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Abstract. We consider the Dirichlet-to-Neumann operator (DNO) on nearly-circular and nearly-

spherical domains in two and three dimensions, respectively. Treating such domains as perturbations

of the ball, we prove the analyticity of the DNO with respect to the domain perturbation parameter.

Consequently, the Steklov eigenvalues are also shown to be analytic in the domain perturbation

parameter. To obtain these results, we use the strategy of Nicholls and Nigam (2004); we transform

the equation on the perturbed domain to a ball and geometrically bound the Neumann expansion

of the transformed Dirichlet-to-Neumann operator.

1. Introduction

Let ⌦" ⇢ Rd for d = 2, 3 be a nearly-circular or nearly-spherical domain of the form

(1) ⌦" = {(r, ✓̂) : 0  r  1 + "⇢(✓̂), ✓̂ 2 Sd�1},

where Sd�1 is the unit sphere in Rd, ⇢ 2 Cs+1(Sd�1) is the domain perturbation function for some
s 2 N, 1 and " � 0 is the perturbation parameter, which is assumed to be small in magnitude. We
consider the Steklov eigenproblem on the perturbed domain ⌦",

�u" = 0 in ⌦"(2a)

@n"u" = �"u" on @⌦".(2b)

Here � is the Laplacian on H2(⌦") and @n" = n̂" · r denotes the outward normal derivative
on the boundary of ⌦". It is well-known that the Steklov spectrum is discrete, real, and non-
negative; we enumerate the eigenvalues in increasing order, 0 = �0(⌦") < �1(⌦")  �2(⌦") · · · ! 1.
The Steklov spectrum coincides with the spectrum of the Dirichlet-to-Neumann operator (DNO),

G" : H
3
2 (@⌦") ! H

1
2 (@⌦"), which maps

⇠ 7! G"⇠ = @n"u",

where u" is the harmonic extension of ⇠ to ⌦", satisfying

�u" = 0 in ⌦"(3a)

u"(✓̂) = ⇠(✓̂) on @⌦".(3b)

We refer the reader to [GP17] for a general description of the Steklov spectrum.
The goal of this paper is to prove the analyticity of the Steklov eigenvalues, �", in the perturbation

parameter ". Our main result is the following theorem.
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Throughout this paper, we use the notation N to denote the positive integers.
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Theorem 1.1. Let d = 2 or 3 and s 2 N. If ⇢ 2 Cs+1(Sd�1), then the Dirichlet-to-Neumann

operator (DNO), G" : H
s+ 1

2 (@⌦") ! Hs� 1
2 (@⌦"), is analytic in the domain parameter ". More

precisely, if ⇢ 2 Cs+2(Sd�1), then there exists an isomorphism L : Hs+ 1
2 (@⌦") ! Hs+ 1

2 (Sd�1) and

a Neumann series, LG"L�1 =
P1

n=0 "
nGn, that converges strongly as an operator from Hs+ 1

2 (Sd�1)

to Hs� 1
2 (Sd�1). That is, there exists constants K1 and C such that

kGn⇠k
H

s� 1
2 (Sd�1)

 K1k⇠k
H

s+1
2 (Sd�1)

Bn

for any B > C|⇢|Cs+1.

We prove Theorem 1.1 in two and three dimensions separately; these proofs can be found in
Sections 2.2 and 3.2, respectively. In both dimensions, our proof of Theorem 1.1 follows the
strategy in [NN04, Thm.1]. We first show the analyticity of the harmonic extension, that is, for
fixed ⇠(✓̂) the solution u" in (3) is analytic in ". Using this, we then prove that the DNO, G", is
also analytically dependent on ", establishing Theorem 1.1.

Using an analyticity result in [Kat76], we obtain the analytic dependence of the Steklov eigen-
values {�j(")}j2N on " within the same disc of convergence as in Theorem 1.1, as stated in the
following corollary. We recall that an analytic function f : C\{z0} ! C has an algebraic singularity
at z = z0 if there exists integers n0 � 1 and p � 1 such that the function admits an expansion of

the form f(z) =
1X

n=�n0

cn (z � z0)
n
p near z = z0 with cn0 6= 0 (see, e.g., [Kno47, p.131]).

Corollary 1.2. The Steklov eigenvalues, �", consist of branches of one or several analytic functions
which have at most algebraic singularities near " = 0. The same is true of the corresponding
eigenprojections.

A proof of Corollary 1.2 is given in Section 4.
Corollary 1.2 justifies Assumption 1.1 in [VO18]. Here, the first two terms of the asymptotic series

for �" are computed for reflection-symmetric nearly-circular domains. Corollary 1.2 also justifies
the computation of the shape derivative that appears in [AKO17]. Here, numerical methods are
developed for the eigenvalue optimization problem of maximizing the k-th Steklov eigenvalue as a
function of the domain with an area constraint.

Finally, we remark that a similar boundary perturbation expansion as (1) has been used to
develop an accurate and stable numerical method to solve the Helmholtz equation on two- and
three-dimensional domains exterior to a bounded obstacle [NS06; FNS07].

2. Two-dimensional nearly-circular domains

Here we consider the Steklov eigenproblem (2) in R2. We will identify ✓̂ with its corresponding
angle ✓ made with the positive x-axis, as usual. We write the Fourier series for f : S1 ! C as

f(✓) =
1p
2⇡

X

k2Z
f̂(k)eik✓, where f̂(k) =

1p
2⇡

Z 2⇡

0
f(✓)e�ik✓ d✓.

Denoting hki =
p
1 + k2, we introduce the spaces L2(S1) and H1(S1) with norms

kfk2
L2(S1) =

Z 2⇡

0
|f |2 d✓ =

X

k2Z
|f̂(k)|2

kfk2
H1(S1) =

Z 2⇡

0
|f(✓)|2 + |f 0(✓)|2 d✓ =

X

k2Z
|f̂(k)|2 + k2|f̂(k)|2 =

X

k2Z
hki2|f̂(k)|2.

Similarly, for s 2 R, we define the space Hs(S1) with norm kfk2
Hs(S1) =

P
k2Zhki2s|f̂(k)|2.
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2.1. Analyticity of the harmonic extension for nearly-circular domains. We first consider
the problem of harmonically extending a function ⇠(✓) from @⌦" to ⌦",

⇥
r�1@rr@r + r�2@2

✓

⇤
v = 0(4a)

v(1 + "⇢(✓), ✓) = ⇠(✓).(4b)

Mapping ⌦" to the unit disk, D = ⌦0, we make the change of variables

(r0, ✓0) =
�
(1 + "⇢(✓))�1r, ✓

�
.(5)

The partial derivatives in the new coordinates are given by

(6)
@

@r
=

1

1 + "⇢(✓0)

@

@r0
and

@

@✓
=

@

@✓0
� "r0⇢0(✓0)

1 + "⇢(✓0)

@

@r0
.

Applying this change of coordinates to the Laplace equation (4) and setting

u"(r
0, ✓0) = v((1 + "⇢(✓0))r0, ✓0),

we obtain the problem

1

r0 (1 + "⇢(✓0))2
@

@r0
r0
@u"
@r0

+
1

(r0)2 (1 + "⇢(✓0))2

✓
@

@✓0
� "r0⇢0(✓0)

1 + "⇢(✓0)

@

@r0

◆2

u" = 0.

Multiplying both sides by (1 + "⇢(✓0))2 and dropping the primes on the transformed variables yields

r�1@rr@ru" + r�2
�
@✓ � "r(1 + "⇢(✓))�1⇢0(✓)@r

�2
u" = 0.

Expanding the operator in the second term on the left hand side, we obtain
�
r�1@rr@r + r�2@2

✓

�
u" � "r�1 (1 + "⇢(✓))�1 �2⇢0(✓)@✓ + ⇢00(✓)

�
@ru"

+ "2r�1 (1 + "⇢(✓))�2 �⇢0(✓)
�2
@r (2 + r@r)u" = 0.

Again multiplying both sides by (1 + "⇢(✓))2, we obtain the transformed Laplace equation,

�u" = "L1u" + "2L2u"(7a)

u"(1, ✓) = ⇠(✓),(7b)

where

� =
�
r�1@rr@r + r�2@2

✓

�

L1 = 2⇢0(✓)r�1@✓@r + ⇢00(✓)r�1@r � 2⇢(✓)
⇥
@2r + r�1@r + r�2@2

✓

⇤

L2 = 2⇢(✓)⇢0(✓)r�1@✓@r + ⇢(✓)⇢00(✓)r�1@r � (⇢0(✓))2@2r

� 2(⇢0(✓))2r�1@r � ⇢2(✓)
⇥
@2r + r�1@r + r�2@2

✓

⇤
.

We formally expand the solution, u", in powers of ",

(8) u"(r, ✓) =
1X

n=0

"nun(r, ✓).

Next, we collect terms in powers of ". At O("0), we obtain

�u0(r, ✓) = 0

u0(1, ✓) = ⇠(✓).

At O("n) for n > 0, we obtain

�un(r, ✓) = L1un�1 + L2un�2

un(1, ✓) = 0.
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We next show that there exists a unique solution of (7) of the form in (8). The following Lemma
is analogous to [NN04, Lemma 4].

Lemma 2.1. [Elliptic Estimate.] For s 2 N, there exists a constant K0 > 0 such that for any

F 2 Hs�2(D) and ⇠ 2 Hs� 1
2 (S1), the solution of

�w(r, ✓) = F (r, ✓) (r, ✓) 2 D

w(1, ✓) = ⇠(✓) ✓ 2 S1

satisfies

kwkHs(D)  K0

⇣
kFkHs�2(D) + k⇠k

H
s� 1

2 (S1)

⌘
.

Proof. We will prove the result for s = 1. Since ⇠ 2 H
1
2 (S1), we have the Fourier series

⇠(✓) =
1p
2⇡

X

k2Z
⇠̂(k)eik✓, where ⇠̂(k) =

1p
2⇡

Z 2⇡

0
⇠(✓)e�ik✓ d✓.

Setting v = w � �, where �(r, ✓) = 1p
2⇡

P
k2Z ⇠̂(k)r

|k|eik✓, we have that

��(r, ✓) = 0 (r, ✓) 2 D

�(1, ✓) = ⇠(✓) ✓ 2 S1

and

�v(r, ✓) = F (r, ✓) (r, ✓) 2 D(9a)

v(1, ✓) = 0 ✓ 2 S1.(9b)

Using �̂(r, k) = ⇠̂(k)r|k|, a straightforward integration yields

k�k2
H1(D) =

X

k2Z

Z 1

0

h�
1 + r�2|k|2

�
|�̂(r, k)|2 + |@r�̂(r, k)|2

i
rdr(10a)

=
X

k2Z
|⇠̂(k)|2

Z 1

0

h�
1 + 2r�2|k|2

�
r2|k|

i
rdr(10b)

 C2
1
2

X

k2Z
hki|⇠̂(k)|2(10c)

= C2
1
2
k⇠k2

H
1
2 (S1)

,(10d)

for some constant C 1
2
> 0.

Multiplying (9a) by v, integrating by parts, and using (9b) yields

kvk2
H

1
0 (D) =

Z

D

rv ·rv = �
Z

D

Fv.

By the duality of H1
0 (D) and H�1(D), we have

R
D
|Fv|  kFkH�1(D)kvkH1

0 (D). Since v 2 H1
0 (D),

by the Poincaré inequality, there exists a constant CD such that kvkH1(D)  CDkvkH1
0 (D) and we

conclude that

(11) kvkH1(D)  CDkvkH1
0 (D)  CDkFkH�1(D).

Using the decomposition w = v + � and using (10) and (11), we obtain

kwkH1(D)  kvkH1(D) + k�kH1(D)  CDkFkH�1(D) + C 1
2
k⇠k

H
1
2 (S1)

.

Taking K0 = max{C 1
2
, CD} yields the desired result for s = 1. The proof for s � 2 is similar. ⇤
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The next Lemma will be used to prove the inductive step in the proof of Theorem 2.3 and is
analogous to [NN04, Lemma 5]. In the proof, we use the following result [NR01; NN04]. Let Bd

and Sd�1 denote the unit-ball and unit-sphere in Rd. For � � 0, s 2 N, f 2 Cs(Sd�1), u 2 Hs(Bd),

g 2 Cs+ 1
2+�(Sd�1), and µ 2 Hs+ 1

2 (Sd�1), there exists a constant M = M(s, d) so that

kfukHs(Bd)  M(s, d) |f |Cs(Sd�1) kukHs(Bd)(12a)

kgµk
H

s+1
2 (Sd�1)

 M(s, d) |g|
C

s+1
2+�(Sd�1)

kµk
H

s+1
2 (Sd�1)

.(12b)

Lemma 2.2. [Recursive estimates.] Let s 2 N and let ⇢ 2 Cs+1(S1). Assume that K1 and B are
constants so that

kunkHs+1(D)  K1B
n for all n < N.

If B > |⇢|Cs+1, then there exists a constant C0 such that

kL1uN�1kHs�1(D)  K1|⇢|Cs+1C0B
N�1

kL2uN�2kHs�1(D)  K1|⇢|Cs+1C0B
N�1.

Proof. First, we measure L1uN�1 in Hs�1(D) and use the triangle inequality and (12) to obtain:

kL1uN�1kHs�1  2k⇢0(✓)r�1@✓@ruN�1kHs�1 + k⇢00(✓)r�1@ruN�1kHs�1 + 2k⇢(✓)�uN�1kHs�1

 2M(s)|⇢|Cskr�1@✓@ruN�1kHs�1 +M(s)|⇢|Cs+1kr�1@ruN�1kHs�1

+ 2M(s)|⇢|Cs�1k�uN�1kHs�1

 2M(s)|⇢|CskuN�1kHs+1 +M(s)|⇢|Cs+1kuN�1kHs+1 + 2M(s)|⇢|Cs�1kuN�1kHs+1

 K1|⇢|Cs+1C0B
N�1.

Here, in the third inequality, we have used that all operators acting on uN�1 are second order.
Similarly, we estimate L2uN�2 in Hs�1(D):

kL2uN�2kHs�1  2k⇢(✓)⇢0(✓)r�1@✓@ruN�2kHs�1 + k⇢(✓)⇢00(✓)r�1@ruN�2kHs�1 + k(⇢0(✓))2@2
r
uN�2kHs�1

+ 2k(⇢0(✓))2r�1@ruN�2kHs�1 + k⇢2(✓)�uN�2kHs�1

 2M(s)|⇢|Cs |⇢|Cs�1kr�1@✓@ruN�2kHs�1 +M(s)|⇢|Cs�1 |⇢|Cs+1kr�1@ruN�2kHs�1

+M(s)|⇢|2
Csk@2ruN�2kHs�1 + 2M(s)|⇢|2

Cskr�1@ruN�2kHs�1 +M(s)|⇢|2
Cs�1k�uN�2kHs�1

 2M(s)|⇢|Cs |⇢|Cs�1kuN�2kHs+1 +M(s)|⇢|Cs�1 |⇢|Cs+1kuN�2kHs+1

+M(s)|⇢|2
CskuN�2kHs+1 + 2M(s)|⇢|2

CskuN�2kHs+1 +M(s)|⇢|2
Cs�1kuN�2kHs+1

 K1|⇢|Cs+1C0B
N�1.

⇤
The following Theorem justifies the convergence of (8) for su�ciently small " > 0 and is analogous

to [NN04, Theorem 3].

Theorem 2.3. Given s 2 N, if ⇢ 2 Cs+1(S1) and ⇠ 2 Hs+ 1
2 (S1), there exists constants C0 and K0

and a unique solution of (7) such that

(13) kunkHs+1(D)  K0k⇠k
H

s+1
2 (S1)

Bn

for any B > 2K0C0|⇢|Cs+1.

Proof. We proceed by induction. For n = 0, we use Lemma 2.1 to we see

ku0kHs+1(D)  K0k⇠k
H

s+1
2 (S1)

B0,
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as desired to show (13). We now define K1 = K0k⇠k
H

s+1
2 (S1)

for the remainder of the proof to be

used in Lemma 2.2.
Suppose inequality (13) holds for n < N . Then by Lemma 2.1,

kuNkHs+1  K0 (kL1uN�1kHs�1 + kL2uN�2kHs�1) .

By Lemma 2.2, we may bound kL1uN�1kHs�1 and kL2uN�2kHs�1 so that

kuNkHs+1  2K0K1C0|⇢|Cs+1BN�1

= 2K2
0k⇠k

H
s+1

2 (S1)
C0|⇢|Cs+1BN�1

 K0k⇠k
H

s+1
2 (S1)

BN

provided B > 2K0C0|⇢|Cs+1 . ⇤

2.2. Proof of Theorem 1.1 in two dimensions: Analyticity of the Dirichlet to Neumann

operator. The Dirichlet to Neumann operator (DNO), G" : H
s+ 1

2 (@⌦") ! Hs� 1
2 (@⌦"), is given

by

G"⇠ =
h
1 + 2"⇢(✓) + "2

�
⇢2(✓) + (⇢0(✓)

�2i� 1
2


(1 + "⇢(✓))

@v

@r
� "⇢0(✓)

1 + "⇢(✓)

@v

@✓

�
,

where v is the harmonic extension of ⇠ from @⌦" to ⌦", satisfying (4). Making the change of

coordinates given in (5), we obtain the transformed DNO, G̃" : H
s+ 1

2 (S1) ! Hs� 1
2 (S1), given by

G̃"⇠ =
⇥
1 + 2"⇢(✓0) + "2

�
⇢2(✓0) + (⇢0(✓0))2

�⇤� 1
2

✓
1 +

"2(⇢0(✓0))2

(1 + "⇢(✓0))2
r0
◆
@u"
@r0

� "⇢0(✓0)

1 + "⇢(✓0)

@u"
@✓0

�

= M⇢(")Ĝ⇢,"⇠,

where u" satisfies (7) and

M⇢(") =
h
1 + 2"⇢(✓0) + "2

�
⇢2(✓0) + (⇢0(✓0)

�2i� 1
2
,

Ĝ⇢,"⇠ =

✓
1 +

"2(⇢0(✓0))2

(1 + "⇢(✓0))2
r0
◆
@u"
@r0

� "⇢0(✓0)

1 + "⇢(✓0)

@u"
@✓0

�
.

We note that the change of coordinates between G" and G̃" is conjugation by an isomorphism, as
follows. Let T",⇢Hs(⌦") ! Hs(B2) denote the change of variables in (5), i.e.,

u"(r
0, ✓0) = [T",⇢u](r

0, ✓0) = u
�
(1 + "⇢(✓0)r0, ✓0)

�
.

By the change of variables formula, T",⇢ : Hs(⌦") ! Hs(B2) is an isometry. For s 2 N, we recall
the trace operators,

�0 : H
s(B2) ! Hs� 1

2 (S1)

�",⇢ : H
s(⌦") ! Hs� 1

2 (@⌦"),

These are bounded, surjective operators with bounded right inverses. Define the map L : Hs+ 1
2 (@⌦") !

Hs+ 1
2 (Sd�1) by

L = �0T",⇢�
�1
",⇢ .

Lemma 2.4. L : Hs+ 1
2 (@⌦") ! Hs+ 1

2 (S1) is a Hilbert space isomorphism and LG" = G̃"L.
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Proof. We first show that L is injective. Let � 2 Hs+ 1
2 (@⌦") with L� = 0. Let u = ��1

",⇢�. Then

ũ = T",⇢u 2 Hs+1
0 (B). But

0 = ũ(1, ✓) = u ((1 + "⇢(✓)), ✓) = �

and so L is injective.

We next show that L is surjective. Let � 2 Hs+ 1
2 (S1) and set

 = �",⇢T
�1
",⇢ �

�1
0 � 2 Hs+ 1

2 (@⌦").

Let ũ = ��1
0 �, so that ũ(1, ✓) = �. Then u(r, ✓) := T�1

",⇢ ũ = ũ( r

1+"⇢(✓) , ✓), and

 (✓) = u(1 + "⇢(✓), ✓) = ũ(1, ✓).

Set w = ��1
",⇢ so that w(1 + "⇢(✓), ✓) = ũ(1, ✓). If we define w̃(r0, ✓) := T",⇢w = w((1 + "⇢(✓))r0, ✓),

then L = �0w̃ = w(1 + "⇢(✓), ✓) = ũ(1, ✓) = �. Thus L is surjective.
L = �0T",⇢��1

",⇢ is bounded since T",⇢ is an isometry and �0, �",⇢ are both bounded with bounded
right inverse. By the Bounded Inverse Theorem, since L is a bijective bounded linear operator
between Hilbert spaces, its inverse is bounded and hence L is an isomorphism.

It remains to verify that

LG"� = G̃"L� 8� 2 Hs+ 1
2 (@⌦").

Let � 2 Hs+ 1
2 (@⌦"). Then G"� = @nu where u is the harmonic extension of � into ⌦". Let

v = ��1
",⇢@nu, i.e., the harmonic function in ⌦" with Dirichlet data v|@⌦" = @nu. Then the above

calculations show that

LG"� = �0T",⇢v = @nu|@⌦"

= M⇢(")


(1 + "⇢(✓))

@u

@r
� "⇢0(✓)

1 + "⇢(✓)

@u

@✓

�
.

A similar calculation shows that

G̃"L� = M⇢(")

✓
1 +

"2(⇢0(✓0))2

(1 + "⇢(✓0))2

◆
@ũ"
@r0

� "⇢0(✓0)

1 + "⇢(✓0)

@ũ"
@✓0

�

where ũ"(r0, ✓0) = u ((1 + "⇢(✓0))r0, ✓0). The identities in (6) can be used to verify that these two
expressions are equal and the proof is complete. ⇤

We have now established that

LG"L
�1 = G̃" = M⇢(")Ĝ⇢,".

Since M⇢(") is clearly analytic in ", we need only show the analyticity of Ĝ⇢,". Dropping the prime
notation on the new variables, we obtain

(1 + "⇢(✓))2 Ĝ⇢,"⇠ =
h⇣

(1 + "⇢(✓))2 + "2(⇢0(✓))2
⌘
@ru� " (1 + "⇢(✓)) ⇢0(✓)@✓u

i
.

We expand the non-normalized DNO, Ĝ⇢,", as a power series in "

Ĝ⇢,"⇠ =
1X

n=0

"nĜ⇢,n⇠,(14)

which yields the following recursive formula:

Ĝ⇢,n⇠ = @run + 2⇢@run�1 +
�
(⇢0)2 + ⇢2

�
@run�2 � ⇢0@✓un�1 � ⇢⇢0@✓un�2 � 2⇢Ĝ⇢,n�1⇠ � ⇢2Ĝ⇢,n�2⇠.

We now prove the following theorem, which proves Theorem 1.1 and guarantees the uniform con-
vergence of the series (14) for suitably small ".
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Theorem 2.5. Let ⇠ 2 Hs+ 1
2 (S1) for s 2 N. Then

(15) kĜ⇢,n⇠k
H

s� 1
2 (S1)

 K1k⇠k
H

s+1
2 (S1)

Bn

for B > C|⇢|Cs+1.

Proof. We will proceed via induction. First, we show (15) fo n = 0:

kĜ⇢,0⇠k
H

s� 1
2 (S1)

 k@ru0k
H

s� 1
2 (S1)

 C1k@ru0kHs(D)

 C1ku0kHs+1(D)  C1K0k⇠k
H

s+1
2 (S1)

.

In the second inequality of the first line, we have used the trace theorem, while Theorem 2.3 is used
in the second line. Now suppose that (15) holds for n < N . Then we have the following estimate:

kĜ⇢,N⇠k
H

s� 1
2 (S1)

 k@ruNk
H

s� 1
2 (S1)

+ 2k⇢@ruN�1k
H

s� 1
2 (S1)

+ k(⇢0)2@ruN�2k
H

s� 1
2 (S1)

+ k⇢2@ruN�2k
H

s� 1
2 (S1)

+ k⇢0@✓uN�1k
H

s� 1
2 (S1)

+ k⇢⇢0@✓uN�2k
H

s� 1
2 (S1)

+ 2k⇢Ĝ⇢,N�1⇠k
H

s� 1
2 (S1)

+ k⇢2Ĝ⇢,N�2⇠k
H

s� 1
2 (S1)

 C1K0k⇠k
H

s+1
2 (S1)

BN + 2|⇢|
C

s� 1
2+�C1K0k⇠k

H
s+1

2 (S1)
BN�1+

+ |⇢|2
C

s+1
2+�

C1K0k⇠k
H

s+1
2 (S1)

BN�2

+ |⇢|2
C

s� 1
2+�

C1K0k⇠k
H

s+1
2 (S1)

BN�2 + |⇢|
C

s+1
2+�C1K0k⇠k

H
s+1

2 (S1)
BN�1

+ |⇢|
C

s� 1
2+� |⇢|

C
s+1

2+�C1K0k⇠k
H

s+1
2 (S1)

BN�2

+ 2|⇢|
C

s� 1
2+�kĜ⇢,N�1⇠k

H
s� 1

2 (S1)
+ |⇢|2

C
s� 1

2+�
kĜ⇢,N�2⇠k

H
s� 1

2 (S1)

 K1k⇠k
H

s+1
2 (S1)

BN ,

for B > C|⇢|Cs+1 , where C = C(s) is independent of u, N , ⇠, and ⇢. Here we have used the second
inequality in (12), as well as the trace theorem, Theorem 2.3, and the inductive hypothesis on
Ĝ⇢,N�1 and Ĝ⇢,N�2. ⇤

3. Three-dimensional nearly-spherical domains

Here we consider (2) in dimension d = 3. We identify ✓̂ 2 S2 with the inclination, ✓ 2 [0,⇡], and
azimuth, � 2 [0, 2⇡]. Let ⌦" be a nearly-spherical domain where the perturbation function, ⇢(✓,�),
is expanded in the basis of real spherical harmonics,

(16) ⌦" = {(r, ✓,�) : 0  r  1 + "⇢(✓,�)}, where ⇢(✓,�) =
1X

`=0

`X

m=�`

A`,mY`,m(✓,�).

Here, Y`,m denote the real spherical harmonics, which are obtained from the complex spherical
harmonics as follows [NIS]. Define the complex spherical harmonic by

(17) Y m

`
(✓,�) =

s
(2`+ 1)

4⇡

(`�m)!

(`+m)!
Pm

`
(cos(✓))eim�, ` � 0, |m|  `,

where Pm

`
is the associated Legendre polynomial, which can be defined through the Rodrigues

formula, Pm

`
(x) = (�1)m

2``!
(1 � x2)

m
2 d

m+`

dxm+` (x
2 � 1)`. For ` � 0 and |m|  `, the real spherical

8



harmonics are then defined by

Y`,m(✓,�) =

8
><

>:

ip
2

⇥
Y m

`
(✓,�)� (�1)mY �m

`
(✓,�)

⇤
if m < 0

Y 0
`
(✓,�) if m = 0

1p
2

⇥
Y �m

`
(✓,�) + (�1)mY m

`
(✓,�)

⇤
if m > 0

.(18)

We define the Sobolev space on the sphere, Hs(S2) for s 2 R, with squared norm

kfk2
Hs(S2) =

1X

`=0

`X

m=�`

h`i2s|f̂(`,m)|2, where f̂(`,m) =

Z 2⇡

0

Z
⇡

0
f(✓,�)Y m

`
(✓,�) sin ✓d✓d�;

properties of this norm can be found in [BD13].

3.1. Analyticity of the harmonic extension for nearly-spherical domains. As in Sec-
tion 2.1, we first consider the problem of harmonically extending a function ⇠(✓,�) from @⌦"

to ⌦",

�v = r�2@r
�
r2@rv

�
+ r�2 sin�1(✓)@✓ (sin(✓)@✓v) + r�2 sin�2(✓)@2

�
v = 0(19a)

v(1 + "⇢(✓,�), ✓,�) = ⇠(✓,�).(19b)

Mapping ⌦" to the unit ball, B = ⌦0, we make the change of variables

(r0, ✓0,�0) =
�
(1 + "⇢(✓,�))�1r, ✓,�

�
.(20)

The partial derivatives in the new coordinates are given by

@

@r
=

1

1 + "⇢(✓0,�0)

@

@r0

@

@✓
=

@

@✓0
� "r0⇢✓(✓0,�0)

1 + "⇢(✓0,�0)

@

@r0

@

@�
=

@

@�0
�

"r0⇢�(✓0,�0)

1 + "⇢(✓0,�0)

@

@r0
.

Applying this change of coordinates to the Laplace equation (19a), setting

u"(r
0, ✓0,�0) = v((1 + "⇢(✓0))r0, ✓0,�0),

multiplying by (1 + "⇢)4, and dropping the primes on the transformed variables yields

(1 + "⇢)4�v = (1 + "⇢)2�u" � "(1 + "⇢)
h
sin�1(✓)@✓

⇣
sin(✓)@✓⇢

⌘
+ sin�2(✓)@2

�
⇢
i
(r�1@ru")

� 2"(1 + "⇢)
h
⇢✓r

�1@✓@ru" +
⇣
sin�1(✓)@�⇢

⌘⇣
r�1 sin�1(✓)@�

⌘
@ru"

i

+ 2"2
h
(⇢2

✓
+ sin�2(✓)⇢2

�

i
(r�1@ru") + "2

⇣
sin�2(✓)⇢2

�

⌘
@2ru"

= 0.

9



Define the operators:

�Su = sin�1(✓)@✓ (sin(✓)@✓u) + sin�2(✓)@2
�
u

L1u = 2⇢�u+ (�S⇢)r
�1@ru� 2

✓
r�1⇢✓@✓@ru+

⇢�
sin ✓

@�@ru

r sin ✓

◆

L2u = ⇢2�u+ (⇢�S⇢)r
�1@ru� 2⇢

✓
r�1⇢✓@✓@ru+

⇢�
sin ✓

@�@ru

r sin ✓

◆

+ 2

 
(⇢2

✓
+

⇢2
�

sin2 ✓
)(r�1@ru) +

⇢2
�

sin2 ✓
@2ru

!

The function u" satisfies

�u" = "L1u" + "2L2u" in B(21a)

u"(1, ✓,�) = ⇠(✓,�) on S2.(21b)

Lemma 3.1. [Elliptic Estimate.] For s 2 N, there exists a constant K0 > 0 such that for any

F 2 Hs�2(B) and ⇠ 2 Hs� 1
2 (S2), the solution of

�w(r, ✓,�) = F (r, ✓,�) (r, ✓,�) 2 B

w(1, ✓,�) = ⇠(✓,�) (✓,�) 2 S2

satisfies

kwkHs(B)  K0

⇣
kFkHs�2(B) + k⇠k

H
s� 1

2 (S2)

⌘
.

Proof. We will prove the result for s = 1. Since ⇠ 2 H
1
2 (S2), we have the spherical harmonic

transform,

⇠(✓,�) =
1X

`=0

`X

m=�`

⇠̂(`,m)Y m

`
(✓,�), where ⇠̂(`,m) =

Z 2⇡

0

Z
⇡

0
⇠(✓,�)Y m

`
(✓,�) sin ✓d✓d�.

and Y m

`
are the (complex) spherical harmonics. Set v = w � �, where � solves

�� = 0 in B

� = ⇠ on S2.

Then v satisfies

�v = F in B(22a)

v = 0 on S2.(22b)

We have

�(r, ✓,�) =
1X

`=0

`X

m=�`

r`⇠̂(`,m)Y m

`
(✓,�),

and defining

�̂(r, `,m) = r`
Z 2⇡

0

Z
⇡

0
�(1, ✓,�)Y m

`
(✓,�) sin ✓d✓d�

we see that

�̂(r, `,m) = r`⇠̂(`,m).
10



We thus calculate:

k�k2
H1(B) =

X

`,m

h ZZZ

B

⇣
r2`|⇠̂(`,m)|2|Y m

`
(✓,�)|2 + |rr`⇠̂(`,m)Y m

`
(✓,�)|2

⌘
r2 sin ✓d✓d�dr(23a)

=
X

`,m

ZZZ

B

|⇠̂(`,m)|2|Y m

`
(✓,�)|2

⇣
r2`(1 + `(`+ 1)) + `2r2`�2

⌘
r2 sin ✓d✓d�dr(23b)

=
X

`,m

|⇠̂(`,m)|2
✓
`2 + `+ 1

2`+ 3
+

`2

2`+ 1

◆
(23c)

 C 1
2
k⇠k2

H
1
2 (S2)

(23d)

for some constant C 1
2
> 0.

Multiplying (22) by v and integrating by parts yields

kvk2
H

1
0 (B) =

Z

B

rv ·rv = �
Z

B

Fv.

By the duality of H1
0 (B) and H�1(B), we have

R
B
|Fv|  kFkH�1(B)kvkH1

0 (B). Since v 2 H1
0 (B),

by the Poincaré inequality, there exists a constant CB such that kvkH1(B)  CBkvkH1
0 (B) and we

conclude that

(24) kvkH1(B)  CBkvkH1
0 (B)  CBkFkH�1(B).

Using the decomposition w = v + � and using (23) and (24), we obtain

kwkH1(B)  kvkH1(B) + k�kH1(B)  CBkFkH�1(B) + C 1
2
k⇠k

H
1
2 (S2)

.

Taking K0 = max{C 1
2
, CB} yields the desired result for s = 1. The proof for s � 2 is similar. ⇤

Let us make the ansatz

u"(r, ✓,�) =
1X

n=0

"nun(r, ✓,�).(25)

Then, by (21), we have the recursive formula

�un = L1un�1 + L2un�2 in B(26a)

un =

(
⇠ if n = 0

0 if n > 0
on S2.(26b)

Lemma 3.2. [Recursive Estimates.] Let s 2 N and let ⇢ 2 Cs+1(S2). Assume that K1 and A are
constants so that

kunkHs+1(B)  K1A
n for all n < N.

If A > |⇢|Cs+1, then there exists a constant C0 such that

kL1uN�1kHs�1(B)  K1|⇢|Cs+1C0A
N�1

kL2uN�2kHs�1(B)  K1|⇢|Cs+1C0A
N�1.

11



Proof. Using the triangle inequality and (12), we calculate:

kL1uN�1kHs�1(B)  k2⇢�uN�1kHs�1(B) + k(�S2⇢)r�1@ruN�1kHs�1(B) + 2kr�1⇢✓@✓@ruN�1kHs�1(B)

+ 2

����
⇢�
sin ✓

·
@�@ruN�1

r sin ✓

����
Hs�1(B)

 M(s)
⇣
2|⇢|Cs�1kuN�1kHs+1(B) + |⇢|Cs+1kuN�1kHs+1(B) + 4|⇢|CskuN�1kHs+1(B)

⌘

 7M(s)|⇢|Cs+1K1A
N�1.

In the second inequality, we have also used that all operators acting on uN�1 are second order. We
similarly estimate kL2uN�2kHs�1(B):

kL2uN�2kHs�1(B)  k⇢2�uN�2kHs�1(B) + k(⇢�S2⇢)r�1@ruN�2kHs�1(B) + 2k⇢⇢✓r�1@✓@ruN�2kHs�1(B)

+

����
⇢⇢�
sin ✓

·
@�@ruN�2

r sin ✓

����
Hs�1(B)

+ 2
��⇢2

✓
r�1@ruN�2

��
Hs�1(B)

+ 2

�����
⇢2
�

sin2 ✓
r�1@ruN�2

�����
Hs�1(B)

+ 2

�����
⇢2
�

sin2 ✓
@2ruN�2

�����
Hs�1(B)

 M(s)
⇣
|⇢|2

C2kuN�2kHs+1(B) + |⇢|Cs�1 |⇢|Cs+1kuN�2kHs+1(B)

+ 4|⇢|Cs�1 |⇢|CskuN�2kHs+1(B) + 6|⇢|CskuN�2kHs+1(B)

⌘

 12M(s)|⇢|2
Cs+1K1A

N�2

 12M(s)|⇢|Cs+1K1A
N�1.

Taking C0 = 12M(s) completes the proof. ⇤
The following theorem justifies the convergence of (25) for suitably small " > 0.

Theorem 3.3. Given s 2 N, if ⇢ 2 Cs+1(S2) and ⇠ 2 Hs+ 1
2 (S2), there exists constants C0 and K0

and a unique solution u" of (21) satisfying (25) such that

(27) kunkHs+1(B)  K0k⇠k
H

s+1
2 (S2)

An

for any A > 2K0C0|⇢|Cs+1.

Proof. We proceed by induction. For n = 0, we use Lemma 3.1 to we see

ku0kHs+1  K0k⇠k
H

s+1
2
A0,

as desired to show (27). We now define K1 = K0k⇠k
H

s+1
2 (S2)

for the remainder of the proof to be

used in Lemma 3.2.
Suppose inequality (27) holds for n < N . Then by Lemma 3.1,

kuNkHs+1  K0 (kL1uN�1kHs�1 + kL2uN�2kHs�1) .

By Lemma 3.2, we may bound kL1uN�1kHs�1 and kL2uN�2kHs�1 so that

kuNkHs+1  2K0K1C0|⇢|Cs+1AN�1

= 2K2
0k⇠k

H
s+1

2 (S2)
C0|⇢|Cs+1AN�1

 K0k⇠k
H

s+1
2 (S2)

AN

provided A > 2K0C0|⇢|Cs+1 . ⇤
12



3.2. Proof of Theorem 1.1 in three dimensions: Analyticity of the Dirichlet to Neumann

operator. Denote the Dirichlet-to-Neumann operator G" : H
s+ 1

2 (@⌦") ! Hs� 1
2 (@⌦") which is

defined

G"⇠ = ~n" ·rv

where v satisfies (19) and

~n" =

 
(1 + "⇢)2 + "2⇢2

✓
+ "2

⇢2
�

sin2 ✓

!� 1
2 ⇣

(1 + "⇢)r̂ � "⇢✓✓̂ � "
⇢�
sin ✓

�̂
⌘

= M⇢(")
⇣
(1 + "⇢)r̂ � "⇢✓✓̂ � "

⇢�
sin ✓

�̂
⌘

is the unit-length normal vector on @⌦". Here the spherical coordinate vectors r̂, ✓̂, �̂ are given by

r̂ =

0

@
sin(✓) cos(�)
sin(✓) sin(�)

cos(✓)

1

A , ✓̂ =

0

@
cos(✓) cos(�)
cos(✓) sin(�)
� sin(✓)

1

A , and �̂ =

0

@
� sin(�)
cos(�)

0

1

A .

Making the change of variables in (20), we obtain the transformed DNO, G̃" : H
s+ 1

2 (S2) ! Hs� 1
2 (S2),

given by

G̃"⇠ = M⇢(")

"
(1 +

"2

(1 + "⇢)2

 
⇢2
✓
+

⇢2
�

sin2 ✓

!
@ru" �

"⇢✓
1 + "⇢

@✓u" �
"⇢�

(1 + "⇢) sin2 ✓
@�u"

#
(28a)

= M⇢(")Ĝ⇢,"⇠(28b)

where u" satisfies (21).
The following Lemma shows that the change of coordinates between G" and G̃" is conjugation

by an isomorphism.

Lemma 3.4. Let

�0 : H
s(B3) ! Hs� 1

2 (S2)

�",⇢ : H
s(⌦") ! Hs� 1

2 (@⌦"),

be the trace operators and T",⇢ : Hs(⌦") ! Hs(B3) denotes the change of variables in (20). Then

L : Hs+ 1
2 (@⌦") ! Hs+ 1

2 (S2) defined by

L = �0T",⇢�
�1
",⇢

is a Hilbert space isomorphism and LG" = G̃"L.

Proof. The proof of Lemma 3.4 is similar to the proof of Lemma 2.4. ⇤
We have now established that

LG"L
�1 = G̃" = M⇢(")Ĝ⇢,".

Since M⇢(") is clearly analytic near " = 0, we need only show the analyticity of Ĝ⇢," near " = 0 to

verify that G̃" is analytic as well. Note that Ĝ⇢," satisfies

Ĝ⇢,"⇠ = @ru+ "
⇣
2⇢@ru� ⇢✓@✓u�

⇢�
sin2 ✓

@�u� 2⇢Ĝ⇢,"⇠
⌘

(29)

+ "2
" 

⇢2 + ⇢2
✓
+

⇢2
�

sin2 ✓

!
@ru� ⇢⇢✓@✓u�

⇢⇢�
sin2 ✓

@�u� ⇢2Ĝ⇢,"⇠

#
.
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We now make a power series ansatz for the non-normalized DNO Ĝ⇢,",

Ĝ⇢,"⇠ =
1X

n=0

"nĜ⇢,n⇠,(30)

for ⇠ 2 Hs+ 1
2 (S2) and s 2 N. By (25) and (29), we obtain the recursive relationship,

Ĝ⇢,n⇠ = @run + 2⇢@run�1 � ⇢✓@✓un�1 �
⇢�

sin2 ✓
@�un�1 +

 
⇢2 + ⇢2

✓
+

⇢2
�

sin2 ✓

!
@run�2(31)

� ⇢⇢✓@✓un�2 �
⇢⇢�
sin2 ✓

@�un�2 � 2⇢Ĝ⇢,n�1⇠ � ⇢2Ĝ⇢,n�2⇠.

The following theorem proves Theorem 1.1 in three dimensions and justifies the convergence of
(30) for suitably small " > 0.

Theorem 3.5. Let ⇠ 2 Hs+ 1
2 (S2). Then

kĜ⇢,n⇠k
H

s� 1
2 (S2)

 K1k⇠k
H

s+1
2 (S2)

An(32)

for A > C|⇢|Cs+1.

Proof. We will proceed via induction. First, we show (32) fo n = 0:

kĜ⇢,0⇠k
H

s� 1
2 (S2)

 k@ru0k
H

s� 1
2 (S2)

 C1k@ru0kHs(B)

 C1ku0kHs+1(B)  C1K0k⇠k
H

s+1
2 (S2)

.

In the second inequality of the first line, we have used the standard trace theorem, while Theorem
3.3 is used in the second line. Now suppose that (32) holds for n < N . Then we have the following
estimate:

kĜ⇢,N⇠ks� 1
2
 k@ruNk

s� 1
2
+ 2 k⇢@ruN�1ks� 1

2
+ k⇢✓@✓uN�1ks� 1

2
+
���

⇢�
sin2 ✓

@�uN�1

���
s� 1

2

+
��⇢2@ruN�2

��
s� 1

2
+
��⇢2

✓
@ruN�2

��
s� 1

2
+

�����
⇢2
�

sin2 ✓
@ruN�2

�����
s� 1

2

+ k⇢⇢✓@✓uN�2ks� 1
2

+
���
⇢⇢�
sin2 ✓

@�uN�2

���
s� 1

2

+ 2
���⇢Ĝ⇢,N�1⇠

���
s� 1

2

+
���⇢2Ĝ⇢,N�2⇠

���
s� 1

2

 C1K0 k⇠ks+ 1
2
AN +M(s)C1K0

⇣
2|⇢|

C
s� 1

2+� k⇠ks+ 1
2
AN�1

+ |⇢|
C

s+1
2+�k⇠ks+ 1

2
AN�1 + |⇢|

C
s+1

2+�k⇠ks+ 1
2
AN�1

+ |⇢|2
C

s� 1
2+�

k⇠k
s+ 1

2
AN�2 + |⇢|2

C
s+1

2+�
k⇠k

s+ 1
2
AN�2 + |⇢|2

C
s+1

2+�
k⇠k

s+ 1
2
AN�2

+ |⇢|
C

s� 1
2+� |⇢|

C
s+1

2+�k⇠ks+ 1
2
AN�2 + |⇢|

C
s� 1

2+� |⇢|
C

s+1
2+�k⇠ks+ 1

2
AN�2

+K1|⇢|
C

s� 1
2+�k⇠ks+ 1

2
AN�1 +K1|⇢|2

C
s� 1

2+�
k⇠k

s+ 1
2
AN�2

⌘

 K1k⇠ks+ 1
2
AN ,

for K1 = max{2C1K0, 2C1K0M(s)} and A > C|⇢|Cs+1 . ⇤
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4. Proof of Corollary 1.2: Analyticity of the Steklov eigenvalues

We now have all of the ingredients to prove Corollary 1.2.

Proof of Corollary 1.2. For dimensions d = 2, 3 respectively, Theorems 2.5 and 3.5 show that

G̃" : H
s+ 1

2 (Sd�1) ! Hs� 1
2 (Sd�1) is analytic for small ". By Lemmas 2.4 and 3.4, we have an

isomorphism L : Hs+ 1
2 (@⌦") ! Hs+ 1

2 (Sd�1) satisfying

G" = L�1G̃"L.

The DNO operator G" : L2(@⌦") ! L2(@⌦") is self-adjoint [Are+14], hence closed. Thus, L�1G̃"L
is closed and analytic for small ". Since the spectrum of the left and right hand sides are equal,
the result follows from [Kat76, Ch. 7, Thm 1.8, p. 370]. ⇤
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