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GRAPH-BASED TWO-SAMPLE TESTS FOR DATA
WITH REPEATED OBSERVATIONS
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Abstract: For two-sample comparisons, tests based on graphs constructed using
the similarity information between observations are gaining attention, owing to
their flexibility and good performance for high-dimensional/non-Euclidean data.
However, when there are repeated observations, these graph-based tests can be
problematic, because they are influenced by the choice of the similarity graph.
We propose extended graph-based test statistics to resolve this problem. We also
study the asymptotic properties of these extended statistics, and provide analytic
formulae to approximate the p-values of the tests under finite samples, facilitating
the application of the new tests in practice. The proposed tests are applied to
analyze a phone-call network data set. All tests are implemented in the R package
gTests.

Key words and phrases: High-dimensional data, network data, non-euclidean data,
nonparametric test, similarity graph, ties in distance.

1. Introduction

Two-sample comparisons present a fundamental problem in statistics, and
have been studied extensively for univariate and low-dimensional data. However,
research on the testing problem for high-dimensional and non-Euclidean data,
such as network data, is gaining attention with the advent of big data. In the
parametric domain for multivariate data, many studies have tested whether the
means are the same (e.g., Srivastava and Du (2008)) and whether the covariance
matrices are the same (e.g., Schott (2007); Srivastava and Yanagihara (2010);
Xia, Cai and Cai (2015)). To improve their applicability, many semiparametric
methods have been proposed to test means and covariance matrices (e.g., Bai
and Saranadasa (1996); Chen and Qin (2010); Cai, Liu and Xia (2014); Xu et al.
(2016); Li and Chen (2012); Cai, Liu and Xia (2013)) by adding conditions on
the moment and/or covariance, rather than making assumptions about the un-

derlying distributions. These parametric and semiparametric methods provide
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useful tools when the data follow their assumptions, but are often restrictive and
not sufficiently robust if the model assumptions are violated.

In the nonparametric domain, researchers have extended the Kolmogorov—
Smirnov test, Wilcoxon rank test, and Wald—Wolfowitz runs test to include high-
dimensional data (see Chen and Friedman (2017) for a review). Of these, the first
practical test was proposed by Friedman and Rafsky (1979) as an extension of the
Wald—Wolfowitz runs test for multivariate data. They pool the observations from
the two samples and construct a minimum spanning tree (MST) that connects
all observations, minimizing the sum of the distances of the edges in the tree.
They then count the number of edges in the MST that connect observations from
different samples, and reject the null hypothesis of equal distributions if this count
is significantly smaller than its expectation under the null hypothesis. This test
was later extended to other similarity graphs in which observations that are closer
together are more likely to be connected than those that are further apart. These
extensions include the minimum distance pairing (MDP) of Rosenbaum (2005)
and the nearest neighbor graph (NNG) of Schilling (1986) and Henze (1988). We
refer to this type of tests as an edge-count test. Recently, a generalized edge-
count test and a weighted edge-count test were proposed to address the problems
of the original edge-count test under scale alternatives and unequal sample sizes
(Chen and Friedman (2017); Chen, Chen and Su (2018)). Because these tests and
the edge-count test are all based on a similarity graph, we call them graph-based
tests. These tests have many advantages. They can be applied to data with an
arbitrary dimension and to non-Euclidean data, and exhibit high power when
detecting differences in distribution. They also have higher power than that of
the likelihood-based tests when the dimension of the data is moderate to high for
practical sample sizes (i.e., from hundreds to millions).

However, graph-based tests can be problematic for data with repeated obser-
vations. These tests all rely on a similarity graph constructed on the observations.
When there are repeated observations, the similarity graph is not uniquely defined
based on common optimization criteria, such as the MST or the MDP. Indeed,
several graphs can be equally “optimal” in terms of the criterion. Furthermore,
the results of the graph-based tests can vary under the different similarity graphs,
leading to conflicting conclusions (see Table 1 for a snapshot of the results of the
generalized and weighted edge-count tests on a network data set; details are pro-
vided in the Supplementary Material, Section S2.1).

In this work, we seek ways to effectively summarize the tests over these
equally “optimal” similarity graphs. As we show in Section 2.2, it is not uncom-
mon to have more than a million equally optimal similarity graphs when there
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Table 1. Test statistics and their corresponding p-values (in parentheses, bold if < 0.05)
of the generalized edge-count test (5) and the weighted edge-count test (Z,,) under four
9-MSTs using phone-call network data.

MST #1 #2 #3 #4
5 6.86 (0.032) 3.92 (0.141)  7.89 (0.019) 3.90 (0.142)
Z,  2.61(0.004) 1.95(0.025) -1.13(0.871) 0.26 (0.396)

are repeated observations, so manually examining the results from each of these
graphs is usually not feasible. Chen and Zhang (2013) studied the problem of ex-
tending the original edge-count test to deal with repeated observations. However,
owing to the quadratic terms in the generalized edge-count test statistic, doing so
is not feasible (see Section 3). However, we can first extend the basic quantities in
these graph-based test statistics so that they can handle repeated observations,
and then define extended generalized /weighted edge-count test statistics similarly
to how they were designed for continuous data. Our results are as follows:

(1) The extended weighted edge-count test statistic adopts the same weights as
the weighted edge-count test to resolve the variance boosting problem of the

edge-count test when the sizes of the two samples are different.

(2) The extended generalized edge-count test statistic is well defined in this way,
and can be decomposed into the summation of the squares of two asymptot-
ically independent normal random variables, allowing for a fast computation
of the approximate p-value.

Based on (2), we study an extended max-type edge-count test that builds upon
the two asymptotically independent normal random variables. The tests are
implemented in the R package gTests.

The rest of the paper is organized as follows. Section 2 provides the notation
used in the paper and preliminary setups. Section 3 discusses the extended
weighted, generalized, and max-type edge-count tests. The performance of these
new tests is examined in Section 4, and their asymptotic properties are studied
in Section 5. Section 6 illustrates the new tests by using them to analyze a
phone-call network data set. Section 7 concludes the paper.

2. Notation and Preliminary Setup
2.1. Notation

Among the N observations, we assume there are K distinct values, indexed
by 1,2,..., K. The basic notation is summarized in Table 2. Here, m; = ny;+ns;,
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Table 2. Data with repeated observations summarized by distinct values.

Distinct value index 1 2 ‘e K Total
Sample 1 nit N2 s n g ny
Sample 2 Mol MNaog -+ Nok o
Total mi Mo o MK N

fori=1,...,K, n; = Z?:lni/ﬁ for i =1,2, and N = nq + no.

Let d(i,j) be the distance between the values indexed by i and j. For an
undirected graph G, let |G| be the number of edges in G. For any node i in the
graph G, SiG denotes the set of edge(s) in G that contains node 4.

We do not impose any distributional assumption on the data, and work under
the permutation null distribution, which places an nj!ns!/N! probability on each
of the N!/(nilng!) ways of assigning the sample labels, such that sample 1 has
ny1 observations. Without further specification, we use E, Var, Cov, and Cor to
denote the expectation, variance, covariance, and correlation, respectively, under
the permutation null distribution.

2.2. Similarity graphs on observations

Let Cp be a similarity graph constructed on the distinct values. This can be
the MST, MDP, or NNG on the distinct values, if it can be uniquely defined. If
the common optimization rules do not result in a unique solution, we follow Chen
and Zhang (2013) and use the union of all MSTs. Figure 1 is a simple example.
The union of all MSTs on the distinct values can be obtained using Algorithm
1. For example, for the data in Figure 1, the distinct values a and b, a and c,
b and c, and d and e are connected in the first step, and b and d and ¢ and
e are connected in the second step. We call this graph the nearest neighbor link
(NNL). If one wants denser graphs, k-NNL can be considered, which is the union
of the 1st,...,kth NNLs, where the jth (j > 1) NNL is a graph generated by
Algorithm 1, subject to the constraint that this graph does not contain any edge
in the 1st,..., (j — 1)th NNLs.

Algorithm 1 Generate a NNL

For each distinct value indexed by ¢ (i = 1,..., K), let dumin(2) = min{d(¢,j) : j # i}

and N (i) = {j : d(i,j) = dmin(¢)}. Connect i to each element in N (7).

while Not all distinct values are in one component do
Let U be one component, let dpin(U) = min{d(i,j) : i € U,j ¢ U} and N(U) =
{(4,7) : d(4,7) = dmin(U),i €U, j ¢ U}. Connect each pair of distinct values indexed
by i and j if (4,7) € N(U).

end while
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Figure 1. There are five distinct values (a, b, ¢, d, e), denoted by circles. Some distinct
values have more than one observation, denoted by having more than one point in the
circle. The distances between the distinct values are denoted on the edges. It is clear
that there are six MSTs on the distinct values (three are presented on the left), and the
last plot is the union of the six MSTs on the distinct values.

Then, a graph on the observations initiated from Cj can be defined in the
following way. First, for each pair of edges (i,7) € Cp, randomly choose an
observation, indexed by i, and another observation, indexed by j, and connect
the two. Then, for each i, if there is more than one observation indexed by i,
connect these observations using a spanning tree (any edge in a spanning tree
has distance zero). Let G¢, be the set of all graphs initiated from Cj.

For the example in Figure 1, because the MST on the distinct values is not
uniquely defined, let Cy be the NNL. There are 15,552(= 12 - 33 .43 .32 .12)
ways of assigning the six edges in Cy to corresponding observations in each circle.
In addition, by Cayley’s lemma, for the observations equal to the same value,
there are 1, 3, 16, 3, and 1 spanning trees, respectively. Therefore, we have
2,239,488(= 15,552 x 3 x 16 x 3) graphs in G¢,. Figure 2 plots four of these
graphs for illustration.

2.3. A brief review of generalized and weighted edge-count tests

For any graph G, let Ry be the number of edges in G that connect obser-
vations from different samples, R; ¢ be the number of edges in G that connect
observations from sample 1, and R ¢ be that for sample 2. Here, Rg ¢ is the
test statistic for the original edge-count test. In Chen and Friedman (2017), the
authors note that the edge-count test (Ro,) has low or even no power for scale
alternatives when the dimension is moderate to high, unless the sample size is
extremely large, owing to the curse of dimensionality. To solve this problem, they
considered the numbers of within-sample edges of the two samples separately, and
proposed the following generalized edge-count statistic:
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Figure 2. Four graphs, out of 2,239,488, on observations initiated from the NNL on
Ryc —E(Ry G \ Ryc—E(R2c
where X = Var((R1=G)).

distinct values.
) e
Ra o

Both the edge-count test and the generalized edge-count test are suggested
to perform on a similarity graph that is denser than the MST, such as a 5-MST,
to boost their power (Friedman and Rafsky (1979); Chen and Friedman (2017)).
Here, a k-MST is the union of the 1st,..., kth MSTs, where the first MST is the
MST, and the jth (j > 1) MST is a spanning tree that connects all observations,
such that the sum of the edges in the tree is minimized under the constraint
that it does not contain any edge in the 1st,..., (j —1)th MSTs. However, Chen,
Chen and Su (2018) found that, for a k-MST (k > 1), the edge-count test (Ro )
behaves strangely when the two sample sizes are different. For example, consider
the testing problem in which the two underlying distributions are Ny(0,I) and
Na(p, 1) (||pll2 = 1.3, d = 50), and we have two scenarios, (i) ny = ny = 50 and
(ii) n; = 50, ng = 100. The edge-count test has lower power in (ii) compared
to that in (i), even though there are more observations in (ii). This is due to
a variance boosting issue under unbalanced sample sizes (see Chen, Chen and
Su (2018)). To solve this issue, Chen, Chen and Su (2018) proposed a weighted
edge-count test that inversely weights the within-sample edges using the sample

sizes
ng — 1 ny — 1

—— R —— Ry 5.
ny+ng — 2 1’G+n1—|—n2—2 26

The authors reason that the sample with a larger number of observations is more

Rya= (2.2)

likely to be connected within the sample if all other conditions are the same, and
thus should be down-weighted. This weighted edge-count test statistic addresses
the variance boosting issue, and works well for unequal sample sizes. Indeed,
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Var(Ry ) < Var((1 — p)Ri1 ¢ + pRa), for any p € [0, 1].

2.4. Extended basic quantities in the graph-based framework

In Chen and Zhang (2013), the authors consider two ways of summarizing
the test statistics for Ry qg:

(1) averaging: R (q) = (1/|gCo|)ZGegco Ry, where |G| is the number of
graphs in Ge,;

(2) union: Rg (y) = Ry g, where Ge, = U{G € G¢,}; that is, if observations
u and v are connected in at least one of the graphs in G¢,, then these two
observations are connected in G¢,. In the following, we sometimes use G
instead of Gi¢, when there is no confusion, for simplicity.

When there are many graphs in G¢,, it is often not feasible to compute these

two quantities directly. Chen and Zhang (2013) derived analytic expressions to

compute these two quantities in terms of the summary quantities in Table 2 and

Coi

2n1En N1y + NN
1kT02k + Z 1ult2v 1vTi2u

m TN, 11
k (u,w)eCy ut

] =

Ro,a) =

)

i
I

K
Rogy =Y nunoe+ Y (R1ungy + niunaw).
k=1 (u,)eCy

Similarly, we can define Ry (4), By (), R2,4), and Ry (,) and their analytic
expressions in terms of the summary quantities in Table 2 and Cp, as shown in
Lemma 1.

Lemma 1. The analytic expressions for Ry (q), Ri (u), Ro,(a), and Ry () are:

K
. 1 nlu(nlu - 1) N1yNiv
Rya) = G Z Ric = Z M + Z My

GeGe, u=1 (u,v)eCy

K
ni n1
(w) = Rl,éco - Z “( . + Z N1uN1w,

Ry

u=1 (u,w)eCy

_ o n2u(n2u - T2y N2y
Ra= s 3 g3l s o
GeGe, u=1 (u,)eCy
Kon (n
2 2u —

jo(u) = RQ,GCO = Z - - Z N2y N2y -

u=1 (u,v)eCo
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The notation {n;;}i=12; k=1, K, {Mk}r=1,. K is defined in Table 2. These
analytic expressions are obtained using similar arguments to those in Chen and
Zhang (2013), and thus are omitted here.

3. Extended Graph-Based Tests

Because the generalized edge-count test can cover a wider range of alter-
natives than the original edge-count test can (Chen and Friedman (2017)), we
would like the generalized edge-count test statistic to be well defined when there
are repeated observations. For the generalized edge-count test statistic, Sqg =

T
Rl,G - E(Rl,G) -1 Rl,G’ - E(ng) . 3
< Ry — E(Rac) I Roc —E(Rec) ) one straightforward way of def:

ining the average statistic is (1/|G¢,|) EGEQCO Sc. However, X varies with G
in G¢,, making the averaging over S difficult. Even in the simplified version in
which Y is fixed over G in G¢,, the quadratic terms in Sg make the averaging an-
alytically intractable. To view the problem more straightforwardly, note that Sg
can be written as S¢ = ((Ruw,¢ — E(Ruw.c))/v/Var(Ru,c))? + (Rac — E(Rac))/

Var(Rac))?, where Ry = ((n2 — 1)/(N = 2))Ri + (m — 1)/(N = 2)) Rog
and Ry = Ri,g — Ra,g. Let Egc0 and VarQCO be the expectation and vari-
ance, respectively, defined on the sample space G¢, that places the probability
1/|G¢,| on each G € G¢,. Using the first component as an example, the aver-

aging over all G € QCO is essentially EgC (((Rw,c — w,G))/«/Var(ng) )2) =
(Egco((R Ry G )/v/Var(Ry, G —{—VargCO R — E(Rw’g)) \/Var(Rw,G)).
Here,

nina(ny — 1)(ng — 1) SN EC)? 2|G|?
Var(R,, N = 3) <IG| — 1 + 2)>

’G):N(N—l)(N—Q N -2 (N —1)(N —

contains Zf\i 1 |€ZG |2, which varies with G in G¢,. Thus, it is already difficult
to derive an analytically tractable expression, even for Eg, ((Rw,c — E(Ruw,c))/
Var(Ry,c)). To get around these issues, we extend the generalized and weighted
edge-count tests based on how they were introduced in Chen and Friedman (2017)
and Chen, Chen and Su (2018), respectively, using the extended quantities de-
rived in Section 2.4. In the following, we first discuss the extended weighted
edge-count test, and then the extended generalized edge-count test. Further-
more, the key components in the latter form the extended max-type edge-count
test.
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3.1. Extended weighted edge-count tests

As mentioned in Section 2.3, for data without repeated observations, there
is a variance boosting problem for the edge-count test under unbalanced sample
sizes. To solve this issue, Chen, Chen and Su (2018) proposed a weighted edge-
count test Ry, g (see (2.2)). When there are repeated observations, the above
problem also exists for the extended edge-count test (see the Supplementary Ma-
terial, Section S2.2). Following a similar idea, we can weight R (,) and Ry (4) and
Ry () and Ry () to solve the problem. Under the union approach, the statistics
Ry () and Ry () are simplified versions of R and Ry, respectively, defined on G,
so the weights should be the same; that is,

ny —1

Ry wy = (1= D) Bu(u) + PRo (), with p = .

(3.1)

However, for the average approach, the weights are not this straightforward.
The following theorem shows that these weights should also be the same.

Theorem 1. For all test statistics of the form aRy () + bRy (q), with a+b=1,
for a,b > 0, we have Var(aRy (q) + bRy () > Var(R, (4)), where Ry, o) = (1 —
P)Ry (a) + DRy (q) with p = (n1 —1)/(N —2).

Proof. The minimum is achieved at

Var(Rl,(a)) - COV(RI,(a)? RQ,(a))
Var(Ry (q)) + Var(Ry (q)) — 2CoVv(Ry (a), Ra ()

p= (3.2)

Substituting Var(Ry (4)), Var(Ry (q)), and Cov(R; (q), R (4)) from the Supple-
mentary Material S1.4 into (3.2), we have p = (ny — 1)/(N —2).

In the following lemma, we provide exact analytic formulae for the expecta-
tion and variance of R, ) and R,, (4), so that both extended weighted edge-count
tests can be standardized easily. This lemma can be proved straightforwardly
by substituting in the analytic expressions for E(R (), E(Ry,(a)), Var(Ry (),
Var(Ry, (), Cov(Ry (), B2, (a))s E(R1, ) E(Ro ), Var(Ry (), Var(Ry (), and
Cov(Ry (4), R (), as provided in the Supplementary Material S1.4.

Lemma 2. The expectation and variance of Ry, ) and Ry, (4) under the permu-
tation null distribution are:

—(n —1)(no—1
E(Ru,w) =16 ((]\} - 132]\?— 2))’

nl(nl — 1)n2(n2 — 1)
N(N —1)(N —2)(N — 3)

Var(va(u)) =
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G- LS jeop Gl
N - Zl TNV —2) ’
Bl o) = (¥ — K +Co) =2 =),
ni (n1 — )ng(ng — 1)

V =
arBu @) = 2)(N — 3)

(N-D(VN-2)
1 (5 UEE1=2 (G0l - K)? 1
S AR G

> mulmv_N(N2—1)(|C°’+N_K>2}’

where |EG| =m,—1+ ngo my, if observation i has a distinct value index u, and
G = 5 mu(my —1)/2 + > (uw)ec, Mumy. Here, VCo s the set of distinct
values that connect to the distinct value indexed by u in Cy.

3.2. Extended generalized edge-count tests

As discussed earlier, it is technically intractable to derive the analytic expres-
sion for the average of Sg for G € G¢,. Here, we define an extended generalized
edge-count test statistic based on how it was introduced in Chen and Friedman
(2017) using the following extended basic quantities:

Ry (@) = E(R, (“)) ’ (R (a) — E(Ry (a))
= ’ ’ 2 ’ s )
o ( By~ ERo) ) T\ Roy —E(Rag) )0 @9
Rl (w) — E(Rl (u)) g -1 Rl (w) — E(Rl (u))
"\ R ’ > ’ ’ 4
sw = m Tem) ) = (e TEme) ) 6

where X, = Var((g1 E:;)) and X,y = Var((R1 E“;)) Using similar arguments to
those in Chen and Friedman (2017), S(,) and S(, defined in this way can deal with
the location and scale alternatives. Additional studies on the performance of the
tests are provided in Section 4. Similarly to Sg, S(,) and S, can be decomposed
to components that are asymptotically independent under mild conditions (see
Theorems 3 and 4).

Theorem 2. The extended generalized edge-count test statistics can be expressed

as
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2 2
Sta) = Ry (a) = E(Ru (a)) N Ry (q) — E(R4,(a)) (3.5)
Var(Ry, (a)) Var(Rg (a))
2 2
Sy = | Bt = ERww) ) R — ERaw) 36)
Var(Ry,(u)) Var(Rg,(u))

where Rw7(a), E(Rw7(a)), Var(Rm(a)), Rw7(u), E(va(u)), and Var(Rw,(u)) are de-
fined in Section 3.1, and Ry () = Ry (q) — Ro,(a) and Ry ) = Ry ) — Row), with

their expectations and variances, are provided below:

ny —n
E(Rya)) = (N — K + |Col) 1N 2,
_dmmy [~ (EQ -2 (Col - K)?
Var(Rd,(a)) - N(N — 1) { ; 4mu N )
= N1 — Ny
nin N 4
1702 ¢ ~
Var(Rd7(u)) = 7N(N — 1) { Z ‘gZGP _ N|G‘2}
=1

Theorem 2 is proved in the Supplementary Material S1.1.

3.3. Extended max-type edge-count test statistics

Let Zy (a) = (Ru,(a) — E(Ru,(a)))/1/Var(Ry (), Za,a) = (R, a) — E(R4,(a)))
/ Var(Rd,(a))a Zw,(u) = (Rw,(u) - E(Rw,(u)))/ Var(Rw,(u))a and Zd,(u) = (Rd,(u)

— E(Rq,(u)))/1/Var(Rg,y)). Under some mild conditions, Z,, ) and Z; ) are
asymptotically independent and follow a joint bivariate normal distribution; the
same is true for Z,, () and Zg () (see Theorems 3 and 4). Here, we define the
extended max-type edge-count statistics as follows:

M(a)(”) = maX(’{Zw,(a)’ |Zd,(a)|)a and M(u)(”) = maX(K“Zw,(u)a |Zd,(u)|)'

Because the following arguments hold for the averaging and the union statis-
tics, we omit the subscripts (a) and (u), for simplicity. From the definition of
the extended max-type edge-count test statistic, we can see that it uses both 7,
and Zg4, and is similar to S and effective for both the location and the scale
alternatives. In addition, the introduction of k in the definition makes it more
flexible than Sgq.
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Table 3. Relationship between v and k.

v 8 4 2 1 1/2 1/4 1/8
k 163 147 131 114 1 088 0.79

Table 4. Rejection regions for the extended statistics.

Statistic Reject region
Extended generalized edge-count tests S > r?
Extended weighted edge-count tests %ff“’) > Ty

Extended max-type edge-count tests M(k) > B(k)

We briefly discuss the choice of k. It is easy to see that the rejection region
{M(k) > B} is equivalent to {Z,, > /K or |Z4| > B}. Let P(Zy > pw) = a1 and
P(|Z4] > B4) = a2, and define v = a1 /ag. Based on the asymptotic distribution
of (Zy,Zg)T derived in Section 5, the relationship between v and k, with the
overall type-I error rate controlled at 0.05, is shown in Table 3.

To investigate how the choice of k affects the performance of the test, we
examine the test on 100-dimensional multivariate normal distributions Ng(u1, 1)
and Ny(p2, 32) that differ in terms of their mean and/or variance. Three scenarios
are considered; detailed results are presented in the Supplementary Material S3.2.
Based on the simulation results, if there is no prior knowledge about the type of
difference between the two distributions, we recommend « = {1.31,1.14,1} for
M (k).

3.4. Testing rule

We summarize the rejection regions for the extended statistics in Table 4,
which are similar to their continuous counterparts. Because the testing rule is
the same for the averaging and the union statistics, we omit the subscripts (a)
and (u), for simplicity. In the table, rs, 7, and B(k) are the critical values,
which can be obtained by drawing random permutations or using the asymptotic
distributions of the extended statistics (see Section 5).

Schematic plots of the rejection regions in terms of Z,, and Z; are shown
in Figure 3. We can see that these statistics are closely related. More detailed
comparisons on these statistics are presented in following sections.

4. Performance of the Extended Test Statistics

In this section, we study the performance of various tests using simulation
studies. In Section 4.1, we study the preference-ranking problem, where two
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Za Zq

B8, Zy = kZy

=4

Figure 3. Rejection regions (in gray) of Sg, Ru.g, M(k). Left: {Sg > r?}; middle:
{Zy > ry}; right: {M (k) > 8(k)} (Ba = kBw = B(K)).

groups of people are asked to rank six objects, and we test whether the two
samples have the same preference. In Section 4.2, we compare the proposed
tests on data generated directly from a multinomial distribution. Three existing
tests are included in the comparison: Pearson’s chi-squared test (denoted as
“Pearson” ), the deviance test (denoted as “LR”), and the kernel two-sample test
of Gretton et al. (2012) (denoted as “Ker”).

4.1. Preference-ranking problem
We consider the following two data-generating mechanisms:

(i) Data are generated from the probability model shown in Section 3.1,

1 —_
Po.n(¢) = Wexp{—@d((,n)}, (,ne=z, R, (4.1)
where = is the set of all permutations of the set {1,2,3,4,5,6}, and d(-,")
is a distance function, such as Kendall’s or Spearman’s distance. The two

samples are generated from Py, ,, (-) and Py, ,,(-), respectively.

(ii) Let D; and Dy be two different subsets of all possible rankings. The two
samples are generated from the uniform distribution on D; and D», respec-
tively.

When Kendall’s or Spearman’s distance is used for d(-,-), there are, in gen-
eral, ties in the distance matrix, which lead to non-unique MSTs. Hence, we apply
3-NNL to construct the graph on distinct values. The results for Kendall’s and
Spearman’s distance are similar, so we present the results based on Spearman’s
distance in the following.

We compare the statistics Ry (4), Ro,(u)s S(a)» Sw)s Bu(a)s Buw,(u)s M(a)(K),
and M(,)(x) (k = 1.31,1.14,1) using Pearson, LR, and Ker (Gretton et al. (2012))
in six scenarios (Scenarios 1-3 under (i), and Scenarios 4-6 under (ii)), with
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balanced and unbalanced sample sizes. The settings with different 6 and different
n under (i) are also considered, and the results are provided in the Supplementary
Material S3.1. The parameters under each scenario are chosen such that the tests
have moderate power, in order to be comparable.

e Scenario 1 (Only 7 differs) : n1 = {1,2,3,4,5,6}, no = {1,2,5,4,3,6}, and
01 = 0 = 5, with balanced (n; = ng = 100) and unbalanced (n; = 100, ny =
400) sample sizes.

e Scenario 2 (Only 6 differs, with 6, > 62) : m = ne = {1,2,3,4,5,6},
01 = 5.5, and 6 = 4, with balanced (n; = ng = 300) and unbalanced
(n1 = 300, n2 = 600) sample sizes.

e Scenario 3 (Only 6 differs, with 6; < 62) : m = ne = {1,2,3,4,5,6},
61 = 4, and 6, = 5.5, with balanced (ny = no = 300) and unbalanced
(n1 = 300,n2 = 600) sample sizes.

e Scenario 4 (Different support): D1 = {¢ € E : ¢ does not begin with No.6}
and Dy = {¢ € E : ¢ does not end with No.1}, with balanced (n; = ng =
150) and unbalanced (n; = 150, ny = 250) sample sizes.

e Scenario 5 (Different support): Dy = {¢ € = : ¢ ranks No.1 before No.5}
and Dy = {¢ € 2 : ¢ ranks No.1 before No.6}, with balanced (n; = ny =
180) and unbalanced (n; = 180, ny = 220) sample sizes.

e Scenario 6 (Different support): D; = {¢ € E : ¢ does not begin with No.6
and does not end with No.1} and Dy = {¢{ € = : ¢ ranks No.1 or No.2 in
top 3}, with balanced (ny = ng = 150) and unbalanced (n; = 150, ny = 250)

sample sizes.

The results are presented in Table 5, where the power is estimated using the
fraction of trials (out of 1,000) that the test rejects the null hypothesis at the 0.05
significance level. Those above 95 percent of the best power under each setting
are shown in bold.

We first check the results for the data generated by mechanism (i). We see
that Pearson, LR, and Ker have low power under all three scenarios. For the
extended statistics, S,y and M(,) work well for all scenarios, whereas the others
show obvious strengthes and weaknesses for different settings. For example, under
the unbalanced setting (ny = 300, ne = 600), Ry, (4) has no power under Scenario
2, Ry (q) has very low power under Scenario 3, and neither R, ) nor R, ()
perform well when only 6 differs (Scenarios 2 and 3). Overall, M,)(x) performs
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Table 5. Estimated power of the tests under the six scenarios denoted by A1-A6, with
(a) denoting the balanced setting and (b) denoting the unbalanced setting.

Roj(a) S(a,) Rw,(a) ]\/f(a) (1.31) ]\/f(a)(l,l4) ]\/[(a)(l) LR Pearson
Al(a) 0.866  0.759 0.866  0.837 0.815 0.780 0.194 0.197

Ro‘y(u) S(u) Rw,(u) ]V[(u)(l?)l) Aj(u) (114) ]Lf(u)(l) Ker

0.890  0.799 0.890  0.862 0.847 0.816 0.198

RO,(a) S(a) Rw,(a) Af(a) (131) ]Vf(a)(llll) ]V[(a)(l) LR Pearson
Al(b) 0.654 0.880 0.955  0.942 0.930 0.910 0.469 0.469

ROA,(U) S(u) Rw,(u) ]\/f(u)(]..?)].) ]V[(u) (1.14) ]\/[(u)(l) Ker

0.885 0.965 0.984 0.977 0.970 0.962 0.312

Ry () Sta) Ry (a) M4)(1.31) Mq)(1.14) Mq)(1) LR Pearson
A2(a) 0.291 0.200 0.291 0.265 0.243 0.211 0.109 0.107

RQ(u) S(u) Rw,(u) ]\/f(u)(lgl) Af(u)(ll4) ]\/f(u)(l) Ker

0.442 0.775  0.442 0.749 0.784 0.809 0.098

RO,(a) S(a) Rw,(a) ]\/[(@ (131) A/j(a)(114) Af(a)(l) LR Pearson
A2(b) 0.526 0.332 0.352 0.361 0.349 0.335 0.017 0.014

ROA,(u) S(u) Rw,(u) A{(u)(lghl) Af(u) (114) M(m(l) Ker

0 0.900  0.568 0.885 0.921 0.933 0.158

RQ_’(Q) S(a) Rw,(a) Af(a) (131) ]Vf(a)(llll) ]V[(a)(l) LR Pearson
A3(a) 0.297 0.217 0.297 0.278 0.269 0.240 0.107 0.116

ROA,(u) S(“) Rw,(u) ]\/f(u)(]..?)].) ]\/[(u) (1.14) ]\/[(u)(l) Ker

0.464 0.780 0.464 0.754 0.791 0.820 0.092

R07(a) S(a) Rw,(a) ]\/[(@ (131) ]\f(a)(llll) ]Lf(a)(l) LR Pearson
A3(b) 0.062 0.401 0.387 0.420 0.421 0.409 0.397 0.430

0.962  0.884 0.582 0.867 0.903 0.920 0.113

RO,(a) S(a) Rw,(a) ]\/[(@ (131) A/j(a)(114) ]\/f(a)(l) LR Pearson
Ad(a) 0.776  0.626 0.776 0.741 0.705 0.657 0.205 0.206

R(L(u) S(u) Rw,(u) A{(u)(lghl) Af(u) (114) M(m(l) Ker

0.700 0.530 0.700 0.647 0.623 0.584 0.187

R07(a) S(a) Rw,(a) ]\/f(@ (1.31) ]Vf(a)(llﬁl) ]\/f(a)(l) LR Pearson
A4(b) 0.865 0.791 0.914  0.876 0.850 0.825 0.300 0.306

0.812 0.688 0.818 0.779 0.761 0.732 0.216

R07(a) S(a) Rw,(a) ]\/[(@ (131) ]\f(a)(llll) ]Lf(a)(l) LR Pearson
A5(a) 0.820  0.669 0.820  0.770 0.727 0.690 0.823  0.825

RO_’(U) S(u) Rw,(u) A[(u)(IBI) ]Vf(u) (114) ]\/[(u)(l) Ker

0.656 0.525 0.656 0.620 0.573 0.537 0.742

ROA,(a) S(a) Rw,(a,) ]\l(a) (1.31) ]\/[(a)(l,l4) ]\/[(,,,)(1) LR Pearson
A5(b) 0.909  0.768 0.892 0.861 0.842 0.800 0.895  0.899

Ro‘y(u> S(u) Rw,(u) j\/l(u)(131) ]Lf(u) (114) ]Lf(u)(l) Ker

0.769 0.640 0.730 0.708 0.683 0.659 0.794

RQ(u) S(a) Rw,(a) ]\/f(@ (1.31) ]Vf(a)(llﬁl) ]\/f(a)(l) LR Pearson
A6(a) 0.892  0.755 0.892  0.857 0.827 0.790 0.256 0.260

0.823 0.691 0.823 0.782 0.752 0.712 0.233

Ry S Ry )  My(1.31)  My(1.14)  M(1) LR Pearson
A6(b) 0.940  0.902 0.970 0.958 0.943 0.925 0.352 0.350

Rowy St Ry — Muy(131) My, (1.14)  Myy(1) Ker

0.891 0.822 0.930  0.903 0.881 0.859 0.291
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best among the tests. When 6 differs, S,y and S, provide similar results to
M,y(k) and M,(k), respectively, but they perform worse than M(x) and
M, (k), respectively, when only 7 differs (Scenario 1). In general, the tests based
on the “union” are slightly better than their “averaging” counterparts (except
for some cases for Rp).

For the data generated by mechanism (ii), we see that all tests perform
relatively well under Scenario 5. For the other two scenarios, 4 and 6, Pearson,
LR, and Ker have low power. The proposed tests perform similarly well under
both scenarios, with those based on “averaging” being slightly better than their

“union” counterparts.

4.2. Multinomial distribution

Here, we generate data from a d-dimensional multinomial distribution. We
consider d = 100, d = 1,000, and d = 10,000. Sample 1 consists of n; observations
drawn randomly from F; = Mult(My,p1), fori =1,...,n1, and sample 2 consists
of ng observations drawn from F» = Mult(Ma, p2), fori = 1,...,ny. Here, M; and
M> are the total counts of each observation in sample 1 and sample 2, respectively,
and p; and po are the respective compositions. We set My = My = 3, and consider
the following choices of p;. Let p1 = (a1,az...,aq)" and ps = (b1, ba,. .., bg)7.

1) d = 100:
0.1 =1
Scenario 1 (B1): a; =0.01,i=1,...,d; b =< 09
99 =
0.002 <70 0.018 <30
Scenario 2 (B2): a; = ¢ .86 7 bi =< 0.46
— 1271 — 1>
30 70
2) d = 1,000:
0.085 =1
Scenario 1 (C1): a; =0.001,i =1,...,d; b; =< 0.915
999 -
02 <o o <30
Scenario 2 (C2): a; = 0.5 i bi = 0.4
=2 i>0971 — > 31
1> 97 970 1>3

3) d = 10,000:
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0.18 =1
Scenario 1 (D1): a; =0.0001,: =1,...,d; b; =1 .82 .
— 1 >2
9999 ' =
79%'?0 t <9970 % 1 <30
Scenario 2 (D2): a; = 0.6 ;b= 0.6
g P> 1 — > 31
30 1> 997 9970 ° 3

For each scenario, we examine both a balanced setting n; = ne = 120 and
an unbalanced setting ny = 120,n2 = 200. Under each setting, we randomly
generate 1,000 data sets and estimate the power under the 0.05 significance level,
are shown in Table 6. Values above 95 percent of the best power under each
setting are shown in bold.

We see that Pearson and LR have no power under these scenarios. In Scenario
1 (B1, C1, D1), the graph-based statistics all perform reasonably well, except for
Ry () and Ry (,) under the unbalanced setting. In Scenario 2 (B2, C2, D2), the
extended generalized edge-count tests and extended max-type edge-count tests
outperform all other tests, indicating that the alternative in this type of scenario

is more in the scale domain than in the location domain.

5. Asymptotics

In this section, we provide the asymptotic distributions of the new test statis-
tics described in Section 3. This provides us with a theoretical basis for obtaining
approximate p-values in an analytic way. We examine how well these approxi-
mations work for finite samples by checking the empirical sizes of the new test
statistics at the end of this section, and by comparing the p-values obtained from
the asymptotic results and those using random permutations in the Supplemen-
tary Material S3.3. In the following, we use a = O(b) to denote that a and b are
of the same order, and a = o(b) to denote that a is of a smaller order than b. Let
Ei’Gz be the set of edges in G that contain at least one node in VZ-G .

5.1. Statistics based on averaging
To derive the asymptotic behavior of the statistics based on averaging (R, (4),

S(a), M(qa)(k)), we work under the following conditions:

Condition 1. [Col, X2, ,yec, (1/mumy) = O(N); K, 37, (1/my) = O(N®), a0 <
1.
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Table 6. Estimated power of the tests under scenarios B1, B2, C1, C2, D1, and D2, with
(a) denoting the balanced setting and (b) denoting the unbalanced setting.

RO,(Q) S((l) Rw.(a) ]L[(a)(l?)l) Af(a) (114) Af(a)(l) LR Pearson
B1(a) 0.637  0.560 0.637 0.600 0.600 0.570 0 0

RO,(u) S(u) Rw#(u) ]\/f(u)(l,gl) ]\/f(u)(l.].‘l) ]W(u) (1) Ker

0.633  0.507 0.633  0.590 0.557 0.547 0.313

RO,(a) S(a) Rw,(a) ]\1(@(131) ]V[(@ (114) ]\/j(a)(l) LR Pearson
Bi(h) 0.023 0.754  0.780 0.777 0.770 0.746 0.002  0.002

RO,(u) S(u) Rw,(u) M(u)(lgl) A[(u)(114) Af(u) (1) Ker

0.030 0.734 0.788 0.773 0.761 0.743 0.063

RO,(a) S(a) Rw,(a) ]W-(a)(131) Af(@ (114) ]M(a)(l) LR Pearson
B2(a) 0.050 0.822  0.050 0.550 0.620 0.674 0.004  0.004

RO,(u) S(m Rw#(u) ]\/1(7,,)(1.31) ]\/f(u)(l.lll) ]\/f(u) (1) Ker

0.044 0.774 0.044 0.366 0.436 0.486 0.364

RO,(a) S(u) Rw,(a) M(a)(131) ]\J(@ (114) ]\f(a)(l) LR Pearson
B2(b) 0.660 0.878  0.168 0.726 0.754 0.768 0.012  0.012

RO,(u) S(u) Rw‘(u) ]L[(u)(liil) Af(u)(llll) ]M(“) (1) Ker

0.404 0.866  0.164 0.650 0.722 0.762 0.646

RO,(a) S(a) Rw,(a) ]\1(@(131) ]V[(@ (114) ]u-(a)(l) LR Pearson
Cl(a) 0.773 0.766  0.773 0.768 0.766 0.758 0 0

RO,(u) S(u) Rw,(u,) ]\/[<u)(131) ]\/[(u)(114) Al(u)(l) Ker

0.773 0.766  0.773 0.768 0.766 0.758 0.675

RO,(a) S(a) Rw,(a) ]Lf(a)(li;l) ]\zf(@ (1.14) A{(a)(l) LR Pearson
Ci(h) 0.002 0.942  0.948 0.944 0.944 0.942 0 0

0.002 0.942  0.948 0.944 0.944 0.942 0.550

RO,(a) S(a) Rw,(a) ]\/[(a)(131) ]\/I(@ (114) ]\/f(a)(l) LR Pearson
C2(a) 0.604 0.823  0.604 0.705 0.726 0.734 0.001  0.001

R(L(u) S(u> Rw,(u) ]V[(u)(131) A{(u)(llﬁl) ]\J(u) (1) Ker

0.603 0.826  0.603 0.705 0.722 0.730 0.660

RO,(a) S(,l) Rw’(,l) ]\/f(a)(l.31) ]\/f(a) (1.14) ]W(,l)(l) LR Pearson
C2(b) 0.006 0.921  0.245 0.763 0.807 0.824 0 0

Ro’(“) S(u) Rw,(u) M(u)(131) ]\/[(@(114) ]V[(,” (1) Ker

0.006 0.921  0.242 0.758 0.801 0.821 0.656

RO,(a) S(u) Rw,(a) ]\f(a)(li‘}l) ]V[(@ (114) ]\/[(a)(l) LR Pearson
Di(a) 0.699 0.715 0.699 0.716 0.712 0.713 0 0

RO,(u) S(u) Rw‘(u) ]W(u)(l?;l) Af(u)(llll) Af(u) (1) Ker

0.700 0.715  0.700 0.716 0.712 0.713 0.664

ng(a) S(a) Rw#(a) ]\/I(a)(l.?)].) ]\/f(a) (1.14) ]W(a)(l) LR Pearson
Di(b) 0.227 0.936  0.923 0.930 0.930 0.933 0 0

RO,(u) S(u) Rw,(u) ]\f(u)(lg)l) A/[(u)(114) ]\/[(u) (1) Ker

0.304 0.936 0.923  0.930 0.930 0.933 0.528

RO,(a) S(a) Rw,(a) ]Lf(a)(li;l) ]\J(@ (1.14) Af(a)(l) LR Pearson
D2(a) 0.075 0.877  0.075 0.608 0.649 0.677 0 0

0.076 0.876  0.076 0.597 0.646 0.673 0.607

Ry (a) S(a) Ry (a) M4)(1.31) M) (1.14) M4y (1) LR Pearson
D2(h) 0.588 0.897  0.301 0.767 0.788 0.810 0 0

RO,(u) S(u) Rw,(u) ]Lf(u)(l?)l) ]\J(u)(llll) AI(@ (1) Ker

0.571 0.895  0.300 0.765 0.785 0.806 0.756
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Condition 2. 3, my(my + [E]) (my + 3, cpeo o + |E03]) = o(N*/2),

Z(mu+mv+|5§°|+\S§°\)<mu+mv+ > meEE%HEf%I)

(u,)E€CH we(VIouvso)
= 0(N3/2).

Condition 3. 3, ((|€7°] - 2)*/4m.) — ((|Co| — K)?/N) = O(N).

Remark 1. A special case for Condition 1 is [Col, >, ,)ec, (1/mumo), K, 32, (
1/my) = O(N). This and Condition 2 are the same as those stated in Chen and
Zhang (2013) to obtain the asymptotic properties of Ro,(a) and Ry (). Condition
1 is easily satisfied, and Condition 2 sets constraints on the number of repeated
observations and the degrees of the nodes in the graph Cp, such that they cannot
be too large. When m,, = m, for all u, Condition 2 simplifies to ), |Sg°\|55%\ =
o(N*2) and 3, yec, (€S| + [EF (€S| + |E55]) = o(N¥/2).

The additional condition (Condition 3) ensures that (Rj, R2)” does not
degenerate asymptotically. When m, = m, for all u, Condition 3 becomes
(1/4m) 32, [E502 — (ICol2/mK) = (1/4m) 2, (€S| — (2ICol/K))? = O(N),
which is the variance of the degrees of the nodes in Cy. When there is not
enough variety in the degrees of the nodes in Cp, the correlation between R; and
Ry tends to one. (A similar condition is needed for the continuous counterpart
(Chen and Friedman (2017)).)

Theorem 3. Under Conditions 1, 2, and 3, as N — 00, (Zw,(a),Zdj(a))T L,

N2(0,13) under the permutation null distribution.

The proof of this theorem is given in the Supplementary Material S1.2.
Based on Theorem 3, it is easy to obtain the asymptotic distributions of ()
and M(a)(lﬁj).

Corollary 1. Under Conditions 1, 2, and 3, as N — 00, S(,) L, X2 under the

permutation null distribution.

Corollary 2. Under Conditions 1, 2, and 3, the asymptotic cumulative distribu-
tion function of My (k) is ®(z/k)(2®(x) — 1) under the permutation null distri-
bution, where ®(x) denotes the cumulative distribution function of the standard
normal distribution.

5.2. Statistics based on the union

To derive the asymptotic behavior of the statistics based on the union (R, (),
S(w)s M) (k)), we work under the following conditions:
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Condition 4. |G| = O(N).
Condition 5. Y2 [EG]2 — (4/N)|G|? = O(N),
Condition 6.

K
Zmi(mu—i- Z mv) Z My (mv+ Z mw) :0(N3/2)7
u=1

veVso ve{uupso weVSo
S, [m(m+ 5 m> o, (var 5 m>
(u,0)€Co wevSo wepso E
3/2
Z mu(my +my) | = o(N*?).
we{uu{vupSoupso
yevso J

Remark 2. Condition 4 is easily satisfied. Condition 5 is mentioned in Chen and
Friedman (2017) for the continuous version. When m,, = m, for all u, Condition
5 can be rewritten as Y.' €92 — (4/K)|Co|> = O(K). If Cp is the k-MST,
k = O(1), constructed under the Euclidean distance, the above condition always
holds, based on the results of Chen and Friedman (2017).

When m, = m, for all u, Condition 6 becomes ), |5§°|]5§%| = o(N3/?)
and Z(u,y)eco(’5$0| + ]550])(]85%\ + \Evcgl) = o(N3/2), which are the same as the
simplified form in Remark 1. These conditions restrict the degrees of the nodes
in graph Cj.

Theorem 4. Under Conditions 4, 5, and 6, as N — oo, (Zw’(u),Zd,(u))T L,

N5(0,1s) under the permutation null distribution.

The proof of this theorem is given in the Supplementary Material S1.3.
Based on Theorem 4, it is easy to obtain the asymptotic distributions of S,
and M(u) (H)

Corollary 3. Under Conditions 4, 5, and 6, as N — 00, S(y) L, X2 under the
permutation null distribution.

Corollary 4. Under Conditions 4, 5, and 6, the asymptotic cumulative distribu-
tion function of M,)(k) is ®(z/k)(2®(x) — 1) under the permutation null distri-
bution, where ®(x) denotes the cumulative distribution function of the standard
normal distribution.

To determine whether these theoretical results are useful in practice, we
check the empirical sizes of these tests, with the p-value determined using the
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Table 7. Empirical size at 0.05 nominal level.

Statistic ny = 50 ny = 50 ny = 50 ny = 100 ny = 100 ny = 100
ng =50 mng =100 ng =150 mng =100 mng =200 mng =300
S(a) 0.032 0.043 0.043 0.038 0.030 0.033
S(w) 0.036 0.027 0.034 0.033 0.037 0.036
Ry () 0.038 0.039 0.039 0.041 0.037 0.037
Ry () 0.046 0.043 0.033 0.038 0.035 0.033
M(a)(l.?)l) 0.039 0.044 0.042 0.039 0.034 0.030
M(u)(l.Sl) 0.041 0.035 0.036 0.036 0.042 0.038
Mq)(1.14)  0.039 0.047 0.043 0.036 0.033 0.028
M,y (1.14)  0.039 0.031 0.033 0.035 0.040 0.038
Mq(1) 0.042 0.044 0.040 0.036 0.032 0.025
M(u)(l) 0.039 0.029 0.029 0.035 0.042 0.044

asymptotic results directly. We generate the data using mechanism (i) in Section
4.1, with 01 = 02 =5 and n; = n2 = {1,2,3,4,5,6}. Table 7 shows the empirical
sizes of the tests under difference choices of sample sizes. The empirical size is
computed as the fraction of trials (out of 1,000) in which the asymptotic p-value
(p-value computed based on the asymptotic distribution directly) is less than
0.05. We see that the empirical sizes are well controlled for all proposed tests,
even when the sample sizes are in the 50s. We provide additional examinations
of the asymptotic p-values by comparing them with the permutation p-values in
the Supplementary Material S3.3.

6. Phone-Call Network Data Analysis

Here, we analyze phone-call network data. The MIT Media Laboratory con-
ducted a study of 106 subjects, including students and staff of an institute, who
use mobile phones with pre-installed software that can record call logs. The study
lasted from July 2004 to June 2005 (Eagle, Pentland and Lazer (2009)). Given
the richness of this data set, many problems can be studied. One question of in-
terest is whether phone-call patterns on weekdays differ from those on weekends.
The phone calls on weekdays and weekends can be viewed as representations of
professional and personal relationships, respectively.

We bin the phone calls by day and, for each day, construct a directed phone-
call network, with the 106 subjects as nodes, and a directed edge pointing from
person i to person j if person ¢ made at least one call to person j on that day. We
encode the directed network of each day using an adjacency matrix, with element
[i, 7] taking the value one if there is a directed edge pointing from subject i to
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Table 8. Breakdown statistics of the phone-call network data.

Value Mean  Value-Mean SD
Ry (@) 2,800.26 2,669.56 130.70  143.33
Ry (a) 409.18  420.80 -11.62 57.75
(Ri,(a) + Ro(a))/2 1,604.72 1,545.18 59.54 44.74
Ry, ) 1,087.14 1,058.40 28.73 11.79
Ry 2,391.08 2,248.76 142.32  199.37
Value Mean  Value-Mean SD
Ry 7,163.00 6,860.35 302.65  381.50
Ry () 1,008.00 1,081.38 -73.38  151.66
(Ry,u) + Ro,(w))/2 4,085.50 3,970.86 114.64  116.22
Ry,y 2,753.17 2,719.93 33.24 15.65
Ry 6,155.00 5,778.97 376.03  532.03
Value p-Value Value p-Value
Zy,(a) -1.33 0.092  Zp(u) -0.99 0.162
S(a) 6.45 0.040 Sy 5.01 0.082
Zoy (a) 2.44 0.007  Zy,(u) 2.12 0.017
| Za,(a)l 0.71 0.475 | Zg(w)| 0.71 0.480
k=131 3.19 0.009 k=131 278 0.022
My(k) r=1.14 2.78 0.013 Mgy(k) k=114 242 0.032
k=1 2.44 0.022 k=1 2.12 0.050

subject j, and zero otherwise.

In the data set, there are 236 weekdays and 94 weekends. Among the 330
(236 4 94) networks, there are 285 distinct values, 11 of which have more than one
observation. We denote the distinct values as matrices By,..., Bogs. We adopt
the distance measure used in Chen and Friedman (2017) and Chen, Chen and Su
(2018), which is defined as the number of different entries, this is, d(B;, Bj) =
| B; — Bj||%, where || - || ¢ is the Frobenius norm of a matrix. In addition to the
repeated observations, there are many equal distances among the distinct values.
We set Cpy to be the 3-NNL, which has similar density to that of the 9-MST
recommended in Chen, Chen and Su (2018).

Table 8 lists the results. In particular, we list the values, expectation (Mean),
and standard deviations (SD) of Ry (a), B (u), Ra,a)s B2,y (Bia) + Ra,a))/2s
(Ri,(w) + Ro,w))/2, ) R (u)> Raya), and Ry (), as well as the values and
p—Values of ZO7(a), ZO,(u)a S(a), S(u), Zw7(a), Zw7(u), ’Zd’(a)’, ‘Zd7(u)’, M(a)(lﬁ), and
M) (k), where Z; () and Z; () are standardizations for Ry 4y and Ry (), respec-
tively. The tests based on (Ry )+ Ra,(q))/2 and (Ry )+ Ra,(4))/2 are equivalent
to those based on Ry (,) and Ry (), respectlvely.
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We first check the results based on “averaging.” We can see that Ry ) is
much higher than its expectation, whereas Rj ,) is smaller than its expecta-
tion. The original edge-count test Ry (4) is equivalent to adding Ry () and Ry (4)
directly, so the signal in Ry (4) is diluted by Ry (,). In addition, owing to the vari-
ance boosting issue, it fails to reject the null hypothesis at the 0.05 significance
level. On the other hand, the weighted edge-count test chooses the proper weight
to minimize the variance and performs well. Because S,y and M, (k) consider
the weighted edge-count statistic and the difference between two within-sample
edge-counts simultaneously, these tests all reject the null at the 0.05 significance
level. Here, a larger value of x indicates greater similarity between the max-type
test (M) (r)) and the weighted test (R, (4)). Thus, the p-values of M, (k) are
very close to those of R, (4) when & is large. The results for the “union” counter-
parts are similar, except that S(,) cannot reject the null at the 0.05 significance
level. Based on this table, there is clearly a mean difference between the two
samples, but no significant scale difference.

We also compare the asymptotic p-values with the permutation p-values, and
the results show they are quite close (see the Supplementary Material S3.3).

7. Conclusion

The generalized edge-count test and the weighted edge-count test are useful
tools in two-sample testing frameworks. Both tests rely on a similarity graph
constructed on the pooled observations from the two samples, and can be applied
to various data types, as long as a reasonable similarity measure on the sample
space can be defined. However, they are problematic when the similarity graph
is not uniquely defined, which is common for data with repeated observations. In
this work, we extend these statistics, as well as the max-type statistic, to accom-
modate scenarios in which the similarity graph cannot be uniquely defined. The
extended test statistics are equipped with easy-to-evaluate analytic expressions,
making them easy to compute in a real-data analysis. The asymptotic distribu-
tions of the extended test statistics are also derived, and simulation studies show
that the p-values obtained based on asymptotic distributions are quite accurate
for sample sizes in the hundreds or more, making these tests easy off-the-shelf
tools for large data sets.

Among the extended edge-count tests, the extended weighted edge-count
tests aim for location alternatives, and the extended generalized /max-type edge-
count tests aim for more general alternatives. When these tests do not reach a
consensus, a detailed analysis such as that based on the phone-call network data



414 ZHANG AND CHEN

in Section 6 is recommended.

Supplementary Material

The online Supplementary Material contains proofs of the lemmas and the-
orems, as well as some additional results.
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