
ThingNet: A Lightweight Real-time Mirai IoT
Variants Hunter through CPU Power Fingerprinting

Zhuoran Li and Dan Zhao
Department of Computer Science

Old Dominion University
{zli003,dzhao}@odu.edu

Abstract—Internet of Things (IoT) devices have become at-
tractive targets of cyber criminals, whereas attackers have been
leveraging these vulnerable devices most notably via the infamous
Mirai-based botnets, accounting for nearly 90% of IoT malware
attacks in 2020. In this work, we propose a robust, universal
and non-invasive Mirai-based malware detection engine employing
a compact deep neural network architecture. Our design allows
programmatic collection of CPU power footprints with integrated
current sensors under various device states, such as idle, service
and attack. A lightweight online inference model is deployed in the
CPU for on-the-fly classification. Our model is robust against noisy
environment with a lucid design of noise reduction function. This
work appears to be the first step towards a viable CPU malware
detection engine based on power fingerprinting. The extensive
simulation study under ARM architecture that is widely used in
IoT devices, demonstrates a high detection accuracy of 99.1% at
a speed less than 1ms. By analyzing Mirai-based infection under
distinguishable phases for power feature extraction, our model has
further demonstrated an accuracy of 96.3% on model-unknown
variants detection.

Index Terms—Mirai IoT variants detection, power side-channel
auditing, lightweight deep learning, noise reduction

I. INTRODUCTION

In the era of hyper-intelligence & digitization, the Internet
of Things (IoT) devices play a crucial role in the flourishing
development of IoTs. IoT devices, currently 22 billion con-
nected globally, are equipped with diverse CPU architectures
and possess unique characteristics such as limited resources,
continuous online connection requirement and the lack of
security protection. Meanwhile, cyber attacks on IoT devices
are accelerating at an unprecedented rate due to the rising
deployment in industry, infrastructure, business, healthcare and
homes along with the massive shift towards remote-work across
the globe during the COVID-19 pandemic. Most current IoT
threats are Mirai and its variants that overwhelmed several
high-impact targets e.g., Krebs, OVH, Dyn and Github through
distributed denial-of-service (DDOS) attacks. Tons of variants
were emerged since the original Mirai source code was leaked
online in 2016. Over the years, new variants leverage vulnera-
bilities to hijack IoT devices and harness the power of botnet
with millions of infected devices to launch DDOS attacks, e.g.,
Mozi malware accounting for 89% of the total IoT attacks
detected in 2020 as reported by IBM X-Force. According to
Netscout Report, 10 million DDOS attacks were observed in
2020 accompanied with huge upsurge of brute-forcing of access
credentials and malware targeting IoT devices. As the IoT
devices are expected to grow 13% annually to 41 billion in

2025 according to IoT Analytics, there arises a compelling need
to protect them from Mirai-based malware attacks.

The emergence and evolution of Mirai malware and its
variations and the fragile IoT ecosystem were comprehensively
investigated and discussed in [1], [2]. Due to a lack of security
design as well as the specific characteristics of IoT devices
such as the heterogeneity of processor architecture, IoT mal-
ware detection has evolved as a challenging research focus
in recent years. While signature-based IoT malware detection
methods [3], [4] can provide first-line of defense, they are not
effective against unknown or zero-day malware attacks and
cannot keep pace with the evolving rate and sophistication
of modern malware. In Cisco 2017 Annual Cybersecurity
Report, 95% of malware analyzed were not even 24 hours
old. Cybercriminals today employ various techniques, e.g.,
cryptors, code obfuscation, polymorphism to create malware
that can constantly change its identifiable features so as to
escape signatures-based detection. As reported by the Ponemon
Institute, zero-day malware was used in 76% successful attacks
in 2018 [5].

Current research focuses on behavior analysis to analyze
and evaluate all potential actions that may be performed by a
code, e.g., access to any critical or irrelevant files, processes or
internal services to detect all malicious or potentially malicious
activities. Many recent research has taken advantage of well-
known dynamic or static analysis for detecting IoT malware.
The dynamic analysis technique [6], [7] monitors executable
codes during run-time to detect abnormal behaviors which
provides a more complete picture of behavior analysis, however
is resource intensive. In contrast, the static approach [8] ana-
lyzes static characteristics such as control flow graph, operation
codes, and grey-scale images, etc to detect malicious codes
without executing them. It generally runs faster but the correct-
ness of data acquisition can easily be affected by the packing
technique used. To improve detection performance, recently
deep learning has gained importance in malware detection with
heterogeneous feature selection which however is computation
costly [9], [10].

There is another line of detection research exploring the
postulate that malware can be effectively detected by non-
intrusively monitoring side-channel data, e.g., vibrations, tim-
ing, temperature, power, and electromagnetic, etc [11]–[17].
Recently, an IoT botnet detection method has been developed
by modeling the power consumption of an IoT device, and

310978-3-9819263-6-1/DATE22/ c©2022 EDAA

Authorized licensed use limited to: Old Dominion University. Downloaded on June 25,2022 at 12:27:24 UTC from IEEE Xplore. Restrictions apply.

classifying the malicious behaviors with a convolution neural
network deep learning model [18]. Unfortunately this approach
neither tackles the problem of noisy power signals nor considers
consecutive mixed device activities without clear boundaries.
Further, it relies on an expensive off-the-shelf HV Power
Monitor to monitor power consumption. Collection and storage
of power datasets and execution of classification offline on a
computer involve additional detection overhead and latency. In
this paper, we build a lightweight malware detection engine,
dubbed IoT Malware Hunter, deployed in an ARM processor
that entails the integrated current sensors to extract the mali-
cious power signals from ambient noise for on-the-fly detection.
Our contribution can be summarized as follows:

• We develop a lightweight deep learning model namely
ThingNet tailed for resource constrained embedded pro-
cessors, e.g., ARM Cortex-A series processors widely used
for IoT devices, by implementing depthwise separable
convolutions to greatly compress model operations while
maintaining detection accuracy. An elastic contractible soft
thresholding is further integrated as nonlinear transforma-
tion layers to eliminate non-essential features to achieve
denoising.

• We implement the CPU detection engine, namely IoT
Malware Hunter on ODROID-XU3 with the Samsung
Exynos5422 Octa CPU to command for data streaming,
preprocessing and classification in real time. Two inte-
grated Texas Instruments INA231 current/voltage sensors
instantaneously monitor the power consumption of the Big
A15 cores cluster and Little A7 cores cluster respectively
to identify malware attack at early infection stages. The
system design is fine tuned for best tradeoff between
model size, speed and accuracy.

• Our detection engine is robust even in the real open
world noisy environment where an IoT device runs various
applications and services when getting infected by a mal-
ware. Our simulation study demonstrates that ThingNet
can achieve a high detection accuracy of up to 99.1% at
0.4ms.

The rest of paper is organized as follows. Sec. II takes
a system overview of the IoT Malware Hunter with both
hardware and software modules. It further presents our study
of the Mirai infection process and discusses the threat model.
Sec. III describes the design of a lightweight deep-learning
model ThingNet for real-time malware infection detection
under noisy environment. The extensive simulation study is
performed in Sec. IV and finally Sec. V concludes this work.

II. SYSTEM DESIGN OF IOT MALWARE HUNTER

IoT Malware Hunter is designed to detect malware attacks
at the early infection stages to prove that such malware actions
leave detectable fingerprints on power side-channel data. We
will analyze malware infection activities and its correlation
with power variations to further experiment with deep learning
techniques for efficient power feature extraction and infection
detection. Moreover, we target at Mirai malware [1] as Mirai
variants continue to evolve to support malware propagation and
infection across different platforms and architectures.

A. System Overview

The IoT Malware Hunter is an integral design of hardware
platform and software stack. As shown in Fig. 1, the detection
engine hardware is built by reusing the on-device embedded
processor or microcontroller (e.g., Samsung Exynos5422 Octa
CPU on ODROID-XU3) and the built-in power sensor(s) (e.g.,
TI INA231 current/voltage sensors primarily used for power
management) connected to the CPU via I2C bus(es). The
sensor(s) constantly monitors the CPU power consumption and
the CPU live streams power data, preprocesses data segments,
detects infection activities and instantly alerts the system of
malware attacks. The challenge is how to accurately detect such
infections by identifying distinguishable power fingerprints on
a resource-constrained IoT device.

Fig. 1: System overview

The detection engine software module mainly includes three
phases (1) instant power data collecting via current sensor(s),
(2) data segmentation with adaptive sliding window with
overlapping approach, and (3) power feature extraction and
classification. As the entire process is dominated by power
auditing involving power data collection (in phase 1) and
preprocessing (in phase 2), we will interleave the processes
from multiple sensors (for heterogeneous multicore processors)
so that ThingNet can simultaneously detect up to tCol+tSeg

tInf

sensor datasets (where tCol, tSeg and tInf denote the average
time needed for data collection, segmentation and classification
respectively). To enhance power feature extraction, we fine tune
the current sensor sampling rate, and sliding window size and
overlapping percentage for desired datasets collection. In order
to build the online inference model, we first conduct offline
training to determine the architecture and parameters of the
deep learning model which will be discussed in Sec. III.

B. Threat Model

The IoT Malware Hunter is designed based on the postulate
that when device operations are changed by malicious activities,
they leave physical traces that can be distinguishably identified
via side channels. For example, we are able to observe the Mirai
malware infection process via power side-channel auditing. As
illustrated in Fig. 2, the power waveform in three red boxes
correspond to a sequence of malicious activities during the
Mirai infection process (a) Telnet scanning (b) Reporting IP
(c) Loading bot in Fig. 3. As we can see these three waveform

Design, Automation and Test in Europe Conference (DATE 2022) 311

Authorized licensed use limited to: Old Dominion University. Downloaded on June 25,2022 at 12:27:24 UTC from IEEE Xplore. Restrictions apply.

are different and perceptible from those under device normal
operations.

Fig. 2: Power consumption during Mirai infection

In this work we focus on the infection of Mirai family on
ARM-based hardware architecture (e.g., ARM Cortex A series
CPU) widely used for IoT devices. For instance in Fig. 3, each
Mirai infected device scans the Internet for open Telnet ports
23 or 2323 (step 2). Once a vulnerable victim is found, the
malware attempts to perform a brute-force login using a list of
62 known default credentials of BusyBox-based IoT devices.
If the login attempt is successful, the device IP and credentials
are sent to a centralized ScanListen service (step 3) which are
further used by the bot-load service that subsequently loads
and executes the bot on the new victim (step 5). The malware
binary is then removed and runs only in memory to avoid
detection. Each bot will repeat this process to propagate and
infect more vulnerable devices. Such self-replication results in
an exponential growth in the botnet size up to 500 brute results
per second at peak as reported by Virus Bulletin. We aim at
the detection of malicious behaviors when devices undergo the
above three steps in the Mirai infection process.

Fig. 3: Mirai infection process

C. Design Optimization of Power Fingerprinting

The power auditor implements the functions of data collec-
tion and preprocessing. The raw power data is sampled and in-
stantly collected from the current sensor(s) via I2C bus(es). The
sampling rate plays an important role in detection performance
as the false alarm rate and miss detection rate depend upon the
number of samples. We will explore the effect of sampling
rate on detection performance and investigate the minimum
sampling rate that maintains high detection performance in

terms of accuracy and precision. For effective feature extrac-
tion and classification, the continuous power data stream is
divided into discrete segments by applying an adaptive window
segmentation and feature construction protocol. The sliding-
window based segmentation methods have been widely used
for dividing the activity data steam [19], [20]. The challenge is
how to optimize window sizing and overlapping to maximize
detection performance. We will exploit the impact of window
sizing with overlapping on the detection of infection activities
and automatically adapt window sizes for different activities.

III. DESIGN OF THINGNET

Aiming at the design of a lightweight deep learning model
that can accurately detect the infection activities on-the-fly
under a noisy environment, we propose ThingNet tailed for
resource constrained IoT devices. ThingNet integrates the idea
of depthwise separable convolutions [21] to develop a compact
architecture that greatly reduces network parameters (e.g., the
number of weights and operations) while maintaining detection
accuracy. The key design lies in twofold (1) using a series of
smaller filters instead of a large filter to reduce the total number
of weights; and (2) applying these smaller filters in sequence to
achieve the same overall effective receptive field of a classical
convolution layer. In consideration of power data collection
under a noisy environment where the embedded processor runs
various applications and services while under attack, signal
denoising is essential to achieve reliable detection performance.
We thus develop a new idea to seamlessly integrate the signal
denoising functionality in a compact deep learning architecture
to enhance detection performance under the real-world noisy
environment. Consequently, an elastic contractible soft thresh-
olding method is further developed and integrated in ThingNet
as nonlinear transformation layers to eliminate non-essential
features, i.e., noises. Derived from the widely used denoising
approach of soft thresholding [22], our approach adaptively
adjusts the threshold via an content aware mechanism that
compresses a global view of each channel into a single value
while elastically weighting each feature map.

Fig. 4: ThingNet Design (a) main structure (b) feature extrac-
tion block (c) noise reduction block

In this section, we describe our proposed architecture of
ThingNet that mainly consists of two building blocks as shown

312 Design, Automation and Test in Europe Conference (DATE 2022)

Authorized licensed use limited to: Old Dominion University. Downloaded on June 25,2022 at 12:27:24 UTC from IEEE Xplore. Restrictions apply.

in Fig. 4(a). The feature extraction block as shown in Fig. 4(b)
has an expansion layer, 1D depthwise convolution layer, a
noise reduction block and a pointwise convolution layer plus
batch normalization and activation functions after each layer
respectively. The expansion layer is designed by using 1 × 1
convolution kernel to increase the feature information that
can be extracted from the input data. The channel number is
increased by multiple times in correspondence to the number
of smaller filters used. This process is an inverted way of
traditional convolution neural network (CNN) as it gradually
reduces the numbers of filters used by deeper layers. A depth-
wise convolution layer is followed after the expansion layer to
greatly reduce computation needed for the model. As a result,
ThingNet only requires at most 13% calculations as of standard
CNN operations. We repeat the main unit blocks a couple of
times with the same structure but different configuration of
parameters to extract more complicated features in the deep
layers as shown in Table I.

Algorithm 1 ThingNet Main Unit Blocks
Input: x : 1×W ← 1-D power data with a length of W
Output: y : 1×W × C ← denoised feature map
Parameters:
n ← numbers of main unit blocks, κ ← scaling factor
Ci ← numbers of filters in expansion layer
Kn ← different kernal sizes, r ← reduction ratio
Procedure:
i=1
while i ≤ n do

x : 1×Wi
Conv1 × 1, Ci−−−−−−−−−→ x : 1×Wi × Ci " Feature

expansion
x : 1×Wi × Ci

Conv1 × Ki, Ci−−−−−−−−−−→ x : 1×W
′

i × Ci "
Depthwise convolution
x : 1×W

′

i × Ci
GAP−−−→ xavg : 1× 1× Ci " Squeeze

xavg : 1× 1× Ci
FC−−→ κ : 1× 1× Ci/ri

κ : 1× 1× Ci/ri
FC−−→ κ : 1× 1× Ci " Excitation

α = κ⊗ xavg " Soft thresholding value
switch x do " Delete noise

case x > α → y = x− α

case −α < x < α → y = 0

case x < −α → y = x+ α

y : 1×Wi × Ci
Conv1 × K

′′
i , C

′
i−−−−−−−−−−→ y : 1×W

′′

i × C
′

i "
Pointwise convolution
i++

end while

To achieve denoising, a noise reduction block as shown in
Fig. 4(c) is integrated inside the feature extraction block to
further improve detection performance. It uses a threshold value
to filter unrelated information while increasing the weight of
important features. The key design of noise reduction block
is to apply the squeeze-and-excitation [23] functionality to
automatically train a soft threshold value [24] that could be
used as a noise filter for each input data instance. Our soft
thresholding function can effectively eliminate the non-essential

feature beyond the threshold interval. As a result, the Mirai
infection features remain while the noise features (i.e., running
applications and services) are trimmed.

Specifically, the noise reduction block has one global average
pooling (GAP) layer, two fully connected (FC) layer, one batch
normalization layer and a soft thresholding layer as shown
in Fig. 4(c) and in Algorithm 1. The GAP layer is added
to calculate a mean value from each channel of the feature
map. Then follows, ThingNet trains and learns feature scaling
by using two fully connected layers. Aiming at squeezing
unimportant features while exciting important features, we
assume that the data before GAP has a shape of 1×W×C, GAP
calculates an average value over C channels in order to apply
the scale to each channel eventually. The generated feature map
after GAP can be denoted as 1× 1×C (indicating the process
of squeezing). Note that the scale numbers from GAP cannot
fully represent entire feature maps because they are generated
from each single channel. The first FC layer thus compresses C
channels into C/r channels so as to use the second FC layer to
extract the scales correlated with individual channels (indicating
the process of excitation). Here, the reduction ratio factor r
can be determined via experiments. A sigmoid activation layer
is used to ensure that scale factor is between [0,1]. The soft
threshold value is calculated by multiplication of average value
calculated from the GAP layer and the scale factor extracted
after sigmoid activation function. The soft thresholding value
is then applied to filter noises after the depthwise convolution
layer. By implementing the noise reduction block with a
squeeze-and-excitation mechanism, ThingNet can detect more
important features such that the Mirai infection activities will
be excited and extracted.

IV. EXPERIMENTS

We implement a prototype Mirai Variants Hunter system to
run experiments and evaluate the performance of ThingNet.

A. Power Dataset Collection
Hardkernel Odroid-XU3 installed with Ubuntu 16.04 is used

as our experiment environment to implement the prototype
system of Mirai Variants Hunter. Odroid-XU3 is integrated with
ARM big.Little processor SoC to run applications and services
along with four power sensors (i.e., Texas Instrument INA231)
for efficient power management of core clusters. These sensors
are reused in our system to collect the power data of the ARM
processor at a sampling rate ranging between 50-1k Hz. A Dell
Precision 5520 Laptop installed with Ubuntu 18.04 acts as the
attack machine to launch the Mirai family botnet attack (as
described in Fig. 3) on the victim IoT device of Odroid-XU3.
The lightweight inference model ThingNet runs on Odroid-
XU3 to real-time detect botnet attacks at the early malware
infection phase. The experimental setup is illustrated in Fig. 5.

The power data is acquired under four most representative
states of an IoT device, i.e., idle, under Mirai infection, under
normal services, and service device under Mirai infection. The
detailed description of each type of data is given below.

• Idle: The victim machine is not running any apps for most
of the time.

Design, Automation and Test in Europe Conference (DATE 2022) 313

Authorized licensed use limited to: Old Dominion University. Downloaded on June 25,2022 at 12:27:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Experimental setup

TABLE I: Model structure parameters

• Under Mirai infection: The device experiences the infec-
tion process includes scanning, IP reporting and loading.

• Under normal service: Various applications such as
Minecraft gaming and OpenHAB smart home system run
on the victim.

• Service device under Mirai infection and noisy apps: At-
tacker randomly launches either Mirai scanning or loading
under any app of Minecraft and OpenHAB to demo a noisy
environment.

About 3000 power data samples are collected under each state,
each sample with a length of 3s-5s.

B. Classifier Optimization

A compact offline training model is developed based on
the design in Sec. III to effectively extract power feature and
classify four different device states. The model is trained with
5-fold cross-validation and the parameters are summarized in
Table I. In consequence, the TensorFlow Lite converter [25] is
used to convert the trained compact model into a lightweight
inference model that can run on Odroid-XU3 for real-time
detection under noisy environment. The ThingNet performance
is evaluated in terms of accuracy, precision, recall and F1-score.

1) Power Feature Extraction Optimization: The impact of
power data collection and preprocessing on feature extraction is
evaluated taken into the consideration of sampling rate, sliding
window size and overlapping rate. The parameters are fine
tuned to achieve the best model performance. Note that all the
experiments are conducted with a fixed two out of three vari-
ables:e.g. when running experiments on the effect of sampling
rate, we set sliding window size as 1.5s and overlapping rate
as 75%. As we can see, the higher the sampling rate, the better
the performance achieves. For example, the highest accuracy
of 97.8% is achieved at the largest sampling rate of 1KHz. A
6%-7% performance reduction is observed under the sampling
rate of 100Hz. It is due to the missing representative patterns in
the collected input dataset. Meanwhile, the performance nearly
saturates at a sliding window size of 1.5s. When the sliding
window size is reduced to 500ms, the performance is reduce
by 6%-7% as well. In general, the performance improves with

the increase of overlapping percentage. The 75% overlapping
is our best choice as it reaches the highest performance and the
lowest false positive rate. However we can trade-off between
the overlapping resources and the desired performance. For
instance, though the accuracy and false positive rate may be
reduced by 2%-3%, 50% of overlapping resources can be saved.

2) Model-Unknown Variants Detection: Satori, Okiru and
Masuta have evolved after Mirai and inherit Mirai family’s
functionality. Thus similar side-channel power patterns can
be observed when running the same Linux commands as
Mirai. We develop our model against these Mirai variants
to demonstrate its capability of detecting unknown variants
as summarized in Table III. Two scenarios are defined by
considering either Mirai infection as one class or splitting the
infection process power data into Mirai scanning and Mirai
loading as two classes. As shown in Table III, when the Mirai
infection process is segmented into two separate events, the
accuracy is improved by 10%-12%. In other words, a fine-
grained analysis of the correlation between the distinguishable
power patterns and a sequence of malware execution behaviors
results in a more robust model for Mirai variants detection than
the coarse-grained approach in [18] that segmented the entire
infection process as a single event. As a result, our model can
effectively identify common functions among Mirai variants
while filtering out unrelated features belonging to the original
Mirai that however cannot help differentiate unknown variants.
We claim that incorporating fine-grained analysis of power
data into model development may potentially improve detection
performance on unknown malware and zero-day attacks.

C. Malware Hunter System Performance Evaluation
We use Tensorflow Lite Converter [25] to deploy ThingNet

inference model on device. The deployment takes about 1MB
storage depending on the type of device. The prototype system
performance of malware hunter is further evaluated in terms of
model size, detection speed, and runtime memory usage. A 8-
layer CNN model as developed in [18] is also implemented
as a base of comparison. The power data is collected and
preprocessed with 1KHz sampling rate, 1.5s sliding window
size and 75% overlapping. The detection speed is calculated for
a duration of raw data preprocessing and classification as shown
in Fig. 6. The memory usage is estimated by inserting two
anchors tracemalloc.start() and tracemalloc.end() at Start and
Stop respectively. The tracemalloc function will take a snapshot
of memory allocated between the two time anchors.

The comparison result of 2-class (i.e., device infection with
noisy apps and no infection) and 4-class (i.e., idle, Mirai infec-
tion, normal service, and service device under Mirai infection
and noisy apps as defined in Sec. IV-A) classifiers is given
in Table IV. As ThingNet is designed for reliable malware
infection detection in noisy power data, it outperforms classical
CNN classifier with 4% and 13% improvement for 2-class and
4-class respectively. Designed with the compact architecture
based on depthwise separable convolution structure, ThingNet
model size is reduced by 41% and its detection speed is about
6 times faster and its runtime memory usage is reduced by half
as compared to the base. In a nutshell, the compact architecture

314 Design, Automation and Test in Europe Conference (DATE 2022)

Authorized licensed use limited to: Old Dominion University. Downloaded on June 25,2022 at 12:27:24 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Impact of Sampling Rate, Sliding Window Size and Overlapping Percentage

TABLE III: Detection on Mirai variants

design along with the denoising approach makes ThingNet a
viable solution of CPU IoT botnet detection engine.

Fig. 6: Illustration of detection process timeline

TABLE IV: System performance comparison

V. CONCLUSION

In this paper, we have designed a compact malware detection
engine, namely ThingNet running on the ARM processor by
auditing side-channel power data under noisy environment. The
experiments have demonstrate that ThingNet can effectively
identify abnormal power behaviors during malware infection,
achieving a high detection accuracy of 99.1% with false positive
rate of 0.21%. With fine-grained power modeling, ThingNet has
further demonstrated its robustness in detecting unknown vari-
ants at an accuracy of 96.3%. ThingNet is deemed a lightweight
real-time detection engine with about 3ms detection speed and
1.8KB runtime memory usage.

REFERENCES

[1] M. Antonakakis and et. al, “Understanding the mirai botnet,” in 26th
USENIX security symposium, 2017, pp. 1093–1110.

[2] Z. Ling and et. al, “New variants of mirai and analysis,” in Encyclopedia
of Wireless Networks. Springer International Publishing, 2020, pp. 1–8.

[3] M. Abbas and T. Srikanthan, “Low-complexity signature-based malware
detection for iot devices,” in International Conference on Applications
and Techniques in Information Security, 06 2017, pp. 181–189.

[4] M. Alhanahnah and et. al, “Efficient signature generation for classifying
cross-architecture iot malware,” in 2018 IEEE Conference on Communi-
cations and Network Security (CNS), 2018, pp. 1–9.

[5] “The 2018 state of endpoint security risk,” https://
www.ponemon.org/news-updates/news-press-releases/news/
the-2018-state-of-endpoint-security-risk.html.

[6] J. Jeon, J. H. Park, and Y.-S. Jeong, “Dynamic analysis for iot malware
detection with convolution neural network model,” IEEE Access, vol. 8,
pp. 96 899–96 911, 2020.

[7] R. Kumar and et. al, “Iotmalware: Android iot malware detection based
on deep neural network and blockchain technology,” 2021.

[8] A. Azmoodeh, A. Dehghantanha, and K.-K. R. Choo, “Robust malware
detection for internet of (battlefield) things devices using deep eigenspace
learning,” IEEE Transactions on Sustainable Computing, vol. 4, no. 1, pp.
88–95, 2019.

[9] C.-W. Tien and et. al, “Machine learning framework to analyze iot
malware using elf and opcode features,” ACM Digital Threats: Research
and Practice, vol. 1, no. 1, Mar 2020.

[10] D. Vasan and et. al, “Mthael: Cross-architecture iot malware detection
based on neural network advanced ensemble learning,” IEEE Transactions
on Computers, vol. 69, no. 11, pp. 1654–1667, 2020.

[11] M. Guri, “Air-viber: Exfiltrating data from air-gapped computers via
covert surface vibrations,” CoRR, vol. abs/2004.06195, 2020.

[12] S. J. Stone, M. A. Temple, and R. O. Baldwin, “Detecting anomalous
programmable logic controller behavior using rf-based hilbert transform
features and a correlation-based verification process,” Int. J. Crit. Infras-
truct. Prot., vol. 9, no. C, p. 41–51, Jun. 2015.

[13] S. S. Clark and et. al, “Wattsupdoc: Power side channels to nonintrusively
discover untargeted malware on embedded medical devices,” in 2013
USENIX Workshop on Health Information Technologies (HealthTech 13),
Washington, D.C., Aug. 2013.

[14] J. Hoffmann, S. Neumann, and T. Holz, “Mobile malware detection based
on energy fingerprints - a dead end?” in Int. Workshop on RAID, 2013,
pp. 348–368.

[15] Y. Liu and et. al, “On code execution tracking via power side-channel,” in
Proc. of the ACM SIGSAC Conference on Computer and Communications
Security, 2016, p. 1019–1031.

[16] S. Wei, A. Aysu, M. Orshansky, A. Gerstlauer, and M. Tiwari, “Using
power-anomalies to counter evasive micro-architectural attacks in em-
bedded systems,” in 2019 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST). IEEE, 2019, pp. 111–120.

[17] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic, “Eddie:
Em-based detection of deviations in program execution,” in Proceedings
of the 44th Annual International Symposium on Computer Architecture,
2017, pp. 333–346.

[18] W. Jung and et. al, “Iot botnet detection via power consumption model-
ing,” Smart Health, vol. 15, p. 100103, 2020.

[19] B. Fida and et. al, “Varying behavior of different window sizes on the
classification of static and dynamic physical activities from a single
accelerometer,” Medical Engineering & Physics, vol. 37, no. 7, p.
705—711, July 2015.

[20] J. Wan and et. al, “Time-bounded activity recognition for ambient assisted
living,” IEEE Transactions on Emerging Topics in Computing, vol. 9,
no. 1, pp. 471–483, 2021.

[21] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 1251–1258.

[22] D. L. Donoho, “De-noising by soft-thresholding,” IEEE transactions on
information theory, vol. 41, no. 3, pp. 613–627, 1995.

[23] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7132–7141.

[24] M. Zhao and et. al, “Deep residual shrinkage networks for fault diag-
nosis,” IEEE Transactions on Industrial Informatics, vol. 16, no. 7, pp.
4681–4690, 2019.

[25] “Tensorflow lite converter,” https://www.tensorflow.org/lite/convert.

Design, Automation and Test in Europe Conference (DATE 2022) 315

Authorized licensed use limited to: Old Dominion University. Downloaded on June 25,2022 at 12:27:24 UTC from IEEE Xplore. Restrictions apply.

