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WITH REPEATED OBSERVATIONS
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Abstract: For two-sample comparisons, tests based on graphs constructed using

the similarity information between observations are gaining attention, owing to

their flexibility and good performance for high-dimensional/non-Euclidean data.

However, when there are repeated observations, these graph-based tests can be

problematic, because they are influenced by the choice of the similarity graph.

We propose extended graph-based test statistics to resolve this problem. We also

study the asymptotic properties of these extended statistics, and provide analytic

formulae to approximate the p-values of the tests under finite samples, facilitating

the application of the new tests in practice. The proposed tests are applied to

analyze a phone-call network data set. All tests are implemented in the R package

gTests.

Key words and phrases: High-dimensional data, network data, non-euclidean data,

nonparametric test, similarity graph, ties in distance.

1. Introduction

Two-sample comparisons present a fundamental problem in statistics, and

have been studied extensively for univariate and low-dimensional data. However,

research on the testing problem for high-dimensional and non-Euclidean data,

such as network data, is gaining attention with the advent of big data. In the

parametric domain for multivariate data, many studies have tested whether the

means are the same (e.g., Srivastava and Du (2008)) and whether the covariance

matrices are the same (e.g., Schott (2007); Srivastava and Yanagihara (2010);

Xia, Cai and Cai (2015)). To improve their applicability, many semiparametric

methods have been proposed to test means and covariance matrices (e.g., Bai

and Saranadasa (1996); Chen and Qin (2010); Cai, Liu and Xia (2014); Xu et al.

(2016); Li and Chen (2012); Cai, Liu and Xia (2013)) by adding conditions on

the moment and/or covariance, rather than making assumptions about the un-

derlying distributions. These parametric and semiparametric methods provide
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useful tools when the data follow their assumptions, but are often restrictive and

not sufficiently robust if the model assumptions are violated.

In the nonparametric domain, researchers have extended the Kolmogorov–

Smirnov test, Wilcoxon rank test, and Wald–Wolfowitz runs test to include high-

dimensional data (see Chen and Friedman (2017) for a review). Of these, the first

practical test was proposed by Friedman and Rafsky (1979) as an extension of the

Wald–Wolfowitz runs test for multivariate data. They pool the observations from

the two samples and construct a minimum spanning tree (MST) that connects

all observations, minimizing the sum of the distances of the edges in the tree.

They then count the number of edges in the MST that connect observations from

different samples, and reject the null hypothesis of equal distributions if this count

is significantly smaller than its expectation under the null hypothesis. This test

was later extended to other similarity graphs in which observations that are closer

together are more likely to be connected than those that are further apart. These

extensions include the minimum distance pairing (MDP) of Rosenbaum (2005)

and the nearest neighbor graph (NNG) of Schilling (1986) and Henze (1988). We

refer to this type of tests as an edge-count test. Recently, a generalized edge-

count test and a weighted edge-count test were proposed to address the problems

of the original edge-count test under scale alternatives and unequal sample sizes

(Chen and Friedman (2017); Chen, Chen and Su (2018)). Because these tests and

the edge-count test are all based on a similarity graph, we call them graph-based

tests. These tests have many advantages. They can be applied to data with an

arbitrary dimension and to non-Euclidean data, and exhibit high power when

detecting differences in distribution. They also have higher power than that of

the likelihood-based tests when the dimension of the data is moderate to high for

practical sample sizes (i.e., from hundreds to millions).

However, graph-based tests can be problematic for data with repeated obser-

vations. These tests all rely on a similarity graph constructed on the observations.

When there are repeated observations, the similarity graph is not uniquely defined

based on common optimization criteria, such as the MST or the MDP. Indeed,

several graphs can be equally “optimal” in terms of the criterion. Furthermore,

the results of the graph-based tests can vary under the different similarity graphs,

leading to conflicting conclusions (see Table 1 for a snapshot of the results of the

generalized and weighted edge-count tests on a network data set; details are pro-

vided in the Supplementary Material, Section S2.1).

In this work, we seek ways to effectively summarize the tests over these

equally “optimal” similarity graphs. As we show in Section 2.2, it is not uncom-

mon to have more than a million equally optimal similarity graphs when there
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Table 1. Test statistics and their corresponding p-values (in parentheses, bold if < 0.05)
of the generalized edge-count test (S) and the weighted edge-count test (Zw) under four
9-MSTs using phone-call network data.

MST #1 #2 #3 #4
S 6.86 (0.032) 3.92 (0.141) 7.89 (0.019) 3.90 (0.142)
Zw 2.61 (0.004) 1.95 (0.025) -1.13 (0.871) 0.26 (0.396)

are repeated observations, so manually examining the results from each of these

graphs is usually not feasible. Chen and Zhang (2013) studied the problem of ex-

tending the original edge-count test to deal with repeated observations. However,

owing to the quadratic terms in the generalized edge-count test statistic, doing so

is not feasible (see Section 3). However, we can first extend the basic quantities in

these graph-based test statistics so that they can handle repeated observations,

and then define extended generalized/weighted edge-count test statistics similarly

to how they were designed for continuous data. Our results are as follows:

(1) The extended weighted edge-count test statistic adopts the same weights as

the weighted edge-count test to resolve the variance boosting problem of the

edge-count test when the sizes of the two samples are different.

(2) The extended generalized edge-count test statistic is well defined in this way,

and can be decomposed into the summation of the squares of two asymptot-

ically independent normal random variables, allowing for a fast computation

of the approximate p-value.

Based on (2), we study an extended max-type edge-count test that builds upon

the two asymptotically independent normal random variables. The tests are

implemented in the R package gTests.

The rest of the paper is organized as follows. Section 2 provides the notation

used in the paper and preliminary setups. Section 3 discusses the extended

weighted, generalized, and max-type edge-count tests. The performance of these

new tests is examined in Section 4, and their asymptotic properties are studied

in Section 5. Section 6 illustrates the new tests by using them to analyze a

phone-call network data set. Section 7 concludes the paper.

2. Notation and Preliminary Setup

2.1. Notation

Among the N observations, we assume there are K distinct values, indexed

by 1, 2, . . . ,K. The basic notation is summarized in Table 2. Here, mi = n1i+n2i,
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Table 2. Data with repeated observations summarized by distinct values.

Distinct value index 1 2 · · · K Total
Sample 1 n11 n12 · · · n1K n1
Sample 2 n21 n22 · · · n2K n2
Total m1 m2 · · · mK N

for i = 1, . . . ,K, ni =
∑K

k=1 nik, for i = 1, 2, and N = n1 + n2.

Let d(i, j) be the distance between the values indexed by i and j. For an

undirected graph G, let |G| be the number of edges in G. For any node i in the

graph G, EGi denotes the set of edge(s) in G that contains node i.

We do not impose any distributional assumption on the data, and work under

the permutation null distribution, which places an n1!n2!/N ! probability on each

of the N !/(n1!n2!) ways of assigning the sample labels, such that sample 1 has

n1 observations. Without further specification, we use E, Var, Cov, and Cor to

denote the expectation, variance, covariance, and correlation, respectively, under

the permutation null distribution.

2.2. Similarity graphs on observations

Let C0 be a similarity graph constructed on the distinct values. This can be

the MST, MDP, or NNG on the distinct values, if it can be uniquely defined. If

the common optimization rules do not result in a unique solution, we follow Chen

and Zhang (2013) and use the union of all MSTs. Figure 1 is a simple example.

The union of all MSTs on the distinct values can be obtained using Algorithm

1. For example, for the data in Figure 1, the distinct values a and b, a and c,

b and c, and d and e are connected in the first step, and b and d and c and

e are connected in the second step. We call this graph the nearest neighbor link

(NNL). If one wants denser graphs, k-NNL can be considered, which is the union

of the 1st,. . . , kth NNLs, where the jth (j > 1) NNL is a graph generated by

Algorithm 1, subject to the constraint that this graph does not contain any edge

in the 1st,. . . , (j − 1)th NNLs.

Algorithm 1 Generate a NNL

For each distinct value indexed by i (i = 1, . . . ,K), let dmin(i) = min{d(i, j) : j 6= i}
and N(i) = {j : d(i, j) = dmin(i)}. Connect i to each element in N(i).
while Not all distinct values are in one component do

Let U be one component, let dmin(U) = min{d(i, j) : i ∈ U , j /∈ U} and N(U) =
{(i, j) : d(i, j) = dmin(U), i ∈ U , j /∈ U}. Connect each pair of distinct values indexed
by i and j if (i, j) ∈ N(U).

end while
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Figure 1. There are five distinct values (a, b, c, d, e), denoted by circles. Some distinct
values have more than one observation, denoted by having more than one point in the
circle. The distances between the distinct values are denoted on the edges. It is clear
that there are six MSTs on the distinct values (three are presented on the left), and the
last plot is the union of the six MSTs on the distinct values.

Then, a graph on the observations initiated from C0 can be defined in the

following way. First, for each pair of edges (i, j) ∈ C0, randomly choose an

observation, indexed by i, and another observation, indexed by j, and connect

the two. Then, for each i, if there is more than one observation indexed by i,

connect these observations using a spanning tree (any edge in a spanning tree

has distance zero). Let GC0
be the set of all graphs initiated from C0.

For the example in Figure 1, because the MST on the distinct values is not

uniquely defined, let C0 be the NNL. There are 15,552(= 12 · 33 · 43 · 32 · 12)

ways of assigning the six edges in C0 to corresponding observations in each circle.

In addition, by Cayley’s lemma, for the observations equal to the same value,

there are 1, 3, 16, 3, and 1 spanning trees, respectively. Therefore, we have

2,239,488(= 15,552 × 3 × 16 × 3) graphs in GC0
. Figure 2 plots four of these

graphs for illustration.

2.3. A brief review of generalized and weighted edge-count tests

For any graph G, let R0,G be the number of edges in G that connect obser-

vations from different samples, R1,G be the number of edges in G that connect

observations from sample 1, and R2,G be that for sample 2. Here, R0,G is the

test statistic for the original edge-count test. In Chen and Friedman (2017), the

authors note that the edge-count test (R0,G) has low or even no power for scale

alternatives when the dimension is moderate to high, unless the sample size is

extremely large, owing to the curse of dimensionality. To solve this problem, they

considered the numbers of within-sample edges of the two samples separately, and

proposed the following generalized edge-count statistic:
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Figure 2. Four graphs, out of 2,239,488, on observations initiated from the NNL on
distinct values.

SG =

(
R1,G − E(R1,G)
R2,G − E(R2,G)

)T
Σ−1
G

(
R1,G − E(R1,G)
R2,G − E(R2,G)

)
, (2.1)

where ΣG = Var(
(R1,G

R2,G

)
).

Both the edge-count test and the generalized edge-count test are suggested

to perform on a similarity graph that is denser than the MST, such as a 5-MST,

to boost their power (Friedman and Rafsky (1979); Chen and Friedman (2017)).

Here, a k-MST is the union of the 1st,. . . , kth MSTs, where the first MST is the

MST, and the jth (j > 1) MST is a spanning tree that connects all observations,

such that the sum of the edges in the tree is minimized under the constraint

that it does not contain any edge in the 1st,. . . , (j− 1)th MSTs. However, Chen,

Chen and Su (2018) found that, for a k-MST (k > 1), the edge-count test (R0,G)

behaves strangely when the two sample sizes are different. For example, consider

the testing problem in which the two underlying distributions are Nd(0, Id) and

Nd(µ, Id) (‖µ‖2 = 1.3, d = 50), and we have two scenarios, (i) n1 = n2 = 50 and

(ii) n1 = 50, n2 = 100. The edge-count test has lower power in (ii) compared

to that in (i), even though there are more observations in (ii). This is due to

a variance boosting issue under unbalanced sample sizes (see Chen, Chen and

Su (2018)). To solve this issue, Chen, Chen and Su (2018) proposed a weighted

edge-count test that inversely weights the within-sample edges using the sample

sizes

Rw,G =
n2 − 1

n1 + n2 − 2
R1,G +

n1 − 1

n1 + n2 − 2
R2,G. (2.2)

The authors reason that the sample with a larger number of observations is more

likely to be connected within the sample if all other conditions are the same, and

thus should be down-weighted. This weighted edge-count test statistic addresses

the variance boosting issue, and works well for unequal sample sizes. Indeed,
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Var(Rw,G) ≤ Var((1− p)R1,G + pR2,G), for any p ∈ [0, 1].

2.4. Extended basic quantities in the graph-based framework

In Chen and Zhang (2013), the authors consider two ways of summarizing

the test statistics for R0,G:

(1) averaging: R0,(a) = (1/|GC0
|)
∑

G∈GC0
R0,G, where |GC0

| is the number of

graphs in GC0
;

(2) union: R0,(u) = R0,ḠC0
, where ḠC0

= ∪{G ∈ GC0
}; that is, if observations

u and v are connected in at least one of the graphs in GC0
, then these two

observations are connected in ḠC0
. In the following, we sometimes use Ḡ

instead of ḠC0
when there is no confusion, for simplicity.

When there are many graphs in GC0
, it is often not feasible to compute these

two quantities directly. Chen and Zhang (2013) derived analytic expressions to

compute these two quantities in terms of the summary quantities in Table 2 and

C0:

R0,(a) =

K∑
k=1

2n1kn2k

mk
+

∑
(u,v)∈C0

n1un2v + n1vn2u

mumv
,

R0,(u) =

K∑
k=1

n1kn2k +
∑

(u,v)∈C0

(n1un2v + n1vn2u).

Similarly, we can define R1,(a), R1,(u), R2,(a), and R2,(u) and their analytic

expressions in terms of the summary quantities in Table 2 and C0, as shown in

Lemma 1.

Lemma 1. The analytic expressions for R1,(a), R1,(u), R2,(a), and R2,(u) are:

R1,(a) ≡
1

|GC0
|
∑
G∈GC0

R1,G =

K∑
u=1

n1u(n1u − 1)

mu
+

∑
(u,v)∈C0

n1un1v

mumv
,

R1,(u) ≡ R1,ḠC0
=

K∑
u=1

n1u(n1u − 1)

2
+

∑
(u,v)∈C0

n1un1v,

R2,(a) ≡
1

|GC0
|
∑
G∈GC0

R2,G =

K∑
u=1

n2u(n2u − 1)

mu
+

∑
(u,v)∈C0

n2un2v

mumv
,

R2,(u) ≡ R2,ḠC0
=

K∑
u=1

n2u(n2u − 1)

2
+

∑
(u,v)∈C0

n2un2v.
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The notation {nik}i=1,2; k=1,...,K , {mk}k=1,...,K is defined in Table 2. These

analytic expressions are obtained using similar arguments to those in Chen and

Zhang (2013), and thus are omitted here.

3. Extended Graph-Based Tests

Because the generalized edge-count test can cover a wider range of alter-

natives than the original edge-count test can (Chen and Friedman (2017)), we

would like the generalized edge-count test statistic to be well defined when there

are repeated observations. For the generalized edge-count test statistic, SG =(
R1,G − E(R1,G)
R2,G − E(R2,G)

)T
Σ−1
G

(
R1,G − E(R1,G)
R2,G − E(R2,G)

)
, one straightforward way of def-

ining the average statistic is (1/|GC0
|)
∑

G∈GC0
SG. However, ΣG varies with G

in GC0
, making the averaging over SG difficult. Even in the simplified version in

which ΣG is fixed over G in GC0
, the quadratic terms in SG make the averaging an-

alytically intractable. To view the problem more straightforwardly, note that SG
can be written as SG = ((Rw,G − E(Rw,G))/

√
Var(Rw,G))2 + ((Rd,G − E(Rd,G))/√

Var(Rd,G))2, where Rw,G = ((n2 − 1)/(N − 2))R1,G + ((n1 − 1)/(N − 2))R2,G

and Rd,G = R1,G − R2,G. Let EGC0
and VarGC0

be the expectation and vari-

ance, respectively, defined on the sample space GC0
that places the probability

1/|GC0
| on each G ∈ GC0

. Using the first component as an example, the aver-

aging over all G ∈ GC0
is essentially EGC0

(((Rw,G − E(Rw,G))/
√

Var(Rw,G) )2) =

(EGC0
((Rw,G − E(Rw,G))/

√
Var(Rw,G) ))2+VarGC0

((Rw,G − E(Rw,G))/
√

Var(Rw,G)).

Here,

Var(Rw,G) =
n1n2(n1 − 1)(n2 − 1)

N(N − 1)(N − 2)(N − 3)

(
|G| −

∑N
i=1 |EGi |2

N − 2
+

2|G|2

(N − 1)(N − 2)

)

contains
∑N

i=1 |EGi |2, which varies with G in GC0
. Thus, it is already difficult

to derive an analytically tractable expression, even for EGC0
((Rw,G − E(Rw,G))/√

Var(Rw,G)). To get around these issues, we extend the generalized and weighted

edge-count tests based on how they were introduced in Chen and Friedman (2017)

and Chen, Chen and Su (2018), respectively, using the extended quantities de-

rived in Section 2.4. In the following, we first discuss the extended weighted

edge-count test, and then the extended generalized edge-count test. Further-

more, the key components in the latter form the extended max-type edge-count

test.
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3.1. Extended weighted edge-count tests

As mentioned in Section 2.3, for data without repeated observations, there

is a variance boosting problem for the edge-count test under unbalanced sample

sizes. To solve this issue, Chen, Chen and Su (2018) proposed a weighted edge-

count test Rw,G (see (2.2)). When there are repeated observations, the above

problem also exists for the extended edge-count test (see the Supplementary Ma-

terial, Section S2.2). Following a similar idea, we can weight R1,(a) and R2,(a) and

R1,(u) and R2,(u) to solve the problem. Under the union approach, the statistics

R1,(u) and R2,(u) are simplified versions of R1 and R2, respectively, defined on Ḡ,

so the weights should be the same; that is,

Rw,(u) = (1− p̂)R1,(u) + p̂R2,(u), with p̂ =
n1 − 1

N − 2
. (3.1)

However, for the average approach, the weights are not this straightforward.

The following theorem shows that these weights should also be the same.

Theorem 1. For all test statistics of the form aR1,(a) + bR2,(a), with a+ b = 1,

for a, b > 0, we have Var(aR1,(a) + bR2,(a)) ≥ Var(Rw,(a)), where Rw,(a) = (1 −
p̂)R1,(a) + p̂R2,(a) with p̂ = (n1 − 1)/(N − 2).

Proof. The minimum is achieved at

p̂ =
Var(R1,(a))− Cov(R1,(a), R2,(a))

Var(R1,(a)) + Var(R2,(a))− 2Cov(R1,(a), R2,(a))
. (3.2)

Substituting Var(R1,(a)), Var(R2,(a)), and Cov(R1,(a), R2,(a)) from the Supple-

mentary Material S1.4 into (3.2), we have p̂ = (n1 − 1)/(N − 2).

In the following lemma, we provide exact analytic formulae for the expecta-

tion and variance of Rw,(u) and Rw,(a), so that both extended weighted edge-count

tests can be standardized easily. This lemma can be proved straightforwardly

by substituting in the analytic expressions for E(R1,(a)), E(R2,(a)), Var(R1,(a)),

Var(R2,(a)), Cov(R1,(a), R2,(a)), E(R1,(u)), E(R2,(u)), Var(R1,(u)), Var(R2,(u)), and

Cov(R1,(u), R2,(u)), as provided in the Supplementary Material S1.4.

Lemma 2. The expectation and variance of Rw,(u) and Rw,(a) under the permu-

tation null distribution are:

E(Rw,(u)) = |Ḡ|(n1 − 1)(n2 − 1)

(N − 1)(N − 2)
,

Var(Rw,(u)) =
n1(n1 − 1)n2(n2 − 1)

N(N − 1)(N − 2)(N − 3)
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|Ḡ| − 1

N − 2

N∑
i=1

|E Ḡi |2 +
2

(N − 1)(N − 2)
|Ḡ|2

}
,

E(Rw,(a)) = (N −K + |C0|)
(n1 − 1)(n2 − 1)

(N − 1)(N − 2)
,

Var(Rw,(a)) =
n1(n1 − 1)n2(n2 − 1)

N(N − 1)(N − 2)(N − 3){
− 4

N − 2

(∑
u

(|EC0
u | − 2)2

4mu
− (|C0| −K)2

N

)
+ 2

(
K −

∑
u

1

mu

)

+
∑

(u,v)∈C0

1

mumv
− 2

N(N − 1)
(|C0|+N −K)2

}
,

where |E Ḡi | = mu−1+
∑
VC0

u
mv if observation i has a distinct value index u, and

|Ḡ| =
∑K

u=1mu(mu − 1)/2 +
∑

(u,v)∈C0
mumv. Here, VC0

u is the set of distinct

values that connect to the distinct value indexed by u in C0.

3.2. Extended generalized edge-count tests

As discussed earlier, it is technically intractable to derive the analytic expres-

sion for the average of SG for G ∈ GC0
. Here, we define an extended generalized

edge-count test statistic based on how it was introduced in Chen and Friedman

(2017) using the following extended basic quantities:

S(a) =

(
R1,(a) − E(R1,(a))
R2,(a) − E(R2,(a))

)T
Σ−1

(a)

(
R1,(a) − E(R1,(a))
R2,(a) − E(R2,(a))

)
, (3.3)

S(u) =

(
R1,(u) − E(R1,(u))
R2,(u) − E(R2,(u))

)T
Σ−1

(u)

(
R1,(u) − E(R1,(u))
R2,(u) − E(R2,(u))

)
, (3.4)

where Σ(a) = Var(
(R1,(a)

R2,(a)

)
) and Σ(u) = Var(

(R1,(u)

R2,(u)

)
). Using similar arguments to

those in Chen and Friedman (2017), S(a) and S(u) defined in this way can deal with

the location and scale alternatives. Additional studies on the performance of the

tests are provided in Section 4. Similarly to SG, S(a) and S(u) can be decomposed

to components that are asymptotically independent under mild conditions (see

Theorems 3 and 4).

Theorem 2. The extended generalized edge-count test statistics can be expressed

as
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S(a) =

Rw,(a) − E(Rw,(a))√
Var(Rw,(a))

2

+

Rd,(a) − E(Rd,(a))√
Var(Rd,(a))

2

, (3.5)

S(u) =

Rw,(u) − E(Rw,(u))√
Var(Rw,(u))

2

+

Rd,(u) − E(Rd,(u))√
Var(Rd,(u))

2

, (3.6)

where Rw,(a), E(Rw,(a)), Var(Rw,(a)), Rw,(u), E(Rw,(u)), and Var(Rw,(u)) are de-

fined in Section 3.1, and Rd,(a) = R1,(a)−R2,(a) and Rd,(u) = R1,(u)−R2,(u), with

their expectations and variances, are provided below:

E(Rd,(a)) = (N −K + |C0|)
n1 − n2

N
,

Var(Rd,(a)) =
4n1n2

N(N − 1)

{∑
u

(|EC0
u | − 2)2

4mu
− (|C0| −K)2

N

}
,

E(Rd,(u)) = |Ḡ|n1 − n2

N
,

Var(Rd,(u)) =
n1n2

N(N − 1)

{
N∑
i=1

|E Ḡi |2 −
4

N
|Ḡ|2

}
.

Theorem 2 is proved in the Supplementary Material S1.1.

3.3. Extended max-type edge-count test statistics

Let Zw,(a) = (Rw,(a) − E(Rw,(a)))/
√

Var(Rw,(a)), Zd,(a) = (Rd,(a) − E(Rd,(a)))

/
√

Var(Rd,(a)), Zw,(u) = (Rw,(u) − E(Rw,(u)))/
√

Var(Rw,(u)), and Zd,(u) = (Rd,(u)

− E(Rd,(u)))/
√

Var(Rd,(u)). Under some mild conditions, Zw,(a) and Zd,(a) are

asymptotically independent and follow a joint bivariate normal distribution; the

same is true for Zw,(u) and Zd,(u) (see Theorems 3 and 4). Here, we define the

extended max-type edge-count statistics as follows:

M(a)(κ) = max(κZw,(a), |Zd,(a)|), and M(u)(κ) = max(κZw,(u), |Zd,(u)|).

Because the following arguments hold for the averaging and the union statis-

tics, we omit the subscripts (a) and (u), for simplicity. From the definition of

the extended max-type edge-count test statistic, we can see that it uses both Zw
and Zd, and is similar to SG and effective for both the location and the scale

alternatives. In addition, the introduction of κ in the definition makes it more

flexible than SG.
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Table 3. Relationship between γ and κ.

γ 8 4 2 1 1/2 1/4 1/8

κ 1.63 1.47 1.31 1.14 1 0.88 0.79

Table 4. Rejection regions for the extended statistics.

Statistic Reject region

Extended generalized edge-count tests S ≥ r2s
Extended weighted edge-count tests Rw−E(Rw)√

Rw
≥ rw

Extended max-type edge-count tests M(κ) ≥ β(κ)

We briefly discuss the choice of κ. It is easy to see that the rejection region

{M(κ) ≥ β} is equivalent to {Zw ≥ β/κ or |Zd| ≥ β}. Let P(Zw ≥ βw) = α1 and

P(|Zd| ≥ βd) = α2, and define γ = α1/α2. Based on the asymptotic distribution

of (Zw, Zd)
T derived in Section 5, the relationship between γ and κ, with the

overall type-I error rate controlled at 0.05, is shown in Table 3.

To investigate how the choice of κ affects the performance of the test, we

examine the test on 100-dimensional multivariate normal distributions Nd(µ1,Σ1)

andNd(µ2,Σ2) that differ in terms of their mean and/or variance. Three scenarios

are considered; detailed results are presented in the Supplementary Material S3.2.

Based on the simulation results, if there is no prior knowledge about the type of

difference between the two distributions, we recommend κ = {1.31, 1.14, 1} for

M(κ).

3.4. Testing rule

We summarize the rejection regions for the extended statistics in Table 4,

which are similar to their continuous counterparts. Because the testing rule is

the same for the averaging and the union statistics, we omit the subscripts (a)

and (u), for simplicity. In the table, rs, rw, and β(κ) are the critical values,

which can be obtained by drawing random permutations or using the asymptotic

distributions of the extended statistics (see Section 5).

Schematic plots of the rejection regions in terms of Zw and Zd are shown

in Figure 3. We can see that these statistics are closely related. More detailed

comparisons on these statistics are presented in following sections.

4. Performance of the Extended Test Statistics

In this section, we study the performance of various tests using simulation

studies. In Section 4.1, we study the preference-ranking problem, where two
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Zw

Zd

rs rw

Zd

Zw
Zw

Zd

−βd

βd

βw

Zd = κZw

Figure 3. Rejection regions (in gray) of SG, Rw,G, M(κ). Left: {SG ≥ r2s}; middle:
{Zw ≥ rw}; right: {M(κ) ≥ β(κ)} (βd = κβw = β(κ)).

groups of people are asked to rank six objects, and we test whether the two

samples have the same preference. In Section 4.2, we compare the proposed

tests on data generated directly from a multinomial distribution. Three existing

tests are included in the comparison: Pearson’s chi-squared test (denoted as

“Pearson”), the deviance test (denoted as “LR”), and the kernel two-sample test

of Gretton et al. (2012) (denoted as “Ker”).

4.1. Preference-ranking problem

We consider the following two data-generating mechanisms:

(i) Data are generated from the probability model shown in Section 3.1,

Pθ,η(ζ) =
1

ψ(θ)
exp{−θd(ζ, η)}, ζ, η ∈ Ξ, θ ∈ R, (4.1)

where Ξ is the set of all permutations of the set {1,2,3,4,5,6}, and d(·, ·)
is a distance function, such as Kendall’s or Spearman’s distance. The two

samples are generated from Pθ1,η1(·) and Pθ2,η2(·), respectively.

(ii) Let D1 and D2 be two different subsets of all possible rankings. The two

samples are generated from the uniform distribution on D1 and D2, respec-

tively.

When Kendall’s or Spearman’s distance is used for d(·, ·), there are, in gen-

eral, ties in the distance matrix, which lead to non-unique MSTs. Hence, we apply

3-NNL to construct the graph on distinct values. The results for Kendall’s and

Spearman’s distance are similar, so we present the results based on Spearman’s

distance in the following.

We compare the statistics R0,(a), R0,(u), S(a), S(u), Rw,(a), Rw,(u), M(a)(κ),

and M(u)(κ) (κ = 1.31, 1.14, 1) using Pearson, LR, and Ker (Gretton et al. (2012))

in six scenarios (Scenarios 1–3 under (i), and Scenarios 4–6 under (ii)), with
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balanced and unbalanced sample sizes. The settings with different θ and different

η under (i) are also considered, and the results are provided in the Supplementary

Material S3.1. The parameters under each scenario are chosen such that the tests

have moderate power, in order to be comparable.

• Scenario 1 (Only η differs) : η1 = {1, 2, 3, 4, 5, 6}, η2 = {1, 2, 5, 4, 3, 6}, and

θ1 = θ2 = 5, with balanced (n1 = n2 = 100) and unbalanced (n1 = 100, n2 =

400) sample sizes.

• Scenario 2 (Only θ differs, with θ1 > θ2) : η1 = η2 = {1, 2, 3, 4, 5, 6},
θ1 = 5.5, and θ2 = 4, with balanced (n1 = n2 = 300) and unbalanced

(n1 = 300, n2 = 600) sample sizes.

• Scenario 3 (Only θ differs, with θ1 < θ2) : η1 = η2 = {1, 2, 3, 4, 5, 6},
θ1 = 4, and θ2 = 5.5, with balanced (n1 = n2 = 300) and unbalanced

(n1 = 300, n2 = 600) sample sizes.

• Scenario 4 (Different support): D1 = {ζ ∈ Ξ : ζ does not begin with No.6}
and D2 = {ζ ∈ Ξ : ζ does not end with No.1}, with balanced (n1 = n2 =

150) and unbalanced (n1 = 150, n2 = 250) sample sizes.

• Scenario 5 (Different support): D1 = {ζ ∈ Ξ : ζ ranks No.1 before No.5}
and D2 = {ζ ∈ Ξ : ζ ranks No.1 before No.6}, with balanced (n1 = n2 =

180) and unbalanced (n1 = 180, n2 = 220) sample sizes.

• Scenario 6 (Different support): D1 = {ζ ∈ Ξ : ζ does not begin with No.6

and does not end with No.1} and D2 = {ζ ∈ Ξ : ζ ranks No.1 or No.2 in

top 3}, with balanced (n1 = n2 = 150) and unbalanced (n1 = 150, n2 = 250)

sample sizes.

The results are presented in Table 5, where the power is estimated using the

fraction of trials (out of 1,000) that the test rejects the null hypothesis at the 0.05

significance level. Those above 95 percent of the best power under each setting

are shown in bold.

We first check the results for the data generated by mechanism (i). We see

that Pearson, LR, and Ker have low power under all three scenarios. For the

extended statistics, S(u) and M(u) work well for all scenarios, whereas the others

show obvious strengthes and weaknesses for different settings. For example, under

the unbalanced setting (n1 = 300, n2 = 600), R0,(u) has no power under Scenario

2, R0,(a) has very low power under Scenario 3, and neither Rw,(a) nor Rw,(u)

perform well when only θ differs (Scenarios 2 and 3). Overall, M(u)(κ) performs
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Table 5. Estimated power of the tests under the six scenarios denoted by A1–A6, with
(a) denoting the balanced setting and (b) denoting the unbalanced setting.

A1(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.866 0.759 0.866 0.837 0.815 0.780 0.194 0.197

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.890 0.799 0.890 0.862 0.847 0.816 0.198

A1(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.654 0.880 0.955 0.942 0.930 0.910 0.469 0.469

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.885 0.965 0.984 0.977 0.970 0.962 0.312

A2(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.291 0.200 0.291 0.265 0.243 0.211 0.109 0.107

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.442 0.775 0.442 0.749 0.784 0.809 0.098

A2(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.526 0.332 0.352 0.361 0.349 0.335 0.017 0.014

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0 0.900 0.568 0.885 0.921 0.933 0.158

A3(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.297 0.217 0.297 0.278 0.269 0.240 0.107 0.116

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.464 0.780 0.464 0.754 0.791 0.820 0.092

A3(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.062 0.401 0.387 0.420 0.421 0.409 0.397 0.430

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.962 0.884 0.582 0.867 0.903 0.920 0.113

A4(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.776 0.626 0.776 0.741 0.705 0.657 0.205 0.206

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.700 0.530 0.700 0.647 0.623 0.584 0.187

A4(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.865 0.791 0.914 0.876 0.850 0.825 0.300 0.306

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.812 0.688 0.818 0.779 0.761 0.732 0.216

A5(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.820 0.669 0.820 0.770 0.727 0.690 0.823 0.825

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.656 0.525 0.656 0.620 0.573 0.537 0.742

A5(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.909 0.768 0.892 0.861 0.842 0.800 0.895 0.899

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.769 0.640 0.730 0.708 0.683 0.659 0.794

A6(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.892 0.755 0.892 0.857 0.827 0.790 0.256 0.260

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.823 0.691 0.823 0.782 0.752 0.712 0.233

A6(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.940 0.902 0.970 0.958 0.943 0.925 0.352 0.350

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.891 0.822 0.930 0.903 0.881 0.859 0.291
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best among the tests. When θ differs, S(a) and S(u) provide similar results to

M(a)(κ) and M(u)(κ), respectively, but they perform worse than M(a)(κ) and

M(u)(κ), respectively, when only η differs (Scenario 1). In general, the tests based

on the “union” are slightly better than their “averaging” counterparts (except

for some cases for R0).

For the data generated by mechanism (ii), we see that all tests perform

relatively well under Scenario 5. For the other two scenarios, 4 and 6, Pearson,

LR, and Ker have low power. The proposed tests perform similarly well under

both scenarios, with those based on “averaging” being slightly better than their

“union” counterparts.

4.2. Multinomial distribution

Here, we generate data from a d-dimensional multinomial distribution. We

consider d = 100, d = 1,000, and d = 10,000. Sample 1 consists of n1 observations

drawn randomly from F1 = Mult(M1, p1), for i = 1, . . . , n1, and sample 2 consists

of n2 observations drawn from F2 = Mult(M2, p2), for i = 1, . . . , n2. Here, M1 and

M2 are the total counts of each observation in sample 1 and sample 2, respectively,

and p1 and p2 are the respective compositions. We set M1 = M2 = 3, and consider

the following choices of pi. Let p1 = (a1, a2 . . . , ad)
T and p2 = (b1, b2, . . . , bd)

T .

1) d = 100:

Scenario 1 (B1): ai = 0.01, i = 1, . . . , d; bi =

0.1 i = 1
0.9

99
i ≥ 2

.

Scenario 2 (B2): ai =

0.002 i ≤ 70
0.86

30
i ≥ 71

; bi =

0.018 i ≤ 30
0.46

70
i ≥ 31

.

2) d = 1,000:

Scenario 1 (C1): ai = 0.001, i = 1, . . . , d; bi =

0.085 i = 1
0.915

999
i ≥ 2

.

Scenario 2 (C2): ai =


0.5

970
i ≤ 970

0.5

30
i ≥ 971

; bi =


0.6

30
i ≤ 30

0.4

970
i ≥ 31

.

3) d = 10,000:
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Scenario 1 (D1): ai = 0.0001, i = 1, . . . , d; bi =

0.18 i = 1
0.82

9999
i ≥ 2

.

Scenario 2 (D2): ai =


0.4

9970
i ≤ 9970

0.6

30
i ≥ 9971

; bi =


0.4

30
i ≤ 30

0.6

9970
i ≥ 31

.

For each scenario, we examine both a balanced setting n1 = n2 = 120 and

an unbalanced setting n1 = 120, n2 = 200. Under each setting, we randomly

generate 1,000 data sets and estimate the power under the 0.05 significance level,

are shown in Table 6. Values above 95 percent of the best power under each

setting are shown in bold.

We see that Pearson and LR have no power under these scenarios. In Scenario

1 (B1, C1, D1), the graph-based statistics all perform reasonably well, except for

R0,(a) and R0,(u) under the unbalanced setting. In Scenario 2 (B2, C2, D2), the

extended generalized edge-count tests and extended max-type edge-count tests

outperform all other tests, indicating that the alternative in this type of scenario

is more in the scale domain than in the location domain.

5. Asymptotics

In this section, we provide the asymptotic distributions of the new test statis-

tics described in Section 3. This provides us with a theoretical basis for obtaining

approximate p-values in an analytic way. We examine how well these approxi-

mations work for finite samples by checking the empirical sizes of the new test

statistics at the end of this section, and by comparing the p-values obtained from

the asymptotic results and those using random permutations in the Supplemen-

tary Material S3.3. In the following, we use a = O(b) to denote that a and b are

of the same order, and a = o(b) to denote that a is of a smaller order than b. Let

EGi,2 be the set of edges in G that contain at least one node in VGi .

5.1. Statistics based on averaging

To derive the asymptotic behavior of the statistics based on averaging (Rw,(a),

S(a),M(a)(κ)), we work under the following conditions:

Condition 1. |C0|,
∑

(u,v)∈C0
(1/mumv) = O(N); K,

∑
u(1/mu) = O(Nα), α ≤

1.
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Table 6. Estimated power of the tests under scenarios B1, B2, C1, C2, D1, and D2, with
(a) denoting the balanced setting and (b) denoting the unbalanced setting.

B1(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.637 0.560 0.637 0.600 0.600 0.570 0 0

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.633 0.507 0.633 0.590 0.557 0.547 0.313

B1(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.023 0.754 0.780 0.777 0.770 0.746 0.002 0.002

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.030 0.734 0.788 0.773 0.761 0.743 0.063

B2(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.050 0.822 0.050 0.550 0.620 0.674 0.004 0.004

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.044 0.774 0.044 0.366 0.436 0.486 0.364

B2(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.660 0.878 0.168 0.726 0.754 0.768 0.012 0.012

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.404 0.866 0.164 0.650 0.722 0.762 0.646

C1(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.773 0.766 0.773 0.768 0.766 0.758 0 0

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.773 0.766 0.773 0.768 0.766 0.758 0.675

C1(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.002 0.942 0.948 0.944 0.944 0.942 0 0

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.002 0.942 0.948 0.944 0.944 0.942 0.550

C2(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.604 0.823 0.604 0.705 0.726 0.734 0.001 0.001

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.603 0.826 0.603 0.705 0.722 0.730 0.660

C2(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.006 0.921 0.245 0.763 0.807 0.824 0 0

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.006 0.921 0.242 0.758 0.801 0.821 0.656

D1(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.699 0.715 0.699 0.716 0.712 0.713 0 0

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.700 0.715 0.700 0.716 0.712 0.713 0.664

D1(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.227 0.936 0.923 0.930 0.930 0.933 0 0

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.304 0.936 0.923 0.930 0.930 0.933 0.528

D2(a)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.075 0.877 0.075 0.608 0.649 0.677 0 0

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.076 0.876 0.076 0.597 0.646 0.673 0.607

D2(b)

R0,(a) S(a) Rw,(a) M(a)(1.31) M(a)(1.14) M(a)(1) LR Pearson

0.588 0.897 0.301 0.767 0.788 0.810 0 0

R0,(u) S(u) Rw,(u) M(u)(1.31) M(u)(1.14) M(u)(1) Ker

0.571 0.895 0.300 0.765 0.785 0.806 0.756
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Condition 2.
∑

umu(mu + |EC0
u |)(mu +

∑
v∈VC0

u
mv + |EC0

u,2|) = o(N3/2),

∑
(u,v)∈C0

(mu +mv + |EC0
u |+ |EC0

v |)

(
mu +mv +

∑
w∈(VC0

u ∪VC0
v )

mw + |EC0

u,2|+ |E
C0

v,2|

)

= o(N3/2).

Condition 3.
∑

u((|EC0
u | − 2)2/4mu)− ((|C0| −K)2/N) = O(N).

Remark 1. A special case for Condition 1 is |C0|,
∑

(u,v)∈C0
(1/mumv),K,

∑
u(

1/mu) = O(N). This and Condition 2 are the same as those stated in Chen and

Zhang (2013) to obtain the asymptotic properties of R0,(a) and R0,(u). Condition

1 is easily satisfied, and Condition 2 sets constraints on the number of repeated

observations and the degrees of the nodes in the graph C0, such that they cannot

be too large. When mu ≡ m, for all u, Condition 2 simplifies to
∑

u |EC0
u ||EC0

u,2| =
o(N3/2) and

∑
(u,v)∈C0

(|EC0
u |+ |EC0

v |)(|E
C0

u,2|+ |E
C0

v,2|) = o(N3/2).

The additional condition (Condition 3) ensures that (R1, R2)T does not

degenerate asymptotically. When mu ≡ m, for all u, Condition 3 becomes

(1/4m)
∑

u |EC0
u |2 − (|C0|2/mK) = (1/4m)

∑
u(|EC0

u | − (2|C0|/K))2 = O(N),

which is the variance of the degrees of the nodes in C0. When there is not

enough variety in the degrees of the nodes in C0, the correlation between R1 and

R2 tends to one. (A similar condition is needed for the continuous counterpart

(Chen and Friedman (2017)).)

Theorem 3. Under Conditions 1, 2, and 3, as N → ∞,
(
Zw,(a), Zd,(a)

)T D−→
N2(0, I2) under the permutation null distribution.

The proof of this theorem is given in the Supplementary Material S1.2.

Based on Theorem 3, it is easy to obtain the asymptotic distributions of S(a)

and M(a)(κ).

Corollary 1. Under Conditions 1, 2, and 3, as N →∞, S(a)
D−→ X 2

2 under the

permutation null distribution.

Corollary 2. Under Conditions 1, 2, and 3, the asymptotic cumulative distribu-

tion function of M(a)(κ) is Φ(x/κ)(2Φ(x)− 1) under the permutation null distri-

bution, where Φ(x) denotes the cumulative distribution function of the standard

normal distribution.

5.2. Statistics based on the union

To derive the asymptotic behavior of the statistics based on the union (Rw,(u),

S(u),M(u)(κ)), we work under the following conditions:
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Condition 4. |Ḡ| = O(N).

Condition 5.
∑N

i=1 |E Ḡi |2 − (4/N)|Ḡ|2 = O(N).

Condition 6.

K∑
u=1

m3
u

(
mu +

∑
v∈VC0

u

mv

) ∑
v∈{u}∪VC0

u

mv

(
mv +

∑
w∈VC0

v

mw

)
= o(N3/2),

∑
(u,v)∈C0

mumv

[
mu

(
mu +

∑
w∈VC0

u

mw

)
+mv

(
mv +

∑
w∈VC0

v

mw

)]

·

 ∑
w∈{u}∪{v}∪VC0

u ∪VC0
v

y∈VC0
w

mw(mw +my)

 = o(N3/2).

Remark 2. Condition 4 is easily satisfied. Condition 5 is mentioned in Chen and

Friedman (2017) for the continuous version. When mu ≡ m, for all u, Condition

5 can be rewritten as
∑K

u=1 |EC0
u |2 − (4/K)|C0|2 = O(K). If C0 is the k-MST,

k = O(1), constructed under the Euclidean distance, the above condition always

holds, based on the results of Chen and Friedman (2017).

When mu ≡ m, for all u, Condition 6 becomes
∑

u |EC0
u ||E

C0

u,2| = o(N3/2)

and
∑

(u,v)∈C0
(|EC0

u |+ |EC0
v |)(|E

C0

u,2|+ |E
C0

v,2|) = o(N3/2), which are the same as the

simplified form in Remark 1. These conditions restrict the degrees of the nodes

in graph C0.

Theorem 4. Under Conditions 4, 5, and 6, as N → ∞,
(
Zw,(u), Zd,(u)

)T D−→
N2(0, I2) under the permutation null distribution.

The proof of this theorem is given in the Supplementary Material S1.3.

Based on Theorem 4, it is easy to obtain the asymptotic distributions of S(u)

and M(u)(κ).

Corollary 3. Under Conditions 4, 5, and 6, as N →∞, S(u)
D−→ X 2

2 under the

permutation null distribution.

Corollary 4. Under Conditions 4, 5, and 6, the asymptotic cumulative distribu-

tion function of M(u)(κ) is Φ(x/κ)(2Φ(x)− 1) under the permutation null distri-

bution, where Φ(x) denotes the cumulative distribution function of the standard

normal distribution.

To determine whether these theoretical results are useful in practice, we

check the empirical sizes of these tests, with the p-value determined using the
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Table 7. Empirical size at 0.05 nominal level.

Statistic
n1 = 50 n1 = 50 n1 = 50 n1 = 100 n1 = 100 n1 = 100

n2 = 50 n2 = 100 n2 = 150 n2 = 100 n2 = 200 n2 = 300

S(a) 0.032 0.043 0.043 0.038 0.030 0.033

S(u) 0.036 0.027 0.034 0.033 0.037 0.036

Rw,(a) 0.038 0.039 0.039 0.041 0.037 0.037

Rw,(u) 0.046 0.043 0.033 0.038 0.035 0.033

M(a)(1.31) 0.039 0.044 0.042 0.039 0.034 0.030

M(u)(1.31) 0.041 0.035 0.036 0.036 0.042 0.038

M(a)(1.14) 0.039 0.047 0.043 0.036 0.033 0.028

M(u)(1.14) 0.039 0.031 0.033 0.035 0.040 0.038

M(a)(1) 0.042 0.044 0.040 0.036 0.032 0.025

M(u)(1) 0.039 0.029 0.029 0.035 0.042 0.044

asymptotic results directly. We generate the data using mechanism (i) in Section

4.1, with θ1 = θ2 = 5 and η1 = η2 = {1, 2, 3, 4, 5, 6}. Table 7 shows the empirical

sizes of the tests under difference choices of sample sizes. The empirical size is

computed as the fraction of trials (out of 1,000) in which the asymptotic p-value

(p-value computed based on the asymptotic distribution directly) is less than

0.05. We see that the empirical sizes are well controlled for all proposed tests,

even when the sample sizes are in the 50s. We provide additional examinations

of the asymptotic p-values by comparing them with the permutation p-values in

the Supplementary Material S3.3.

6. Phone-Call Network Data Analysis

Here, we analyze phone-call network data. The MIT Media Laboratory con-

ducted a study of 106 subjects, including students and staff of an institute, who

use mobile phones with pre-installed software that can record call logs. The study

lasted from July 2004 to June 2005 (Eagle, Pentland and Lazer (2009)). Given

the richness of this data set, many problems can be studied. One question of in-

terest is whether phone-call patterns on weekdays differ from those on weekends.

The phone calls on weekdays and weekends can be viewed as representations of

professional and personal relationships, respectively.

We bin the phone calls by day and, for each day, construct a directed phone-

call network, with the 106 subjects as nodes, and a directed edge pointing from

person i to person j if person i made at least one call to person j on that day. We

encode the directed network of each day using an adjacency matrix, with element

[i, j] taking the value one if there is a directed edge pointing from subject i to
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Table 8. Breakdown statistics of the phone-call network data.

Value Mean Value-Mean SD

R1,(a) 2,800.26 2,669.56 130.70 143.33

R2,(a) 409.18 420.80 -11.62 57.75

(R1,(a) +R2,(a))/2 1,604.72 1,545.18 59.54 44.74

Rw,(a) 1,087.14 1,058.40 28.73 11.79

Rd,(a) 2,391.08 2,248.76 142.32 199.37

Value Mean Value-Mean SD

R1,(u) 7,163.00 6,860.35 302.65 381.50

R2,(u) 1,008.00 1,081.38 -73.38 151.66

(R1,(u) +R2,(u))/2 4,085.50 3,970.86 114.64 116.22

Rw,(u) 2,753.17 2,719.93 33.24 15.65

Rd,(u) 6,155.00 5,778.97 376.03 532.03

Value p-Value Value p-Value

Z0,(a) -1.33 0.092 Z0,(u) -0.99 0.162

S(a) 6.45 0.040 S(u) 5.01 0.082

Zw,(a) 2.44 0.007 Zw,(u) 2.12 0.017

|Zd,(a)| 0.71 0.475 |Zd,(u)| 0.71 0.480

M(a)(κ)

κ = 1.31 3.19 0.009

M(u)(κ)

κ = 1.31 2.78 0.022

κ = 1.14 2.78 0.013 κ = 1.14 2.42 0.032

κ = 1 2.44 0.022 κ = 1 2.12 0.050

subject j, and zero otherwise.

In the data set, there are 236 weekdays and 94 weekends. Among the 330

(236 + 94) networks, there are 285 distinct values, 11 of which have more than one

observation. We denote the distinct values as matrices B1, . . . , B285. We adopt

the distance measure used in Chen and Friedman (2017) and Chen, Chen and Su

(2018), which is defined as the number of different entries, this is, d(Bi, Bj) =

‖Bi − Bj‖2F , where ‖ · ‖F is the Frobenius norm of a matrix. In addition to the

repeated observations, there are many equal distances among the distinct values.

We set C0 to be the 3-NNL, which has similar density to that of the 9-MST

recommended in Chen, Chen and Su (2018).

Table 8 lists the results. In particular, we list the values, expectation (Mean),

and standard deviations (SD) of R1,(a), R1,(u), R2,(a), R2,(u), (R1,(a) + R2,(a))/2,

(R1,(u) + R2,(u))/2, Rw,(a), Rw,(u), Rd,(a), and Rd,(u), as well as the values and

p-values of Z0,(a), Z0,(u), S(a), S(u), Zw,(a), Zw,(u), |Zd,(a)|, |Zd,(u)|, M(a)(κ), and

M(u)(κ), where Z0,(a) and Z0,(u) are standardizations for R0,(a) and R0,(u), respec-

tively. The tests based on (R1,(a) +R2,(a))/2 and (R1,(u) +R2,(u))/2 are equivalent

to those based on R0,(a) and R0,(u), respectively.
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We first check the results based on “averaging.” We can see that R1,(a) is

much higher than its expectation, whereas R2,(a) is smaller than its expecta-

tion. The original edge-count test R0,(a) is equivalent to adding R1,(a) and R2,(a)

directly, so the signal in R1,(a) is diluted by R2,(a). In addition, owing to the vari-

ance boosting issue, it fails to reject the null hypothesis at the 0.05 significance

level. On the other hand, the weighted edge-count test chooses the proper weight

to minimize the variance and performs well. Because S(a) and M(a)(κ) consider

the weighted edge-count statistic and the difference between two within-sample

edge-counts simultaneously, these tests all reject the null at the 0.05 significance

level. Here, a larger value of κ indicates greater similarity between the max-type

test (M(a)(κ)) and the weighted test (Rw,(a)). Thus, the p-values of M(a)(κ) are

very close to those of Rw,(a) when κ is large. The results for the “union” counter-

parts are similar, except that S(u) cannot reject the null at the 0.05 significance

level. Based on this table, there is clearly a mean difference between the two

samples, but no significant scale difference.

We also compare the asymptotic p-values with the permutation p-values, and

the results show they are quite close (see the Supplementary Material S3.3).

7. Conclusion

The generalized edge-count test and the weighted edge-count test are useful

tools in two-sample testing frameworks. Both tests rely on a similarity graph

constructed on the pooled observations from the two samples, and can be applied

to various data types, as long as a reasonable similarity measure on the sample

space can be defined. However, they are problematic when the similarity graph

is not uniquely defined, which is common for data with repeated observations. In

this work, we extend these statistics, as well as the max-type statistic, to accom-

modate scenarios in which the similarity graph cannot be uniquely defined. The

extended test statistics are equipped with easy-to-evaluate analytic expressions,

making them easy to compute in a real-data analysis. The asymptotic distribu-

tions of the extended test statistics are also derived, and simulation studies show

that the p-values obtained based on asymptotic distributions are quite accurate

for sample sizes in the hundreds or more, making these tests easy off-the-shelf

tools for large data sets.

Among the extended edge-count tests, the extended weighted edge-count

tests aim for location alternatives, and the extended generalized/max-type edge-

count tests aim for more general alternatives. When these tests do not reach a

consensus, a detailed analysis such as that based on the phone-call network data
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in Section 6 is recommended.

Supplementary Material

The online Supplementary Material contains proofs of the lemmas and the-

orems, as well as some additional results.
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