ANALYTICITY OF STEKLOV EIGENVALUES OF
NEARLY-CIRCULAR AND NEARLY-SPHERICAL DOMAINS

ROBERT VIATOR AND BRAXTON OSTING

ABSTRACT. We consider the Dirichlet-to-Neumann operator (DNO) on nearly-circular and nearly-
spherical domains in two and three dimensions, respectively. Treating such domains as perturbations
of the ball, we prove the analyticity of the DNO with respect to the domain perturbation parameter.
Consequently, the Steklov eigenvalues are also shown to be analytic in the domain perturbation
parameter. To obtain these results, we use the strategy of Nicholls and Nigam (2004); we transform
the equation on the perturbed domain to a ball and geometrically bound the Neumann expansion
of the transformed Dirichlet-to-Neumann operator.

1. INTRODUCTION
Let Q. C R? for d = 2,3 be a nearly-circular or nearly-spherical domain of the form
(1) Q. ={(r,0): 0<r<1+ep@), 6891},

where S?~1 is the unit sphere in R?, p € C*T1(S971) is the domain perturbation function for some
s €N, ! and € > 0 is the perturbation parameter, which is assumed to be small in magnitude. We
consider the Steklov eigenproblem on the perturbed domain €.,

(2a) Au. =0 in Q.
(2b) On.Ue = Ol on 0.
Here A is the Laplacian on H?(f).) and d,. = 7. - V denotes the outward normal derivative

on the boundary of Q.. It is well-known that the Steklov spectrum is discrete, real, and non-
negative; we enumerate the eigenvalues in increasing order, 0 = 00(€2:) < 01(Q:) < 02(Q;) - - - — 0.
The Steklov spectrum coincides with the spectrum of the Dirichlet-to-Neumann operator (DNO),

Ge: H%(aﬂs) — H%(OQE), which maps
§ > Ge€ = O e,
where u; is the harmonic extension of € to (¢, satisfying
(3a) Au. =0 in Q.
(3b) us(9) = £(0) on 99,

We refer the reader to [GP17] for a general description of the Steklov spectrum.
The goal of this paper is to prove the analyticity of the Steklov eigenvalues, 0., in the perturbation
parameter €. Our main result is the following theorem.
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Theorem 1.1. Let d = 2 or 3 and s € N. If p € C*F1(S971), then the Dirichlet-to-Neumann
operator (DNO), G, : H“l(aﬂ ) — Hsfl((‘)(l ), is analytic in the domaz'n parameter €. More
precisely, if p € C*+t2(S9=1), then there exists an isomorphism L: Htz 2(09) — HH%(Sd_l) and
a Neumann series, LG. L™ = = 0, €"Gy, that converges strongly as an operator from st (84-1)
to Hsfé(Sd_l). That is, there exists constants K1 and C' such that

1GR < Ki[l€]] B"

HS*Q (Sd-1) — H5+2 (Sd-1)

for any B > C|p|cs+1.

We prove Theorem 1.1 in two and three dimensions separately; these proofs can be found in
Sections 2.2 and 3.2, respectively. In both dimensions, our proof of Theorem 1.1 follows the
strategy in [NNO4, Thm.1]. We first show the analyticity of the harmonic extension, that is, for
fixed £(6) the solution u. in (3) is analytic in e. Using this, we then prove that the DNO, G, is
also analytically dependent on ¢, establishing Theorem 1.1.

Using an analyticity result in [Kat76], we obtain the analytic dependence of the Steklov eigen-
values {0j(¢)}jen on e within the same disc of convergence as in Theorem 1.1, as stated in the
following corollary. We recall that an analytic function f: C\ {29} — C has an algebraic singularity
at z = zq if there exists integers ng > 1 and p > 1 such that the function admits an expansion of

oo

the form f(z) = E cn (2 — zo)% near z = zo with ¢,, # 0 (see, e.g., [Kno47, p.131]).

n=-—ng
Corollary 1.2. The Steklov eigenvalues, o, consist of branches of one or several analytic functions
which have at most algebraic singularities near ¢ = 0. The same is true of the corresponding
eigenprojections.

A proof of Corollary 1.2 is given in Section 4.

Corollary 1.2 justifies Assumption 1.1 in [VO18]. Here, the first two terms of the asymptotic series
for o. are computed for reflection-symmetric nearly-circular domains. Corollary 1.2 also justifies
the computation of the shape derivative that appears in [AKO17]. Here, numerical methods are
developed for the eigenvalue optimization problem of maximizing the k-th Steklov eigenvalue as a
function of the domain with an area constraint.

Finally, we remark that a similar boundary perturbation expansion as (1) has been used to
develop an accurate and stable numerical method to solve the Helmholtz equation on two- and
three-dimensional domains exterior to a bounded obstacle [NS06; FNS07].

2. TWO-DIMENSIONAL NEARLY-CIRCULAR DOMAINS

Here we consider the Steklov eigenproblem (2) in R?. We will identify 0 with its corresponding
angle # made with the positive z-axis, as usual. We write the Fourier series for f: S! — C as

2m
zk@ 72k0
where do.
0= = e jir= g [ 1
Denoting (k) = v/1 + k2, we introduce the spaces L?(S') and H'(S') with norms

27 .
1221y = /0 2 do =3 1F )2

kEZ
27 . . .
11 51y = / FOP+1O) do = [F(k)]>+ K| F (k)P =D (k)?If (k)
0 kez kez

Similarly, for s € R, we define the space H*(S') with norm ||f|]§{s(51) = Zkez(k>23\f(k)]2.
2



2.1. Analyticity of the harmonic extension for nearly-circular domains. We first consider
the problem of harmonically extending a function £(0) from 0. to €.,

(4a) (71010, + 17205 v =0

(4b) o(1 +£p(6), 6) = (6).

Mapping 2. to the unit disk, D = )y, we make the change of variables

(5) (r',0) = ((1 +ep(0))Lr, 0) .

The partial derivatives in the new coordinates are given by

(©) d 1 0 and 0 9 er'¥) o

o " 1T ep@) o 9090 Tt ep®) o
Applying this change of coordinates to the Laplace equation (4) and setting
ue(r',0) = o(1 + ep(0)r', ),

we obtain the problem

1 o, 0u. 1 o erd®) 0\?

(Lt ep@)F O o ()2 (1t ep(8)? <80 B 1+p<9>8) =0
Multiplying both sides by (1 + £p(¢’))* and dropping the primes on the transformed variables yields
r 0 r0pus + 172 (0p —er(1 + 5p(0))*1p’(0)8,ﬂ)2 ue = 0.
Expanding the operator in the second term on the left hand side, we obtain
(r 1010, + 17207 ) us —er ™t (1 + ep(0)) ™ (20'(0)09 + p"(0)) Opue
+2r (L +2p(0) 72 (0 (0))° 0, (2 + 10,) ue = 0.

Again multiplying both sides by (1 +ep(0))?, we obtain the transformed Laplace equation,

(7a) Au, = eLiue + €2 Lou,
(7b) ue(1,0) = &(0),
where

A= (r_lﬁrrar + r—28§)

L1 =20 (0)r 1090, + p"(0)r— 10, — 2p(6) [8,2, +r7 1o, + 7“_2392]

Ly = 2p(0)p' (0)r " 840; + p(0)p" (0)r "8, — (¢ (6))*0;
—2(0'(0))*r 10, — p*(0) [02 + r~ 10, + r207] .

We formally expand the solution, u., in powers of &,
(8) us(r,0) = Z e"up(r,0).
n=0

Next, we collect terms in powers of e. At O(e"), we obtain
Aug(r,0) =0
ug(1,0) = &(0).
At O(e™) for n > 0, we obtain
Auy(r,0) = Liup—1 + Loup—o
un(1,0) = 0.



We next show that there exists a unique solution of (7) of the form in (8). The following Lemma
is analogous to [NN04, Lemma 4].

Lemma 2.1. [Elliptic Estimate.] For s € N, there exists a constant Ko > 0 such that for any
Fe H%(D) and € € Hsfé(Sl), the solution of

Aw(r,0) = F(r,0) (r,0) € D

w(l,0) = £(6) gc St
satisfies

lwllare oy < Ko (1Flrs-20) + €l o3 1) -

Proof. We will prove the result for s = 1. Since £ € H 5(5’ 1), we have the Fourier series

21
zk@ —zk@
&0 \/% E f where f \/ﬁ / £(0 de.

keZ
Setting v = w — ®, where ®(r,0) = r > okez E(k)r*lek? | we have that
AD(r,0) =0 (r,0) € D
®(1,0) = £() 0cst
and
(9a) Av(r,0) = F(r,0) (r,0) € D
(9b) v(1,0) =0 6 cst.
Using (iD(r, k)= ¢ (k)rlFl, a straightforward integration yields
(108) ¥y = 3 [ [+ r722) 8 + 100 ]
kEZ
(10b) = Z \5 / [ 1 + 27«‘2‘]{;|2) r2|k|} rdr
k€EZ
(10¢) <CHY (R)IER) P
* kez
(10 CRIEIR, g0

for some constant C 1 > 0.

Multiplying (9a) by U, integrating by parts, and using (9b) yields

HUH?{& /Vv Vo = — /Fv

By the duality of HJ(D) and H~*(D), we have [, |Fv| < HFHH*l(D)H'UHHé(D)' Since v € H (D),
by the Poincaré inequality, there exists a constant Cp such that ||[v[|g1(p) < CDH’U”H&(D) and we
conclude that
(11) [0l () < Cpllvllmy o) < CollFlla-1

Using the decomposition w = v + CI’ and using (10) and (11), we obtain

1wz oy < [0lla oy + 1@ a0y < CollFllg—1(p) + C1 ||5HH2 (s1y

Taking Ky = max{C1,Cp} yields the desired result for s = 1. The proof for s > 2 is similar. [
2
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The next Lemma will be used to prove the inductive step in the proof of Theorem 2.3 and is
analogous to [NN04, Lemma 5]. In the proof, we use the following result [NRO1; NN04]. Let B¢
and S9! denote the unit-ball and unit-sphere in R%. For § > 0, s € N, f € C*(S%1), u € H*(B%),

g€ CH%M(Sd_I), and p € H‘S*%(Sd_l), there exists a constant M = M(s,d) so that
(12a) | full grs(pay < M(s,d) | fles(sa—1y [[ull s (pa

(12b) < M(s,d) |g|

||g:u||Hs+%(Sd,1) Cs+%+6(sd,1) ||/‘L||Hs+%(5d,1)'

Lemma 2.2. [Recursive estimates.] Let s € N and let p € C*T1(SY). Assume that K1 and B are
constants so that

unllgrs+1(py < K1 B" for all n < N.
If B > |p|gs+1, then there ezists a constant Cy such that

HLl'LLN_lHHsfl(D) < K1’p|cs+1COBN71
ILoun 2|l rs-1(py < Kilplgsn CoBN .

Proof. First, we measure Liuy_1 in H*~!(D) and use the triangle inequality and (12) to obtain:

ILvun—1ll s < 2[10'(0)r ™ Bprun—1lmrs—1 + (19" (O)r ™ Brun—1ll o1 + 2] () Aun—1]| o1
< 2M (s)|ples|r ™ Bpdrun -1l ot + M(s)|plosst |r ™ Brun—1 ] g
+ 2M(8) pleer | Aty | ge-
< 2M(s)lplos lun—1llgs+1 + M(s)|plostr [[un—1ll =1 + 2M (s)|plos—1 [[un—1 || s+
< Ki|p|gs+1CoBN 1.
Here, in the third inequality, we have used that all operators acting on uy_1 are second order.
Similarly, we estimate Louy_o in H¥~1(D):
[Loun—2]l o1 < 2[|p(0)p"(0)r ™ 0edrun—alma—r +[lp(0)p" (O)r ™ dpun—2|| o—s + || (0" ()07 un—2 o
+2[1(0"(0))*r O un—all -1 + 10*(0) Aun—a o
< 2M () plo=|plee 7~ 0D —allzos + M(s)lploo|plowsllr— Oy —s s
- M(8) pl2 02un sl 1o+ 2M(3) ol 1Oy —ollsres + M(8) pl2ms [ Ay —sll o
< 2M(8)|pleIplos- 1 un—allmess + M(s)lploe lploes luy—sl o
+ M(3)|ples [lun—2l et +2M () |ples [fun—zll e+r + M(s)]plE e [lun—2| e+
< Ki|plgst1 CoBYN 71
O

The following Theorem justifies the convergence of (8) for sufficiently small £ > 0 and is analogous
to [NN04, Theorem 3].

Theorem 2.3. Given s €N, if p € C5T1(SY) and € € H”%(Sl), there exists constants Cy and K
and a unique solution of (7) such that

(13) 010 < KollEl ey 1) B”

for any B > 2KCo|p|cs+1.

Proof. We proceed by induction. For n = 0, we use Lemma 2.1 to we see

0

ol rre+1(py < Koll€ll oy gy B
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as desired to show (13). We now define K7 = Ko|¢]|

used in Lemma 2.2.
Suppose inequality (13) holds for n < N. Then by Lemma 2.1,

1 for the remainder of the proof to be
H5T32 (51)

[un s < Ko (| Laun-allgs—1 + [|L2un -2l ge-1) -
By Lemma 2.2, we may bound ||[Liuyn_1]||gs—1 and || Loun_2||frs—1 so that

un| o1 < 2KoK1Colp|gsrr BN

= QKgH£||Hs+%(sl)00‘p’03+1 BN—I

S KOHSHHSﬂL%(Sq)BN

provided B > 2Koc()|p|cs+1. g

2.2. Proof of Theorem 1.1 in two dimensions: Analyticity of the Dirichlet to Neumann
1 1

operator. The Dirichlet to Neumann operator (DNO), G.: H"2(9Q.) — H®* 2(952.), is given
by

Get = [1+260(0) +22 (2(0) + (00)"] * [(1+2pi0y) 2 - OO0

= P P P PO o " 11 ep0)00]°

where v is the harmonic extension of ¢ from 9. to )., satisfying (4). Making the change of
coordinates given in (5), we obtain the transformed DNO, G. : H5+%(Sl) — Hs_%(Sl), given by

(0 (0)? T/> Oue __ep'(0) 3%]
(1+ep(8))?

Get = [1-+200(0) + &2 (20 + (/0] [ (1+

= Mp(g)ép,sgy

o' 1+ep(0) 00

where u, satisfies (7) and
My(e) = [1 +2ep(0') + &% (p°(¢) + (p’(e’))ﬂ e

[y, B o (@) ou.
Gret = [(1 T+ ep0)? ) o’ 1+ep(t) aef} '

We note that the change of coordinates between G. and G. is conjugation by an isomorphism, as
follows. Let Tv ,H*(Q.) — H*(B?) denote the change of variables in (5), i.e.,

us(r',0') = (T pu] (r',0)=u ((1 +ep(0)r, 9')) .

By the change of variables formula, 1. ,: H*(Q.) — H*(B?) is an isometry. For s € N, we recall
the trace operators,

N

Yo: H*(B%) — H*~
Yep: H¥(Qe) = H*™

(8
(992),

(NI

These are bounded, surjective operators with bounded right inverses. Define the map L: H st+3 (09Q) —
Hs+% (Sd—l) by
L= VOTa,p7;;'

Lemma 2.4. L: Hs‘%(aQE) — H‘9+%(5’1) is a Hilbert space isomorphism and LG, = G.L.
6



Proof. We first show that L is injective. Let ¢ € HSJF%((‘)QE) with Lo = 0. Let u = fy;;(;b. Then
i =T.,u € HS'(B). But
0=u(1,0) =u((14+¢ep(9)),0) =¢
and so L is injective.
We next show that L is surjective. Let ¢ € HSJF%(SI) and set

_ 1
¥ =7e,Ti v ¢ € H2(09:).

Let @ = 7, '¢, so that a(1,6) = ¢. Then u(r,6) = 1. )i = (125, ¢), and

$(0) = u(l +ep(0),0) = (1, ).

Set w = 42,4 so that w(1+ep(6),0) = a(1,0). If we define w(r’, 0) := T. ,w = w((1+ep(0))r”, 0),
then Ly = vy = w(l +ep(f),0) = u(1,0) = ¢. Thus L is surjective.

L =~0Te pz ; is bounded since T , is an isometry and 7, 7, are both bounded with bounded
right inverse. By the Bounded Inverse Theorem, since L is a bijective bounded linear operator
between Hilbert spaces, its inverse is bounded and hence L is an isomorphism.

It remains to verify that

LG.¢p=G.Lp Vo€ H 3(09,).
Let ¢ € H8+%(€)QE). Then G.¢ = I,u where u is the harmonic extension of ¢ into Q.. Let
v = 'y;planu, i.e., the harmonic function in Q. with Dirichlet data v|pq. = Jpu. Then the above
calculations show that
LGs(b = ’YOTe,pU = anu’é)ﬂe
ou ep'(6) Ou
=M 1 0) — —————|.
o) [( 00 G T T (0 96

A similar calculation shows that
52(/)’(9’))2 ) Ol B ep'(0) 8&1
(1+ep(0))?

G:Lp = My(e) {(1 + or’ 14ep(0") 00

where . (r',0") = u((1+ep(@))r’,0"). The identities in (6) can be used to verify that these two
expressions are equal and the proof is complete. ]

We have now established that
LG.L™' = G. = M,(2)G e

Since M,(e) is clearly analytic in €, we need only show the analyticity of Gpﬁ. Dropping the prime
notation on the new variables, we obtain

(1+2p(0))? Gt = [ (14 p(0)) + €25 (8))%) D — = (1 + 2p(9)) P/ (0)pu]

We expand the non-normalized DNO, G, ., as a power series in

(14) Gl =Y _"Gpnt,
n=0

which yields the following recursive formula:

Gp,nf = Orup + 2p0rUupn—1 + ((P/)2 + Pz) Ortin—2 — p/89un—1 - Pplaeun—2 - QPGp,n—lg - p2ép,n—2€-

We now prove the following theorem, which proves Theorem 1.1 and guarantees the uniform con-
vergence of the series (14) for suitably small €.
7



Theorem 2.5. Let € € H”%(Sl) for s € N. Then
(15) IGp €l

for B > C|p|gs+1.

< Kqll¢]| B"

H3(s1) = HST 3 (81)

Proof. We will proceed via induction. First, we show (15) fo n = 0:

”Gp,(ﬁ” Yoy S < ||o- U0||Hs" (s1) < C1l|0ruol| s ()

< Cilluollgrs+1(py < C1K0H§HHS+7 (81)°

In the second inequality of the first line, we have used the trace theorem, while Theorem 2.3 is used
in the second line. Now suppose that (15) holds for n < N. Then we have the following estimate:

||G,;,N€||Hsf7 sy = IIGTUNHHS,;(Sl + 2l prun—1ll .y syt ||(p,)2aruN72HH5*%(Sl)
+ |p*Orun— 2l yos oy T 1P Opun—1ll .y oy T HPP’%UN-zHHS,%(SI)
+2/[pGp n— 1€l ey oy T 1p2Gpn— 26l o1 s1)
< CLEolI€l] oy 51, BY + 200l oo s CLBONEN oy 0y BY T+
10 s CBOlE] e g0 B

+10l2 .y s CrEolIE] BY2 4 |p| sy 15 C1Eo €N iy g BY

H 3 (s1) Ht3(81)

N—
10l oy 16l o 3 s CLEONEN oy 0 BY
+20pl o g s | Gov—ié]

< KIHEHHS-&-Q Sl)BNa

1ol 1 s Gon—2€ll

H 3 (s1) Cc*™2 HS‘%(Sl)

for B > C|p|gs+1, where C' = C(s) is independent of u, N, &, and p. Here we have used the second
inequality in (12), as well as the trace theorem, Theorem 2.3, and the inductive hypothesis on

Gp,N—l and Gp7N_2. O

3. THREE-DIMENSIONAL NEARLY-SPHERICAL DOMAINS

Here we consider (2) in dimension d = 3. We identify 6 € S? with the inclination, 6 € [0, 7], and
azimuth, ¢ € [0, 27]. Let Q. be a nearly-spherical domain where the perturbation function, p(6, ¢),
is expanded in the basis of real spherical harmonics,

(16) Q. ={(r,0,¢): 0<r<1+ep(0,¢)},  where p(0 Z Z ApmYom (0, ).
(=0 m=—¢

Here, Yy, denote the real spherical harmonics, which are obtained from the complex spherical
harmonics as follows [NIS]. Define the complex spherical harmonic by

(17) Y0, 6) = \/ (%4; D) Eﬁ - Z;inm(cos(H))eimd’, (>0, |m| <t

where P;" is the associated Legendre polynomial, which can be defined through the Rodrigues

formula, P/"(x) = (_l)m(l — x2)%%( 2 1) For £ > 0 and |m| < ¢, the real spherical
8
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harmonics are then defined by

S [Y0.6) — (~1)MY(6.6)] ifm <0

(18) Yim(60,6) = { Y)(6,0) ifm=0.
L [Y770,0) + (~1)"Y0,0)] ifm >0

We define the Sobolev space on the sphere, H*(S?) for s € R, with squared norm
. 2 T
s =5 S OF(FCm)? where f(tom) — | ] 10.0370.0) sinoasas
=0 m=—¢

properties of this norm can be found in [BD13].

3.1. Analyticity of the harmonic extension for nearly-spherical domains. As in Sec-
tion 2.1, we first consider the problem of harmonically extending a function £(6,¢) from 0Q.
to €,

(19a) Av = 1729, (7“28 v) + 2 sin"1(0)9y (sin(0)Dgv) + 2 sin_2(0)8£v =0
(19b) v(1+ep(0,0),0,¢) = £(0, ).

Mapping 2. to the unit ball, B = )y, we make the change of variables

(20) (.0, ¢") = (1 +ep(0,0))"'r,0,0).
The partial derivatives in the new coordinates are given by

) 1 )

or  1+ep(0,¢)or

00 =n.d) o

96 00 1+ep0,¢)0r

o 0 erps0,¢) O
B

9 09 1+ep(0.¢)
Applying this change of coordinates to the Laplace equation (19a), setting
uc(r', 0, 8" = v((1 +ep(@)r', 0", &),

multiplying by (1 + £p)*, and dropping the primes on the transformed variables yields

(1+ep)tAv = (1 +ep)?Au. — (1 +¢p) [sin_l(e)(?g(sinw)@gp) + sin_2(0)8¢2,p} (r~'0pue)
—2e(1+¢€p) [pgrflﬁgarua + (sinfl(e)(‘)d)p) (7“71 sin*1(9)8¢) 8Tu5}

202 (02
=0.



Define the operators:

Agsu = sin™ () (sin(0)dgu) + Sin*2(«9)8iu

Liu = 2pAu+ (ASP)Tflaru _9 <7"1,09398¢u n P 5¢87«u>

sinf rsin @

00
Lou = p?Au+ (pAgp)r— 0,u — 2p <7“_1,09896Tu g Lo % u)

sin @ 7 sin 6
2 pgﬁ -1 '035 2
+ 2 <(p9 + sin29)(r Oru) + sin298Tu>
The function u. satisfies
(21a) Au. = eLiue + €2 Lou, in B
(21b) ue(1,0,9) = £(0, ¢) on S2.

Lemma 3.1. [Elliptic Estimate.] For s € N, there exists a constant Ko > 0 such that for any
FeH2B) and ¢ € H‘S*%(SQ), the solution of

Aw(r,0,¢) = F(r,0,9) (r,0,¢) € B

w(1,0,¢) = £(0,0) (0, ¢) € 52
satisfies

el < Ko (IF 2 + 1]y ) -

Proof. We will prove the result for s = 1. Since £ € H %(52), we have the spherical harmonic
transform,

00 l o
=3 3" &m0, ), where £(6,m) = / / £(0, 6)Y;™(8, §) sin 0dfde.

£=0 m=—¢

and Y,™ are the (complex) spherical harmonics. Set v = w — ®, where ® solves

AP =0 in B
d=¢ on S2.
Then v satisfies
(22a) Av=F in B
(22b) v=0 on S2.
We have
(r,0,9) = i ZZ: riE(6,m)Yy™ (0, ),
=0 m=—¢

and defining
27 T
d(r, 0, m) :r‘/ / D(1,0,0)Y;"(0,d) sinfdfds
0 0

we see that

@(r,ﬁ,m) = ref(f,m).
10



We thus calculate:

(23a) [1@]31(p) :; [///B <T2E|§f(&m)|2‘ygm(9,¢)|2+’vrfé(é,m)y'gm(97¢)‘2> 72 sin @dOd¢dr

(23b) -y / / /B EEm)PIYE 0.0 (7 + 6+ 1)) + 2r27) o2 sin 0dbdgdr
lm
. o (CHl+1 1P
(23¢) = _leem)] ( 2013 +2£+1)
2
(230) <oylely

for some constant C1 > 0.
2
Multiplying (22) by v and integrating by parts yields

HUH?—I&(B):/ Vv-Vv:—/Fv.
B B

By the duality of Hj(B) and H~'(B), we have [p |[F0| < ||F||z-1(p) |0l g3 (). Since v € Hy(B),
by the Poincaré inequality, there exists a constant Cp such that [[v||z1(p) < CBllvl|lgy(p) and we
conclude that

(24> HU”Hl(B) < CBH'UHH&(B) < CB”FHHfl(B)
Using the decomposition w = v + ® and using (23) and (24), we obtain

lwllzr sy < vl ey + 12l m) < CollFlla-18) + C1llEl 13 )

Taking Ky = max{C1,Cp} yields the desired result for s = 1. The proof for s > 2 is similar. [
2

Let us make the ansatz
(25) ue(r, 0, ¢) = Zsunr0¢

Then, by (21), we have the recursive formula

(26&) Au, = Liup—1 + Loup—o in B
(26Db) Up = § ?f n=0 on S2.
0 ifn>0

Lemma 3.2. [Recursive Estimates.] Let s € N and let p € C571(S?%). Assume that K1 and A are
constants so that

[unl rs+1 () < K1 A” for all n < N.
If A > |p|gs+1, then there exists a constant Cy such that

ILiun—1ll 1) < Kilplos CoAN !

|| Loun—2 ||H3*1(B) < Kilp|gs+1 C()ANil
11



Proof. Using the triangle inequality and (12), we calculate:

ILvun -1l gs-r(my < 12p8un 1|l gs—1(m) + | (Agzp)r ™ Orun -1l gre—r(my + 2/r " peda0run -1 || rs-1)

Po ) a(;5aruN—1

2
+ sin @ rsin @

HS—I(B)
< M(S)<2\P|0s—1 lun—1llgs+1(B) + |plostr[lun—1l gs+1(m) + 4|,0|CS||UN—1||HS+1(B))
< TM(5)|p|lssr K1 AN L
In the second inequality, we have also used that all operators acting on uy_; are second order. We
similarly estimate ||Loun—2| gs—1(B):
ILoun—2ll 1) < lp* Dun—all gs-1() + 1(pAs2p)r™ ' Orun 2l gs=1() + 2llppor ™ Dpdrun 2|l =1 ()
PP Op0run_—2

+2 Hp%r‘l&uN_gHHs,l(B)

sin 6 rsinf He-1(B)
2 2
ry P
+2||— (S T 187~UN,2 + 2 || = (g dguN,Q
sin” 6 sin” 6
Hs—l(B) HS—I(B)

< M(S)(|p|é2||uN72HHS+1(B) + ples-tlplosillun—2ll g=+1(m)

+4lples—1lplos|lun—2l| gs+1(5)y + 6lplcs HUN—2HH8+1(B))
< 120 (8)|plZrs K1 AV 2
< 12M(s)|p| st K1 AN 7L
Taking Cy = 12M (s) completes the proof. ]

The following theorem justifies the convergence of (25) for suitably small £ > 0.

Theorem 3.3. Given s €N, if p € CT1(S?) and ¢ € H5+s 2(S?), there exists constants Cy and Ko
and a unique solution ue. of (21) satisfying (25) such that

(27) lunllre+1(m) < Kollgl os oy A"

for any A > 2KyCy|p|cs+1-

Proof. We proceed by induction. For n = 0, we use Lemma 3.1 to we see

luoll s+ < Kollél,. 3 A°,

as desired to show (27). We now define K; = Ko||€||

used in Lemma 3.2.
Suppose inequality (27) holds for n < N. Then by Lemma 3.1,

a2 for the remainder of the proof to be

Jun s+ < Ko (ILaun -1l s-r + | Loun -2 re-1) -
By Lemma 3.2, we may bound ||[Liun_1]||gs—1 and ||[Laoun_2]||fs—1 so that
||’U,NHH5+1 < 2K0K100’p’0s+1AN71

= 2Kg||£HH5+%(82)00|p|6’s+1AN—1

< K0||§”Hs+2 S2)AN

provided A > 2K(]C()‘,0‘Cs+1. ]
12



3.2. Proof of Theorem 1.1 in three dimensions: Analyticity of the Dirichlet to Neumann
1

operator. Denote the Dirichlet-to-Neumann operator Ge: H*"2(9€.) — Hs_%(aQs) which is
defined
G:£ =1 -V

where v satisfies (19) and

D=

b\ -
N p R ~ qu ~
[ 2, 22 2 F¢ (1 el — )
Tie (( +ep)t+e‘pste 20 (14 ep)F —epg Esin9¢

= My(e) (1 +2p)i — epof — =259

is the unit-length normal vector on 0€).. Here the spherical coordinate vectors 7, GA,QAS are given by

sin(6) cos(¢) R cos () cos(¢) R — sin(¢)
7= | sin(f)sin(¢) |, 0 = | cos(f)sin(¢) |, and ¢ = cos(¢)
cos(6) —sin(#) 0

Making the change of variables in (20), we obtain the transformed DNO, G. : Hts (8?) — H 3 (S?),
given by

28a) G.L =M,
(28a) € p(€) (1 +¢ep)2 sin? @ I+ep (1+¢ep)sin® 6

2 2
€ 1Y € €
1+ — <p§ + "’) Opue — —L2 gue — ——P% _gu.

(28D) = M,(e)G,c€

where u. satisfies (21).
The following Lemma shows that the change of coordinates between G, and G is conjugation
by an isomorphism.

Lemma 3.4. Let
Y01 HY(B®) = H*"3(S7)

Yot H* () = H*2(0%),
be the trace operators and T. ,: H*(Q:) — H*(B3) denotes the change of variables in (20). Then
L: H 2(99.) — HT2(S2) defined by

L =T.,7,
is a Hilbert space isomorphism and LG. = G-L.
Proof. The proof of Lemma 3.4 is similar to the proof of Lemma 2.4. (]
We have now established that
LG.L™' = G. = M,(2)Gpe.

Since M),(¢) is clearly analytic near € = 0, we need only show the analyticity of Gp,a near € =0 to
verify that G. is analytic as well. Note that G, satisfies

(29) C:p@g =0 u+e¢ (2p8ru — ppOpu — Siﬁ(g 98¢u — 2pép75§>
2
2 2, 2, Po PPy 2 A
—— | Oru — ppeOpu — Opu — p°G .
e (p Tt sin? @ U PP T G g et T pet
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We now make a power series ansatz for the non-normalized DNO CAT’p’E,
o0
(30> Gp,eg = Z 5nGp,n£7
n=0
for £ € HH%(SQ) and s € N. By (25) and (29), we obtain the recursive relationship,

2
A Ps
(31) Gp,ng = Orup + 2parun71 - p989un71 gaqbun 1+ (IO + p9 + 0) Ortip—2

pn— 15 P Gpm, 25

The following theorem proves Theorem 1.1 in three dimensions and justifies the convergence of
(30) for suitably small £ > 0.

Theorem 3.5. Let & € H5V2(S2). Then

(32) 1G ol < Kill€]] A"

H ™3 (52) H 3 (52)

for A > C|p|os+1.

Proof. We will proceed via induction. First, we show (32) fon = 0:

1G o€ < [|0ruoll < CillOruol =)

He3(s2) =
< Cilluol g1y < Cr1Eo|€]|

I{S?§ (S2)
HS+§ 52)

In the second inequality of the first line, we have used the standard trace theorem, while Theorem
3.3 is used in the second line. Now suppose that (32) holds for n < N. Then we have the following
estimate:

1Gon€llmy < N0y +2 lodrun-all,_y + lpodounll,_y + | Lozounal
2
+ Hp2arUN—2HS_, + || pg0run—2l|, 93 P UN -2 + llppodoun—ll,_1
s=3
RPN N

< C1Ko €]l s M (2|p|cs,%+5 el y AN
N-— N—
=+ ’p’Cs+l+6H§Hs+1A ! + |p‘cs+%+5H§”s+1A !
N— N— N—
+ ’p’2 577+5H£Hs+lA 2+ ’p|2 S+l+5||€H5+lA 2+ ‘p‘25+l+5H£Hs+lA 2
c°T2 C°T2
10l sl ey ool s AV 4 Dol ol ey A
Kol oy as €l AN 4 K lol?, el AN 2)
N
S K1||£”s+%A )

for K1 = max{2ClK0, 201KOM(S)} and A > C‘p‘chrl. O
14



4. PROOF OF COROLLARY 1.2: ANALYTICITY OF THE STEKLOV EIGENVALUES
We now have all of the ingredients to prove Corollary 1.2.

Proof of Corollary 1.2. For dimensions d = 2,3 respectively, Theorems 2.5 and 3.5 show that
~ 1 1
G.: H*"2(89 1Y) — H* 2(S%7!) is analytic for small e. By Lemmas 2.4 and 3.4, we have an

1

isomorphism L: H*"2(99.) — Hs+%(Sd_1) satisfying
G.=L7'G.L.
The DNO operator G.: L2(99.) — L%(99.) is self-adjoint [Are414], hence closed. Thus, L~'G.L

is closed and analytic for small €. Since the spectrum of the left and right hand sides are equal,
the result follows from [Kat76, Ch. 7, Thm 1.8, p. 370]. O
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