
Automatic Root Cause Quantification for Missing1

Edges in JavaScript Call Graphs2

Madhurima Chakraborty �3

University of California, Riverside4

Renzo Olivares �5

University of California, Riverside6

Manu Sridharan �7

University of California, Riverside8

Behnaz Hassanshahi �9

Oracle Labs Australia10

Abstract11

Building sound and precise static call graphs for real-world JavaScript applications poses an12

enormous challenge, due to many hard-to-analyze language features. Further, the relative importance13

of these features may vary depending on the call graph algorithm being used and the class of14

applications being analyzed. In this paper, we present a technique to automatically quantify the15

relative importance of different root causes of call graph unsoundness for a set of target applications.16

The technique works by identifying the dynamic function data flows relevant to each call edge missed17

by the static analysis, correctly handling cases with multiple root causes and inter-dependent calls.18

We apply our approach to perform a detailed study of the recall of a state-of-the-art call graph19

construction technique on a set of framework-based web applications. The study yielded a number20

of useful insights. We found that while dynamic property accesses were the most common root cause21

of missed edges across the benchmarks, other root causes varied in importance depending on the22

benchmark, potentially useful information for an analysis designer. Further, with our approach, we23

could quickly identify and fix a recall issue in the call graph builder we studied, and also quickly24

assess whether a recent analysis technique for Node.js-based applications would be helpful for25

browser-based code. All of our code and data is publicly available, and many components of our26

technique can be re-used to facilitate future studies.27

2012 ACM Subject Classification Theory of computation → Program analysis28

Keywords and phrases JavaScript, call graph construction, static program analysis29

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.330

Related Version Extended Version: https://arxiv.org/abs/2205.0678031

Funding This research was supported in part by a gift from Oracle Labs and by the National32

Science Foundation under grant CCF-2007024. This research was partially sponsored by the33

OUSD(R&E)/RT&L and was accomplished under Cooperative Agreement Number W911NF-20-2-34

0267. The views and conclusions contained in this document are those of the authors and should35

not be interpreted as representing the official policies, either expressed or implied, of the ARL and36

OUSD(R&E)/RT&L or the U.S. Government. The U.S. Government is authorized to reproduce and37

distribute reprints for Government purposes notwithstanding any copyright notation herein.38

1 Introduction39

Effective call graph construction is critically important for JavaScript static analysis, as40

JavaScript analysis tools often need to reason about behaviors that span function boundaries41

(e.g., security vulnerabilities [26, 27] or correctness of library updates [40]). Unfortunately, call42

graph construction for real-world JavaScript programs poses significant challenges, particularly43

© Madhurima Chakraborty, Renzo Olivares, Manu Sridharan, and Behnaz Hassanshahi;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 3; pp. 3:1–3:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany



3:2 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

Program 

Instrumented 

execution

Dynamic 

flow trace

Dynamic 

call graph

Static 

call graph

Static flow 

graph

Call graph 

comparison
Missing 

edges

Trace 

filtering

Dynamic 

copies

Flow 

graph 

matching
Root cause 

labeling
Missing 

flows

Precision/ 

Recall

Harness

Static CG 

Builder

Root 

causes

Figure 1 Overview of our methodology.

for client-side code in web applications. Modern web applications are increasingly built using44

sophisticated frameworks like React [4] and AngularJS [6].1 Sophisticated recent JavaScript45

static analysis frameworks [32, 33, 36, 52] often focus on sound and precise handling of46

complex JavaScript constructs. While these systems have advanced significantly, they cannot47

yet scale to handle modern web frameworks. There are also a growing number of unsound48

but pragmatic call graph analyses designed primarily to give useful results for real-world49

code bases [8, 25, 40, 44]. While these techniques have been shown effective in certain50

domains, their unsoundness can lead to missing many edges when analyzing framework-51

based applications [27], i.e., the analyses can have low recall. For bug-finding and security52

analyses, these missing edges are of key concern as they can lead to false negatives like missed53

vulnerabilities.54

To guide development of better call graph builders, it would be highly useful to know55

which language constructs are contributing most to reducing recall for a set of benchmarks of56

interest. JavaScript has many different constructs that are typically ignored or only partially57

handled by pragmatic static analyses, due to their dynamic nature [49]. Further, there58

are complex tradeoffs involved in adding support for these constructs, as a more complete59

handling may lead to scalability and precision problems. Analysis designers aiming to improve60

results for a set of benchmarks would be helped by quantitative guidance on the relative61

importance of different unhandled language features.62

This paper presents a novel technique for automatic root cause quantification for missing63

edges in JavaScript call graphs. figure 1 gives an overview of our technique. Given a program,64

a static call graph builder enhanced to also export static flow graphs (see Section 2.2), and a65

harness for exercising the program, our technique automatically finds missing flows, data66

1 A recent Stack Overflow developer survey shows popularity of these frameworks is growing, with total
usage surpassing older libraries like jQuery [56].



M. Chakraborty et al. 3:3

flows of function values that occur at runtime but are not modeled by the static analysis.67

Our technique associates a set of missing flows with each missed call graph edge, thereby68

indicating which data flows must be handled by the static analysis to discover the missed69

edge. The technique correctly accounts for inter-dependent calls, where a call graph edge is70

missing due to the absence of other call graph edges.71

We further observe that given a missing flow, one can often automatically determine a root72

cause label for the flow, indicating which unhandled language construct(s) were responsible73

for the flow being missed. Such labeling can be performed at different levels of granularity,74

depending on what level of detail is desired by the analysis designer. Given logic to map75

missing flows to root cause labels, our technique automatically quantifies the prevalence of76

each root cause for the desired benchmarks.77

We have implemented our techniques, and we used them to study the recall of two variants78

of the approximate call graphs (ACG) algorithm of Feldthaus et al. [25], as implemented in79

the WALA framework [58], on a suite of modern web applications. We found the root cause80

quantification to provide useful insights, in particular:81

To our surprise, a large initial cause of low recall was the lack of models in WALA for a82

variety of built-in library functions. By adding models, we were able to increase recall by83

up to 5 percentage points.84

After fixing the native models, dynamic property accesses were the largest root cause85

of low recall, at 70%. The second-largest root cause varied significantly across the86

benchmarks.87

We applied a finer-grained root cause labeling for dynamic property accesses, and found88

that their property names are computed in a wide variety of ways, with no single dominant89

pattern. We studied the potential of a recently-described recall-improving technique for90

dynamic property accesses in Node.js programs [44], and found that it would at best have91

a small impact for our web-based benchmarks.92

Our dynamic call graph and flow trace analyses were challenging to implement due to93

JavaScript’s hard-to-analyze language features. JavaScript includes many difficult-to-analyze94

features, including (but not limited to) reflective call mechanisms, “native” library methods,95

getter/setter methods, and dynamic code evaluation. Pragmatic static analyses often ignore96

most of these features, as they do not aim for sound results. However, since we aimed to97

study which calls were missed by such analyses and why those calls were missed, our dynamic98

analyses had to faithfully capture the behavior of these features, and thereby incurred99

significant additional complexity (see section 4.2).100

All of our code and data is publicly available in an artifact [21]. Our infrastructure is101

reusable and could be applied to study other static analyses, other benchmarks, and other102

platforms (e.g., Node.js). Together, our infrastructure, methodology, and results can help103

guide the design of future analyses targeting real-world JavaScript code.104

Contributions This paper makes the following contributions:105

We present a novel approach to quantifying the importance of language features causing106

low recall in JavaScript call graphs. The approach properly handles missing call graph107

edges with multiple root causes, and also inter-dependent calls, where an edge is missing108

due to the absence of another edge.109

We describe implementations of a dynamic call graph and dynamic flow trace analysis of110

function values for JavaScript, both of which handle several hard-to-analyze JavaScript111

features.112

ECOOP 2022



3:4 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

We present results and key observations from applying our techniques for the ACG113

algorithm [25] and a suite of framework-based web applications.114

The remainder of this paper is organized as follows. Section 2 provides background, and115

Section 3 describes our dynamic analyses. Section 4 presents our technique for automatically116

discovering root causes for missing edges. Section 5 gives details of our implementation.117

Section 6 describes the setup of our study, and Section 7 presents our results. Section 8118

discusses related work, and Section 9 concludes.119

2 Background120

We first give some background on challenges for JavaScript static analysis and on call graph121

construction.122

2.1 JavaScript analysis challenges123

JavaScript programs often pose particularly difficult challenges for static analysis. JavaScript124

includes numerous dynamic and reflective language features that are difficult to analyze, and125

unfortunately these features are used often in practice [49]. We briefly present such features126

here; see previous work for detailed discussions (e.g., [30, 46, 49, 55]). Tricky features include:127

Dynamic Property Accesses: JavaScript object fields, or properties, can be accessed128

using the syntactic form x[e], where e is an arbitrary expression evaluating to a string129

property name. Determining what memory locations may be accessed by an expression130

x[e] (fundamental to tracking data flow) can be a significant analysis challenge. Further,131

if e evaluates to a property name that does not exist on x, a write to x[e] creates the132

property rather than failing, making precise analysis even more challenging.133

Eval: JavaScript allows for evaluating arbitrary strings as code at runtime, most com-134

monly via its eval construct or the Function constructor. This dynamically-evaluated135

code is known to pose significant problems for static analysis [30, 48].136

With: The with construct enables adding arbitrary variable bindings with a dynamically-137

constructed map [2]. As with eval, with usage complicates static analysis [46].138

Getters and Setters: A JavaScript property may be defined such that accessing the139

property actually invokes a getter or setter method with custom logic [12]. This feature140

makes it difficult to precisely identify the program locations where a function call can141

occur.142

Reflective Calls: JavaScript provides reflective methods to pass function parameters143

in flexible ways, e.g., binding the this parameter explicitly or passing arguments in an144

array [13]. Also, any function may read its formal parameters via a special arguments145

array, enabling variadic functions. Finally, any function may be legally invoked with any146

number of parameters, independent of how many formal parameters it declares. Together,147

these features complicate tracking of inter-procedural data flow.148

Native Methods: JavaScript and the web platform provide a large standard library149

whose implementation is typically opaque to static analysis; hence, models must be150

constructed for a large number of these “native” methods.151

While these root causes of difficult analysis are well known, our techniques enable152

measurement of their relative impact on call graph recall for a set of target benchmarks.153



M. Chakraborty et al. 3:5

2.2 Call graph construction154

In a static call graph, nodes represent program methods, and an edge from a to b means that155

a may invoke b at runtime.2 The utility of a computed call graph CG can be measured in156

terms of precision and recall. Precision measures the number of infeasible edges in CG (edges157

for calls that cannot occur in any execution), while recall measures the number of feasible158

call edges (those that can occur in some execution) missing from CG. Recall will be 100%159

for any sound call graph construction technique, but as noted in Section 1, many practical160

techniques sacrifice soundness for improved scalability and precision. It is undecidable to161

compute the “ground truth” of possible calls for an arbitrary program, required to measure162

precision and recall perfectly. Our evaluation (and previous work [25, 44, 51, 57]) proceeds163

by exercising benchmarks using a best-effort process and then studying recall using the164

measured dynamic behaviors.165

Static Flow Graphs Our technique also relies on obtaining a static flow graph from the166

static call graph analysis, to determine what dynamic data flow of function values was missed167

by the static analysis (see Figure 1 and further discussion in Section 4). In a flow graph,168

each node represents either a memory location (variables, object properties, etc.), a function169

value, or a call sites. Edges in the flow graph are defined as follows: if the call graph analysis170

determines that a function value may be read from (abstract) memory location m1 and171

then written to location m2 (i.e., it may be directly copied from m1 to m2), the static flow172

graph should include an edge from m1 to m2. So, flow graph edges should capture observed173

assignments of function values into variables and object properties, and passing of function174

values as parameters or return values to capture inter-procedural data flow. Additionally, for175

a call mi(...), the flow graph should contain an edge from mi to a “callee” node for the call176

site (see example below). With this construction, the static call graph should have an edge177

from call site s to function f iff there is a path from f to the callee node for s in the flow178

graph.179

Graph representations are standard in analyses that track data flow [54]. Further, any180

realistic JavaScript call graph construction algorithm must track function data flow, as181

JavaScript provides no basis for a cheaper technique (functions cannot be coarsely matched182

to possible call sites using types or even function arity). Hence, we expect extraction of flow183

graphs from JavaScript call graph analyses will be straightforward.184

Example Figure 2 gives a small running example for illustrative purposes. Line 4 creates an185

object with two fields MyName and MyPhone, respectively holding functions f1 and f2. Line 5186

reads and invokes f1 using a static property access (the property name is syntactically187

evident), whereas line 6 reads and invokes f2 using a dynamic property access.188

Figure 3 shows the flow graph constructed by a variant of the call graph builder we189

study [25] for the Figure 2 example. Edges represent the possible flow of function f1 to the190

variable v1, then the object property MyName, and finally the call at line 5. Given this path,191

the static call graph includes an edge from main to f1. In contrast, the edge from the MyPhone192

property node to the call on line 6 is missing in Figure 3, due to the dynamic property access.193

Our approach can determine that this missing flow graph edge leads to a missing main-to-f2194

edge in the call graph, and further reason that a dynamic property access is the root cause195

of the missed edge.196

2 The call graph also includes information on which instruction in a, or call site, may invoke b.

ECOOP 2022



3:6 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

1 function main() {
2 var v1 = function f1() { return "John"; }
3 var v2 = function f2() { return "555-1234"; }
4 var obj = { MyName: v1, MyPhone: v2 };
5 obj.MyName();
6 obj["My" + "Phone"]();
7 }
8 main();

Figure 2 Small example to illustrate our techniques.

Func(f2)

Var(v2)

Prop(MyPhone)

Callee(6)

Func(f1)

Var(v1)

Prop(MyName)

Callee(5)

Figure 3 Flow graph for Figure 2. The red dashed edge is missing from the graph.

3 Dynamic Analyses197

Our technique uses dynamic analyses to determine calls and data flows of function values198

occurring in executions of a program; this information is then compared with that in the199

static call graph and flow graph to detect missing flows (see Section 4). Here we describe the200

dynamic analyses at a high level; we discuss implementation challenges related to complex201

JavaScript language constructs (such as those listed in Section 2.1) in Section 5.202

Dynamic Call Graphs A dynamic call graph captures the calls that occurred in an execution203

(or set of executions) of a program. As with static call graphs, nodes represent program204

methods and edges represent invocations between methods. At a high level, constructing dy-205

namic call graphs only requires recording the actual functions invoked at each call instruction206

in some suitable data structure, and this type of analysis has been built many times before,207

including for JavaScript [29]. However, our analysis goes further by exposing call-related208

behaviors of some of the tricky JavaScript constructs outlined in Section 2.1, crucial for a209

more complete understanding of static call graph recall.210

Dynamic Flow Traces Beyond dynamic call graphs, our technique requires dynamic flow211

traces to find gaps in the data flow reasoning of static call graph builders. A dynamic flow212

trace logs all data flow and invocation operations performed on function values. The trace213

includes an entry for each creation of a function value (e.g., an expression function () { ...214

}) and for each function call. It also includes an entry for each read or write of a function215

value to or from a variable or object property.216

As an example, here is an excerpt of the dynamic flow trace for the code in Figure 2217

(some details elided):218

Create(f1,2); VarWrite(v1,f1,2);219

Create(f2,3); VarWrite(v2,f2,3);220

VarRead(v1,f1,4); PropWrite(MyName,f1,4);221



M. Chakraborty et al. 3:7

VarRead(v2,f2,4); PropWrite(MyPhone,f2,4);222

PropRead(MyName,f1,5); Invoke(f1,5);223

PropRead(MyPhone,f2,6); Invoke(f2,6);224

225

Each entry includes information on the function value being accessed and the location of226

the access (here, line numbers). For property accesses, our traces only record the accessed227

property name, as the call graph techniques we studied in our evaluation do not distinguish228

base objects of accesses. The trace could easily be extended to include base object identifiers229

if needed to study other analyses.230

For handling of higher-order functions, the trace includes entries for parameter passing231

and returns of function values. A call passing a function as a parameter is treated as a232

“write” of a parameter variable, which can be read via the formal parameter in the callee.233

For returns, a return statement “writes” a special variable associated with the function’s234

return value, which is “read” at the corresponding call site.235

4 Missing Flow Detection236

In this section, we describe our technique for discovering the missing flows explaining why a237

static call graph is missing an observed dynamic call graph edge. See Figure 1 for our overall238

architecture. Given a dynamic flow trace for a program, we first post-process the trace to239

discover the relevant dynamic copies for a function call (Section 4.1). Then, our technique240

matches these dynamic copies to the static flow graph, and automatically computes the241

missing flows relevant to each missing call edge (Section 4.2).242

4.1 Finding Relevant Dynamic Copies for a Call243

Given a dynamic flow trace and an invocation of function f at a call site, our technique244

computes the dynamic copies by which f was invoked at the site. Dynamic copies capture245

data flow of function values at runtime—they are the dynamic analogue of the possible data246

flow captured in a static flow graph (Section 2.2). A dynamic copy captures one of three247

operations on function values: (1) the value is created and then stored in some memory248

location; (2) the value is copied from one memory location to another; and (3) the value is249

read from a location and invoked. By computing the relevant dynamic copies for a particular250

call, our technique can expose which data flows may have been missed by the static analysis.251

Pseudocode for finding relevant dynamic copies appears in Algorithm 1. We use sub-252

scripted t variables for trace entries. Given an entry tc for a call invoking function f in trace253

T , FindDynamicCopies computes a list C of the relevant dynamic copies, starting at the254

creation of f and ending at the call. Each dynamic copy is represented in the form tr′

tw

−→ tr,255

read as: the function was read from memory by tr′ , and then copied to the memory location256

read by tr, via write tw. The algorithm proceeds backwards through the trace, starting at tc257

and reconstructing step-by-step how f was copied through memory to reach the call site.258

Algorithm 1 first finds the read or create operation tr for f most closely preceding tc259

in the trace (line 3), corresponding to evaluation of e in an invocation e(...).3 C is then260

initialized with tr

invoke
−−−−→ tc, with the invoke label indicating this is not a true copy, but261

instead the invocation of f .262

3 In certain corner cases, the closest preceding operation may not be the correct one; we discuss further
under Limitations.

ECOOP 2022



3:8 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

Algorithm 1 Finding dynamic copies for a call.

1: procedure FindDynamicCopies(T , tc)

2: f ← function invoked by tc

3: tr ← PrecedingReadOrCreate(T, tc, f)

4: C ← [(tr

invoke

−−−−→ tc)]

5: while tr is not a Create operation do

6: tw ←MatchingWrite(T, tr, f)

7: tr′ ← PrecedingReadOrCreate(T, tw, f)

8: C ← (tr′

tw

−−→ tr) :: C

9: tr ← tr′

10: end while

11: return C

12: end procedure

13: procedure MatchingWrite(T , tr, f)

14: if tr reads variable x then

15: return PrecedingVarWrite(T, tr, f, x)

16: else if tr reads property prop then

17: return PrecedingPropWrite(T, tr, f, prop)

18: else if tr reads formal p of function f ′ then

19: // preceding invoke of f ′ passing f to p

20: return PrecedingInvoke(T, tr, f ′, f, p)

21: else if tr is return value of call to f ′ then

22: // preceding return of f from f ′

23: return PrecedingReturn(T, tr, f ′, f)

24: end if

25: end procedure

The loop at lines 5–10 discovers relevant dynamic copies by matching writes and reads263

backward in the trace. First, Line 6 finds the closest-preceding write operation tw that264

updated tr’s location, using the MatchingWrite procedure. MatchingWrite’s logic265

proceeds in cases, handing variables, object properties, formal parameters, and return values266

in turn. For a read of property prop, the pseudocode matches with the most recent write to267

prop on any object, matching the heap abstraction used by the call graph builder variants268

we study (see Section 6.1). For more precise call graph algorithms, the logic could easily be269

updated to also match the exact base object used in the property read operation. Once the270

matching write tw is discovered, line 7 finds the closest-preceding read or create tr′ , which271

“produced” f for the write, and prepends a dynamic copy tr′

tw

−→ tr to C.272

As an example, consider the call to f2 on line 6 in Figure 2. Here are the relevant trace273

entries for that call visited by Algorithm 1:274

Create(f2,3); VarWrite(v2,f2,3);275

VarRead(v2,f2,4); PropWrite(MyPhone,f2,4);276

PropRead(MyPhone,f2,6); Invoke(f2,6);277

278

Starting from the Invoke entry, the closest preceding read of f2 is the PropRead of MyPhone279

on line 6. So, C is initialized with PropRead(MyPhone,f2,6)
invoke
−−−−→ Invoke(f2,6). The280

matching PropWrite for the read occurs on line 4, and its closest preceding read of f2281

is the VarRead on line 4. Hence, we prepend a dynamic copy VarRead(v2,f2,4)
tw1

−−→282

PropRead(MyPhone,f2,6), where tw1
= PropWrite(MyPhone,f2,4). Proceeding similarly,283

we reach the creation point of f2 on line 3, prepend a dynamic copy Create(f2,3)
tw2

−−→284

VarRead(v2,f2,4), where tw2
= VarWrite(v2,f2,3), and terminate.285



M. Chakraborty et al. 3:9

Limitations286

Algorithm 1 assumes that the most-closely-preceding read of a function f in the trace matches287

the subsequent write or invocation involving f . In rare cases with parameter passing, this288

assumption may not hold, e.g.:289

290

1 function foo(p, q) { p(); }291

2 function bar() {}292

3 var x = bar;293

4 var y = bar;294

5 foo(x, y);295
296

Assume we are trying to discover the dynamic copies for the call to bar on line 1. Here is the297

relevant excerpt of the flow trace:298

...; VarWrite(x,bar,3); VarWrite(y,bar,4); VarRead(x,bar,5);299

VarRead(y,bar,5); Invoke(foo,5); VarRead(p,bar,1); Invoke(bar,1);300

For the final Invoke of bar, the closest-preceding read is of formal parameter p. The matching301

“write” is the Invoke of foo on line 5. From here, the closest-preceding read of bar is from302

variable y, which is not the parameter that gets passed in p’s position. Hence, the analysis303

will discover an infeasible dynamic copy from the read of y to the read of p. This simple case304

could be handled by using source locations during matching, but in cases involving recursion,305

dynamic call stacks would also need to be tracked. We did not observe this behavior in any306

of our benchmarks, so we chose to employ the simpler technique of Algorithm 1.307

In some cases, the dynamic flow trace may be missing entries relevant to dynamic copies,308

due to JavaScript features like native methods and with (Section 2.1) and also implementation309

limitations; see Section 5 for details. In such cases, our algorithm returns the subset of the310

relevant dynamic copies that it is able to reconstruct, and if possible notes a reason for its311

failure to find all copies.312

4.2 Flow Graph Matching313

Given relevant dynamic copies for a call c missed in the static call graph (discovered based314

on comparison with the dynamic call graph), we identify the missing flows for c by matching315

the dynamic copies to the static flow graph extracted from the call graph builder. (Section 2316

described static flow graphs, and Figure 3 gave an example.) Algorithm 2 gives pseudocode317

for finding missing flows in a static flow graph. The routine FindMissingFlows takes as318

inputs a list of dynamic copies C produced by FindDynamicCopies in Algorithm 1, a static319

call graph CG, and the corresponding static flow graph FG. Its result is a set of missing320

flows R, where each missing flow is one of three types: (1) MissingFGNode, indicating a node321

is missing in the flow graph, (2) MissingFGPath, indicating a path is missing in the flow graph,322

and (3) DependentCall, for when the absence of a flow is due to the absence of another call in323

the call graph.324

For a dynamic copy tr′

tw

−→ tr, the algorithm first tries to identify corresponding flow325

graph nodes fgSrc and fgDst (lines 4 and 5). In most cases, this matching is straightforward,326

done either by matching code entities or matching an accessed memory location to the flow327

graph node that abstracts it (we elide the details). In some cases, the flow graph may not328

have a matching node, e.g., due to use of eval or due to an unmodelled property name from329

a dynamic property access. In such cases, we record an MissingFGNode entry in the result330

(lines 6–11).331

If flow graph nodes fgSrc and fgDst are discovered, we next check for a path from fgSrc332

to fgDst in the flow graph (line 12). We must check for a path, rather than just an edge,333

ECOOP 2022



3:10 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

Algorithm 2 Finding missing flows in a flow graph for a call.

1: procedure FindMissingFlows(C,CG,FG)

2: R← ∅

3: for each dynamic copy tr′

tw

−−→ tr ∈ C do

4: fgSrc ← FlowGraphNode(FG, tr′ )

5: fgDst ← FlowGraphNode(FG, tr)

6: if fgSrc = null then

7: R← R ∪MissingFGNode(tr′ )

8: end if

9: if fgDst = null then

10: R← R ∪MissingFGNode(tr)

11: end if

12: if fgSrc ̸= null ' fgDst ̸= null 'NoPath(FG, fgSrc, fgDst) then

13: R← R ∪MissingFGPath(fgSrc, fgDst, tr′ , tw, tr)

14: end if

15: if tw is a call then

16: f ← function invoked by tw

17: if MissingFromCG(CG, tw, f) then

18: R← R ∪ DependentCall(tw, f)

19: end if

20: end if

21: end for

22: return R

23: end procedure

since the static analysis may use temporary variables and assignments not present in the334

source code. If no path is discovered, we note a MissingFGPath entry, retaining information335

about the dynamic copy to facilitate root cause labeling.336

As an example, consider again the call to f2 in Figure 2, and the corresponding dy-337

namic copies described in Section 4.1. In the Figure 3 flow graph for the code, there are338

matching nodes for all the copy locations, but there is no path matching the final copy339

PropRead(MyPhone,f2,6)
invoke
−−−−→ Invoke(f2,6). So, the single missing flow computed for340

this case is a MissingFGPath entry with the details of this dynamic copy. Given this informa-341

tion, a root cause labeler can discover that the flow was missed due to the dynamic property342

access; see Section 6.2.343

Dependent calls Lines 15–20 handle dependent calls, where a path corresponding to a344

parameter passing or return dynamic copy is missing from the flow graph due to some other345

missed call. Consider this example:346

347

1 function f() { ... }348

2 var x = { foo: function f2() { return f; } };349

3 var y = x["fo"+"o"]();350

4 y();351
352

For the optimistic ACG call graph algorithm we use in our evaluation (see Section 6.1), the353

calls to f2 at line 3 and to f at line 4 will be missing in the call graph. When finding missing354

flows for the line 4 call, a missing path for the function return dynamic copy at line 3 is355

discovered. However, the issue with the analysis is not that it does not model returns of356

function values; this flow was missed because the call target at line 3 was missed, so no flow357

could be discovered from the appropriate callee. Our discovery of missing flows must account358

for such cases, to enable accurate quantification of root causes.359



M. Chakraborty et al. 3:11

To handle dependent calls, Algorithm 2 checks at line 15 if the “write” operation for the360

copy was a call. (Recall from Section 3 that calls are treated as the writes for parameter361

passing or function returns.) If so, and if the static call graph is missing the relevant target362

for the call (line 17), we add a DependentCall missing flow to the result (line 18).363

When counting the frequency of root causes, for dependent calls, we reuse the root causes364

for one call as the root causes for the other. For the example above, the dynamic property365

access at line 3 is identified as the single root cause for the missing calls at lines 3 and 4. All366

results presented in Section 7 precisely account for dependent calls.367

Root Cause Labeling Given a set of missing flows, quantification of root cause prevalence368

requires attributing a root cause label to each missing flow. The root cause labels may be369

specific to the call graph construction algorithm being studied, and must be developed with370

knowledge of the soundness gaps in the algorithm. Additionally, root cause labeling may be371

performed with different levels of granularity, depending on what information is required by372

the analysis developer. In Section 6.2, we discuss the root cause labeling strategies used in373

our example study of the ACG call graph algorithm [25].374

5 Implementation375

Dynamic analyses We implemented our dynamic call graph (DCG) and dynamic flow376

trace analyses (Section 3) atop the Jalangi framework [53],4 which leverages source code377

instrumentation. While this instrumentation approach is more maintainable and portable378

than the alternatives, a downside is that the semantics of certain language constructs are not379

exposed in a straightforward way at the source level. In spite of source code instrumentation’s380

limitations, one of its primary advantages is that it does not require modification of a381

JavaScript engine. Production JavaScript engines in browsers are challenging to modify, for382

two reasons: (1) they have complex implementations, so any change will require considerable383

engineering effort; and (2) they evolve rapidly, making it difficult to maintain an analysis.384

We use Jalangi2 to instrument JavaScript programs with our analysis code because it is easy385

to maintain and can work across different JavaScript engines. The tool allows us to perform386

analyses even when certain fragments of the source code are not instrumented. Our analyses387

contain significant extra logic to capture the behavior of several hard-to-analyze constructs388

as accurately as possible, despite the limitations of source instrumentation.389

As an example, our DCG analysis exposes many callbacks from “native” library functions.390

Such callbacks occurred regularly in the benchmarks used in our study, e.g., using Function.391

prototype.call, as shown in this small example:392

393

1 function foo() { }394

2 foo.call(this);395
396

Line 2 invokes foo via call, but Jalangi does not expose the invocation directly, as it cannot397

instrument call. Instead, Jalangi exposes the invocation of call, followed by the start of398

execution in foo, but with no explicit invocation of foo. To handle such cases, our DCG399

analysis maintains its own representation of the call stack. Upon invocation of a native400

method, a marker for the method is pushed on the call stack. Then, at the entry of a401

(non-native) method, if the top of our call stack is a native method marker, we record the402

fact that a native callback occurred. For the above case, the dynamic call graph will include403

4 We use version 2 of Jalangi, available at https://github.com/Samsung/jalangi2.

ECOOP 2022



3:12 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

an invocation of the call native method at line 2, and also an invocation of foo from call,404

as desired.5405

Our DCG analysis also exposes getter and setter calls, and calls to and from dynamically-406

evaluated code. For getters and setters, the analysis detects their presence via a library407

API [1]. If a getter or setter is detected at a property access, it is treated as a call site and the408

call edge is recorded. We leverage Jalangi’s built-in support for dynamic code evaluation via409

eval or new Function; the relevant code string gets instrumented at runtime, so our analysis410

has visibility into calls into or out of such code.411

Our dynamic flow trace analysis also includes special handling of some challenging412

JavaScript features. The analysis distinguishes getters and setter calls using specially-marked413

Invoke entries, to enable tracking getter and setter use as a root cause. For uses of the414

arguments array to access parameters, we generate relevant property write entries at a function415

entry as “synthetic” entries (not corresponding to explicit source code). To handle eval-like416

constructs, any trace entry from the evaluated code includes a special source location marking417

it as from code executed via eval.418

JavaScript has a very broad set of features and native methods requiring special handling,419

and our dynamic analyses still do not model all such features. For the flow trace analysis, in420

certain cases a property write or read occurs in an unmodelled native method, and hence421

is missed in the trace. The analysis generates special entries to model memory accesses422

performed by commonly-used library methods, such as push and pop on arrays. We have not423

fully modeled all reflective constructs like Object.defineProperty [14]. Also, use of the with424

construct can thwart our technique, as it is not fully supported by Jalangi. (We note that all425

relevant uses of with in our benchmarks appeared within an eval construct,6 posing a severe426

challenge for static analysis.)427

In terms of performance, we implemented some optimizations to reduce the size of the428

dynamic flow trace for larger benchmarks. First, we limited tracing to only those function429

values that could be involved in a missing edge in the static call graph, based on the creation430

site of the function. Second, we track a unique identifier for each function value using431

Jalangi’s shadow memory functionality, and once the call site with the missing static call432

graph edge executes, we disable flow tracing for the corresponding value.433

To generate dynamic call graphs and flow traces, we exercised our benchmarks manually434

and recorded the actions as Puppeteer [15] automation scripts to allow for repeatable runs;435

Section 6.3 details the coverage obtained for benchmarks in our study.436

Missing Flow Detection The missing flow detection algorithms of Section 4 are implemented437

in 1154 lines of Python code. For the most part, detecting missing flows in the static flow438

graph given a dynamic flow trace was straightforward. Some effort was required to match439

source locations provided by WALA [58] for JavaScript constructs (our use of WALA is440

detailed in Section 6.1) with what was observed by the dynamic analyses. In the process441

of ensuring this matching was precise, we contributed a couple of fixes to WALA, and also442

found and fixed a longstanding issue with incorrect source locations in the Rhino JavaScript443

parser [5].7444

5 Our technique does not yet precisely handle cases with multiple levels of native calls, such as Array.
prototype.map.call(...); we plan to add further modeling for such cases in the future.

6 For example, see this code from the Knockout framework: https://tinyurl.com/1jxtrpz3
7 https://github.com/mozilla/rhino/pull/809



M. Chakraborty et al. 3:13

6 Study Setup445

Here, we detail the setup of our study of root causes of missed call graph edges for framework-446

based web applications. We describe the ACG call graph algorithm used in our study447

(Section 6.1), describe how we performed root cause labeling for this algorithm (Section 6.2),448

and then present our benchmarks and how they were exercised (Section 6.3).449

We note that the main purpose of our study was to show the potential of our techniques450

to give useful insights on the relative importance of different root causes for missed static451

call graph edges. We do not claim that the results for the benchmarks used in our study will452

generalize to any broad class of framework-based web applications. A study of a wider variety453

of benchmarks, to obtain generalizable insights on root causes across JavaScript applications,454

is beyond the scope of this work.455

6.1 The ACG algorithm456

In our evaluation, we studied variants of the approximate call graph (ACG) algorithm of457

Feldthaus et al. [25]. The ACG algorithm was designed to entirely skip analysis of many458

challenging JavaScript language features, while still providing good precision and recall for459

real-world programs. ACG leverages the insight that many dynamic property accesses in460

JavaScript are correlated [55], with a paired dynamic read and write used to copy a property461

from one object to another. By using a field-based handling of object properties [28] (treating462

each property as a global variable), ACG could ignore dynamic property accesses entirely463

and still provide good recall, assuming most accesses are correlated.464

Feldthaus et al. [25] describe pessimistic and optimistic variants of ACG, differing in their465

handling of inter-procedural flow. Pessimistic ACG only tracks data flow across procedure466

boundaries in limited cases, whereas optimistic ACG performs full inter-procedural tracking.467

We performed root cause quantification for both variants in our study.468

Our study uses the open-source implementation of ACG in WALA [58]. This implemen-469

tation directly builds a flow graph during call graph building, which we serialize alongside470

the computed call graph. The WALA implementation also includes partial handling of the471

call and apply reflective constructs for parameter passing [13]. In the optimistic variant,472

interprocedural flow is handled fully for call, but only return values are handled for apply473

(as it passes parameters via arrays, which is hard to analyze). We confirmed via inspection474

that the WALA implementation of ACG has no handling of getters and setters, eval, and475

with.476

6.2 Root Cause Labeling477

We implemented root cause labeling for missing flows based on the gaps we observed in478

the WALA implementation [58] of the ACG algorithm [25]. For a different algorithm or479

implementation, some different root causes may be required, but we expect significant overlap,480

as several root causes pertain to challenging language features that many techniques handle481

unsoundly (e.g., eval). The referenced root cause names are also used when discussing their482

prevalence in Section 7.2.483

For MissingFGNode (see section 4.2), in some cases, there is no node representing the484

creation of a function value in the flow graph. If the function was from the standard library,485

we assigned the label “Call to unmodelled native function,” as WALA was likely missing a486

model for the function. In cases where the function was created via a call to new Function487

ECOOP 2022



3:14 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

(unhandled by the ACG implementation), we assigned the label “Creation via Function488

constructor.”489

In other MissingFGNode cases, the node representing the call site itself is missing. For490

this case, a common root cause label is “Call to getter/setter,” as getters and setters are491

not modeled by ACG. Also, the “Calls from unmodelled native functions” label captures492

cases where an unmodeled native function calls back into application code. Finally, for493

a dynamic property access, if the property name is never used as part of a non-dynamic494

property access, the flow graph may not have a node for the property, in which case we use495

the label “Dynamic Property Access.”496

For MissingFGPath, one possible root cause is “Dynamic Property Access,” which can be497

identified by the corresponding dynamic reads / writes. For the pessimistic ACG variant,498

paths may be missing since the algorithm does not model passing function values as parameters499

or returning function values; we use the labels “Parameter Pass” and “Function return” for500

these scenarios. For both ACG variants, the “Parameter Pass” label is also used to reflect501

passing of parameters in an array via Function.prototype.apply.502

In the case of dynamically-evaluated code (the “Use of Eval” and “Eval via new Function”503

labels), many relevant nodes may be missing from the static flow graph. We assign an504

appropriate root cause in these cases by recording in the flow trace which events occurred in505

dynamically-evaluated code (Section 5). Note that we prioritize the eval-related root causes506

over others; e.g., if there is a relevant dynamic property access in eval’d code, we will assign507

the eval-related root cause, even though it is possible the analysis also could not handle the508

property access. We chose this labeling due to the high difficulty of handling eval constructs509

in static analysis; for an analysis with significant support for eval a different choice may be510

appropriate.511

Finally, as noted in Section 4.1, in certain cases we cannot compute all dynamic copies for512

a call. For these cases, our technique makes a base-effort attempt to assign an appropriate513

root cause label. “Call to bounded function” captures missing handling of the Function514

.prototype.bind feature [13]. The “Multiple levels of native functionality” label captures515

cases where native methods are invoked reflectively (see Footnote 5). Finally, we identify the516

“Use of With” root cause by tracing objects used in with statements and identifying when an517

unmatched variable corresponds to a with object property.518

As Section 7.2 will show, dynamic property accesses are the most frequent root cause519

of missing call graph edges for our benchmarks. To further understand these root-cause520

accesses, we also implemented a finer-grained labeling for them, based on the expression521

used for the property name. This more granular labeling is described in Section 7.3.522

6.3 Benchmarks and Harness523

For benchmarks, our study used several programs from the TodoMVC suite [17]. TodoMVC524

contains many implementations of a simple web-based todo list application, with each525

implementation using a different web framework or language. The suite is designed to help526

developers compare different model-view-controller (MVC) frameworks. Because the suite527

contains idiomatic implementations of the same functionality across frameworks, it provides528

an opportunity to compare sources of missing call graph edges across frameworks.529

To test with a larger web application, we also included OWASP Juice Shop [3], an530

AngularJs-based program that is a standard benchmark for security analyses. Counting the531

size of framework / library code for Juice Shop is difficult, as the code base does not clearly532

separate third-party code used as part of the web site from libraries used only to deploy the533

site; we conservatively estimated the framework / library code to be greater than 50 kLoC.534



M. Chakraborty et al. 3:15

Total

LoC

Application

LoC

Framework/

Library LoC

Application

Stmt.

Coverage

AngularJs 12091 256 11835 81.08%

Backbone 9003 216 8787 99.74%

KnockoutJs 1044 129 915 98.98%

KnockbackJs 15836 199 15637 99.73%

CanJs 11371 129 11242 100%

React 24855 383 24472 99.21%

Mithril 1433 252 1181 99.61%

Vue 7667 124 7543 97.73%

VanillaJs 751 561 190 98.10%

jQuery 9526 171 9355 99.59%

Juice Shop >65000 15092 >50000 36%

Table 1 Benchmark Statistics.

Table 1 gives statistics for our benchmarks. The TodoMVC benchmarks are named based535

on the web framework that they use. The TodoMVC applications range from 751–24,855 lines536

of code, with framework sizes varying widely. We chose all eight of the JavaScript-framework-537

based implementations that worked with our infrastructure.8 We also chose VanillaJS, which538

does not use any framework,9 and jQuery, for comparison purposes.539

To exercise the TodoMVC applications, we wrote a harness to cover as much application540

code as possible, and in the end our script achieved application code statement coverage of541

97% or higher for nearly all benchmarks. We studied all uncovered code manually, and found542

that it was either dead code or could not be exercised in a single run of the application (e.g.,543

for the AngularJs version, a small amount of code would only run if the app were used and544

then restarted in offline mode).545

For Juice Shop, we were unable to exercise the application beyond fully completing its546

initial loading, explaining the significantly lower code coverage. Our infrastructure ran into547

scalability issues for deeper runs of Juice Shop, which we hope to fully address in the near548

future. Still, simply loading Juice Shop exercised a large amount of code (its flow trace was549

nearly 5 times larger than any fully-exercised TodoMVC benchmark), making a study of550

missed call edges for the loading portion of the execution interesting on its own.551

In terms of running times for our tools, dynamic call graph and flow trace collection552

each took between 30 and 60 seconds for each TodoMVC benchmark, varying based on the553

amount of code executed; this overhead is comparable to previous Jalangi-based dynamic554

analyses [53]. Missing flow detection (Section 4) took time proportional to the size of the flow555

trace, ranging from around half a second (for VanillaJS) to around 10 minutes (for React).556

Overall running time for Juice Shop was much longer (more than an hour total) due to its557

size and the aformentioned scalability bottlenecks it exposed. We expect the missing flow558

detection times could be reduced significantly with a more optimized implementation.559

8 Some implementations used newer JavaScript language features not yet supported by Jalangi.
9 All implementations use a common base JavaScript library, accounting for the library code in VanillaJS.

ECOOP 2022



3:16 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

7 Results560

In this section, we present results from performing root cause quantification for our bench-561

marks. The results show that our quantification techniques can provide interesting insights562

into the relative prevalence of different root causes for missing call graph edges. We first563

give recall measurements for our benchmarks using multiple metrics in Section 7.1. Then,564

we discuss the top root cause labels for missed call graph edges in Section 7.2 and insights565

gained from this data. Finally, we discuss results from performing a finer-grained labeling566

of missing flows related to dynamic property accesses (the most prevalent root cause) in567

Section 7.3.568

7.1 Recall Measurements569

We measured call graph recall for our benchmarks by comparing the ACG static call graphs570

with our collected dynamic call graphs. We first describe our methodology, and then present571

results. We also measured call graph precision for all benchmarks, but as our new techniques572

focus on root causes for low recall, we do not discuss the precision results here; they are573

presented in an extended version of the paper [22].574

Methodology We used three different metrics to measure recall, suited to different client575

scenarios:576

Call site targets: the set of targets at each call site present in the dynamic call graph.577

This metric was used in the original ACG paper [25]. Recall is computed for each call578

site, and then averaged across call sites to produce recall for a benchmark. This metric is579

most relevant to clients like code navigation in an IDE.580

Reachable nodes: the set of reachable methods, where roots are the entrypoints in the581

dynamic call graph. This metric has been used in previous work [57], and is relevant to582

clients like dead-code elimination.583

Reachable edges: the set of call graph edges whose source method is present in the584

dynamic call graph. This metric is most relevant to clients doing deep inter-procedural585

analysis like taint analysis [26].586

Given our collected data, we studied the following research questions:587

RQ1: How does recall vary across the three metrics?588

RQ2: How does recall vary across benchmarks?589

Results Figure 4 gives detailed recall results for WALA’s original ACG implementation590

for each TodoMVC benchmark, with results for the pessimistic variant in Figure 4a and591

for optimistic in Figure 4b. Average recall across the TodoMVC benchmarks is shown in592

Figure 5.593

For RQ1, the data show that recall of ACG tends to suffer with more exacting metrics.594

The ACG paper [25] used the call site targets metric, and showed that both precision and595

recall were typically above 80% for their benchmarks. Figure 5 shows that for our benchmarks,596

while recall is above 80% for this metric for both the optimistic and pessimistic variants,597

recall decreases for the more exacting metrics, particularly for pessimistic analysis.598

For RQ2, Figure 4 shows that recall can vary widely across benchmarks. In Section 7.2599

we dig further into these differences, showing that root causes for low recall can also vary600

across the benchmarks. For the TodoMVC React benchmark, recall is very high for the601

optimistic analysis but quite low for pessimistic. In this case, the high recall for optimistic602



M. Chakraborty et al. 3:17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Angu
la

rJ
s

Bac
kb

one

Kno
ck

outJs

Kno
ck

bac
kJ

s

Can
Js

Rea
ct

M
ith

ril
Vue

Van
ill

aJs

JQ
uer

y

Call Site Targets Reachable Nodes Reachable Edges

(a) Pessimistic ACG.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Angu
la

rJ
s

Bac
kb

one

Kno
ck

outJs

Kno
ck

bac
kJ

s

Can
Js

Rea
ct

M
ith

ril
Vue

Van
ill

aJs

JQ
uer

y

Call Site Targets Reachable Nodes Reachable Edges

(b) Optimistic ACG.

Figure 4 Detailed recall results for our three metrics across the benchmarks.

analysis comes at a cost of very low precision (less than 5% for reachable edges; see the603

extended version of the paper [22] for full details). We suspect that some initial imprecision604

spirals out of control for optimistic analysis for React, leading to poor precision. Previous605

work studied diagnosing imprecision root causes [20, 35, 60]; such a study is out of scope606

here. However, improving recall can lead to reduced precision, and this tradeoff must be607

minded when devising solutions to improving recall.608

For Juice Shop, only the pessimistic ACG variant could run to completion; optimistic609

ACG could not complete within 64GB of memory. Pessimistic ACG missed 15,060 edges that610

were present in the dynamic call graph. Since our coverage for Juice Shop was significantly611

lower than the other benchmarks (see section 6.3), we do not quantify the precision and612

recall of pessimistic ACG for the benchmark, nor do we include it in aggregate statistics.613

7.2 Root Cause Quantification614

We present illustrative results from applying our techniques to quantify prevalence of root615

causes for missing call graph edges for our benchmarks. Space does not allow a full presentation616

ECOOP 2022











3:22 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

7.3 Name Flow for Dynamic Property Accesses682

Given the importance of dynamic property accesses as a root cause in Section 7.2, we683

performed a finer-grained root cause labeling of these accesses. Our goal was to understand684

better how property names are computed for these accesses, to see if some targeted handling685

of the property name expressions could be useful. Recent work by Nielsen et al. [44] proposes686

just such a technique for analysis of Node.js code, via special handling of property name687

expressions that concatenate a string constant prefix or suffix to some other expression.688

We hoped to use root cause labeling to see if a similar technique could be effective for our689

web-based benchmarks.690

We implemented a simple intra-procedural analysis using WALA [58] to label each root-691

cause dynamic property access based on how data flows into its property name expression692

(for an access x[e], e is the property name expression). Aggregate results appear in Figure 10;693

our artifact has the complete data [21]. As shown in Figure 10, property names for root-cause694

dynamic accesses have a diverse set of sources. The largest single source are JavaScript’s695

for-in loops for iterating over object properties, studied frequently in the literature as a696

challenge for static analysis (e.g., [19, 47]). However, they account for only 31% of cases in697

total, and many other sources exist. Property names are often passed in from outside the698

function containing the access, whether by parameter passing (28%) or variables in enclosing699

lexical scopes (12%); handling these cases may require inter-procedural tracking of property700

name value flow. Another major source is property reads (12%) (i.e., the property name is701

read from another object property), whose handling may again require deep tracking of value702

flow.703

String concatenation cases comprise 14% of root-cause property name expressions. Only704

4% of such expressions in our benchmarks had a string constant prefix or suffix, the type of705

expression targeted by Nielsen et al. [44]. Hence, the data show that their technique would706

likely have at most a small impact on recall for our benchmarks.707

A deeper study of inter-procedural property name value flow could provide further insights708

on how these names are computed; this remains as future work. Still, our data show it is709

likely that a variety of challenges would need to be addressed to significantly improve ACG’s710

recall with respect to dynamic property accesses.711

7.4 Threats to Validity712

As noted in Section 6, we do not claim generalizability of the results for our benchmarks to713

a broader set of JavaScript applications. In our benchmark suite, each individual framework714

is primarily exercised by a single TodoMVC benchmark, which may not be representative of715

other applications using that framework. Also, though our harness achieves high statement716

coverage for the TodoMVC benchmarks (Section 6.3), it is possible that certain application717

behaviors in those apps remain unexercised. Our dynamic coverage of Juice Shop was718

relatively low due to scalability limitations; more complete coverage is required to make719

strong conclusions about relative importance of root causes for that application. Finally, as720

noted in Section 5, our tooling still does not handle certain language features completely,721

which may have impacted our measurements.722

8 Related Work723

Here, we briefly discuss related studies of analysis effectiveness, and also other analysis724

frameworks and their applicability to framework-based web applications.725



M. Chakraborty et al. 3:23

Root cause analysis Our work was partly inspired by a study of call graph recall for Java726

programs by Sui et al. [57]. As in that work, we measure recall with respect to dynamic727

analysis measurements, and we aim to determine which constructs are responsible for missing728

edges. Sui et al.’s approach used calling-context trees [18] and runtime tagging of reflective729

operations to determine language features impacting recall. Since functions are first-class730

values in JavaScript, we can trace function data flow directly to make this determination.731

Also, due to JavaScript’s dynamic nature, the potential causes of missing edges and their732

usage patterns differ significantly from Java’s problematic constructs.733

Andreasen et al. present techniques for isolating soundness and precision issues in the734

TAJS static analyzer for JavaScript [20]. For finding analysis unsoundness, their technique735

creates logs of expression values while executing target programs, and then checks that the736

static analysis abstractions account for all such values. When unsoundness is discovered737

for a program, delta debugging [61] is employed to find a reduced version of the program738

with the same unsoundness. From this reduced program, determining a root cause is often739

much simpler. In contrast to their work, which is focused on an analysis that strives for full740

soundness, our approach is targeted at analyses with deliberate unsoundness (for practicality),741

and aims to quantify the impact of different unsoundness root causes.742

Reif et al. [61] present a system that provides methods for exposing sources of unsoundness743

in different Java call graph builders and also for measuring how frequently hard-to-analyze744

constructs appear in a set of benchmarks, yielding many useful practical insights. A difference745

with our work is that our technique can automatically connect specific uses of hard-to-analyze746

constructs to the corresponding missed call graph edges. This provides important additional747

information for JavaScript, since hard-to-analyze constructs can appear pervasively in748

JavaScript code, and not all occurrences cause call graph unsoundness.749

Lhoták [37] also presents a comparison of static and dynamic call graphs for Java, aimed750

at finding sources of imprecision in the static call graph. Other work [20, 60] used dynamic751

analysis to generate traces and find root causes of imprecision in JavaScript static analyses,752

and Wei et al. [60] also provides suggestions to fix the root causes of imprecision. Lee et753

al. [35] produce a tracing graph by tracking information flow from imprecise program points754

backwards, thereby aiding the user to identify main causes of the imprecision. Our work755

differs from all of these studies in its focus on recall rather than precision, which necessitates756

different techniques.757

JavaScript Analyses Several analysis frameworks use abstract interpretation [24] to handle758

the interdependent problem of scalability and precision in JavaScript [32, 33, 36]. These759

frameworks have been steadily enhanced with techniques to improve precision and scalability760

when analyzing libraries, particularly TAJS [19, 31, 32, 43] and SAFE [34, 35, 36, 46, 47,761

50]. While these techniques have shown enormous improvement in analyzing libraries like762

jQuery [10] and Lodash [11], they do not yet scale to complex MVC frameworks like React [4].763

Other techniques use dynamic information to improve static analysis. Wei and Ryder764

introduced blended analysis [59], which uses dynamic analysis to aid static analysis in handling765

JavaScript’s dynamic features. The dynamic flow analysis by Naus and Thiemann [41]766

generates flow constraints from a training run to infer types in JavaScript applications.767

(Their technique finds constraints by tracking operations on values; we determine how values768

are copied through memory, an orthogonal problem.) Lacuna [45] utilizes static and dynamic769

analysis to detect dead code in JavaScript applications; this work uses ACG and also uses770

TodoMVC applications for evaluation. While dynamic information can be very helpful in771

static analysis, improving pure static analysis is still desirable, as it can compute results772

ECOOP 2022



3:24 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

without instrumenting and running the code and without inputs.773

To analyze JavaScript applications that use the Windows runtime and other libraries,774

Madsen et al. proposed a use analysis that infers points-to specifications automatically [38].775

It is unclear if their analysis will be effective for framework-based applications, where control776

flow is mainly driven by the framework, not the application. Also, we study applications using777

diverse frameworks from by many different developers, whereas [38] focuses on Windows778

libraries. For Node.js, Madsen et al. [39] presented a static analysis using call graphs779

augmented to represent event-driven control flow. To scale static analysis in server-side780

JavaScript applications in Node.js, Nielsen et al. present a feedback-driven static analysis781

to automatically identify the third-party modules that need to be analyzed [42]. Our focus,782

however, is on client-side MVC applications that often do not have clean module interfaces.783

Other recent systems make use of pragmatic JavaScript static analyzers. The CodeQL784

system [7] includes an under-approximate call graph builder for JavaScript [8]. CodeQL’s785

analysis is primarily intra-procedural, targeted toward taint analysis, and does not handle786

dynamic property accesses.10 Møller et al. [40] describe a system for detecting breaking787

library changes in Node.js programs, based on an under-approximate analysis designed for788

high recall at the cost of some precision. Nielsen et al. [44] present a pragmatic modular789

call-graph construction technique for Node.js programs; we discussed its specialized handling790

of property name expressions in Section 7.3. For these approaches, our methodology could791

be used to quantify the importance of different causes of reduced recall. Salis et al. recently792

presented a pragmatic call graph builder for Python programs [51]; it would be interesting793

future work to extend our techniques to Python. Beyond dataflow-based reasoning about794

call graphs, other approaches to JavaScript static analysis include AST-based linting [9] and795

type inference [16, 23].796

9 Conclusions797

We have presented novel techniques for quantifying the relative importance of different root798

causes of missed edges in JavaScript static call graphs. We instantiated our approach to799

perform a detailed study of the results of the ACG algorithm on modern, framework-based800

web applications. The study’s results provided numerous insights on the variety and relative801

impact of root causes for missed edges. All of our code and data is publicly available. In802

future work, we plan to extend the study to other domains; we expect that analyses for803

any dynamic language with extensive use of higher-order functions could benefit from our804

techniques. We also plan to use the techniques to further develop improved call graph805

builders and other JavaScript static analyses.806

References807

1 MDN Web Docs: Object.getOwnPropertyDescriptor(). https://developer.808

mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/809

getOwnPropertyDescriptor, 2021. Accessed: 2021-01-11.810

2 MDN Web Docs: with. https://developer.mozilla.org/en-US/docs/Web/JavaScript/811

Reference/Statements/with, 2021. Accessed: 2021-01-11.812

3 OWASP Juice Shop. https://owasp.org/www-project-juice-shop/, 2021. Accessed: 2021-813

12-01.814

10 These details are based on personal communication with Max Schäfer in January 2021.



M. Chakraborty et al. 3:25

4 React – a JavaScript library for building user interfaces. https://reactjs.org, 2021. Accessed:815

2021-01-11.816

5 Rhino: JavaScript in Java. https://github.com/mozilla/rhino, 2021. Accessed: 2021-01-11.817

6 Angular. https://angular.io, 2022. Accessed: 2022-05-13.818

7 CodeQL for research. https://securitylab.github.com/tools/codeql/, 2022. Accessed:819

2022-05-13.820

8 CodeQL library for JavaScript: Call graph. https://codeql.github.com/docs/821

codeql-language-guides/codeql-library-for-javascript/#call-graph, 2022. Accessed:822

2022-05-13.823

9 ESLint. https://eslint.org, 2022. Accessed: 2022-02-25.824

10 jquery. https://jquery.com/, 2022. Accessed: 2022-05-13.825

11 Lodash. https://lodash.com/, 2022. Accessed: 2022-05-13.826

12 MDN Web Docs: Defining Getters and Setters. https://developer.mozilla.org/en-US/827

docs/Web/JavaScript/Guide/Working_with_Objects#defining_getters_and_setters,828

2022. Accessed: 2022-05-13.829

13 MDN Web Docs: Function. https://developer.mozilla.org/en-US/docs/Web/JavaScript/830

Reference/Global_Objects/Function, 2022. Accessed: 2022-05-13.831

14 MDN Web Docs: Object.defineProperty(). https://developer.mozilla.org/en-US/docs/832

Web/JavaScript/Reference/Global_Objects/Object/defineProperty, 2022. Accessed:833

2022-05-13.834

15 Puppeteer. https://pptr.dev/, 2022. Accessed: 2022-05-13.835

16 Tern: Intelligent JavaScript Tooling. https://ternjs.net, 2022. Accessed: 2022-02-25.836

17 TodoMVC. https://todomvc.com/, 2022. Accessed: 2022-05-13.837

18 Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hardware performance counters838

with flow and context sensitive profiling. In PLDI, pages 85–96, 1997.839

19 Esben Andreasen and Anders Møller. Determinacy in static analysis for jQuery. In Proceedings840

of the 2014 ACM International Conference on Object Oriented Programming Systems Languages841

& Applications, part of SPLASH, OOPSLA, pages 17–31, 2014.842

20 Esben Sparre Andreasen, Anders Møller, and Benjamin Barslev Nielsen. Systematic approaches843

for increasing soundness and precision of static analyzers. In Proceedings of the International844

Workshop on State Of the Art in Program Analysis, SOAP, pages 31–36, 2017.845

21 Madhurima Chakraborty, Renzo Olivares, Manu Sridharan, and Behnaz Hassanshahi. Artifact846

for "Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs", May847

2022. doi:10.5281/zenodo.6541325.848

22 Madhurima Chakraborty, Renzo Olivares, Manu Sridharan, and Behnaz Hassanshahi. Au-849

tomatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs (Extended850

Version). 2022. URL: https://arxiv.org/abs/2205.06780.851

23 Satish Chandra, Colin S. Gordon, Jean-Baptiste Jeannin, Cole Schlesinger, Manu Sridharan,852

Frank Tip, and Young-Il Choi. Type inference for static compilation of JavaScript. In853

Object-Oriented Programming, Systems, Languages and Applications (OOPSLA), 2016.854

24 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static855

analysis of programs by construction or approximation of fixpoints. In Conference Record of856

the Fourth ACM Symposium on Principles of Programming Languages, POPL, pages 238–252,857

1977.858

25 Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Efficient859

construction of approximate call graphs for JavaScript IDE services. In International Conference860

on Software Engineering, ICSE, pages 752–761, 2013.861

ECOOP 2022



3:26 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

26 Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen Teilhet, and Ryan862

Berg. Saving the world wide web from vulnerable JavaScript. In Proceedings of the 20th863

International Symposium on Software Testing and Analysis (ISSTA), pages 177–187, 2011.864

27 Behnaz Hassanshahi, Hyunjun Lee, and Paddy Krishnan. Gelato: Feedback-driven and guided865

security analysis of client-side web applications. In 29th edition of the IEEE International866

Conference on Software Analysis, Evolution and Reengineering (SANER), 2022.867

28 Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using CLA: A million lines of868

C code in a second. In Proceedings of the Conference on Programming Language Design and869

Implementation, PLDI, pages 254–263, 2001.870

29 Zoltán Herczeg and Gábor Lóki. Evaluation and comparison of dynamic call graph generators871

for JavaScript. In Ernesto Damiani, George Spanoudakis, and Leszek A. Maciaszek, editors,872

Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software873

Engineering, ENASE 2019, pages 472–479, 2019.874

30 Simon Holm Jensen, Peter A. Jonsson, and Anders Møller. Remedying the eval that men do.875

In International Symposium on Software Testing and Analysis, ISSTA, pages 34–44, 2012.876

31 Simon Holm Jensen, Magnus Madsen, and Anders Møller. Modeling the HTML DOM and877

browser API in static analysis of JavaScript web applications. In Proceedings of the ACM Joint878

Meeting on European Software Engineering Conference and Symposium on the Foundations of879

Software Engineering, ESEC/FSE, pages 59–69, 2011.880

32 Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for JavaScript. In881

Static Analysis, 16th International Symposium, SAS, pages 238–255, 2009.882

33 Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons, John883

Sarracino, Ben Wiedermann, and Ben Hardekopf. JSAI: a static analysis platform for884

JavaScript. In Proceedings of the International Symposium on Foundations of Software885

Engineering, FSE, pages 121–132, 2014.886

34 Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. Weakly sensitive analysis for JavaScript887

object-manipulating programs. Softw. Pract. Exp., 49(5):840–884, 2019.888

35 Hongki Lee, Changhee Park, and Sukyoung Ryu. Automatically tracing imprecision causes in889

JavaScript static analysis. Art Sci. Eng. Program., 4(2), 2020.890

36 Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. Safe: Formal891

specification and implementation of a scalable analysis framework for ecmascript. In In892

Proceedings of the International Workshop on Foundations of Object Oriented Languages,893

FOOL, 2012.894

37 Ondrej Lhoták. Comparing call graphs. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT895

Workshop on Program Analysis for Software Tools and Engineering, PASTE, pages 37–42,896

2007.897

38 Magnus Madsen, Benjamin Livshits, and Michael Fanning. Practical static analysis of898

JavaScript applications in the presence of frameworks and libraries. In Proceedings of the899

ACM Joint Meeting on European Software Engineering Conference and Symposium on the900

Foundations of Software Engineering, ESEC/FSE, pages 499–509, 2013.901

39 Magnus Madsen, Frank Tip, and Ondřej Lhoták. Static analysis of event-driven Node.js902

JavaScript applications. ACM SIGPLAN Notices, 50(10):505–519, 2015.903

40 Anders Møller, Benjamin Barslev Nielsen, and Martin Toldam Torp. Detecting locations904

in JavaScript programs affected by breaking library changes. Proc. ACM Program. Lang.,905

4(OOPSLA):187:1–187:25, 2020. doi:10.1145/3428255.906

41 Nico Naus and Peter Thiemann. Dynamic flow analysis for JavaScript. In Trends in Functional907

Programming - 17th International Conference, TFP, pages 75–93, 2016.908



M. Chakraborty et al. 3:27

42 Benjamin Barslev Nielsen, Behnaz Hassanshahi, and François Gauthier. Nodest: feedback-909

driven static analysis of Node.js applications. In Proceedings of the ACM Joint Meeting on910

European Software Engineering Conference and Symposium on the Foundations of Software911

Engineering, ESEC/FSE, pages 455–465, 2019.912

43 Benjamin Barslev Nielsen and Anders Møller. Value partitioning: A lightweight approach913

to relational static analysis for JavaScript. In 34th European Conference on Object-Oriented914

Programming, ECOOP, pages 16:1–16:28, 2020.915

44 Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller. Modular call graph916

construction for security scanning of Node.js applications. In Cristian Cadar and Xiangyu917

Zhang, editors, ISSTA ’21: 30th ACM SIGSOFT International Symposium on Software918

Testing and Analysis, Virtual Event, Denmark, July 11-17, 2021, pages 29–41, 2021. doi:919

10.1145/3460319.3464836.920

45 Niels Groot Obbink, Ivano Malavolta, Gian Luca Scoccia, and Patricia Lago. An extensible921

approach for taming the challenges of JavaScript dead code elimination. In 25th International922

Conference on Software Analysis, Evolution and Reengineering, SANER, pages 391–401, 2018.923

46 Changhee Park, Hongki Lee, and Sukyoung Ryu. All about the with statement in JavaScript:924

removing with statements in JavaScript applications. In Proceedings of the 9th Symposium on925

Dynamic Languages, part of SPLASH, DLS, pages 73–84, 2013.926

47 Changhee Park, Hongki Lee, and Sukyoung Ryu. Static analysis of JavaScript libraries in a927

scalable and precise way using loop sensitivity. Softw. Pract. Exp., 48(4):911–944, 2018.928

48 Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. The eval that men do - A929

large-scale study of the use of eval in JavaScript applications. In Object-Oriented Programming930

- 25th European Conference, ECOOP, pages 52–78, 2011.931

49 Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis of the dynamic932

behavior of JavaScript programs. In Proceedings of the Conference on Programming Language933

Design and Implementation, PLDI, pages 1–12, 2010.934

50 Sukyoung Ryu, Jihyeok Park, and Joonyoung Park. Toward analysis and bug finding in935

JavaScript web applications in the wild. IEEE Softw., 36(3):74–82, 2019.936

51 Vitalis Salis, Thodoris Sotiropoulos, Panos Louridas, Diomidis Spinellis, and Dimitris Mitropou-937

los. PyCG: Practical Call Graph Generation in Python. In Proceedings of the 43rd International938

Conference on Software Engineering (ICSE), 2021.939

52 Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Dynamic determinacy analysis.940

In Proceedings of the Conference on Programming Language Design and Implementation, PLDI,941

pages 165–174, 2013.942

53 Koushik Sen, Swaroop Kalasapur, Tasneem G. Brutch, and Simon Gibbs. Jalangi: a selective943

record-replay and dynamic analysis framework for JavaScript. In Proceedings of the 2013 9th944

Joint Meeting on Foundations of Software Engineering, ESEC/FSE, pages 488–498. ACM,945

2013.946

54 Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and Eran Yahav. Alias anal-947

ysis for object-oriented programs. In David Clarke, Tobias Wrigstad, and James Noble, editors,948

Aliasing in Object-Oriented Programming. Springer, 2013. doi:10.1007/978-3-642-36946-9_949

8.950

55 Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and Frank Tip. Correlation951

tracking for points-to analysis of JavaScript. In Object-Oriented Programming - 26th European952

Conference, ECOOP, pages 435–458, 2012.953

56 Stack Overflow 2020 Developer Survey: Web Frameworks. https://insights.stackoverflow.954

com/survey/2020#technology-web-frameworks, 2020. Accessed: 2022-05-13.955

ECOOP 2022



3:28 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

57 Li Sui, Jens Dietrich, Amjed Tahir, and George Fourtounis. On the recall of static call graph956

construction in practice. In International Conference on Software Engineering, ICSE, pages957

1049–1060, 2020.958

58 T.J. Watson Libraries for Analysis (WALA). http://wala.sourceforge.net.959

59 Shiyi Wei and Barbara G. Ryder. A practical blended analysis for dynamic features in960

JavaScript. Technical Report TR-12-18, Virginia Tech, 2012. URL: https://vtechworks.lib.961

vt.edu/handle/10919/19421.962

60 Shiyi Wei, Omer Tripp, Barbara G. Ryder, and Julian Dolby. Revamping JavaScript static963

analysis via localization and remediation of root causes of imprecision. In Proceedings of the964

24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE,965

pages 487–498, 2016.966

61 Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing input. IEEE967

Trans. Software Eng., 28(2):183–200, 2002.968


