executing statement s in machine-state M results in machine-state M ′.

3.3.1.2 Dynamic Semantics309

To execute a program, we maintain a machine state 〈ρ, σ, τ〉 composed of an environment310

(ρ) mapping each variable to a value of type T , a store (σ) mapping each value–field pair311

to a value, and a typestate store (τ) mapping each value to a typestate in A. The initial312

environment maps each xi to a distinct value vj . The initial store maps each value–field313

pair 〈vi, fj〉 to a distinct value vk. The initial typestate store maps each value vi to the314

start typestate s0 of A.3 Executing a statement in machine state 〈ρ, σ, τ〉 either produces315

an updated machine state 〈ρ′, σ′, τ ′〉, or it terminates the program in an error if any value’s316

entry in the typestate store would be A’s error typestate. The dynamic semantics (Figure 2)317

are as follows:318

For an assignment xi := xj , produce a new machine state with an updated environment:319

ρ′(xi) = ρ(xj) (rule ASSIGN).320

For a field load xi := xj.fk, produce a new machine state with an updated environment:321

ρ′(xi) = σ(ρ(xj), fk) (rule LOAD).322

For a field store xi.fj := xk, produce a new machine state with an updated store:323

σ′(ρ(xi), fj) = ρ(xk) (rule STORE).324

For a call xi.mj(), let t′ = succ(τ(ρ(xi)), mj , A). That is, t′ is the successor typestate in325

A when transition mj occurs in the current typestate of the value that xi is a reference to.326

If t′ is not the error typestate, produce a new machine state with an updated typestate327

store: τ ′(ρ′(xi)) = t′ (rule CALL). If t′ is the error typestate, the semantics “get stuck”328

and the program terminates in an error.329

For a sequence si ; sj , first execute si. If the program terminates in an error while330

executing si, the semantics for the sequence statement “get stuck.” Otherwise, let331

〈ρ′, σ′, τ ′〉 be the machine state after executing si. Execute sj in 〈ρ′, σ′, τ ′〉 (rule SEQ).332

3 Initializing all variables before a program starts simplifies the language by removing the need for a new
expression.
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3.3.1.3 Sound Typestate Analysis333

I Definition 11. A typestate analysis is a static program analysis. Its inputs are a334

program P and a typestate system T = (A, τ). It reports call statements within P that may335

cause the program to terminate in an error when running P .336

I Definition 12. A typestate analysis is sound if it reports each call statement that causes337

the program to terminate in an error at run time in any execution of the program.338

3.3.1.4 Representation of Aliasing339

Suppose that a typestate analysis has access to two oracle functions MustOracle(xi, s) and340

MayOracle(xi, s) for aliasing information. Each oracle takes a variable xi and a program341

statement s and returns a list of names—variables or arbitrarily-nested field load expressions—342

that the input variable must (respectively, may) alias before the given statement.343

MustOracle returns a list of names that definitely do alias xi at s. More formally, for344

a sound oracle, if the list returned by MustOracle(xi, s) contains xj , then xi and xj are345

definitely aliased before statement s on all executions. If the list does not contain xj , then346

xi and xj may or may not be aliased before s. A trivial MustOracle that always returns an347

empty list is sound.348

MayOracle returns a list of names that might or might not alias xi at s. More formally,349

for a sound oracle, if the list returned by MayOracle(xi, s) does not contain xj , then xi and350

xj are definitely not aliased before statement s on all executions. If the list does contain xj ,351

then xi and xj may or may not be aliased before s. A trivial MayOracle that always returns352

every in-scope name in the program is sound.353

These oracles can represent an external alias analysis, an on-demand alias analysis,354

aliasing tracking built into the typestate analysis, etc. If the oracles are sound, then for355

all xi and s, MustOracle(xi, s) ⊆ MayOracle(xi, s). For a traditional typestate analysis (as356

defined in section 3.3.1.5) to be sound for an arbitrary typestate system such as the File357

example in Figure 1, both oracles must be sound.4358

3.3.1.5 Definition of Typestate Analysis359

A typestate analysis is a fixpoint analysis that can be viewed as a dataflow analysis or an360

abstract interpretation. It operates by maintaining a set of abstract stores, one for each361

program point. An abstract store is a map from names to sets of estimated typestates. We362

write φs(xi) for the estimated typestates of name xi before program statement s, and φ′

s(xi)363

for those after. For any sequencing statement r;s, for all xi, φ′

r(xi) = φs(xi). The notation364

φ̂s(xi.∗) means all names in φs that begin with xi.365

At the beginning of the analysis, at every program point, the abstract store maps all366

names5 to the set containing only the start state s0 of the typestate automaton A. Then, the367

analysis processes each statement s using the following rules (which also appear in Figure 3)368

until the set of abstract stores reaches a fixpoint:369

4 For the language of section 3.3.1.1, it is trivial to construct a sound alias analysis that never includes
a name in the result of a MayOracle query unless the corresponding MustOracle query would also
include that name. In a richer programming language, the MayOracle is necessary to handle analysis
imprecision and control flow joins.

5 An analysis may use widening, abstraction, or iterative expansion of maps to handle the fact that the
set of names is infinite.
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φs ` ∀n ∈ φ̂s(xi.∗), n′ = n[xj/xi] ∧ T ′

n′ = φs(n′)

φ′

s = φs[∀n ∈ φ̂s(xi.∗), n 7→ T ′

n′ ]

φs ` xi := xj ⇓ φ′

s

TS-ASSIGN

φs ` ∀n ∈ φ̂s(xi.∗), n′ = n[xj .fk/xi] ∧ T ′

n′ = φs(n′)

φ′

s = φs[∀n ∈ φ̂s(xi.∗), n 7→ T ′

n′ ]

φs ` xi := xj .fk ⇓ φ′

s

TS-LOAD

φs ` ∀n ∈ φ̂s(xi.fj .∗), n′ = n[xk/xi.fj ] ∧ T ′

n′ = φs(n′)∧

Amust
n = MustOracle(n, s) ∧Amay

n = MayOracle(n, s)

φ′

s = φs[∀n ∈ φ̂s(xi.fj .∗), n 7→ T ′

n′ ][∀an ∈ Amust
n , an 7→ T ′

n′ ]

[∀bn ∈ Amay
n −Amust

n , bn 7→ T ′

n′ ∪ φs(bn)]

φs ` xi.fj := xk ⇓ φ′

s

TS-STORE

φs ` T = φs(xi) T ′ =
⋃

t∈T
succ(t, mj , A)

Amust = MustOracle(xi, s) Amay = MayOracle(xi, s)

φ′

s = φs[xi 7→ T ′][∀a ∈ Amust, a 7→ T ′][∀b ∈ Amay −Amust, b 7→ T ′ ∪ φs(b)]

φs ` xi.mj() ⇓ φ′

s

TS-CALL

φs ` si ⇓ φ′

si
φ′

si
= φsj

φsj
` sj ⇓ φ′

s

φs ` si; sj ⇓ φ′

s

TS-SEQ

Figure 3 Inference rules for a traditional, sound typestate analysis. Each rule applies to some
statement s, which appears in the consequent. The notation x[y/z] means “x with each z replaced
by y.” The notation φ̂s(xi.∗) means all names in φs that begin with xi.

For an assignment xi := xj , for each n ∈ φ̂s(xi.∗), let n′ = n[xj/xi]—that is, n′ is n with370

its xi replaced by xj—and let T ′

n′ = φs(n′), the abstract value of n′ in the pre-state. The371

analysis updates the abstract store after s so that n is mapped to T ′

n′ : φ′

s(n) := T ′

n′ (rule372

TS-ASSIGN). For all other names m in φs where m /∈ φ̂s(xi.∗), the analysis copies the373

entry from the previous abstract store: φ′

s(m) := φs(m).374

For a load statement xi := xj.fk, for each n ∈ φ̂s(xi.∗), let n′ = n[xj .fk/xi] and let375

T ′

n′ = φs(n′). The analysis updates the abstract store after s so that n is mapped to T ′

n′ :376

φ′

s(n) := T ′

n′ (rule TS-LOAD). For all other names m in φs where m /∈ φ̂s(xi.∗), the377

analysis copies the entry from the previous abstract store: φ′

s(m) := φs(m).378

For a store statement xi.fj := xk, for each n ∈ φ̂s(xi.fj .∗), let n′ = n[xk/xi.fj ] and let379

T ′

n′ = φs(n′). Then, for each n and its n′ and T ′

n′ , the analysis performs the following380

steps (rule TS-STORE):381

1. The analysis updates the abstract store after s so that n is mapped to T ′

n′ : φ′

s(n) := T ′

n′ .382

2. The analysis queries MustOracle(n, s) (call the result Amust
n ). For each an ∈ Amust

n ,383

the analysis performs a strong update to the abstract store: φ′

s(an) := T ′

n′ .384

3. The analysis queries MayOracle(n, s) (call the result Amay
n ). For each element bn in385

Amay
n − Amust

n —that is, variables that may be aliases but are not guaranteed to be386

aliases—the analysis performs a weak update to the abstract store so that it maps bn387

to T ′

n′ ∪ φs(bn): ∀bn ∈ Amay
n −Amust

n , φ′

s(bn) := T ′

n′ ∪ φs(bn).388
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For all other names m in φs where m /∈ φ̂s(xi.fj .∗) ∧ ∀Amay
n , m /∈ Amay

n , the analysis389

copies the entry from the previous abstract store: φ′

s(m) := φs(m).390

For a call statement xi.mj(), let T ′ =
⋃

t∈φs(xi). The analysis performs the following391

steps (rule TS-CALL):392

1. If any t′ ∈ T ′ is error, the analysis reports an error for the statement. Note that while393

the dynamic semantics (Figure 2) do not permit any value to be in the error typestate394

(the program crashes instead), this analysis approximates the semantics statically.395

2. The analysis updates the abstract store so that φ′

s(xi) := T ′.396

3. The analysis queries MustOracle(xi, s) (call the result Amust). For each a ∈ Amust,397

the analysis performs a strong update to the abstract store: φ′

s(a) := T ′.398

4. The analysis queries MayOracle(xi, s) (call the result Amay). For each b ∈ Amay−Amust ,399

the analysis performs a weak update to the abstract store: φ′

s(b) := T ′ ∪ φs(b).400

For a sequence s = si ; sj , the analysis first analyzes si, and then analyzes sj with the401

resulting abstract store (rule TS-SEQ)). (Note that the analysis does not terminate in402

the case of an error, but keeps reporting errors on subsequent statements.)403

This standard formulation of a traditional typestate analysis is sound for any arbitrary404

typestate system, as long as its aliasing oracles are sound:405

I Theorem 13. A traditional typestate analysis is sound if its MustOracle and MayOracle406

functions return sound results.407

Proof. By co-induction on the dynamic semantics (Figure 2) and the rules for a traditional408

typestate analysis (Figure 3). The key invariant is that the actual typestate to which a name409

refers on any particular execution at some statement is always in the abstract store. J410

3.3.1.6 Typestate Analysis with No Aliasing Information411

I Definition 14. A typestate analysis with no alias information is a typestate analysis412

whose MustOracle and MayOracle functions return empty lists for all arguments.413

Intuitively, a typestate analysis “with no alias information” assumes that no aliasing414

occurs in the program—even when making such an assumption is unsound.415

A typestate analysis with no alias information has a simpler method call rule: it never416

updates its abstract store in response to an aliasing query, so steps 3 and 4 may be omitted.417

Similarly, there is a simpler store rule: only the n ∈ φ̂s(xi.fj .∗) need to be updated, because418

all MayOracle and MustOracle queries (unsoundly) return false.419

Informally, having no aliasing information means that the analysis might not be aware420

that one or more transitions have occurred on the value to which some expression refers,421

because those operations occurred via an alias. That is, the analysis’s estimate of the422

typestate of an expression that actually refers (at run time) to a value v in typestate t is423

must include a typestate reachable by a subsequence of the sequence of transitions that424

results in τ(v) being t. Stated more formally:425

I Lemma 15. Let R = φs(xi) be the set of estimated typestates produced by a typestate426

analysis with no aliasing information for a variable xi before a statement s. Let S be the427

trace of an arbitrary execution leading up to some occurrence of s, and let t = τ(ρ(xi)) be428

the typestate of the actual value to which xi refers before that occurrence of s. Applying S to429

the automaton leads to typestate t. There exists a typestate r ∈ R such that applying some430

subsequence of S leads to r. That is, there is some estimated typestate r ∈ R that is reachable431

by a subsequence of the transitions that lead to t.432
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init b_ok

error

a()

b()

a(), b()

Figure 4 An accumulation typestate automaton for the property “call a() before calling b()”.

Stated another way, Lemma 15 says that for every possible trace S through the program433

that reaches s, there is at least one r ∈ R that “corresponds to” S, in the sense that r is434

reachable by a subsequence of S.435

Lemma 15 is not quite true of a typestate analysis as defined in Figure 3: field loads do436

not necessarily preserve it. Because the store rule is unsound due to the unsoundness of the437

aliasing oracles, the entry in the abstract store for a given field may not actually be related438

to the value to which that name refers, due to possible aliasing. For example, consider the439

following program, being analyzed with respect to the “only call b() after a()” typestate440

automaton in Figure 4 (note that “Estimated state” and “Actual state” columns only show441

entries for names that are relevant to the problem):442

Program Estimated state (φs)6 Actual state (τ)7

x2 = x1 {x1.f 7→init, x2.f 7→init} {x1.f 7→init, x2.f 7→init}

x3.a() {x1.f 7→init, x2.f 7→init, x3 7→b_ok} {x1.f 7→init, x2.f 7→init, x3 7→b_ok}

x1.f = x3 {x1.f 7→b_ok, x2.f 7→init, x3 7→b_ok} {x1.f 7→b_ok, x2.f 7→init, x3 7→b_ok}

x2.f = x4 {x1.f 7→b_ok, x2.f 7→init} {x1.f 7→init, x2.f 7→init}

x5 = x1.f {x1.f 7→b_ok, x2.f 7→init, x5 7→b_ok} {x1.f 7→init, x2.f 7→init, x5 7→init }

x5.b() {x1.f 7→b_ok, x2.f 7→init, x5 7→b_ok} {x1.f 7→init, x2.f 7→init, x5 7→init }

This program (left side of the table above) leads to Lemma 15 being untrue at the final443

statement, because the actual state of x5 (init) is not reachable from the estimated state444

(b_ok). The key issue is aliasing: x1 and x2 are aliases, so x1.f and x2.f actually refer445

to the same value. When x2.f is re-assigned to x4, the actual value to which x1.f refers446

changes—but with no aliasing information, the typestate analysis is unaware, leading to the447

problem.448

Note that this problem applies to arbitrary typestate systems: both accumulation449

typestate systems and non-accumulation typestate systems. Lemma 15 discusses both.450

There is a simple solution to this problem that makes Lemma 15 hold for a typestate451

analysis with no aliasing information: update the load rule so that the analysis assumes452

that all loads return a value whose typestate is the start state of the automaton (rule453

TS-LOAD-FIX in Figure 5).454

This rule trivially preserves Lemma 15 for field loads, and corresponds with how accu-455

mulation analyses handle field loads in practice (see Section 5.2). Our proof assumes this456

6 Entries in φs are single-element sets. For simplicity of presentation, set notation has been elided.
7 Keys in τ are values. For simplicity of presentation, the necessary lookups in ρ and σ have been elided.
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φs ` φ′

s = φs[xi 7→ s0]

φs ` xi := xj .fk ⇓ φ′

s

TS-LOAD-FIX

Figure 5 A modified load rule for a typestate analysis with no aliasing information, which
preserves Lemma 15. s0 is the start state of the automaton A being checked.

simpler load rule for the typestate analysis with no aliasing information. However, note457

that this rule would make a traditional typestate analysis unsound (i.e., this rule makes458

Theorem 13 untrue): in an arbitrary typestate analysis, the start state is not necessarily a459

safe default assumption. A useful property of accumulation typestate automata, however, is460

that every operation which might ever lead to an error on any path must necessarily lead to461

an error from the start state—otherwise, the definition of accumulation typestate automaton462

could not be met when considering the empty subsequence.463

We now prove Lemma 15 (see Appendix A for the full proof):464

Proof. By co-induction on the dynamic semantics and the rules for a typestate analysis465

with no aliasing information. The interesting cases are method calls, assignments, and loads.466

Method calls preserve the inductive invariant via the inductive hypothesis. Assignments467

preserve the inductive invariant because the left-hand side’s estimate is updated to the468

right-hand side’s estimate, which also preserves the invariant by the inductive hypothesis.469

Loads preserve the inductive invariant only because of the modified rule described above,470

which says that after a load, the estimate is always the start state, which trivially preserves471

the invariant. J472

3.3.2 Proof of Theorem 9473

The proof is split into two parts—the forwards and backwards direction of the bi-implication,474

which are Lemmas 16 and 17, respectively.475

I Lemma 16. T is an accumulation typestate system =⇒ there exists a sound typestate476

analysis with no aliasing information that can check T .477

Proof. The proof is by contradiction. Suppose that an arbitrary typestate analysis with no478

aliasing information (as defined by Definition 14) for an accumulation typestate system T479

is unsound. That is, suppose that it fails to issue an error at some method call statement480

s = xi.mj(), but the program terminates in an error in some execution e, because τ(ρ(xi))481

after s would be error.482

Let vi = ρ(xi). That is, xi actually refers to vi at8 s on execution e. mj must be the483

transition that would lead vi to enter the error typestate at the call xi.mj(), because the484

program would have already terminated if some other transition might have caused vi to485

enter the error state before s was reached. Let R′ = φ′

s(xi) be the analysis’s estimate of the486

possible typestates of xi after the call statement is executed. Because the analysis did not487

issue an error at s, R′ must not contain the error typestate.488

Since R′ does not contain the error typestate after observing mj , then mj must have489

been a legal transition on each typestate in the analysis’ pre-state estimate R = φs(xi).490

8 s must be a method call statement, so vi is the same before and after s.
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By Lemma 15, there is some typestate r ∈ R that is reachable via some subsequence of491

the transitions that led to the actual typestate t = τ(ρ(xi)) that vi was in during e before492

transition mj was applied.493

The typestate r is reachable by a subsequence of the sequence of transitions that actually494

occurred on vi that led it to reach t, but mj is a legal transition in r. This is a contradiction:495

mj must be both an error-inducing and a legal transition in r. mj must be an error-inducing496

transition in r by the definition of an accumulation typestate system (Definition 7): mj must497

be an error-inducing transition in typestates reachable via subsequences of the transitions498

that lead to t, including r. But, mj must also be a legal transition in r because the analysis499

did not issue an error when its estimate included r. Since one transition cannot be both500

error-inducing and legal, by contradiction, the analysis must have been sound. J501

I Lemma 17. T is an accumulation typestate system ⇐= there exists a sound typestate502

analysis with no aliasing information that can check T .503

Proof. The proof is by contradiction. Suppose that there is a typestate analysis with no504

aliasing information that can soundly check a typestate system T that is not an accumulation505

typestate system. Since T is not an accumulation typestate system, there exists some506

sequence of transitions S = t1, . . . , ti that ends in an error typestate that has a subsequence507

S′ that ends in ti that does not end in an error typestate. Let D be the difference between508

S′ and S: the sequence of transitions that appear in S but do not appear in S′.509

Construct a program P with two variables xS′ and xD. The first statement in P is xD510

:= xS′ , which aliases these expressions. Then augment the program in the following manner:511

for each transition t ∈ S, if t is an element of S′, then add the statement xS′ .t() to P .512

Otherwise, add the statement xD.t() to P .513

Because xS′ and xD were aliased by P ’s first statement, we know that they both point514

to a single value v to which every transition in S has been applied by the end of P ; thus, P515

terminates in an error when the final transition ti is applied. However, no error is issued:516

the analysis will not issue an error for xS′ .ti(), which is the program statement that causes517

the error, because the sequence R that was applied to xS′ is a legal sequence of transitions518

(and the error-inducing transition ti is guaranteed to be in S′, not in D, by definition).519

This is a contradiction of our original premise that a typestate analysis with no aliasing520

information could soundly check T : an error-inducing transition (ti) occurs, but the analysis521

with no aliasing information fails to issue an error. Thus, T must have been an accumulation522

typestate system. J523

3.4 Discussion: Accumulating Sets vs. Accumulating Subsequences524

Section 3 uses the term “accumulation” to refer to two subtly different things. Accumula-525

tion analyses (Definition 4) compute sets of operations. Accumulation typestate systems526

(Definition 7) are defined by (sub)sequences of operations.527

Definition 4 of accumulation analysis uses sets because that is how accumulation analysis528

is defined and implemented in prior work [35, 37]. For an alternate definition of accumulation529

analysis in terms of subsequences, each goal operation would have an enabling sequence530

rather than an enabling set. Implementing an accumulation analysis based on this alternate531

definition would allow us to check “accumulation-like” properties that cannot be expressed532

as sets. For example, such an analysis could soundly check a property such as “call a() at533

least twice before calling b()” (i.e., a goal transition enabled by counting) or a property such534

as “call a() and b(), in that order, before calling c()” (i.e., a goal transition enabled by535
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ordering). This generalization of the concept of accumulation from the specific accumulation536

analyses used in prior work is one of our contributions.537

In our literature survey (Section 4), we found three specifications with a goal transition538

enabled by ordering, but we did not find any enabled by counting. For example, in Figure539

12 of [56], the authors describe a mined typestate specification for the Java KeyAgreement540

API. This API contains a method generateSecret(). Calling generateSecret() before init()541

and doPhase() is an error, so generateSecret() is a goal transition. However, init() and542

doPhase() also must be ordered: calling doPhase() before init() is also an error. The other543

two specifications in the literature (which appear in [56, 22]) that rely on ordering had a544

similar character to this example: describing some multi-stage initialization property where545

the initialization steps must be performed in some specific order.546

4 Literature Survey547

This section aims to answer the research question: RQ1: What fraction of typestate548

problems can be solved modularly with an accumulation analysis?549

We will approximate the answer by using the population of typestate problems that550

appear in the scientific literature. Note that this is likely to be an under-approximation of551

incidence in practice, because scientific papers usually address the most complex problems.552

We performed a literature survey of papers in the research literature since 2000 that contain553

typestate specifications. We chose the year 2000 because a similar survey [18], which we discuss554

in section 4.2.2.1, was published in 1999. For each typestate specification that we discovered,555

we used the decision procedure in Algorithm 1 to determine whether the specification was556

an accumulation typestate system—and therefore soundly analyzable without any aliasing557

information by Theorem 9. The vast majority of the papers that we analyzed use typestate558

for some small number of examples. We report on these papers in aggregate and describe559

specific, common examples (Section 4.2.1). There are two outliers [18, 4] that reported on560

categories containing hundreds of specifications, which we discuss in detail (Section 4.2.2).561

The remainder of this section details our methodology, discusses the results, and gives562

examples of specifications that can and cannot be checked via accumulation.563

4.1 Methodology564

We searched Google Scholar for papers since 2000 whose full-text includes “typestate”,565

resulting in 1,760 hits. (We originally included “type-state” and “type state” as search terms,566

but discovered no computer science results in the first 100 hits for each that “typestate” did567

not also return.) We discarded any paper that was not published in the research track of a568

reputable computer science conference or journal or was duplicative with another paper in the569

dataset (e.g., for work with both a conference paper and a journal extension, we only included570

the journal extension), resulting in a set of 187 papers. The authors are familiar with the571

relevant conferences and journals in programming languages and software engineering, and572

we used our judgment for these, erring on the side of inclusivity. For conferences or journals573

outside PL and SE, we included papers in any venue with a CORE ranking of A or A*.574

We then examined each of the remaining papers in detail and recorded how many typestate575

specifications they contained, which specifications those were, and which of the specifications576

were accumulation typestate systems. When recording which specifications occurred in577

each paper we examined, we also recorded whether the specifications were duplicates of578

specifications that appeared in other papers. Among the papers we examined, 102 (≈ 55% of579

those examined closely, and ≈ 6% of all Google Scholar hits) contained one or more typestate580
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Table 1 The results of the literature survey. “TSA” stands for “TypeState Automata”; “ATSA”
stands for “Accumulation TypeState Automata”. All specification counts are without de-duplication.

Dataset Source TSA ATSA ATSA%

Papers since 2000 with <20 TSAs 101 scientific papers 302 67 22%
Dwyer et al. (1999) [18] 34 papers, tools, students 511 306 60%
Beckman et al. (2011) [4] 4 real Java projects 542 182 34%

Total All of the above 1355 555 41%

specifications. The venues that contributed papers with one or more typestate specifications581

to this study are: ECOOP (12), ESEC/FSE (12), ICSE (12), OOPSLA (10), PLDI (8),582

ISSTA (7), ASE (6), POPL (5), CCS (4), SAS (4), TOSEM (4), TSE (4), CC (2), ASPLOS583

(1), CAV (1), EuroSys (1), ICPC (1), IWACO (1), SAC (1), SOSP (1), TOPLAS (1), VMCAI584

(1), WWW (1).585

4.2 Results586

Table 1 summarizes the results. This paper’s artifact9 contains our analysis of each relevant587

paper. The artifact also contains a finite-state machine for each typestate problem (as defined588

in Section 4.2.1 below) we saw and the list of the papers we saw it in.589

4.2.1 Papers Containing Examples590

These 101 papers contain 302 specifications, with a mean of 3 and a median of 2.591

22% of these specifications are accumulation typestate systems. However, there is a592

significant amount of duplication between the papers in this dataset—many papers use the593

same few examples of typestate automata to motivate their general work on typestate.594

We de-duplicated the typestate automata in these papers by combining instances of595

the same automaton into a single typestate problem: for example, we counted every one596

of the 19 papers that we observed using the classic File example (Figure 1) as a single597

instance of the File typestate problem. Considering problems rather than specifications, we598

found that these 101 papers only contain 114 problems. Of those 114, 31 are accumulation599

typestate problems (27%), indicating that there is slightly more duplication among the600

non-accumulation typestate specifications. Perhaps this is because papers dealing with601

general typestate analysis want to motivate their use of an alias analysis—which requires602

at least one non-accumulation typestate example. We discuss this discrepancy further in603

Section 4.3.604

Next, we give the three most common examples of typestate problems that are accumula-605

tion and are not accumulation typestate systems.606

4.2.1.1 Examples of Typestate Problems That Are Accumulation607

The problem of detecting resource leaks (Figure 6) appears 16 times across 14 papers10 [17,608

39, 72, 37, 64, 42, 43, 13, 21, 19, 3, 1, 63, 51]. This problem was already known to be609

9 https://doi.org/10.5281/zenodo.5771196
10 We tried to stay as true as possible to the story each paper presented, which is why some automata

appear multiple times in the same paper. The paper treated them differently, but we believe them to
be the same example. For instance, [17] discusses memory leaks and leaked sockets, which are both
resource leaks.
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open closed

error

close()

go out of scope

go out of scope, close()

Figure 6 The typestate automaton for a resource leak, which is an accumulation typestate
problem.

unconn. conn.

error

connect()

send()

send(), connect()

Figure 7 The typestate automaton for connecting a socket before sending data using it, which is
an accumulation typestate problem.

accumulation [37].610

The need to call a distinguished initialization method on an object after its constructor611

finishes but before using it appears 7 times across 4 papers [24, 17, 57, 69]. For example,612

when using a Socket object, one must call connect() before using it to send data (Figure 7).613

A third common accumulation problem is that of object initialization: before an object is614

fully constructed, all of its logically-required fields must be set to reasonable values (Figure 8).615

This pattern appears 6 times across 6 papers [35, 36, 54, 21, 27, 30]. A variant of this616

problem—which arises when using the builder pattern—was known to be accumulation [35].617

However, our literature survey has shown that bespoke analyses for other kinds of object618

initialization are also, in effect, bespoke accumulation analyses. For example, masked619

types [54] are a type system for ensuring that before a constructor exits, all non-null fields of620

the constructed class have been set to non-null values. This type system can be viewed as an621

accumulation analysis: the goal transition is the end of the constructor, and the enabling622

operations are the setting of the fields.623

4.2.1.2 Examples of Typestate Problems That Are Not Accumulation624

The most common non-accumulation typestate problem is “don’t read or write to a stream625

or file after it is closed” (Figure 9), which appeared 31 times across 17 papers [24, 8, 10, 46,626

25, 57, 5, 6, 53, 34, 44, 19, 71, 45, 69, 68, 11]. This problem is related to the file specification627

in Figure 1, but is slightly weaker—it assumes that the file is never re-opened. That this628

example is not accumulation demonstrates that accumulation typestate automata are a629
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nonenew Builder()

foo

bar

allerror

setFoo()

setBar()

build()

setFoo()

setBar()
build()

setFoo()

setBar()

build()

setFoo(), setBar(),

build()

Figure 8 The typestate automaton for setting the required fields of an object before it is built,
which is an accumulation typestate problem. This instance of the general pattern is specifically for
a builder-pattern-style object construction pattern of a class with two required fields foo and bar.

open closed error
close()

read(),

write()

close()read(), write()

Figure 9 The typestate automaton for not reading or writing a stream after it has been closed,
which is not an accumulation typestate problem.

different category than automata without loops other than self-loops (a category that includes630

both this one and the three accumulation typestate examples in section 4.2.1.1).631

“Do not update a collection while iterating over it” (Figure 10) appeared 21 times across632

14 papers [9, 65, 47, 26, 51, 68, 8, 10, 33, 32, 52, 53, 7, 46]. This property is representative of633

an important class of properties that are never accumulation typestate systems: “disable x634

after y” properties that forbid the programmer from performing operation x once operation y635

has been performed. The key reason that these properties cannot be checked without aliasing636

information—and are therefore not accumulation—is that that the “disabling” operation637

(“start iterating” in this example) might be performed through any alias, but once it occurs,638

“update” must be prevented for all aliases.639
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stop’d it’ing error

start iterating

stop iterating

update

next()update, next()

Figure 10 The typestate automaton for not updating a collection during iteration, which is not
an accumulation typestate problem. Note that this automaton includes operations that are not
method calls (e.g., “start iterating”, which can refer to a while loop, a for loop, a map or filter
operation, etc.).

The classic full file specification (Figure 1) appeared 20 times across 19 papers [28, 70,640

59, 25, 29, 62, 67, 57, 69, 66, 1, 49, 16, 38, 2, 15, 72, 19, 20]. Some parts of this specification641

could be enforced with an accumulation analysis if a slightly different design had been chosen642

for the API. In particular, if files could not be re-opened once they had been closed, enforcing643

“only call close after open” and “only call read after open” would become accumulation644

properties. Since most programmers usually create a new File object rather than re-using645

an existing one, this restriction would not be particularly burdensome, but would enable646

easier analysis.647

4.2.2 Papers With Many Typestates648

This section discusses two papers that report on large collections of typestate automata.649

4.2.2.1 Patterns in Property Specifications for Finite-State Verification650

The first paper reports on 555 typestate-like specifications collected from a survey of 34651

papers from the scientific literature, verification tool authors, and students in 1999 [18].652

These 555 specifications were not de-duplicated. This paper inspired us to conduct the653

updated survey in Section 4.2.1. Because it precedes the start date for our survey, it is not654

included in the 187 papers in Section 4.2.1. We include its data here for completeness, and655

to discuss the differences between their results and ours (Section 4.3).656

The primary goal of the paper was to categorize “finite-state properties”—that is, those657

expressible as finite-state machines—into patterns to help users of verification tools that take658

an FSM as input (such as typestate verifiers) create their own specifications by instantiating659

existing patterns. They categorized 511 of the 555 specifications into eight “patterns.” Our660

analysis of these patterns is that instances of 5 of the 8 are always accumulation typestate661

systems (Existence, Precedence, Chain Precedence, Response, Chain Response), and some662

instances of a 6th (Bounded Existence, when the property is “at least” rather than “exactly”663

or “at most”) are, as well. The 5 “always accumulation” patterns account for 306 of the 511664

specifications that were categorized (60%).665

4.2.2.2 An Empirical Study of Object Protocols in the Wild666

The second paper [4] studies the object protocols—that is, the behavioral specifications—of667

all classes in four large, open-source Java projects (one of which is the Java standard library).668
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They also categorized these specifications based on common characteristics, much like the669

previous study, but they created their own set of categories.670

The found 648 object protocols, which were not de-duplicated. We exclude their “type671

qualifier” category (106 specifications), which contains classes that behave as one of a fixed672

set of subtypes and can never change state. The remaining 542 protocols are typestate673

specifications.674

Instances of their most common category, Initialization, are always accumulation typestate675

specifications. This category contains 182 of the 542 protocols (34%). The other 6 categories676

(66%) are not accumulation.677

4.3 Discussion678

Both of the papers that reported on large sets of typestate properties included larger679

proportions of accumulation properties than our literature survey found otherwise. One680

possible explanation is that papers on novel analysis techniques tend to include “exciting” or681

“challenging” problems—and, in the case of general typestate analysis, those problems usually682

involve aliasing (perhaps to justify the need for an alias analysis when analyzing an arbitrary683

typestate system, as we do in Section 1 in reference to Figure 1). Another possible explanation684

is that neither of the papers that reported on large sets of specifications de-duplicated their685

specifications, so maybe they contain many duplicate accumulation properties. When we686

de-duplicated the specifications in Section 4.2.1, we found that non-accumulation typestate687

properties tended to be duplicated more often than accumulation typestate properties. This688

suggests that our results may be understating the prevalence of accumulation properties. If689

our results understate how common accumulation properties are in practice, that is good690

news for practitioners interested in applying verification: we have shown that accumulation691

properties are easier to check than general typestate properties.692

Beckman et al. [4] is the most relevant to practical programmers interested in deploying693

accumulation analysis. A promising avenue of future work would be a similar study to694

Beckman et al.’s [4] (section 4.2.2.2) on a larger corpus of software combined with automation695

of our decision procedure for checking whether a typestate specification is accumulation,696

which would permit a more reliable estimate of the percentage of typestate specifications697

that appear in practice that are accumulation.698

Another observation is the relationship between different typestate specifications of the699

same type. For example, three of the examples we gave in Section 4.2.1 are applicable to File700

objects: resource leaks (Figure 6), the classic file specification (Figure 1), and reading/writing701

a closed file (Figure 9). Enforcing all these properties with a single typestate analysis702

would necessarily require alias analysis, but enforcing just the resource leak property does703

not—and the same might be true of other partial specifications, such as “only call read704

after open”—especially if files cannot be re-opened after being closed. We suspect this may705

be a reason why prior work did not identify a category equivalent to accumulation: many706

accumulation properties are sub-properties of the full typestate specification of the relevant707

type. That said, accumulation properties are often interesting on their own—resource leaks,708

for example, are harder to detect dynamically than most other types of misuses of files—and709

we have shown that they are easier to enforce statically.710
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5 Practicality of Accumulation Analysis711

We implemented a general accumulation checker for Java using the Checker Framework [48]712

and have made it publicly available.11 We have re-implemented the bespoke “accumulation713

for the builder pattern” analysis from our prior work [35] on top of it, and our “accumulation714

for resource leaks” analysis [37] used the general infrastructure from its inception. An715

accumulation analysis could be implemented modularly using any sound program analysis716

technique: dataflow analysis, abstract interpretation, type systems, etc. We chose a type717

system for convenience, and because types are naturally modular: type annotations on718

procedure boundaries and fields act as summaries, and local type inference infers operations719

that may have occurred within each procedure. Our implementation tracks enabling sets720

rather than enabling sequences (see Section 3.4).721

We tested our implementations on the test suites of the bespoke analyses from our prior722

work and on the case studies that those papers describe, and found that the implementations723

using the common framework produced the expected results. The test suites contain both724

positive examples (i.e., expected errors) and negative examples (i.e., safe code). The test725

suites consist of 153 source files comprising 5,452 lines of non-comment, non-blank Java code.726

The case studies together comprise 635,006 lines of non-comment, non-blank Java code.727

Our prior work also demonstrates the utility and practicality of accumulation analyses728

(see Section 6.1). Here are some examples from prior work:729

An accumulation analysis for verifying the absence of an initialization-related security730

vulnerability had 100% recall (as this paper proves, the accumulation analysis was731

sound!) and 82% precision—16 true bugs vs. 3 false positives—in 9 million non-comment,732

non-blank lines of Java code (table 1 of [35]).733

An accumulation analysis for verifying the absence of resource leaks had 100% recall and734

26% precision on 3 pieces of distributed-systems infrastructure used as a benchmark by735

prior work (table 4 of [37]). This compares favorably to the 13% recall and 25% precision736

achieved by an unsound heuristic bug-finder and the 7% recall and 50% precision achieved737

by a state-of-the-art typestate-based analysis that uses a (very slow) whole-program alias738

analysis. This precision might seem disappointing for a bug-finding tool, but we think it739

is acceptable for a verification tool — especially for an important and difficult problem740

such as resource leaks.741

If the low precision of 26% for resource leaks is primarily due to lack of whole-program alias742

analysis—that is, if precision is much higher with comprehensive aliasing information—then743

there might be little point in running an accumulation analysis: it might be better to run a744

slow standard typestate analysis and reduce the human effort to examine false positives. This745

is not the case, however. We examined each false positive in [37] to determine its cause. Even746

with a hypothetical alias analysis that can reason precisely and flow-sensitively about the747

contents of collection data structures like lists or maps (which is known to be very challenging),748

the typestate analysis would achieve only 34% precision. A more realistic state-of-the-art749

(and still slow) alias analysis would give less than half of that benefit. Proving the absence750

of resource leaks is a difficult problem, and aliasing is not the only complication—other751

significant causes of false positives included bugs in the underlying analysis platform, the752

need to reason about nullness, and the need to reason about boolean logic.753

11 https://checkerframework.org/manual/#accumulation-checker
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5.1 Aliasing in Practical Accumulation Analyses754

A benefit of the accumulation analysis approach is that the core accumulation analysis755

(Definition 4) is sound even without any alias reasoning, by Corollary 10. But it is easy756

to utilize aliasing information that is readily available (or cheap to compute) to improve757

precision. In practice, using some aliasing information is necessary to achieve acceptable758

precision, and untracked aliasing is usually the single biggest cause of remaining false positives759

even after acceptable precision has been achieved.760

Our prior work [35, 37] used cheap, targeted must-alias reasoning to improve the precision—761

that is, the false positive rate—of the analyses. For example, section 4.3 of [35] and sections762

3–5 of [37] give lightweight aliasing analyses. These lightweight alias analyses compute only763

the aliasing information necessary to remove false positives that occurred in practice for764

these analyses, which makes them much cheaper than computing precise aliasing information765

for all variables (of types with typestate automata) in the program, as a whole-program alias766

analysis would.767

Our general accumulation checker includes both the suite of built-in cheap sound must-768

alias analyses from prior work and hooks for analysis developers to add further aliasing769

information.770

5.2 Handling Other Features of Real Programming Languages771

The core calculus in section 3.3.1.1 does not model features that are present in a practical772

programming language, including unanalyzed dependencies, open programs, class definitions,773

conditionals, inheritance, etc. Our formalism already handles some of these: for example,774

handling conditionals requires a may-aliasing oracle and estimated sets of typestates rather775

than a single typestate, both of which our formalism includes. Extending our proofs to other776

features is straightforward and does not require new proof techniques.777

An advantage of accumulation analysis is that in practice it is possible to soundly handle778

code with unknown or “arbitrarily-bad” effects—including unmodeled features of the target779

language—by reverting to a safe default, in the same manner as an abstract interpretation780

might “go to top” in the presence of side effects. For example, if a call to an un-analyzed781

method might re-assign a field, an accumulation analysis can conservatively assume that782

that field’s value is in the typestate automaton’s start state after the call. This is sound783

as a consequence of Lemma 15 and the definition of accumulation (in the same manner784

as Lemma 16): the start state is necessarily a sound default assumption, because all goal785

transitions must be forbidden in it.786

By contrast, in a non-accumulation typestate system it is not sound to fall back to the787

automaton’s start state. For example, consider the File example in Figure 1: the start state788

is closed, where open() is a legal call. But treating all field reads as returning closed files789

would not be sound, because if the underlying File value was actually in the open state, a790

sound analysis should issue an error for a subsequent call to open().791

An advantage of our choice of a pluggable type system to implement our accumulation792

analyses is that the “start state” of a field can be changed by changing its declared type to793

specify a different typestate. This restricts that field to only contain values whose typestates794

are in the states reachable from the declared typestate—that is, the sub-automaton composed795

of states reachable from the declared type. For the accumulation analyses we implemented,796

we found that this ability to refine a field’s declared type to be sufficient to enable precise797

analysis of field reads.798
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6 Related Work799

6.1 Previous Work on Accumulation800

Our prior work [35, 37] uses accumulation analyses to solve specific typestate-like problems801

(object initialization via the builder pattern and resource leak prevention). One of these [35]802

gives an informal relationship between accumulation and typestate: we claimed that a803

typestate automaton can be checked with an accumulation analysis if “(1) the order in which804

operations are performed does not affect what is subsequently legal, and (2) the accumulation805

does not add restrictions; that is, as more operations are performed, more operations become806

legal.” We did not substantiate this definition with a proof, and it is not quite equivalent to807

the definition of an accumulation typestate system we use in this paper, which does permit808

some kinds of ordering properties (see Section 3.4). This paper makes more precise claims809

and provides a proof that the analyses are sound (Corollary 10).810

6.2 Heap Monotonic Typestates811

Heap-monotonic typestates [22] are a class of typestate that, like accumulation typestate812

systems, do not require aliasing information for soundness. A heap monotonic typestate813

system is one in which the statically observable invariants of the relevant type become814

monotonically stronger as an object transitions through its typestates. Every heap-monotonic815

typestate system is an accumulation typestate system.816

The present work goes further than the work on heap-monotonic typestates in three817

important ways. First, we have shown exactly which typestate systems (the accumulation818

typestate systems) can be checked without aliasing; heap-monotonic typestate systems were819

proven to be sound without aliasing information, but not proven to encompass all typestate820

systems that can be soundly checked without aliasing. Second, we have surveyed the literature821

to locate examples of typestate systems that can be checked soundly without aliasing; the822

paper on heap-monotonic typestates gives a few examples, but no procedure for discovering823

more. Third, we have implemented practical accumulation analyses: the prior work on824

heap-monotonic typestates was, to the best of our knowledge, entirely theoretical.825

6.3 Other Categories of Typestate Systems826

Others have identified interesting sub-categories of typestate systems that may be amenable827

to different kinds of analysis. While as far as we are aware we are the first to identify828

the accumulation typestate systems, the omission-closed typestate systems [23] are a close829

relative. An omission-closed typestate system is one in which every subsequence of every830

valid (i.e., not ending in the error state) path is also a valid path. In other words, omission-831

closed properties are those whose valid paths are closed under subsequence. By contrast,832

accumulation typestate systems are those whose error-inducing paths are closed under833

subsequence, if the last error-inducing transition is held constant. Unlike accumulation834

typestate systems, not all omission-closed typestate systems can be checked soundly without835

aliasing: for example, the typestate system for a File object whose FSM is defined by the836

regular expression “read*;close” is omission-closed, but cannot be checked soundly without837

aliasing information, because it is an error to call “close” more than once—or, put another838

way, “close” disables itself. Omission-closed typestate properties are of interest because they839

can be verified in polynomial time for shallow programs—programs where all pointers are840

“single-level”: that is, where no pointer refers to a value that itself contains a pointer.841
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6.4 Typestate Surveys842

Section 4.2.2 describes two previous papers that report on large quantities of typestate843

specifications [4, 18]. We have extended their work by surveying 101 papers that neither of844

those works considered and locating all typestates within them, and by identifying which845

typestate systems are accumulation typestate systems.846

6.5 Practical Typestate Analyses847

There have been many attempts to improve the scalability of typestate analyses. We mention848

only some of the most recent here. Rapid [21] is a modern typestate analysis built at AWS.849

Rapid’s scalability is a design choice: it is intentionally unsound and therefore scales by850

not tracking all aliasing. Another recent example is Grapple [72], which uses a novel graph-851

reachability algorithm and a modern alias analysis together. Some of Grapple’s optimizations852

make it unsound despite access to aliasing information. Because Grapple does track aliasing,853

it scales much poorly than accumulation-based systems: for example, Grapple is more854

than an order of magnitude slower than an accumulation-based approach to resource-leak855

detection [37].856

6.6 Typestate With Aliasing Restrictions857

Another method to avoid the need to do an expensive whole-program alias analysis is to limit858

the programmer’s use of aliasing. Examples include linear or affine type systems [16, 61], role859

analysis [40], ownership types [14, 55], and access permissions [7]. Accumulation analyses,860

unlike all of these approaches, do not impose any restrictions on the programming model.861

6.7 Other Work on Typestate862

Typestate is well-studied in the scientific literature, and there is not space to give a full863

survey here. However, our artifact12 mentions all the papers that we examined as part of864

our literature survey (Section 4).865

7 Conclusion866

Soundly checking an accumulation typestate system is significantly cheaper than soundly867

checking an arbitrary typestate system because it is not necessary to compute exhaustive868

aliasing information. Since the expense of computing exhaustive aliasing information has869

been a key barrier for the adoption of sound typestate analyses in practice, we believe that870

accumulation analysis is a promising approach for the estimated 41% (Table 1) of typestate871

specifications that are actually accumulation typestate specifications. Typestate analysis872

designers or users can use our work to check whether their specification is an accumulation873

typestate specification, and if it is, they can use an accumulation analysis—gaining an order874

of magnitude or more in analysis speed at only a small cost in precision.875

12 https://doi.org/10.5281/zenodo.5771196
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A Proof of Lemma 151085

This appendix contains the full proof of Lemma 15, which appears in section 3.3.1.6 and is1086

used by Lemma 16, the forwards direction of the proof of Theorem 9. We begin by restating1087

Lemma 15:1088

I Lemma 15. Let R = φs(xi) be the set of estimated typestates produced by a typestate1089

analysis with no aliasing information for a variable xi before a statement s. Let S be the1090

trace of an arbitrary execution leading up to some occurrence of s, and let t = τ(ρ(xi)) be1091

the typestate of the actual value to which xi refers before that occurrence of s. Applying S to1092

the automaton leads to typestate t. There exists a typestate r ∈ R such that applying some1093

subsequence of S leads to r. That is, there is some estimated typestate r ∈ R that is reachable1094

by a subsequence of the transitions that lead to t.1095

The proof is by co-induction on the dynamic semantics of the language in Figure 2 and1096

the definition of a typestate analysis with no aliasing information in Definition 14, with one1097

change to its rule for load operations (rule TS-LOAD-FIX in Figure 5). In particular, the1098

load rule our typestate analysis with no aliasing uses in this proof is the following:1099

For a load statement s, where s is xi := xj.fk, let s0 be the start state of the automaton1100

A which is being checked. The analysis updates its estimate for xi so that it is mapped1101

to s0: φ′

s(xi) := so. For all other names m in φs where m 6= xi, the analysis copies the1102

entry from the previous abstract store: φ′

S(m) := φs(m).1103

(See the discussion of why this modified rule is necessary in section 3.3.1.6, after the1104

original statement of Lemma 15.)1105

Proof. Base case: when a program begins executing, the dynamic semantics say that all1106

names refer to values in the start state. A typestate analysis with no aliasing information1107

estimates that at a program’s entry point, all names are in the start state, as well. Trivially,1108

the start state is reachable by the same sequence of operations as itself.1109

Case assignment: For an assignment s, where s is xi := xj , the invariant is preserved1110

by the inductive hypothesis. Consider that by the inductive hypothesis, the invariant is1111

preserved for xj . Then consider the rule used by the typestate analysis with no aliasing1112

information for an assignment: every mention of xi in the abstract store is replaced by xj .1113

Further, the dynamic semantics for an assignment require that the previous value of xi is no1114

longer accessible via xi: xi after the assignment refers only to xj . Since xi and xj after the1115

assignment are treated entirely the same, but the abstract store is otherwise unchanged by1116

the analysis, what was true of xj before the statement is true for xi after.1117

Case load: The special load rule TS-LOAD-FIX trivially guarantees that the invariant1118

is preserved: the start state is reachable by a subsequence of the operations that reach any1119

other state (in particular, by the empty subsequence).1120

Case store: This rule trivially preserves the invariant, because the invariant must be1121

maintained only for the estimates for variables—not for fields—and rule TS-STORE only1122

updates estimates for fields.1123



M. Kellogg, N. Shadab, M. Sridharan, M. D. Ernst 10:31

Case method call: For a method call s = xi.mj(), only steps 1 and 2 of rule TS-CALL1124

are applied, because a typestate analysis with no aliasing information never performs strong1125

or weak updates on possible aliases. The invariant is preserved via the inductive hypothesis:1126

for xi itself, let r1 be the element of R that is reachable by a subsequence of the actual1127

sequence S in the inductive hypothesis. The analysis updates its estimate to include r1 + mj1128

(that is, the sequence r1 followed by the transition mj). After s is executed, the actual1129

sequence is S + mj , and since we know that r1 is reachable by a subsequence of S, r1 + mj1130

must be reachable by a subsequence of S + mj—the same subsequence used to reach r1,1131

with mj added on. For any aliases of xi, the inductive hypothesis also guarantees that the1132

invariant holds: the estimate contains some r that is a subsequence of S, and any subsequence1133

of S is also a subsequence of S + mj .1134

Case sequence: For a sequence, the invariant is trivially preserved by induction.1135
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