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Abstract
Using plasma mirror injection we demonstrate, both analytically and numerically, that a
circularly polarized helical laser pulse can accelerate highly collimated dense bunches of
electrons to several hundred MeV using currently available laser systems. The circular-polarized
helical (Laguerre–Gaussian) beam has a unique field structure where the transverse fields have
helix-like wave-fronts which tend to zero on-axis where, at focus, there are large on-axis
longitudinal magnetic and electric fields. The acceleration of electrons by this type of laser pulse
is analyzed as a function of radial mode number and it is shown that the radial mode number has
a profound effect on electron acceleration close to the laser axis. Using three-dimensional
particle-in-cell simulations a circular-polarized helical laser beam with power of 0.6 PW is
shown to produce several dense attosecond bunches. The bunch nearest the peak of the laser
envelope has an energy of 0.47 GeV with spread as narrow as 10%, a charge of 26 pC with
duration of ∼400 as, and a very low divergence of 20 mrad. The confinement by longitudinal
magnetic fields in the near-axis region allows the longitudinal electric fields to accelerate the
electrons over a long period after the initial reflection. Both the longitudinal E and B fields are
shown to be essential for electron acceleration in this scheme. This opens up new paths toward
attosecond electron beams, or attosecond radiation, at many laser facilities around the world.

Keywords: particle-in-cell simulation, laser driven electron acceleration,
high intensity laser-plasma interactions, twisted laser
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1. Introduction

Laser-driven electron accelerators have become a very act-
ive area of research due to technological developments and
improvements of high-power laser beams [1]. There are usu-
ally two common approaches. One approach is laser wake-
field acceleration [2] that utilizes plasma electric fields whose
strength is related to the plasma density. Another approach
is direct laser acceleration [3] that relies on the fields of the
laser for the energy transfer inside a plasma (e.g. see [4])

∗
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or in vacuum [5]. In the vacuum regime, transverse electron
expulsion typically terminates the energy gain and leads to
strong electron divergence. This is the reason why direct laser
acceleration in vacuum has been deemed ineffective and most
of the research has been focused on the plasma regime where
collective fields prevent the expulsion [6–8]. In an attempt to
mitigate the expulsion in the vacuum regime, some studies
examined alternative approaches utilizing longitudinal electric
fields of a radially polarized beam [9] and higher-order Gaus-
sian beams [10] for electron acceleration.

Currently there are several multi-PW laser systems oper-
ational in the world, with several more due to come online
in the next few years [1]. The biggest of the new systems
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recently proposed, at the Shanghai Superintense-Ultrafast
Laser Facility [11], is pushing the 100 PW limit and will
be in development over the next decade. At the same time,
new optical techniques using helical wave-fronts [12, 13]
are being developed. One of the key advantages of the hel-
ical, or Laguerre–Gaussian, laser mode is that it can be pro-
duced, at high efficiency, from a standard Gaussian laser
pulse in reflection from a fan-like structure [13, 14]. Very sig-
nificant differences can be seen when comparing the laser-
plasma interactions of conventional laser beams to those of
helical beams, some of which have been examined in simula-
tions [14–23], and some have begun to be explored in recent
experiments [12, 24–27]. An electron acceleration scheme
has recently been proposed where a high-power high-intensity
circular-polarized Laguerre–Gaussian beam is reflected from
a plasma mirror [28]. The unique field structure of this beam
both confines and accelerates tightly packed electron bunches
to GeV energies with a narrow energy spread.

In this article, we show using 3D particle-in-cell (PIC) sim-
ulations that the same electron acceleration scheme can be suc-
cessfully applied (1) using significantly lower laser power than
that used in [28] and (2) using oblique incidence. Specifically,
we show that a 600 TW laser beam generates several dense
attosecond bunches at intervals similar to the laser wavelength.
The bunch nearest the peak of the laser envelope gains an
energy of 0.47 GeV (10% FWHMenergy spread), while main-
taining a bunch charge as high as 26 pC. The tightly confined
bunch has a duration of ∼400 as and a remarkably low diver-
gence of just 1.15◦ (20 mrad). In addition to this, the scheme
is demonstrated to be tenable with an angle of incidence as
high as 25◦. Our results show that the electron acceleration by
helical beams is not limited to high-power high-intensity lasers
and can be successfully explored at a wide range of laser facil-
ities.

The rest of this paper is organized as follows. Section 2
examines the field structure of linearly and circularly polar-
ized laser beams with twisted wavefronts. The near-axis struc-
ture of the longitudinal electric field for different radial modes
is explicitly derived. Section 3 is dedicated to estimating the
acceleration that the longitudinal fields can provide and the
effect of the radial mode structure of the laser on this accelera-
tion. In section 4, we present results of a 3D PIC simulation for
a 600 TW laser beamwith twisted wavefronts whose near-axis
field structure is dominated by longitudinal electric and mag-
netic fields. Section 5 is concerned with exploring the role of
the longitudinal magnetic field where the effect of this field on
the bunch density and particle trajectories is shown, including
the possible reliability of this model with an oblique angle of
incidence. In section 6, we summarize the main results of this
work.

2. Field topology of a laser beam with twisted
wavefronts

In this section, we examine the field topology of linearly and
circularly polarized laser beams with twisted wavefronts. We
show that, for a properly chosen twist index, the field structure

in the region close to the axis of the beam can primarily consist
of longitudinal electric and magnetic fields. The differences
between radial modes are explicitly emphasized.

2.1. Linearly polarized beam

We start by considering a linearly polarized laser beam with
wavelength λ0 propagating in vacuum along the x-axis. We
assume that the diffraction angle, defined as θd = w0/xR, is
small, where w0 is the beam waist, and xR = πw2

0/λ0 is the
Rayleigh range.Without any loss of generality, we assume that
the laser electric field is polarized along the y-axis. In this case,
it is convenient to describe the field structure using a vector
potential A that satisfies the Lorenz gauge condition and has
only one non-zero component, Ay. The paraxial wave equation
for Ay has the form

[
∂2

∂ỹ2
+

∂2

∂z̃2
+ 4i

∂

∂x̃

]
Ay = 0, (1)

where, for compactness, the longitudinal coordinate x is nor-
malized to xR and the transverse coordinates y and z are nor-
malized to w0:

x̃= x/xR, (2)

ỹ= y/w0, (3)

z̃= z/w0. (4)

Equation (1) implies the following form of the solution with
ω = 2 πc/λ0:

Ay =Ψy(x̃, ỹ, z̃)g(ξ)exp(iξ), (5)

where g is the envelope function with max(g) = 1 and

ξ ≡ 2x̃/θ2d −ωt (6)

is the phase variable.
The transverse electric field in the paraxial approximation,

i.e. at θd $ 1, is given by

Ey ≈−1
c
∂Ay
∂t

=
iω
c
Ay. (7)

We are interested in solutions of the form

Ey = E0g(ξ)exp(iξ)ψl,p(x̃, r̃,φ) (8)

where

ψp,l(x̃, r̃,φ) = Cp,l f( x̃)
|l|+1+2p(1+ x̃ 2)pL|l|p

(
2̃r 2

1+ x̃ 2

)(√
2̃r
)|l|

× exp
[
−r̃ 2f(x̃)

]
exp(ilφ) (9)

is a mode with a twist index l and radial index p. Here we
introduced

r̃=
√
ỹ 2 + z̃ 2, φ= arctan(̃z/ỹ), f(x̃) =

1− i x̃
1+ x̃ 2

. (10)
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The L|l|p function is the generalized Laguerre polynomial
and Cp,l is a normalization constant. The modes ψp,l(x̃, r̃,φ)
are orthonormal at a given x̃ [29], with

Cp,l =

√
2p!

π(p+ |l|)!
, (11)

such that
ˆ 2π

0
dφ
ˆ ∞

0
ψp,l(x̃, r̃,φ)ψ

∗
p,l(x̃, r̃,φ)̃rd r̃= 1. (12)

It is worth pointing out that E0 in equation (8) is not the peak
amplitude of Ey. It is therefore convenient to introduce

E∗
0 ≡

√
2
π
E0, (13)

which is the peak amplitude of the transverse electric field in
the beam with l= 0.

The transversemagnetic field has a z-component only, since
B=∇×A. In the paraxial approximation, we have

Bz =
1
xR

∂Ay
∂x̃

≈ 2i
θdw0

Ay. (14)

After taking into account that θd = λ0/πw0, we find that Bz =
Ey. The longitudinal component of the Poynting vector S
is then given by Sx = (c/4 π)(ReEy)

2 and the peak period-
averaged power for the linearly polarized beam is

Plin =

〈
ˆ 2π

0
dφ
ˆ ∞

0
Sxrdr

〉

=
cw2

0

4 π

ˆ 2π

0
dφ
ˆ ∞

0

〈
(ReEy)

2
〉
r̃d r̃, (15)

where the angle brackets indicate the time-averaging. It is con-
venient to compute the power in the focal plane, i.e. at x̃= 0.
We use the expression given by equation (8) to find that

Plin =
cw2

0

8 π
E2
0 =

π

2
a20 w

2
0 m

2
ec

5

λ2
0e

2
, (16)

where

a0 = |e|E0/mecω (17)

is a dimensionless parameter, and e and me are the electron
charge and mass. We have explicitly taken into account the
normalization condition given by equation (12). The advant-
age of the chosen normalization is that the power P is the same
for different modes with the same E0 or a0.

The longitudinal laser electric and magnetic fields can be
calculated from the (∇ ·E) = 0 and (∇ ·B) = 0 conditions,
respectively. In the paraxial approximation, we have

Ex ≈
iθd
2

∂Ey
∂ỹ

, Bx ≈
iθd
2

∂Ey
∂z̃

. (18)

It follows from equations (8)–(10) that

E±
x =





iθd
2

[
|l|
r̃
e∓iφ − 2f r̃cosφ− 2

1+ x̃ 2
L|l|+1
p−1

L|l|p
cosφ

]
Ey; for p≥ 1,

iθd
2

[
|l|
r̃
e∓iφ − 2f r̃cosφ

]
Ey; for p= 0,

(19)

B±
x =





θd

2

[
∓ |l|
r̃
e∓iφ − 2if r̃sinφ− 2i

1+ x̃ 2
L|l|+1
p−1

L|l|p
sinφ

]
Ey; for p≥ 1,

θd

2

[
∓ |l|
r̃
e∓iφ − 2if r̃sinφ

]
Ey; for p= 0,

(20)

where the superscript on the left-hand side represents the sign
of l.

The twist of the field represented by l qualitatively changes
the topology of the transverse and longitudinal fields. We are
particularly interested in the field structure close to the central
axis, i.e. at r̃→ 0. It is important to distinguish three cases
based on the value of the twist index: l= 0, |l|= 1, and |l|> 1.
In the near-axis region, we have Ey ∝ r̃|l| exp(ilφ). In the case
of l= 0 or a beam without a twist, the longitudinal fields van-
ish on the central axis, while the transverse fields reach their
maximum value. In the case of |l|> 1, all laser fields vanish
on the central axis. The most unusual is the case of |l|= 1,

because in this case the longitudinal rather than transverse
fields peak on axis. As a result, the near-axis field structure
is dominated by longitudinal fields. Note that according to
equations (19) and (20) these fields are not axis-symmetric.

2.2. Circularly polarized beam

The results of the previous subsection can be readily general-
ized to the case of a circularly polarized laser pulse. In addition
to Ey, the laser beam also has an Ez-component. We set Ez =
iσEy, where σ= 1 corresponds to the right-circularly polarized

3
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Figure 1. Transverse and longitudinal electric field structure in the focal plane, x̃= 0, of right-circularly polarized beams (σ= 1) with
l= 0,±1, 2 and p=0, 1. All beams have the same E0 and the same diffraction angle, θd = 8.5 × 10−2. The fields are normalized to E∗

0 ,
which is the peak amplitude of the transverse electric field in the beam with l= 0.

wave and σ =−1 corresponds to the left-circularly polarized
wave. The longitudinal electric and magnetic fields can again
be calculated using the (∇ ·E) = 0 and (∇ ·B) = 0 equations,
respectively. In the paraxial approximation, we have

Ex ≈
iθd
2

(
∂Ey
∂ỹ

+
∂Ez
∂z̃

)
, (21)

Bx ≈
iθd
2

(
∂Ey
∂z̃

− ∂Ez
∂ỹ

)
. (22)

After substituting Ez = iσEy into these equations, we find that

E±
x =





iθdEy

[
|l|
r̃
1 ∓σ

2
e∓iφ − r̃feiσφ − 1

1+ x̃ 2
L|l|+1
p−1

L|l|p
eiσφ

]
; p≥ 1,

iθdEy

[
|l|
r̃
1 ∓σ

2
e∓iφ − r̃feiσφ

]
; p= 0,

(23)

B±
x =





θdEy

[
|l|
r̃
σ∓ 1
2

e∓iφ − r̃fσeiσφ − σ

1+ x̃ 2
L|l|+1
p−1

L|l|p
eiσφ

]
; p≥ 1,

θdEy

[
|l|
r̃
σ∓ 1
2

e∓iφ − r̃fσeiσφ
]
; p= 0,

(24)

where the superscripts on the left-hand side again represent the
sign of l.

Only for |l|= 1 the longitudinal rather than transverse fields
peak on axis. However, the two circular polarizations (right
and left) are not equivalent. In the case of σ =−l, the lon-
gitudinal fields reach their highest amplitude at r̃→ 0. On the
other hand, in the case of σ = l, the longitudinal fields vanishes
on axis. The transverse fields vanish on axis in both cases. It
is worth pointing out that, in contrast to the linearly polarized
beam, the longitudinal fields of the circularly polarized beam
with σ =−l are axis-symmetric.

Figure 1 shows the field structure for right-circularly polar-
ized beams (σ= 1) with different values of the twist index l
and radial index p. In agreement with our analysis, the trans-
verse field in figure 1(a) only peaks on axis for the beams
without a twist (l= 0). In all other cases, the transverse field
vanishes at r̃→ 0. The longitudinal field, shown in figure 1(b),
only peaks on axis for the beam with l=−1. As predicted, the
longitudinal field vanishes at r̃→ 0 for l= 1.

It must be pointed out that the circularly polarized beams
with |l|= 1 have two, rather than one, rotations to consider:

the rotation of the electric field maxima about the central axis
due to the wavefronts twist and the rotation of the electric field
vector due to the choice of polarization. In the case with |l|= 1
and σ =−l, the rotation of the transverse electric field vec-
tor due to the polarization and the twist of the transverse field
wavefronts have opposing chiralities. Figure 2 (bottom row)
provides schematic diagrams showing the two rotations. For
comparison, the upper row in figure 2 shows the field topo-
logy for a linearly polarized beam, with E⊥ = Ey. Recall that
the circularly polarized beam is a superposition of two linearly
polarized beams.

In the sections that follow, we focus on electron acceler-
ation in the near-axis region by Ex of a circularly polarized
laser beamwith l=−1 and σ= 1. In order to obtain a compact
expression for Ex, we set r̃= 0 in equation (23) and substitute
the expression for Ey given by equation (8), which yields

Ex(̃r= 0) = iEmax
‖ f 2(1+p)(1+ x̃ 2)pg(ξ)eiξ =

ig(ξ)Emax
‖

1+ x̃ 2

× exp
[
iξ− i2(1+ p) tan−1 x̃

]
, (25)
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Figure 2. Schematic representation of the transverse electric field topology for a linearly polarized beam (top row) with l=−1 and p= 0
and a circularly polarized beam (bottom row) with l=−1, p= 0, and σ =−l. The diagrams show one wavelength near the focal plane of
each beam. The color-coded surfaces are the surfaces of the constant amplitude |E⊥|= E∗: blue is positive Ey, red is negative Ey, green is
positive Ez, and purple is negative Ez. The large arrows show the direction of E⊥ at a given location. The small black arrows placed on the
large circles represent the motion of |E⊥| peaks over time. The small black arrows placed on the small circles in the bottom row represent
the direction of rotation of the electric field over time. The red structure at the center of each image represents the the central axis of each
beam. The images from left to right are at times incremented by a quarter period T/4, where T= 2 π/ω.

where

Emax
‖ = 2

√
p+ 1
π

θdE0 =
2
π

√
p+ 1
π

λ0

w0
E0 (26)

is the peak value of the longitudinal electric field. A fea-
ture that is important for electron acceleration is the expli-
cit dependence of the phase on p. This will be discussed in
more detail in section 3. The peak period-averaged power P
for the circularly-polarized beam is twice the power Plin for
a single linearly polarized beam with the same amplitude E0.
Taking this into account and using the expression for Plin given
by equation (16), we obtain the following expression for P in
terms of the amplitude of the longitudinal field:

P=
π4

4(p+ 1)
w4
0

λ4
0

m2
ec

5

e2
a2‖, (27)

where a‖ ≡ |e|Emax
‖ /mecω. Equation (27) can be recast as an

expression for normalized amplitudes of longitudinal electric
and magnetic fields for a given power P in the laser beam:

a‖ ≡
|e|Emax

‖

mecω
=

|e|Bmax
‖

mecω
≈ 71

√
p+ 1

(
λ0

w0

)2

P1/2[PW].

(28)

We conclude this section by pointing out that the longit-
udinal fields can be strong even for θd $ 1. Let us take a
P= 0.6 PW circularly-polarized beamwith l=−1, σ= 1, and
p= 0. The focal spot size is w0 = 3.0 µm and the wavelength
is λ0 = 0.8 µm. In this case, θd ≈ 8.5 × 10−2, so our analysis
that was performed in the paraxial approximation is applicable
to this beam. It follows from equation (26) that Emax

‖ ≈ 0.1E0.

Taking into account that Emax
y = E0 C0,l|l||l|/2 exp(−|l|/2) for

p= 0, we find that Emax
‖ /Emax

y = Bmax
‖ /Bmax

y ≈ 0.2. We also
find from equation (28) that a‖ ≈ 3.8. The corresponding
dimensional field amplitudes are Emax

‖ ≈ 1.5 × 1013 V m−1

and Bmax
‖ ≈ 51 kT.

3. Preliminary estimates for electron acceleration

In this section, we perform preliminary estimates for electrons
accelerated in the near-axis region by a helical laser beam
whose field structure in this region predominantly consists of
longitudinal electric and magnetic fields. We assume that the
electrons are injected into the laser beam near the focal plane
located at x̃= 0. The injection is implied to occur when an
incident beam is reflected off a mirror at normal incidence.
This process is examined self-consistently in section 4 and
section 5 using kinetic simulations.

The phase velocity, vph, of E‖ wavefronts plays a key role
in electron acceleration along the central axis. For simplicity,
we limit our analysis to the part of the pulse that is near the
peak of the envelope, which means that we can set g(ξ)≈ 1
in equation (25). In order to determine vph, it is convenient to
re-write the expression for the longitudinal electric field given
by equation (25) as

E‖ =−
Emax
‖ sin(Φ+Φ0 )

1+ x2/x2R
, (29)

where the phase Φ is given by

Φ= 2
[
θ−2
d (x/xR)− (p+ 1) tan−1(x/xR)

]
−ωt. (30)
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The constantΦ0 can be interpreted as the injection phase for an
electron that starts its acceleration at x≈ 0 at t≈ 0. We define
the phase velocity as vph = dx/dt for Φ= const. We differen-
tiate equation (30), where Φ= const, to obtain

0=
vph
c

− vph
c

(p+ 1)θ2d
1+ x2/x2R

− 1, (31)

where it was taken into account that θ2d = λ0/πxR. In the
paraxial approximation (θd $ 1 ), the second term on the
right-hand side is small. We neglect this term to find that
vph/c≈ 1. In order to find the correction associated with θd,
we set vph/c= 1 in the second term on the right-hand side of
equation (31) and obtain the following expression for the rel-
ative degree of superluminosity along the central axis:

vph− c
c

≈ (p+ 1)θ2d
1+ x2/x2R

. (32)

The key feature here is the explicit dependence on the radial
index p, with the superluminosity being higher for higher-
order radial modes.

The electron unavoidably slips with respect to the wave-
fronts as it moves forward, which limits its energy gain. The
slipping is determined by the difference vph− vx, where vph ≥
c and vx < c. As the electron becomes ultra-relativistic due
to the acceleration by E‖, it enters a regime where c− vx $
vph− c. In this regime, the slipping, or dephasing, is primarily
determined by the relative degree of superluminosity given by
equation (32). The lowest estimate for the phase slip experi-
enced by an electron that has traveled from x0 to x is obtained
by setting x= x0 + c(t− t0) in equation (30), which yields

∆Φ= 2(p+ 1)
[
tan−1(x0/xR)− tan−1(x/xR)

]
. (33)

For x0 $ xR, this expression reduces to ∆Φ=−2(p+
1) tan−1(x/xR). The phase velocity is superluminal near x= 0,
but it decreases to c at x- xR. As a result, the total phase slip is
finite and it approaches∆Φ=−(p+ 1)π at x- xR. There is a
significant difference between the p= 0mode and higher order
radial modes. At p= 0, the phase slip is ∆Φ=−π, which
means that some electrons (this depends on the initial phase)
can remain in the accelerating phase of E‖ until the laser defo-
cuses (x- xR) and E‖ becomes very weak. In contrast to that,
all electrons experience deceleration by E‖ at p≥ 1, because
they slip into the decelerating phase prior to strong defocusing
at x- xR.

In order to estimate the electron energy gain from E‖,
we assume that the electron is ultra-relativistic with c− vx $
vph− c. In this case, the phase Φ in equation (29) can be
replaced by Φ≈ Φ0 +∆Φ, where∆Φ is given by the already
derived equation (33). The change in electron momentum dur-
ing the acceleration is obtained by integrating the momentum
balance equation dp‖/dt=−|e|E‖, which yields

∆p‖ = |e|Emax
‖

ˆ t

t0

sin(∆Φ+Φ0 +π)dt ′

1+(x ′)2/x2R
, (34)

where x
′

is the electron location at time t
′

. We note that
dx ′/dt ′ ≈ c in the considered regime, so we can switch from

integration over time to integration over the longitudinal
coordinate by replacing dt

′

with dx ′/c. After substituting the
expression for equation (33), we obtain

∆p‖ =
|e|Emax

‖

c

ˆ x

x0

sin(∆Φ+Φ0)dx ′

1+(x ′)2/x2R

=−
|e|Emax

‖ xR

2(p+ 1)c

(
cosΦ0 − cos

[
Φ0 + 2(p+ 1) tan−1(x0/xR)

−2(p+ 1) tan−1(x/xR)
])
. (35)

This result can be further simplified by assuming that x0 $ xR,
so that tan−1(x0/xR)≈ 0 and

∆p‖ =−
|e|Emax

‖ xR

2(p+ 1)c
(cosΦ0 − cos [Φ0

−2(p+ 1) tan−1(x/xR)
])
. (36)

Equation (36) represents an important qualitative result, as
it shows that the electrons can retain a significant portion of
the energy they gain from E‖. We find the terminal momentum
gain by taking the limit of x/xR →∞ in equation (36). There
is a profound difference between odd and even radial radial
modes, i.e. odd and even radial indices p. In the case of even
modes with (e.g. p= 0,2,4), we have

∆pterm‖ =
|e|Emax

‖ xR

(p+ 1)c
cos(Φ0 −π). (37)

The energy gain occurs for 0.5π < Φ0 < 1.5π regardless of the
radial mode structure. Our assumption that the electron ismov-
ing forward with an ultra-relativistic velocity breaks down for
1.5π/ < Φ0 < 2.5π, which invalidates equation (37) for these
injection phases. In contrast to the even radial modes, there is
no terminal momentum gain, ∆pterm‖ = 0, for the odd radial
modes regardless of the injection phase. It is worth point-
ing out that this estimate was obtained under the assumption
that the electron is ultra-relativistic, so the analysis has to be
revised along the parts of the trajectory where c− vx ≥ vph− c.
However, the value of∆pterm‖ is unlikely to increase dramatic-
ally as a result.

Figure 3 illustrates the results of our analysis for three dif-
ferent radial modes, p= 0,1, and 2. The solid curves show
electron acceleration by a beam with p= 0, as predicted by
equation (36). Both electrons are injected at a phase that leads
to a net momentum gain. However, the delayed injection of the
electron shown with the solid blue curve (Φ0 = 0.6π) means
that it slips into the decelerating phase before the amplitude of
E‖ becomes negligibly small due to the beam diffraction. As a
result, the net momentum gain is two times lower than for the
case of Φ0 = 0.9π. Higher-order modes speed up the electron
slip into the decelerating phase, because the relative degree
of superluminosity given by equation (32) increases with p.
This trend is clearly shown by the dashed curves, represent-
ing modes with p= 1 and p= 2, respectively. In both cases,
the injection phase is Φ0 = 0.9π, which is the same phase as
that for the solid red curve (p= 0). The green dashed curve,
corresponding to p= 1, rolls over, after a peak in momentum
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Figure 3. The momentum gain predicted by equation (36) for
electrons injected at phase Φ0 into a right-circularly polarized beam
(σ = 1, l=−1). The solid curves are for a beam with the radial
index p= 0, whereas the green and black dashed curves correspond
to beams with p= 1 and p= 2, respectively.

gain, at x̃≈ 1, whereas the black dashed curve, correspond-
ing to p= 2, rolls over even sooner when the electron reaches
x̃≈ 0.5. In the case of p= 1, the electron remains in the decel-
erating phase until the beam experiences significant diffrac-
tion. As a result, there is no net momentum gain. In the case
of p= 2, the dephasing is faster, so the electron enters another
accelerating region of the beam when it reaches x̃≈ 1.5. The
acceleration continues until the diffraction eliminates E‖. In
this case there is a net momentum gain, but it is smaller than
in the case of p= 0 because the acceleration time is shorter and
the accelerating field (due to the diffraction) is weaker.

It is useful to recast our results for the momentum gain in
terms of electron energy. The energy of an ultra-relativistic
electrons with momentum p is ε≈ c|p| and, in our case,
|p|≈ p‖. If the electron experiences a significant momentum
gain, then the terminal longitudinal electron momentum is
pterm‖ ≈∆pterm‖ . Putting all these estimates together, we find
that the terminal electron energy is given by εterm ≈ c∆pterm‖ .
For modes with an even p index, the momentum gain is
given by equation (37). We also take into account the relation
between a‖ and P given by equation (28). As a result we arrive
to the following expression for the electron energy gain:

εterm[GeV]≈ 0.72
p+ 1

cos(Φ0 −π)P1/2[PW]. (38)

The result is independent of the spot size w0 and wavelength
λ0. At the end of section 3, we examined the field structure of
a circularly-polarized 0.6 PW laser beam with l=−1, σ= 1,
and p= 0. According to equation (38), we expect this beam
to generate electrons with hundreds of MeV in energy, since
εterm ≈ 0.56 cos(Φ0 −π) GeV.

4. Simulation results for a normally incident
600 TW laser

In section 3, we provided preliminary estimates showing that
a properly chosen beam with twisted wavefronts can gener-
ate forward-directed ultra-relativistic electrons. In this section,
we present a self-consistent analysis, performed using a 3D

Table 1. 3D PIC simulation parameters.

Laser parameters

Peak power (period
averaged)

0.6 PW

Twist and radial index l=−1,p= 0
Right-circular polarization σ= 1
Wavelength λ0 = 0.8 µm
Pulse duration (sin2

electric field)
τg = 20 fs

Focal spot size (1/e
electric field)

w0 = 3 µm

Location of the focal plane x= 0 µm
Direction of the incident
laser

−x

Other parameters

Position of the bulk target −1.0 µm≤ x≤−0.3 µm
Position of the
pre-plasma

−0.3 µm< x≤ 0.0 µm

Electron and C+6 density ne = 500 nc and nCarbon = 83.3 nc
Gradient length L= λ0/20
Simulation box (x× y× z) 10 µm× 30 µm× 30 µm
Moving window start time 11 fs
Moving window velocity c
Cell number (x× y× z) 400 cells × 800 cells × 800 cells
Macroparticles per cell for
electrons

300 at r< 2.5 µm, 36 at r> 2.5 µm

Macroparticles per cell for
C+6

24

PIC simulation, of electron injection and subsequent accelera-
tion by a laser beam with dominant E‖ and B‖ in the near-axis
region.

In our simulation, a 600 TW circularly-polarized Laguerre–
Gaussian beam with l=−1, σ= 1, and p= 0 is normally
incident on a mirror that is initialized as a fully ionized
plasma with a sharp density gradient. The incident pulse
propagates in the negative direction along the x-axis. The
laser envelope function g(ξ) has a temporal profile such that
g(t) = sin2(0.5π∗t/τg) with a total duration of τg = 20 fs.
The beam width is w0 = 3 µm, the laser wavelength is λ0 =
0.8 µm, and the focal plane is located at x= 0 µm. The
mirror is a carbon plasma with an electron density profile
ne = 500 nc exp[−20(x+ 0.3 µm)/λ0] at x≥−0.3 µm, where
nc = 1.8 × 1027 m−3 is the critical density for λ0 = 0.8 µm.
While ion mobility does not appear to affect the simulation
results, the ions are left mobile so as to ensure a more realistic
scenario. The initial kinetic energy of all particles (electrons
and ions) is set to zero. In order to follow the electrons bunches
over a long period of time a moving window is employed. The
window size is set to encompass the entire simulation box and
moves at a velocity c, beginning at a time t=11 fs . Additional
simulation details are provided in table 1.

The field structure of the incident laser beam in the (x, z)-
plane is shown in figure 4. The time snapshots are taken at
t=−9 fs. We define t= 0 as the time when, in the absence of
the mirror, the peak of the laser envelope reaches at x= 0. As
can be seen in figure 4, the longitudinal fields Ex and Bx are
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Figure 4. Field structure of an incident circularly-polarized Laguerre–Gaussian laser beam from a 3D PIC simulation. The snapshots are
taken at t=−9 fs. The laser beam and simulation parameters are given in table 1.

strongest on-axis where the transverse field Ez tends to zero.
The field structure in these snapshots agrees with the paraxial
analysis presented in section 2 for beams with twisted wave-
fronts.

The laser-plasma interaction that occurs after the laser
reaches the mirror can be sorted into two stages: the injection
stage and the acceleration stage. The injection stage occurs
during laser reflection off the plasma mirror. At this stage,
plasma electrons are drawn out of the mirror by laser fields
and injected into the near-axis region of the laser beam in
front of the mirror. The electron injections stops after the
laser beam is fully reflected off the mirror. Results from track-
ing the particles in the third bunch back to the target surface
show a complex relationship between the transverse and lon-
gitudinal field structures. This process requires significant fur-
ther research that is beyond the scope of this article. Dur-
ing the acceleration stage, the injected electrons travel with
the reflected laser beam away from the surface of the mirror.
Their longitudinal motion is caused by E‖ of the reflected laser
beam. Only those electrons that are injected into a region with
E‖ < 0 can accelerate while moving away from the mirror.
On the other hand, no acceleration is possible when E‖ > 0
in the vicinity of the mirror surface. As a result, oscillations
of E‖ > 0 near the mirror surface generate electron bunches
rather than a continuous electron beam. The maximum areal
density of a bunch, ρe, (integral of ne along the bunch) can be
estimated by taking into account that the injection process dur-
ing one laser period stops once the space-charge of the extrac-
ted electrons shields E‖ of the laser. This yields ρe ≈ a‖ncc/ω
or

ρe[m
−2]≈ 1.3× 1022P1/2 [PW] λ0 [µm] w−2 [µm]. (39)

The implication is that a beam with a strong longitudinal elec-
tric field is expected to produce high density bunches.

Figure 5(a) shows that the accelerated electrons indeed
travel in bunches. The snapshot is taken at t= 261 fs after the
injected electrons have traveled roughly 100 λ0 along the x

axis with the laser beam. The plot shows the distribution of the
electrons located in the region near the axis with r< 1.5 µm
in the (εe,x)-space. The compactness of the bunches, both in
transverse (see figure 6(c)) and longitudinal directions (see
figure 5(a)), ensures that the electrons in each bunch essen-
tially experience the same accelerating field. This explains the
narrow energy spread within each bunch in figure 5(a).

The evolution of the energy spectrum within a single bunch
is plotted in figure 5(c). The selected bunch is marked as
bunch #3 in figure 5(a). The bunch retains a relatively nar-
row energy spread during the acceleration process. The dashed
curve shows the prediction given by equation (36) for an
injection phase of Φ0 = 0.8π. The good agreement indicates
that the accelerated electrons are likely injected into the same
phase of the reflected beam. There is also a strong correlation
between electrons which have a high energy and those with a
low divergence angle. This is best seen in figure 5(d) which
shows the distribution of energy versus divergence angle θ =
arctan

(
p⊥/p‖

)
of the third bunch.

The presented simulation demonstrates that a normally
incident 600 TW beam can generate several dense bunches of
ultra-relativistic electrons. Specifically, the terminal energy of
the electrons in the third bunch is 0.47 GeV with a FWHM of
∼ 10% (see figure 5(b) for a snapshot at t= 261 fs). The bunch
has a duration of roughly 400 as and a total electron charge of
26 pC, while the normalized transverse emittance is 9.5 µm.

5. The impact of the longitudinal magnetic field on
electron dynamics

The most distinctive feature of the considered laser beam with
twisted wavefronts is the strong longitudinal magnetic field B‖

in the near-axis region. In what follows, we examine the pro-
found impact of this field on electron dynamics.

In addition to E‖, the electrons in the near-axis region
experience B‖ that can provide transverse confinement at an
early stage of the acceleration before the electron momentum
becomes predominantly forward-directed. The importance of
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Figure 5. (a) Accelerated electron bunches at t= 261 fs. The color shows the distribution of electrons with r< 1.5 µm in the (εe,x)-space.
The inset shows the structure of the third bunch. (b) The energy spectrum dN/dεe in the third bunch at t= 261 fs for electrons with
r< 1.5 µm for cases with (blue line) or without (black line, multiplied by 10 to aid the comparison) the force from Bx in the electron
equation of motion. (c) The time evolution of the energy spectrum of the third bunch. The black dashed curve is the prediction of
equation (36) with Φ0 = 0.8π. (d) The energy-angle distribution in the third bunch at t= 261 fs.

Figure 6. A comparison between 3D PIC simulations with (upper row) and without Bx (bottom row) in the electron equations of motion.
Both simulations use the same 600 TW laser beam with parameters given in table 1. All snapshots are taken at t= 9 fs. (a), (b): Electron
density on a log-scale, with the color representing log(ne/nc). The blue, red, and green contours denote ne = 0.1nc, 0.5 nc, and nc. The
dashed rectangle shows the radial and longitudinal extent of what is referred to as the third bunch in the remaining panels. (c), (d): Areal
density of the electrons in the third bunch. (e), (f): Cell-averaged electron divergence angle 〈θ〉 in the third bunch. The angle
θ ≡ arctan(p⊥/px) of an individual electron is averaged over the electrons located within the cells with the same y and z coordinates.

B‖ can be assessed by estimating the Larmor radius, rL, for
an electron injected with transverse relativistic momentum p⊥
into the field near the focal plane, whose strength is given by
equation (28). We find that

rL/w0 ≈ 2.2 × 10−3

√
1+ p

(
p⊥
mec

)(
w0

λ0

)
P−1/2 [PW]. (40)

In the case of the 600 TW laser beam considered in section 4,
we have rL/w0 ≈ 10−2p⊥/mec. Even for those electrons that
are injected with p⊥/mec≈ |e|Emax

⊥ /mecω ≈ 19, the Larmor
radius, rL ≈ 0.2 w0, is significantly smaller than the beam
waist. By keeping the injected electrons close to the axis, B‖

ensures that the electrons are unable to sample strong E⊥ and
gain additional transverse momentum. As a result, they are
predominantly accelerated by E‖, which leads to a strongly

collimated beam. It is important to point out that B‖ is shif-
ted by π/2 with respect to E‖, which means that the direction
of the electron rotation induced by the magnetic field changes
during the acceleration process.

At the injection stage, plasma electrons experience a com-
plicated interplay of transverse and longitudinal fields that is
not captured by the presented estimate. The impact of Bx dur-
ing this process can be elucidated by removing its effects from
the electron dynamics even though this does lead to a some-
what non-physical scenario. To remove the effect of Bx in the
PIC simulation, we multiply the Bx variable by zero in the rel-
evant section of the particle pusher. Figure 6(b) shows the elec-
tron density obtained using this approach for the laser-mirror
interaction examined in section 4. For comparison, figure 6(a)
also shows the electron density from the original simulation
where the effect of Bx is included. The bunches in figure 6(b)
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Figure 7. (a) Time evolution of the electron distribution over the divergence angle θ in the third bunch (r< 1.5 µm). (b) Trajectories of
electrons randomly chosen from the third bunch at t= 261 fs. The trajectories correspond to 6 fs≤ t≤ 261 fs, with the circles marking the
electron positions at t= 261 fs. The transverse coordinates are normalized to the local width of the laser beam w(x) = w0

√
1+ x2/x2R.

form in a ring-like structure away from the central axis. The
structure of the bunches appears superficially similar to that
observed for radially polarized beams at lower intensities [9].
In contrast to that, the electron bunches in figure 6(a) are
formed close to the axis in the region where the longitudinal
field dominates. The bunches become more compact as they
move away from the mirror, with the electron density exceed-
ing nc.

Figures 6(c)–(f) compare the areal density and divergence
angle between the two simulations. The comparison is per-
formed for the electrons within the third bunch in figures 6(a)
and (b). The radial and longitudinal extend of the third bunch
is shown with the the black dashed rectangles in figures 6(a)
and (b). The difference in collimation is striking even at this
injection stage (t= 9 fs). The higher areal density point-like
structure seen in figure 6(c) is complimented by a correspond-
ing small cell-averaged electron divergence angle 〈θ〉 seen in
figure 6(e). The averaging, indicated by the angular brack-
ets, is performed by taking all the electrons located within
the cells with the same y and z coordinates, i.e. the cells with
the same projection onto the transverse plane. The averaging
accounts for the difference in the numerical weightwα of indi-
vidual macro-particles caused by the initial density gradient:
〈θ〉=

∑
αwαθα/

∑
αwα. In the case where the influence of

Bx is removed (with the corresponding plots of areal density
in figure 6(d), and cell-averaged divergence in figure 6(f)), we
see a ring-like ‘bunch’ with divergent profile indicating that it
will continue to diverge long after the injection stage is over.
The contrasting pictures between the two simulations show the
important role of the Bx.

Figure 5(b) shows the energy spectrum of the third bunch
in the simulation without the Bx forces at a much later time
(t= 261 fs). The same figure shows the spectrum for the third
bunch in the original simulation at the same time instant. Both
spectra are calculated for the electrons in the near-axis region
with r< 1.5 µm. Not surprisingly, the electrons moving close
to the central axis achieve similar energies in both simulations.
However, the number of such energetic electrons in the simu-
lation without the Bx forces is an order of magnitude lower.
During the injection process and at the very early acceler-
ation stage the longitudinal magnetic field provides a signi-
ficant amount of transverse electron confinement. This keeps

electrons in the region with a strong Ex but weak E⊥, which
ensures good collimation of the electron bunches.

To further examine the transverse electron motion during
the acceleration process, we have tracked several electrons.
The electrons are randomly selected from the third bunch
(r< 1.5 µm) at t= 261 fs. The projection of the electron
trajectories onto the transverse plane for 6 fs≤ t≤ 261 fs
is shown in figure 7(b), where the circles indicate the elec-
tron positions at t= 261 fs. The transverse coordinates are
intentionally normalized to the local width of the laser beam
w(x) = w0

√
1+ x2/x2R to correlate the electron location with

the strength of the transverse electric field E⊥ that increases
away from the central axis. As expected, there is a pronounced
rotation induced by B‖ that prevents electrons from expanding
and reaching a region with a strong E⊥. This rotation is also
observed to reverse, effectively twisting the trajectory of the
electrons. This feature is caused by the π/2 shift between E‖

and B‖. The sign of B‖ changes during the acceleration pro-
cess, which causes the electrons to rotate in the opposite dir-
ection and manifests itself as the twist seen in figure 7(b) for
each individual trajectory.

Another important metric of the electron dynamics is the
divergence angle θ. Figure 7(a) shows how the electron distri-
bution over θ = arctan

(
p⊥/p‖

)
changes with time in the third

bunch. We find that the bunch becomes less divergent over
time, which is a clear indicator of the dominant role played by
E‖. Indeed, θ decreases because p‖ increases at a much faster
rate than p⊥. The increase in p‖ is caused by E‖, as already
discussed in section 3. The changes in p⊥ are caused by E⊥.
The longitudinal magnetic field has no direct impact on the
divergence angle since it rotates p⊥ without changing its amp-
litude. However, by keeping the electrons close to the cent-
ral axis, the magnetic field prevents them from experiencing a
strong E⊥ that peaks off axis and, as a result, it prevents p⊥
from increasing.

We conclude this section by presenting results for a case
of oblique incidence. Experimental facilities often require that
laser pulses are not shot at normal incidence onto a reflecting
surface so as to avoid damage to optical systems. This was our
primary motivation to examine the oblique incidence case. In
our simulation, the laser beam is still incident in the negative
direction along the x-axis, but the target is now titled by 25◦.
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Figure 8. 3D PIC simulation results for a 25◦ incidence angle. The snapshots are take at t= 52 fs and plotted in an (x ′,y ′,z) system of
coordinates whose x ′-axis points in the specular direction. (a) Areal electron density in a third bunch moving in the specular direction.

(b) Cell-averaged electron divergence angle 〈θ ′〉 in the third bunch. The angle θ ′ ≡ arctan
(√

p2y ′ + p2z
/
px ′

)
is averaged on every mesh

cell of the (y ′,z) plane.

In order to make the simulation manageable, we perform it
in a window moving along the x-axis. The simulation time is
limited compared to the case of normal incidence, because the
electron bunches, that now travel at an angle to the x-axis, leave
the simulation window prematurely. This setup does not allow
enough time for the acceleration process to reach a plateau
as in the normal incidence case and so the final distribution
function is left for future research. Despite this limitation this
simulation will allow testing the early time conditions that set
up the acceleration process and bunch formation.

We find that the laser reflection again generates a series
of dense collimated bunches, which indicates the robustness
of the considered approach to electron acceleration. The areal
density ρe and the cell-averaged divergence angle 〈θ ′〉 in the
third bunch are shown in figures 8(a) and (b). These snapshots
are taken at t= 52 fs.We use an orthogonal (x ′,y ′,z) system of
coordinates whose x

′

-axis points in the specular direction. The

divergence angle θ ′ ≡ arctan
(√

p2y ′ + p2z
/
px ′

)
is the angle

between the momentum vector p and the x
′

-axis. Even though
the axial symmetry is broken, there is still strong evidence of
a dense non-divergent bunch close to the laser axis. The high
degree of collimation following the injection suggests that the
reflected laser pulse would generate highly energetic bunches
with similar characteristics to the case presented at normal
incidence.

6. Summary and discussion

In summary, this manuscript presents a detailed analysis of
the topology of linearly and circularly polarized Laguerre–
Gaussian laser beams. It is shown that the beams with a twist
index |l|= 1 have a distinct field structure in the near-axis
region with dominant E‖ and B‖. In the case of circularly
polarized beams, the rotation of E⊥ should be in the oppos-
ite direction to the rotation of the wavefronts, i.e. σ =−l,
to achieve such a structure. The manuscript also presents
kinetic 3D PIC simulations for a 600 TW circularly polar-
ized beam (p= 0, l=−1, and σ= 1) reflected off a plasma

mirror. The dominant E‖ and B‖ combine to inject dense
electron bunches upon reflection. The bunches are effectively
accelerated by E‖ while being confined by B‖. The mag-
netic field prevents the bunch electrons from traveling too
far radially outwards, so they sample a relatively weak trans-
verse electric field and remain well-collimated. The bunch
with the largest energy has a distinctly narrow energy spread
with a FWHM of just 10%. The terminal energy gain for an
individual bunch is well predicted by the analytical model
developed in the manuscript. The charge of a single bunch
in the simulation is as high as 26 pC. The bunches have a
duration of ∼400 as and a remarkably low divergence of just
1.15◦ (20 mrad).

The nearest analogue to the discussed mechanism is the
acceleration by a radially polarized laser beam. Such a beam
also has a strong longitudinal electric field that dominates the
field structure in the region close to the central axis. How-
ever, in contrast to the beams considered in this manuscript, the
radially polarized beam lacks a strong longitudinal magnetic
field in the region close to the axis. As shown in appendix,
the absence of B‖ has a profound impact on the electron
acceleration even though the amplitude of E‖ is the same
as in the case of the radially polarized beam considered in
section 4. In the absence of B‖, there is no mechanism con-
fining electrons in the region with r/w(x)$ 1. The lack of
confinement also manifests itself in the case of oblique incid-
ence. We have shown some results that indicate the robust-
ness of the electron injection by a beam with a strong B‖. In
contrast to that, the injection by radially polarized beams is
not as robust [30], which makes experimental implementation
extremely challenging.

The transverse fields do have a role where they are, in-
part, responsible for detaching electrons from the pre-plasma.
The exact dynamical process relating to the transverse fields
is likely of less importance than that of the longitudinal fields.
Previous studies have discussed the ponderomotive force as a
mechanism for keeping electrons [31] (and ions [32]) within
the central region of the beam. However, as can be seen in the
comparison made in figure 6, this does not appear to be the
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dominant mechanism confining the electrons close to the axis
in our case, at least at early times.

While this study is limited to a relatively short laser pulse
with three peaks at high amplitude, a TiSaphire laser with a
FWHM of around 30 fs will have a train of roughly 15 peaks.
The energy of each bunch is strongly tied to the amplitude at
the position in the envelope. After being injected, electrons
are accelerated directly by laser field in vacuum, implying
that they are not likely subjected to instabilities that occur in
bulk plasmas. The density of the bunches is also related to the
longitudinal field, with higher densities recorded with higher
amplitudes [28]

Using the scheme detailed in the manuscript, it may be
possible to construct a source of highly collimated dense
attosecond bunches of ultra-relativistic electrons suitable for
potential applications. This can be achieved using a combin-
ation of high-power laser systems, similar to those already
in use today. In addition to this, optical techniques that have
already been put to experimental use can be used to create
twisted wave-fronts necessary for this mechanism. Given the
research presented here, with some further studies, a working
design for a small-scale high-energy electron accelerator may
be within grasping distance.
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Appendix. 3D PIC simulation results for electron
acceleration by a radially polarized laser beam

The acceleration scheme presented in this manuscript is
superficially similar to that associated with radially polarized

beams [9, 30]. Near the axis, radially polarized beams also
have a strong longitudinal electric field, so a comparison of
the two schemes is worth discussing.

The difference in the field topology can be illustrated by
constructing a radially polarized beam using two circularly-
polarized Laguerre–Gaussian beams from section 2: the first
with l= 1, σ =−1 and the second, a mirror image of the first,
with l=−1, σ= 1. We set E0 = E∗/2 for each of the beams
in equation (8) that describes the structure of Ey. The resulting
beam structurewill be compared to a circularly polarized beam
with E0 = E∗ and l=−1, σ= 1, and p= 0. The superposition
of the two beams has

Ey =
1
2
E∗

(
eiφ + e−iφ

)
D= E∗ cosφD, (41)

where D(x̃, r̃,ξ) = g(ξ)exp(iξ)ψp,±1(x̃, r̃,φ)exp(∓iφ) is a
function that, for compactness, incorporates all the remain-
ing dependencies besides the dependence on φ. We next take
into account that Ez = iσEy in each of the circularly-polarized
beams and find that the superposition of the two beams
has

Ez =
1
2
E∗

(
−ieiφ + ie−iφ

)
D= E∗ sinφD. (42)

These Ez and Ey represent a radially polarized laser beam:

E⊥ = erE∗D. (43)

In the context of the electron acceleration mechanism, the
biggest difference between the radially polarized beam and
the circularly polarized beam with twisted wavefronts is the
absence of B‖ near the axis. In order to find the structure of
the longitudinal fields, we use equations (19) and (20). Close
to the axis, the longitudinal electric fields of the two beams
are the same, so the longitudinal field of the radially polarized
beam is given by

Ex =
iθd
2

1
r̃
e−iφ

[
E∗

2
eiφ

]
+
iθd
2

1
r̃
eiφ

[
E∗

2
e−iφ

]
=
iθd
2

1
r̃
E∗.

(44)

It follows directly from equation (19) that it is equal to Ex of
the circularly polarized beam with E0 = E∗ and l=−1, σ= 1,
and p= 0 that we are using for our comparison. On the other
hand, the longitudinal magnetic fields of the two circularly-
polarized beams cancel each other out, so that there is no
strong Bx close to the axis of the resulting radially polarized
beam:

Bx =−θd

2
1
r̃
e−iφ

[
E∗

2
eiφ

]
+

θd

2
1
r̃
eiφ

[
E∗

2
e−iφ

]
= 0. (45)

In contrast to this, Bx of the circularly polarized beam with
l=−1 and σ= 1 that we use for our comparison has the same
amplitude as Ex.

Even though Ex has the same amplitude in the two beams
that are being compared, the power in the radially polarized
beam is two times lower. In order calculate the power of the
radially polarized beam, we note that Bz = Ey and By =−Ez.
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Figure 9. Electric field components of a radially polarized laser beam before it encounters the mirror . Panels (a) and (d) show Ez; panels
(b) and (e) show Ey; panels (c) and (f) show Ex. The left column ((a)–(c)) shows the field structure in the (x, z)-plane at y= 0. The right
column ((d)–(f)) shows the field structure in the (y, z)-plane at the x-position indicated with the dashed line. All the snapshots are taken a
time t≈−9 fs.

The longitudinal component of the Poynting vector is then
given by

Sx =
c
4 π

[
(ReEy)

2
+(ReEz)

2
]
=

c
4 π

E2
∗ (ReD)2 . (46)

The peak period-averaged power is

Prad =

〈
ˆ 2π

0
dφ
ˆ ∞

0
Sxrdr

〉

=
cw2

0

4 π

ˆ 2π

0
dφ
ˆ ∞

0

〈
(ReD)2

〉
r̃d r̃ (47)

with g(ξ) = 1. After time-averaging, the expression on the
right-hand side is identical to the expression on the right-hand
side of equation (15). Thus the peak period-averaged power of
the radially polarized beam is

Prad =
cw2

0

8 π
E2
0. (48)

Not that it is equal to Plin, the power of a linearly polar-
ized beam with E0 = E∗, given by equation (16). On the other
hand, the peak period-averaged power of a circularly polarized
beam, PCP, with E0 = E∗, l=−1, σ= 1, and p= 0 is 2Plin,
where Plin is given by equation (16). We thus have

PCP =
cw2

0

4 π
E2
0 = 2Prad. (49)

If both types of beams can be generated at the same power,
then a potential advantage of using the radially polarized beam
would be its ability to generate higher E‖. However, very dif-
ferent optical techniques are employed to generate the two
types of beams. The radially polarized beams are produced
using transmissive optical elements, which limits the incident
power. In contrast to that, the beams with twisted wavefronts
can be produced by adding an etched mirror [13, 25] at some

point into a traditional laser-system. Thismethod relies of laser
reflection, so it does not have the same power limitation. This
means that it can potentially be used to generate the desired
beams at very high power and reach very strong E‖.

To compare the acceleration by the two beams with the
same strength of E‖, we performed an additional simulation
for a 300 TW radially polarized beam. With the exception of
the laser power, all other simulation parameters are the same
as those listed in table 1 and used to obtain the results presen-
ted in section 4. The electric field structure in the (x, z)-plane at
t=−9 fs is shown in figure 9. The longitudinal electric field
structure in the region close to the axis is nearly identical to
that shown in figure 4 for the circularly-polarized Laguerre–
Gaussian beam. There is no strong B‖ near the axis, which
agrees with the analytical analysis given by equations (44) and
(45).

To obtain a comparable picture of the phenomena in the
new simulation, we again focus on the third bunch formed dur-
ing the reflection process (see figure 6 for the location of this
in the circularly-polarized Laguerre–Gaussian case). The evol-
ution of the energy spectrum of this bunch is shown for the
radial polarized case in figure 10(a) whereas the energy-angle
distribution is shown in figure 10(b). These plots can be com-
pared to similar plots in figure 5. In the radially polarized case,
we see a slightly lower peak kinetic energy at later times. In
addition to this, the bunch has a wider energy spectrum. When
looking at the energy-angle distribution, the bunch appears to
be spread over a slightly wider divergence angle. The spec-
tra in the radially-polarized case do not show the highly nar-
row energy spread features present in the circularly-polarized
case.

Previous studies [30] have shown that the acceleration
by radially polarized beams can be affected by the high-
harmonic radiation emitted during the reflection. To test for
this sensitivity, we performed two more simulations, one
for each beam scenario. In these simulations, the cell size
is reduced from 25 to 20 nm and the default second order
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Figure 10. Sensitivity of the electron acceleration by a 300 TW radially polarized beam to simulation parameters. The top row (subplots (a)
and (b)) shows results for the parameters from table 1. The bottom row (subplots (c) and (d)) shows results from a simulation with a reduced
cell size of 20 nm and a higher-order field solver. The black dashed curve is prediction of equation (36) for Φ0 = 0.8π. The left column is
the energy distribution as a function of time for the third bunch of electrons. The right column is energy-angle distribution at t= 261 fs.

Yee scheme is changed to the fourth order version. The res-
ults for the circularly-polarized Laguerre–Gaussian beam are
unchanged, which is unsurprising given the extensive resol-
ution tests previously run [28, 34]. The new results for the
radially-polarized case are visibly different compared to those
from the original simulation: there are differences in the max-
imum energy, energy spread, and the energy-angle distribu-
tion. There is also some evidence, which is not plotted here,
of a series of odd harmonics forming on reflection of the beam
in the radially polarized case. No such high-harmonic genera-
tion is evident in the circularly-polarized Laguerre–Gaussian
case. The studies focused on radially polarized beams typ-
ically use the field solvers specifically designed for accurate
propagation of high-harmonic generation [9, 30, 35]. While
the results of figure 10 primarily show the sensitivity of the
radially polarized mechanism to resolving the high-harmonic
generation, there is experimental evidence [30] that high-
harmonics do have a significant impact when reflecting this
type of beam at an angle away from normal off a plasma
mirror.
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