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Abstract—Cyber-Physical-Human Systems (CPHS) intercon-
nect humans, physical plants and cyber infrastructure across
space and time. Industrial processes, electromechanical systems
operations and medical diagnosis are some examples where
one can see the intersection of humans, physical and cyber
components. Emergence of Artificial Intelligence (AI) based com-
putational models, controllers and decision support engines have
improved the efficiency and cost effectiveness of such systems and
processes. These CPHS typically involve a collaborative decision
environment, comprising of AI-based models and human experts.
Active Learning (AL) is a category of AI algorithms which
aims to learn an efficient decision model by combining domain
expertise of the human expert and computational capabilities of
the AI model. Given the indispensable role of humans and lack
of understanding about human behavior in collaborative decision
environments, modeling and prediction of behavioral biases is a
critical need. This paper, for the first time, introduces different
behavioral biases within an AL context and investigates their
impacts on the performance of AL strategies. The modelling of
behavioral biases is demonstrated using experiments conducted
on a real-world pancreatic cancer dataset. It is observed that
classification accuracy of the decision model reduces by at least
20% in case of all the behavioral biases.

Index Terms—Active Learning, Behavioral Biases, Cyber-
Physical-Human Systems, collaborative decision environment,
human behavior modelling

I. INTRODUCTION

Active Learning (AL) is a form of semi-supervised ma-
chine learning (ML) approach where the learning algorithm
leverages information from external sources in order to predict
labels for the unlabeled instances in the dataset. The primary
motive is to accomplish a higher prediction accuracy with
fewer labelled instances as compared to traditional supervised
ML methodologies. It has proved to be advantageous in
modern ML frameworks involving expensive or wearisome
labelling procedures [1]. The learning algorithm in AL settings
is referred to as Active Learner and the external information
source is termed as the Oracle. The AL framework can be

represented as a collaborative decision environment compris-
ing of Artificial Intelligence (AI) engine, in the form of ML-
based classification/regression models; and human experts,
in the form of Oracle (i.e., a domain expert). Typically, in
such environments, the aim is to learn an efficient decision
model by combining domain expertise of the human expert
and computational capabilities of the AI model.

Although there is a plethora of literature published on
handling practical AL challenges, like cold-start problem,
oracle uncertainty, variable labelling costs and performance
evaluation in the absence of ground truth, the collaboration
of human and AI engine in a decision environment is neither
straightforward nor well understood. There are anomalies and
biases associated with both human and AI components of
the decision environment. Algorithmic biases (like, selection
bias, sampling bias, correlation fallacy, etc.) arises due to
inability of algorithms to appropriately adjust to differences
in data from different population subgroups [2]. On the other
hand, behavioral biases (like, overconfidence, cognitive bias,
hot hand fallacy, regret aversion bias, etc.) creep in due to
uncertainties associated with human decisions [3]. This paper,
first simulates different behavioral biases in an AL context.
Then, the impact of these behavioral biases on the performance
of AL strategies is quantified by comparing against an ideal
case, where behavioral biases are absent.

A. Related Work

Human experts are crucial components of AI-enabled ser-
vices in cyber-physical-human systems (CPHS). They form
a collaborative decision environment with the support of AI-
based computational models. This is pertinent in a wide variety
of domains, including fault diagnosis, predictive maintenance,
optimal control, process and manufacturing industry opera-
tions and medical diagnosis. Given the compelling role of
humans in such decision environments, it is an important
research challenge to model, predict and use the limits of
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human behavior (e.g., behavioral bias and cognitive fatigue)
in CPHS design [4]. Modeling human behavior in a decision
environment is not straightforward. Humans use cognitive
mechanisms and decision heuristics to process information and
make decisions under uncertainty [5], [6].

Behavioral biases have been studied in numerous fields,
including investment and finance [7], radiology [8], medical
diagnosis [9], and human-in-the-loop systems [10]. The exis-
tence of behavioral biases for investment decisions is studied,
supported by evidence from the Indian stock market [11].
Protte et al. [3] have presented the impacts of overconfidence
bias and hot-hand fallacy with the help of an experimental
framework involving surveillance drone piloting. Cognitive
bias and carelessness are parameterized, and their impact on
users’ reliability is evaluated for personal context recogni-
tion [12]. Furthermore, several recent studies have proposed
methodologies to address algorithmic biases using effective
sampling approaches [13], [14], [15], [16] and adversarial
learning [17], [18], [19]. Among all these studies presented
in the literature, a generic framework for modelling and
prediction of behavioral biases in the context of a collaborative
decision environment has not been proposed so far. An inter-
active framework with the flexibility to simulate and predict
different behavioral biases would be highly beneficial to study,
analyze and use the limits of human decision under uncertainty
in human-AI collaborative decision-making tasks.

B. Contributions

The article demonstrates the simulation of different behav-
ioral biases in an AL context. AL is represented as a collab-
orative decision environment consisting of AI engines (ML-
based models) and human experts (Oracle). The user inputs are
designed to be taken in two steps: agreement or disagreement
with the AI model, followed by class labels based on human
judgement (in case of disagreement). The behavioral biases are
simulated by providing pre-engineered human decisions during
the input steps. All the bias models are validated by performing
experiments on a real-world pancreatic cancer dataset. Further,
the impacts of all the simulated biases on the performance
of AL strategies are examined by comparing classification
accuracy against an ideal case, which does not subsume any
type of behavioral bias. It is observed that the accuracy score
of the decision model is reduced by at least 20% (in cases
of hot-hand fallacy and representative bias) to around 85%
(in case of gambler’s fallacy). Such a collaborative decision
framework, with the flexibility to study multiple behavioral
biases, has not been proposed in the literature and is a novel
contribution of this work.

The remainder of this article is organized as follows:
background on AL is presented in Section II. Section III
elaborates upon the modelling of behavioral biases within AL
frameworks, followed by experimental setup in Section IV and
results in Section V. The article ends with concluding remarks
in Section VI.

Fig. 1. General Approach of AL frameworks.

II. BACKGROUND ON ACTIVE LEARNING

The general approach of AL frameworks is presented in
Figure 1. Given a dataset D, a small fraction of the samples
(DL) are labelled and majority of them (DU ) are unlabeled.
The primary aim is to accurately predict labels for all instances
in DU with much fewer labelled instances for training, as
compared to the conventional supervised ML frameworks.
This is executed by allowing the Active Learner to choose
the data it wants to learn from – by posing queries to Oracle
in the form of unlabeled instances and requesting for the
corresponding labels. An initial ML model is trained using
DL. This is followed by the iterative selection of queries by
optimizing appropriate AL heuristics, like entropy of class
probabilities, margin uncertainty or classifier uncertainty. The
model is updated at each query step by including the query
and associated label within DL. This interactive modelling
procedure between AI engine (ML model) and human (Oracle,
i.e., domain expert) can be well represented as a collaborative
decision environment.

The inherent assumptions in AL frameworks give rise to
several challenges during implementation in practical scenar-
ios. There is a wealth of literature on methodologies for
handling each of these practical challenges: cold-start problem
[20], [21], [22], oracle uncertainty [23], [24], [25], hybrid
query strategies [22] and performance evaluation in the ab-
sence of ground truth [25]. However, the representation of AL
in the form of a collaborative decision environment is not well
examined in the literature. The human and AI components in
this collaboration engender behavioral and algorithmic biases
respectively. In this work, different types of behavioral biases
are simulated within an AL context and their impacts is studied
by comparing the accuracy score of associated AL strategy
with an ideal case which does not incorporate any sort of
behavioral bias.

III. BEHAVIORAL BIAS MODELS

The irrational behaviors of humans which abstractly hinder
the logical decision process are known as behavioral biases.
The human decision or judgement methodically deviates from
rationale, under the influence of these biases. This can lead to
serious consequences, especially in domains like human health
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and medicine, where the stakes associated with decision-
making are high. In this work, we consider the following
behavioral biases: herding bias, cognitive bias, hot-hand fal-
lacy, representative bias, anchoring bias, gambler’s fallacy and
regret-aversion bias.

In order to simulate the behavioral biases, the AL frame-
work has been designed to query human experts in two steps:

(I) Firstly, the instance selected by the Active Learner is
labelled as per the AI model trained at the current step.
This instance is then presented to the human expert along
with the predicted label, who is asked to specify whether
he/she agrees or disagrees with the decision of the AI
model.

(II) If the human expert agrees with the decision of AI model,
the predicted label is considered to update the model,
otherwise the human expert is prompted to provide a label
as per his/her judgement.

In this work, we simulate each of the behavioral biases by sup-
plying pre-engineered human decisions during both the input
steps, based on the foundational understanding of respective
biases. On the other hand, the human inputs corresponding to
“Ideal Case” are formulated based on the ground-truth labels
in the dataset, which justifies the absence of behavioral biases.

Herding bias is the tendency of humans to take a specific
decision just because it is being supported by many other
people, rather than relying on their own judgement. This
is simulated in our AL environment by making the human
expert to indiscriminately agree with the AI model during step
(I) of each query. Cognitive bias arises from the generation
of a strong, falsified preconceived notion in human minds.
Henceforth, there is a tendency to form mental shortcuts to
process the information quickly, rather than making rational
decisions. We simulate this by making the human expert to
blindly disagree with the AI model during step (I) of the input
process. Further, their decisions are simulated by supplying
uniformly distributed random numbers as shown in (1) during
step (II) of each query. Here, C is the number of classes and
dj is decision of the human expert at step (II) for jth query.

dj ∼ U(1, C) (1)

Hot-hand fallacy causes humans to overconfidently believe
that their decision will be correct based on sequences of imme-
diate correct decisions in the past. This is a “fallacy” because
a future outcome is independent of the past performance.
This is simulated by considering ground-truth labels during
an initial set of queries, similar to that in Ideal Case. After
an initial set of queries, the inputs are formulated so as to
make the human expert to always disagree with AI model in
step (I) and generating uniformly distributed random numbers
in step (II) to mimic the overconfidence effect in hot-hand
fallacy. Representative bias leads to decisions being taken
based on an erroneous prototype already existing in the human
minds. This “prototype” is typically the most relevant example
of a particular object or event. It results in overestimation
of similarity between two things that are being compared

by the humans. In the AL environment, ground truth labels
are considered during initial fraction of queries. Once the
representative bias sets in, the inputs in step (I) are designed
to have the human expert randomly agree/disagree with the AI
model, followed by uniformly distributed random numbers in
step (II), as indicated in (1).

Anchoring bias induces the human decisions to over-rely
on first piece of information about a particular event or
object. This skews the human judgement and prevent them
from making rational decisions. This is simulated in our AL
environment by having inputs so as to make the human expert
to always agree with the AI model after an initial set of
queries. This emulates the decision of human experts to be
anchored based on the information learn during initial queries.
Gambler’s fallacy causes humans to erroneously predict the
probability of a random event based on the outcomes cor-
responding to sequences of immediate events in the past.
Although the human expert would have made a series of
incorrect decisions, he/she would still go ahead for another
wrong decision overconfidently, in the hope of making a
correct one. We simulate this by having the human experts
to forcibly make wrong decisions, i.e., shuffling the ground-
truth class labels for a fraction of instances in the query set.

Regret-aversion bias occurs when human experts make
decisions, so as to avoid regretting alternate decisions in the
future. Under the influence of this bias, the expert prefers to
select the option that would carry the least regret, even if it is
not the most appropriate choice. We simulate this in our AL
environment by modifying the ground-truth labels to replace
them with the ones corresponding to a pessimistic choice (for
example, replacing the label corresponding to lower grade of
a disease with the one corresponding to higher grade of the
same) for a fraction of instances in the set of queries.

IV. EXPERIMENTAL SETUP

In this work, we demonstrate simulation of all the be-
havioral biases discussed in Section III in an AL context,
on a pancreatic cancer dataset adapted from [26]. It com-
prises of data from 159 participants, classified into 4 classes
(healthy, pancreatitis, localized and metastatic) on the ba-
sis of an enzymatic signature consisting of arginase, matrix
metalloproteinase-1, -3, and - 9, cathepsin-B and -E, urokinase
plasminogen activator, and neutrophil elastase [26]. 10% of the
total instances in the dataset are selected randomly to create
an initial labeled dataset, which is used to train an initial ML-
based classification model. Further, 50% of the total instances
are used for querying iteratively (one query per iteration), and
the classification model is updated after each query step. k-
Nearest Neighbors (kNN) is chosen as the base classification
method because it is versatile, simple and easy to implement
and a non-parametric classification algorithm. Moreover, it
does not make any inherent assumptions about the distribution
of input data. Uncertainty Sampling (US) query strategy is
implemented in Python 3.8 to select instances for annotation
by the human experts. US selects instances for querying from
the pool of unlabeled samples which minimizes the classifier
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Fig. 2. Plot of Accuracy Score vs. No. of Queries: Chasing Trends.

uncertainty, as described mathematically in (2). Here, ŷ is the
predicted label for the instance x under the model θ. In the US
query strategy, ŷ is the prediction with the highest posterior
probability under the model θ (indicated in eq. (3)) and x∗ is
the instance chosen for annotation by the human expert.

x∗ = argmin
x

Pθ(ŷ|x) = argmax
x

1− Pθ(ŷ|x) (2)

ŷ = argmax
y

Pθ(y|x) (3)

V. RESULTS

For the sake of convenience, the behavioral biases discussed
in Section III are categorized into 4 categories: Representative
bias and Anchoring bias are classified as Chasing Trends; Hot-
hand and Gambler’s fallacies are Overconfidence biases; Herd-
ing bias and Cognitive bias fall under Limited Attention Span;
and Regret-aversion bias is treated as a separate category. In
order to study the impacts of all these behavioral biases in AL
setting, the performance (i.e., classification accuracy score) of
the model is recorded after each query step for all the cases.
The plots of accuracy scores for all categories of biases are
presented in Figures 2 - 5.

It can be seen that the accuracy score increases with increase
in no. of queries for the Ideal Case. The model trained with
initial labelled dataset classifies around 65% of the instances
correctly. This score gradually increases to around 96% after
80 queries are made to the human annotator and model being
updated after each query step. The corresponding confusion
matrix is shown in Table I. However, this trend is not observed
in case of any of the behavioral biases. For Representative
bias (Figure 2), the accuracy score increases upto 40% of
the queries. The inputs are provided so as to set in the
Representative bias at this point. Once its sets in, the accuracy
score reduces with increasing no. of queries. This is because

Fig. 3. Plot of Accuracy Score vs. No. of Queries: Overconfidence.

Fig. 4. Plot of Accuracy Score vs. No. of Queries: Limited Attention Span.

the human decisions are biased due to an erroneous prototype
already existing in their minds. Similarly, for the cases of
Anchoring bias (Figure 2) and Hot-hand fallacy (Figure 3), the
accuracy score start decreasing after the corresponding biases
set in at 50% and 60% query steps respectively. Further, it
can be seen that in the case of Cognitive bias (Figure 4),
the accuracy score consistently reduces with increase in no.
of queries. This is because the human experts make biased
decisions due to a strong, falsified preconceived notions. They
tend to form mental shortcuts for quick information process-
ing, rather than making rational decisions. Similar trends can
be observed for Gambler’s fallacy (Figure 3), Herding bias
(Figure 4) and Regret-aversion bias (Figure 5). In each of these
cases, the human experts make decisions biased on several
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Fig. 5. Plot of Accuracy Score vs. No. of Queries: Regret-aversion.

TABLE I
CONFUSION MATRIX FOR IDEAL CASE AFTER 50% QUERIES

Predicted Class
Healthy Pancreatitis Localized Metastatic

Healthy 50 0 0 0
Pancreatitis 2 23 0 1
Localized 0 0 32 1

True Class

Metastatic 0 2 0 48

factors as discussed in Section III, rather than relying on their
own logical judgement.

VI. CONCLUSION

In this paper, the impact of seven behavioral biases, namely,
herding bias, cognitive bias, hot-hand fallacy, representative
bias, anchoring bias, gambler’s fallacy and regret-aversion bias
is illustrated using experiments conducted on a real-world
pancreatic cancer dataset. Firstly, AL is represented in the
form of a collaborative decision environment of AI engines
and human experts, and the annotation by human experts is
formulated as a two-step process. Secondly, the behavioral
biases are simulated by dispensing pre-manipulated user inputs
based on the foundational understanding of respective biases
during the iterative query steps. Finally, the impacts of these
biases on the performance of AL strategies are assessed by
comparing classification accuracy score of the decision model
against a reference case, which does not assimilate any sort of
behavioral bias. It is observed that the performance deterio-
rates significantly when the human decisions are influenced by
each of the behavioral biases. Future extensions of this work
include ways to detect behavioral biases within a collaborative
decision setting, incorporate algorithmic biases and implement
the corresponding framework across datasets from different
domains.
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