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Abstract

Motivated by applications in imaging nonlinear optical absorption by photoacoustic to-
mography (PAT), we study in this work inverse coefficient problems for a semilinear radiative
transport equation and its diffusion approximation with internal data that are functionals of
the coeflicients and the solutions to the equations. Based on the techniques of first- and second-
order linearization, we derive uniqueness and stability results for the inverse problems. For
uncertainty quantification purpose, we also establish the stability of the reconstruction of the
absorption coefficients with respect to the change in the scattering coefficient.

Key words. semilinear radiative transport, inverse coefficient problem, inverse diffusion, uniqueness and
stability, uncertainty quantification, quantitative photoacoustic imaging
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1 Introduction

This paper is devoted to the study of inverse coefficient problems in quantitative photoacoustic
imaging of optically heterogeneous materials, such as biological tissues, with a nonlinear absorption
effect. To describe the problem, let us denote the underlying medium to be probed by © C R
(d > 2), an open bounded convex domain with smooth boundary Q. We denote by S?~! the unit
sphere in R?, and define the phase space X := Q x S%! as well as the incoming boundary of the
phase space

I_={(x,v)| (x,v) €0 xS st. —v(x) -v>0},

where v(x) is the unit outer normal vector at x € J€2. In a photoacoustic experiment, we send near
infra-red (NIR) photons into the media 2. The density of the photons at x € Q traveling in the
direction v € S¢1, u(x,v), solves the following semilinear radiative transport equation [3, 6] 50]

v - Vu(x,v) + ou(x)u(x,v) + op{u)u(x,v) = o4(x)K(u)(x,v), in X
u(x,v) = g(x,v), onI'_

(1)
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where o,, 0y, are the single-photon and two-photon absorption coefficients, respectively, and oy is
scattering coefficient. We denote by (u) the integral of u(x,v) over the variable v, that is,

(u) = /Sd—l u(x,v)dv,

with dv being the normalized surface measure on S~! (that is, [s4, dv = 1). The linear scattering
operator K is defined through the relation

K(u)(x,v) = / {@(V,v')u(x,v') - @(V',V)u(x,v)}dv',
Sd—1
with the non-negative kernel ©(v,v’) > 0 satisfying the normalization conditions

O(v,v)dv' = O(v,v)dv = 1.

sd—1 sd—1
The pressure field generated by the photoacoustic effect can be written as [21]
Hr(x) = 2(x) |00 (6) () (x) + o (x) ()2 (x) |, x €. (2)

where = is the Griineisen coefficient that describes underlying medium’s photoacoustic efficiency.
This initial pressure field generated by single-photon and two-photon absorption processes evolves,
in the form of ultrasound, according to the classical acoustic wave equation [9 21]. Through the
measurement of the ultrasound data reaching the surface of the medium, one can reconstruct the
internal information Hp(x). This is by now a well-established process; see, for instance, [2] 12} 16,
24, 27, 134, 37, [59] and references therein for more details.

The objective of this paper is on the second step of the photoacoustic imaging technology:
to reconstruct the optical coefficients o, 0,05 and possibly = from the internal information Hp
reconstructed from the acoustic measurement. What makes our study different from existing results
on quantitative photoacoustic imaging, for instance those in [8 [9] 22} 48, 49, [51], 55| [57], is that the
transport model we consider here contains the semilinear term that describes the two-photon
absorption effect of the underlying medium [10},54]. This additional nonlinearity makes the analysis
of the inverse problem much more complicated [56), [60].

Diffusion approximation. When the underlying medium has very strong scattering but weak
absorption, one can approximate the transport equation model with a diffusion equation model
that is easier to deal with. This is a well-established result in kinetic theory in the absence of
the semilinear term o, (u)u in (|1)); see for instance [I7] for a detailed mathematical derivation. In
the presence of the semilinear term o} (u)u, the diffusion approximation follows straightforwardly
from the classical theory under the assumption that the transport solution is at most O(1). This
is indeed the regime where our study in the rest of the paper will be, that is, for small boundary
data. Therefore, we write down the following semilinear diffusion approximation without further
justification, and with a little bit abuse of notations:

—V - y(x)Vu(x) + 0o (x)u(x) + op(x)u(x)u(x) = 0, in Q (3)
u(x) = g(x), on 0N

where 7 is related to o4, 0, and os. The internal data in the diffusion approximation now take the
form

Hp(x) = Eloq(x)u(x) + op(x)u(x)u(x)] x €. (4)



The inverse problem in this case is to reconstruct information on =, v, o, and o from the data in
the form of Hp.

Note that the diffusion model we take here has the semilinear term w(x)u(x) instead of
lu(x)|u(x) as in [54]. Using the |u(x)|u(x) term will force the solution to the diffusion equa-
tion to be non-negative, a property that is desired for the problem to be physically relevant. The
perturbative argument we have in this work will implicitly ensure the non-negativity of the diffusion
solution when we select appropriate point of linearization.

In the rest of the paper, we study the inverse problems in the transport regime in Section
and in the diffusion regime in Section [3] Concluding remarks are offered in Section 4 Throughout
the paper, we assume that all the coefficient functions are bounded in L% ():

(a) 0<co<E(x),04(%x),05(x),04(x) < C, Vx € Q (5)

for some positive constants ¢y and Cp. It is convenient in later discussion to extend these functions
E(x),04(x), 05(x), 0p(x) by 0 outside Q. For technical reasons, we assume further that

(b) o0, and o are known in a §-vicinity of 9 for some § > 0, (6)
which, in the diffusion approximation, translates to the assumption
(') 0aj90 and yjgq are known. (7)

While assumption (b) (and therefore (b')) does not look harmful from the practical point of view, it
is needed to ensure the correctness of the results we will present (see for instance [52] for discussions
on how to remove assumption (¥’) in the diffusive regime by introducing additional data).

2 Inverse problems in the radiative transport regime

We start with inverse problems to the semilinear transport model with internal data of the
form . We denote by Lflg(l“_) the usual space of L™ functions on I'_ with measure d§ =
|v(x) - v|du(x)dv, du(x) being the surface Lebesgue measure on 0f2.

Let us assume that we have the data encoded in the map:
Ar:ge Lg(l-)— Hr € L=(Q). (8)

For any sufficiently small g(x,v) € Lgg(I'-), the well-poseness result in Theorem ensures that
there exists a unique solution u to . Therefore the map Ap in is well-defined for small g in
LR(T).

d¢

The inverse coefficient problem we are interested in solving is the following:

Inverse Problem: Determine the triplet (oq4,0p,05) in from the data encoded in A defined
in .

Note that theory developed in [54] based on the diffusion approximation implies that one can not
reconstruct all four coefficients (Z, 04,03, 05) simultaneously, no matter how much data we have.
Therefore, we assume that Z is known in the rest of the paper.

Our main strategy is to use the linearization technique of Isakov and others [28], 29] 30, 31, 32]
in dealing with nonlinear equations to decompose the inverse problem to the semilinear radiative



transport equation into an inverse coefficient problem for the linear transport equation where
we reconstruct o, and o by the result of Bal-Jollivet-Jungon [6], and an inverse source problem for
the linear transport equation where we reconstruct the two-photon absorption coefficient o},. This
is the same type of strategy that have been successfully employed to solve many inverse problems
for nonlinear PDEs recently; see for instance [4} [11], 13, 14} 5] I8, 20, 25| 26} B33, 35} 36l 38, B39,
40|, 4T, 143], 44\ [45], [46,, 47, 50L 58, 61, 62, [63] and reference therein.

2.1 1%-order linearization to recover o, and o,

Let € > 0 be a small parameter. We consider the following boundary value problem:

v - Vu(x, v;e) + og(x)u(x,v;e) + op(u)u(x,vie) = os(x)K(u)(x,v;e), inX
u(x,vie) = eg(x,v), onI_.

(9)

For g € Lg‘g (I'_) and ¢ sufficiently small, the boundary value problem @D is well-posed according
to Theorem Moreover, the solution u(x,v;e) of @ satisfies u(x,v;0) = 0 when £ = 0 due to
the well-posedness. We denote the associated data by Hr(z;e).

Following Proposition [A.4] we know that u is twice differentiable with respect to . Therefore,
we can perform the following linearization.

Based on Proposition let uM (x,v) := d.u(x, v;€)|.—0. By the first-order linearization, we
have that u(") satisfies the linear transport equation:

v Vul)(x,v) + o,(x)uM (x,v) = oy(x)KuV)(x,v), inX (10)
uD(x,v) = g(x,v), onI'_
where we used the fact that u(x,v;0) = 0.
For the internal data defined in , we also linearize it and then obtain that
H(l) — 0. Hr(x: —-= (1) 11
7 (X) := 0:Hp(x;€)|e=0 = Eoa(u')(x). (11)
It turns out that data encoded in the operator,
AWD . ) (1) 0o
v 9(x,v) € Lgg(T-) = Hp' € L™(Q), (12)

which is well-defined [5, Theorem 1.3}, are sufficient to determine o, and o, under the assumption
that Z is known, according to a result of Bal-Jollivet-Jugnon [6].

Proposition 2.1 (Theorem 2.6 of [6]). Under the assumptions in and (6), the albedo operator
A(Tl) uniquely determines o, and os in 2, and the following stability holds:

lo =& llw—11(0) + llos = Fsll o) < IAY = AV g zoe ()

where (o := 04 + 05,05) and (0 := 74 + 0s,05) are coefficients corresponding to AD and A
respectively.

We refer interested reader to [6] for the a more general version of this result as well as several
other related stability results.



Remark 2.2. Theorem 2.6 of [6] was derived under the framework where Agpl ) is viewed as an

operator Ag,}) : L}is(l“ _) — LY(Q). With the assumptions we have, the result in [5, Theorem
2.1] ensures the well-posedness of the linear transport equation (10) in the LE(I'-) — L*(X)

framework. This allows Theorem 2.6 of [6] to be reproduced in the Ag}) t Lg(T-) = LY(Q)
framework which then leads to Proposition [2.1] by standard bounds.

2.2 2"_order linearization to recover o,

We now differentiate @ twice with respect to e, and obtain that

v - Vu® (x,v) + 0,(x)u? (x,v) 4+ 20, (N uD(x,v) = o4x)KuP(x,v), in X

u®(x,v) = 0, onI'_ (13)
where the solution u®(x,v) := d2u(x,v;e)|lc=o and o}, is the only to-be-recovered coefficient.
Similarly, the internal data is linearized to the second order, that is,

HP (x) = 02Hp(x, V) ez0 = Z(0a(u®) + 20, (u®) (V) ) (x). (14)

From Proposition [2.1] we have determined ¢ and o from the first-order term in linearization.
It remains to recover op. Let u and u be solutions to @ with coefficients (04, 04, 05) and (o4, Gp, 05)
respectively. We denote the corresponding data by Hr and Hp. Then we have that v = g(1)
and v and 7@ are solutions to with o, and &y, respectively.

For any coefficient and data pair (o4, 0y, Hr), we define

(1)
H
Aq = {(aa,ab,HT) | igf (oa+v-Vln T ) >a> 0}

2o,
for some positive constant «, and also define
Ay :={(04,0p, Hp) | 0 < TI < 1},

where we denote _
o =049
I := 0200||7H$) lrge)

with the constant Cy defined in Proposition and the constant Cjy defined in .

Note that in Proposition for suitable chosen g € LZ?(F,), there exists a unique positive
1

solution v to such that ) > ¢ > 0 for some constant ¢’ > 0 depending on ¢, Q, o4, 0s. We
(1

now let ¢ = <Z(71)> Then ¢ solves the following transport equation:
v-Vo+ (0 +v-Vin(w®))p = %Kgo(x,v), in X
o(x,v) = i(‘i)g, onT_.
Hyp

Lemma 2.3. If (04,04, Hy) € Ay, then

2049
ol oo (x) < [l—a7 llLee .y -
(1) "*a
HT ¢



Proof. Since (04,04, Hr) € Aj, the proof follows immediately from the maximum principle; see for
instance Proposition O

We are ready to determine o}, provided that (Z,0,,05) is known. More precisely, we have the
following result.

Theorem 2.4. Let Hy and fIT be the internal data corresponding to the coefficient sets (2, 04, 0p, 05)
and (2,04, 0, 05), both satisfying (b)), respectively. Assume that the coefficient-datum pairs (o4, 04, Hr)
and (og, ab,HT) are both in the class of A1 N As. Then oy, and op can be reconstructed from H( )
and Ijlj(?), that is,

~ @
Ios =) )uVl 2x) < CIHE B 1oy (15)
for some constant C' = mﬂ HaagHL r_) > 0.
HT

Moreover, due to the positive lower bound of uM) | we have

low — Gl L2y < CIHY — HP||12(0)- (16)

Proof. From the data and the fact that «®, and @? are solutions to with the same oy,
we have that

12(0% = T) (utV)ulV ]| 2 x)

e g2 H(2) ey _
< HWHMX)H%HB Q) T H<7a< (1)> ((U(2)> - <u(2)>)HL2(X)
e 1D — B 2y + loar (1) Syl | = @@ 2 (17)

We observe also that, for any ¢(x,v) € L?(X), by Jensen’s inequality, we have that

KM I720y < N0172(x)- (18)
Therefore, can be written as
12(e — &) (u)uD || 12

1 u®

< —||—=| oo
> C()H <u(1)> HL

@ _ 5@ u @ _ 5
Ol Hp? — Hy || 2 (o) + ”JGW”LO"(X)HU — U r2(x)- (19)
Let w = u® — 7). We verify that w solves the transport equation

v -Vu(x,v)+o(x)w = ox)Kw—2(0, — ) (uMu| in X
w(x,v) = 0, onI'_.

Therefore, we have that, for some constant Cy > 0 in Proposition
lwll 2(x) < Cal|2(0p — ) (u™)uV| 2 x). (20)
By Lemma we have

=0q9

ey
Colloa e llnoe(x) < CaColl—77
(u(y 10 = 7o

gy =T <1



provided that (o4, 0p, Hr) € Ag. Hence, and lead to

L

=Wy, ) <
(o =) ao) < 5

7r(2
s I1HE = B |20

This completes the proof. ]

Remark 2.5. To reconstruct oy, we have to make the assumption that the coefficient-datum triplet
(0a,0v, Hr) satisfies the constraints in Ay and Az. We do not have a precise characterization
of the coefficients and the boundary conditions needed to make the constraints realizable at the
moment. However, in the linearization technique, we reconstruct (c4,05) before we reconstruct oy.
With (04,05) known, it seems possible to select boundary conditions, following the constructions
of [3], to have the transport solution ) with small gradient relative to its size so that Ay, which is
equivalent to infq (Ja—i—v'Vln(u(l)» > a > 0, is achievable. In the regime of practical applications,
we have 0, K 0s. In such a case, As roughly simplifies to H (1) ||Ld§(r y < 1. This might

be achievable when the contrast of o4 is small (that is, Co/co is close to 1), in which case we try

(1)
Ty’
on the boundary. It is of great interest, both on the technical and on the practical aspects, to see zf

one can find methods to relax (or even remove) the assumptions Ay and As.

to select isotropic boundary sources that generate solutions with large outgoing component, u

2.3 A result on uncertainty quantification in transport regime

Our result in the previous section allows us to reconstruct all three coefficient o, o and o5 when we
have data encoded in the full operator Ar. In practical applications, one might only have a limited
number of data sets to use. In such cases, it is not realistic trying to reconstruct all the coefficients.
In many biological imaging applications, the absorption coeflicients are of great interests since they
are very sensitive to pathological changes in tissues while the scattering coefficient o is much less
sensitive. One therefore often tries to reconstruct o, and o assuming o, is known. An important
issue in this approach is to characterize the impact of the inaccuracy in the value of o5 on the
reconstruction of (o4, 0p). In the next theorem, we give a sensitivity result for such an uncertainty
quantification issue.

Theorem 2.6. Let (04,0p) and (04,0p) be reconstructed with o5 and o5 respectively, from the same
data set Hy. Assume that the coefficient data pairs (o4, 0, Hr) and (64,04, Hr) are both in the
class of A1 N As. Then we have that,

loa = dallL2(e) + llob — GbllL2) < cllos — sl L2 (21)

for some constant ¢ > 0.

Proof. (1). Estimate for o,. We start with the problem of reconstructing o, from the first-order
data H;l). Since the same data set is used for the reconstructions, we have that

Eoq(uV) = 25, (@) = .

This leads to the equality

@(1) _ u(1)>, (22)



which thus gives the bound

u®

~ 1 ~ ~(1 1
(00 = Ga)uM|| f2(x) < HUaWHLw(Q)H(u( R )

e
Coll< >||L°° @l = a2 ), (23)

where the last follows from .

Let us define @ := u(® — 7). Then @ solves the following transport equation:

V-V +5,(x)0 = F5(x)Kw(x,V) — (04 — 0a)uV) + (05 — 7)) K (u), in X
w(x,v) = 0, onI'_.

This equation gives us that, for some constant Cy > 0 as in Proposition

lllz2ex) < Co(ll (00 = F)ullacx) + 0w = G K @) p2(x) )- (24)
The combination of and then implies the bound:

(00 — 5a)u(1)HL2(X)
ut! =) =\ (1)
< Catull e (1600 = 30000 iz + o KGO sce). (29

This, together with the assumption that

II:= C2CO|| ||L°° ry <1,
T

leads to the bound

II

l(oa = Fa)ul | 2(x) < T—qlos =3 K (u)]| 2 x)- (26)

Since uM) is positive and bounded away from zero, we thus have
loa = Gallz2() < cillos — osllr2(q) (27)

(2). Estimate for o;. In a similar manner, we can bound the uncertainty in the reconstruction
of o, with the uncertainty in os. We again start with the fact that the same data set is used in
the reconstructions with different o,. This leads to the relation:

oa(u®) + 20, (W) = 5, (@) + 25, (aM)2 = H;z)/E.
This relation gives us the bound:

120 — ) (D) u | L2,

e W)
BN ¢) o
<U(1)> <U >HL2(X) + HQO—b <u(1)>

e (W) — (@) |2y = I+ Iz + I, (28)

(™) = @) 2 x)

< H(‘NTCL - Ua)



To estimate I; and I, we apply , , and to get that

~ ul) o) _ a2
11+I2=H(0’a—0a)w(u >||L2(X)+”20bw(<u )" = (@) ) |2 x)

< allos — 052

To estimate I3, we only need to control the term ||u(® — ﬂ(Q)HLz(X). Let @ := u® —%(?). Then
w solves:

V- VO + 0,0 = 0,K0— (04— 74)u0? + (05 — 75)K(@?) + 25,(aMa® — 204 (uM)u®, in X
B(x,v) = 0, on b

From Proposition we have

@]l 2 (x) < Cz(\l( = 30)a? | p2(x) + (05 = T5) K (@) p2(x) + 1126 (@)@ = (u)yulV)| 2 (x)

+ 201 — o) @)l ) (29)

In particular, the first three terms on the right-hand side of are bounded by ||os — 05| only.
This yields that

w (D)

)

a1 — T
< a<u(1)> L (X) L2(X)

I3 = ||5a

(u®) = @) 2(x)

el
< cillos — sl r2() + 2CzCoH< >HL°° ol @ — ou) (M) uM | 2.

From and estimates for I, I, I3, we finally have

12(op — 5’b)<u(l)>u(1)”L2 X)
ul) ~ @y, (1)
< cllos — o5l 22 +20200||< >||L°° oo ll(ap = op) (W) ut | 2 x)- (30)

We can now apply again the hypothesis
CQC()H< (1)> HLoo(X) II < 1

to obtain that
€1

(o — &) (uD)u® | 2 (x) < mﬂas — 0sllr2(0)-

The factor (u(1)>u(1) can again be removed using the fact that u(!) is positive and bounded away
from zero. The proof is complete. O

The above result says that the reconstruction of (o, 03) is reliable if we do not make a large
error in the scattering coefficient o4 we assumed in the reconstruction.



3 Inverse problems in the diffusive regime

We reproduce the results in the previous section in the diffusive regime. Throughout this section,
we make the following assumptions on the coefficients:

E,7(x), 7a(x), 0b(x) € C*(9)

(31)
0<eco< ||‘—‘||CQ(Q ||7||c2 HUch? ”Ubch < Co,

for some constants ¢y, Cyp > 0. Under this assumption, it is shown in Theorem that there
exists a unique solution u € W2P(Q) to with Dirichlet boundary condition g € W2~1/PP(5Q)
for small enough g. In fact, it is straightforward to verify that

IHpll o) < C (lullrri) + lull oo lullri@)) < C (1 + llullwer@)) lullwzo o).
Note that since u € W2P(£2), Sobolev embedding yields v € C1'~%?(Q)). Then we have

IVHp || o) <C ||V (0qu) + u *Vop + oV (u HLF + C||logu + opu HLp
<C (llull ey + VUl o) + HUHLOO(Q)”UHLP(Q) + HVUHLP(Q)HUHLOO(Q))
<C (1 + [Jullwzr@)) ullwze@)-

Similarly, we can also show the second derivatives satisfy
1054 Hp oy < C (1 + lullweo@y) lulws@y  for gk =1,....d.

Therefore, we have

|Hpllwzs(ey < C (1+ 1 lwa-vmaay ) 1 lwe-1msgey:
This shows that for g sufficiently small, the data encoded in the map
AP g e W2VPP(9Q) s Hp € W2P(Q), (32)

are well-defined.
The inverse coefficient problem we are interested in solving is the following:

Inverse Problem: Reconstruct the triplet (v, 0q4,0p) in from data encoded in AP defined
in .

This problem has been investigated in [54] where uniqueness and stability are established for the
problem linearized around a known background coefficient.

3.1 The reconstruction of (v, 0,,0p)

We conduct higher-order linearization steps to the following boundary value problem with g €
W2=1/PP(9Q) and small € > 0:

=V - AVu(x;e) + 0q(x)u(x; €) + op(x)u(x;e)u(x;e) = 0, in Q

u(x;e) = eg(x), on 0. (33)

10



Indeed one can show that u(x;e) is twice differentiable with respect to € by following a similar
argument as in the proof of Proposition [A.4] for the transport equation. Therefore one can perform
the following linearizations.

Denote the associated internal data by Hp(x;e). By the first-order linearization, we have
u) = O-ulc—p satisfying the linear diffusion equation:

—V - Vu) (x) + o,uV(x) = 0, in Q

uD(x) = g(x), on . (34)
For the internal data, we also linearize it and then obtain that
Hj(jl)(x) = 0:Hp(x;¢)|c=0 = Eaau(l)(x). (35)

When E is known, we can apply the result in [9, [7] to obtain the following lemma.

Proposition 3.1 ([9, [7]). Under the assumptions in (5)) and , there exists a pair of boundary
conditions (g1, g2) such that the coefficient pair (y,04) is uniquely determined by the linearized

internal data (H 1()17)1, H](jl)z)

The construction of the boundary condition pair (g1, g2) is highly non-trivial. We refer to [9} [7]
for the technical details and [I] for an alternative approach to relax some of the strong conditions
needed for the theory to work. Note also that with the assumption that Hp is known on the
boundary 99, 04pn can be reconstructed by Hl()l) /(Eg). This would allow us to remove the
assumption that o,4|pq is known on the boundary in the diffusive regime.

Next we perform the second linearization. Set
u® (x) := 02u(x; €)|o—o.
It satisfies

—V - 4Vu? (x) + 0,u? (x) + 20uMuM(x) = 0, in Q
uP(x) = 0, ondQ.

The second order linearization of the internal data gives

Hg) (x) := BSHD(X; €)|e=0 = Z (aau@) + 20bu(1)u(1)> (x).

From Proposition the coefficients v and o, have been uniquely recovered in the first lin-
earization. Hence it remains to recover o, which appears in the source term in (36[). To this end,
let v and @ be solutions to with coefficients (7, 04, 03) and (7, 04, 0p) respectively. We denote
the corresponding data by Hp and Hp. Then the first differentiation of u and @ satisfy v = g
and also 2, and @® are solutions to with o, and 7y, respectively.

Then we have the following stability result for oy.

Theorem 3.2. Let Hp and fID be the internal data corresponding to the coefficient sets (7,04, 0p)
and (7,04, 0p), both satisfying , respectively. Then we have

(o5 — 7) (D)2 1oy < CIHD — H||yr20(0y- (37)

11



If, in addition, we have that g := iaang > 0, then

low — Gll o) < CIIHS — B lweno (38)

where the constant C > 0 depends on §2,v,Z and o.

(2)
Proof. Let U := % = u® + %&u(l)u(l). It is a known W2P(Q) function in © since Hg),E,aa

are known. Let ¢ = %”u(l)u(l). It solves the following problem:
—V-AVy = —V-4VU+o0,U, in (39)
v = U, on 0.

Since U, v and o, are all known, solving the boundary value problem recovers ¢ in Q.
Therefore, we can recover oy, at the point where u(!) is not vanishing. More precisely, reconstructing
oy, through o, = 1o,/(2uMuM). Indeed given a nonzero boundary condition g, by the unique
continuation, the set of points in Q where u¥) = 0 has measure zero. This shows that Hg)
determines oy,.

To prove the stability estimates, we use the fact that

2 _g® ~
—V AV <2(0b - 5,,)7“1;:“)) = V.4V <H ) > +LHD - HY), inQ w0)
2(0[, - 51))%7:(1) = 0, on 89,
and elliptic regularity to have
(D, (D) H(2) H(2) 1 _
(o — ) =2 <c|-v.qv ( + (@Y - a7y
@ Nlwzeq) =04 = LP(Q) (41)

<clay - By lweo).

This proves .
When we have additionally that g := 18an g > 0, we conclude from [I, Proof of Claim 4.2] (see

also a summary in [54, Theorem 2.4]) that
ne > >0
for some constant ¢’ > 0. Together with the boundedness of o, this allows us to remove the factor

u<1>u(1) . . to get (B3 . O]

3.2 Parametric uncertainty in diffusive regime.

We consider here the stability of reconstructing (oq,03) with respect to changes in the diffusion
coefficient 7.

We first derive the following estimates, which will be applied later to show the uncertainty
result.

12



Lemma 3.3. Let Hp be the internal function associated with both (2,7, 04,0) and (E,7,04,0p).
Then we have

[u® = 70 ey < C H (42)

2 .
and

[u® uwzp(me , (43)

v
for some positive constant C' depending on §2,7,g.
Proof. First, we have o,u™) = 5,aM). Let w:= u® — %), Then w solves the diffusion equation:

-V -AwVw=V-(y— ﬁ)Vﬂ(l), in Q, w=0, on 0N.
This leads to the fact that, for some constant C' > 0 depending on €2 and =,

[ut? - ﬂ(l)HW?vP(Q) <CIV-(y - 5)Va(1)HLP(Q)- (44)
Following [53], we verify that:
V-7 -yva =v. t”wa@) = V%V Aval) 4 yval . vl

ﬁg ) T ~(1) . gl — v

—_
—

E 7 gl

This implies that

_ ~ 7= ~(1) e
IV - 7 =) VaO ||y < C | [ Y ‘ _ VA ey [V
! H b HLoo(Q) Lo(Q) ) 7 e
~ (1) ~(1) 7=
<
_C<HHD szvp(mﬂlu ||w27p<m)' S .
¥—
cttrmm|5,
P

for some constant C. This can be combined with to obtain . Meanwhile, we can verify
that
—V AV@? -7 =v. (y-7)Va®? Q.

In a similar manner, we can derive the estimate for v(?) in (43)). ]

We are now ready to show the sensitivity result for uncertainty quantification.

Theorem 3.4. Let Hp be the internal data associated with both (2,7, 04,0p) and (2,7,04,0p). If
we have that g := i(%leg > 0, then

(45)

0w — all oy + o — e <c' H ,
Wie(Q)

where C' is a positive constant depending on 2,7, g, 0, and op.

13



Proof. (1). Estimate for o,. Let u and u be the solutions to the diffusion equation corresponding
to (v,04,0p) and (7,04, 0p) respectively. Given that the corresponding data are the same, we have

oquV) = 5,aW, (46)

giving
(04 — 7a)uM) = =5, (uM) — ).

This leads to

T

llon =y Pllwasia) < Ol = T yaogey < €| 7|
T llwe(@)

for some constant C' > 0, by Lemma [3.3] This yields that

i

Ho'a - aja”L:l’(Q) <C = H
(o)

since u!) is positive and bounded away from zero provided that g:= iarg g>0.
(2). Estimate for o;. Similarly, given the same data,
oou? + 20pu My = 5, 0@ + 25, 7MW aM),
This gives
2(op, — ﬁb)u(l)u(l) = —(0q — 5a)u(2) _ 5a(u(2) _ ﬂ@)) — 25, {(u(l) _ ﬁ(l))u(l) + g(l)(u(l) _ ﬂ(l)) )

Due to elliptic regularity, the solution u(® to satisfies ||u(2)||W2,p(Q) < C’HgHIZ/VQ,l/p,p(Q). Then
Lemma [3.3] yields that

(o — G)uDuM || o) < C(”u(z)HLOO(Q)HUa — Gallpe(oy + 0@ — @] 1o (q)

=70 (0 sy + 1Tl )
5:7

Y HWLP(Q)

< C(l + gllw2-1/pp0) + Hgﬂ%;vz—l/p,p(g))

<C

3 - ’YH
T llwrr@)

We apply ull) > ¢’ > 0 for some &' > 0 again. This proves (d5).

4 Concluding remarks

In this work, we studied inverse coefficient problems for a semilinear radiative transport equation
as well as its diffusion approximation. The aim was to reconstruct the first- and second-order ab-
sorption coefficients and the scattering coefficient from internal functionals of the coefficients and
the solutions to the equations. The main applications we have in mind are those in quantitative

14



photoacoustic imaging of optically heterogeneous media. Using the techniques of model lineariza-
tion, we derived uniqueness as well as stability results on the reconstructions. In the transport
regime, our results, based on the data encoded in the full albedo operator, supplement those in [56]
where uniqueness can only be derived for the reconstruction of the absorption coefficients, not the
scattering coefficient, with finite number of internal data sets. In the diffusion regime, our result
improved the linearized inversion of [54], again with more data.

There are many aspects of our results that can be improved. For instance, our results are
obtained under the assumption that the boundary sources for the transport equation are small.
This is far from what is required by real-world applications. It is assumed in practice that one
has sufficiently strong sources to make the second-order effect in the transport equation (i.e. the
quadratic term op(u)u) strong enough to be detected. Up to now, we do not even have a well-
posedness theory, if it exists at all, for the semilinear transport equation with large boundary
data. Moreover, our result requires data encoded in the full albedo operator (or generated from
a l-parameter family of boundary sources in the diffusive regime) to reconstruct three unknown
coefficients. It would be very interesting to see if it is possible to reconstruct the three coefficients
with only three data sets (possibly generated from three specially selected boundary illuminations).

For applications in uncertainty quantification, we also derived the stability of reconstructing
the absorption coefficients with respect to changes in the scattering coefficient; in Theorem [2.6] and
Theorem respectively. These results show that in the case that we do not have enough data
to reconstruct all the coefficients, we can focus on the reconstruction of the absorption coefficients
(which are often the mostly relevant ones in practical applications) while replacing the scattering
coefficient with a good value from a priori information. The error in the reconstruction in this
case will not be too bad if the value of the scattering coefficient is not very different from its true
value. Numerically uncertainty quantification, that is, evaluating the size of the constants in the
stability bounds in and (45)), following for instance the methods in [53], would be of great
practical interests.
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A Appendix: The well-posedness result for the transport equa-
tion

Here we show the well-posedness of the semilinear transport equation for small boundary data.
For simplicity, we use the notation

0(x) 1= 04(X) + 05(x).
We denote by dg the diameter of the spatial domain 2, that is,

dg = diam(Q).
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Based on the a-priori assumptions on o, and o, there is some constant v > 0 so that

04(X)
0a(X) + 05(%x)

O<rv< <1 forall x € Q,

which implies that
os(x)

0a(X) 4+ 05(x)

Let Lsg(F,) be the usual space of LP functions on I'_ with measure d§ = |v(x) - v|du(x)dv
du(x) being the surface Lebesgue measure on 9€2. Then we have the following result from [19)].

<1-—v forall xe.

Proposition A.1. [19, Theorem 1.2] Let Q be bounded with Lipschitz boundary. Suppose that
Coo = |losdqllpeo(x) < +00. For any g € L ¢(I=) and S € LP(X), 1 < p < 400, there exists a
unique solution u to the radiative transport equation

v Vu(x,v) + o,(x)u(x,v) = osK(u)+ S(x,v), inX

u(x,v) = g(x,v), onT'_ (48)

and u satisfies
[ullzrxy < CollSlizexy +€llgllzr, o)

co’

where Cy 1= % and ¢ := \/%To when p =2 and ¢ =1 when p = co. Here ¢q is defined in .

We need the following result on the existence of positive solutions for when S(x,v) = 0.

Proposition A.2. Let S(x,v) =0 in [48), and g € LOO( ) be given such that g := infr_g > 0.
Then, under the same assumptions in Proposmon , then there exists an &' > 0 such that the

solution u to (48) satisfies
u(x,v) >¢e >0, in X.

Proof. Proposition ensures that there exists a unique solution u satisfying
[ull o) < Nlgllzgecr-)-
From standard transport theory [17], we know also that w > 0. Let us re-write , with § = 0,

into the form

v - Vu(x,v) + (04 + 0s)(x)u(x,v) = o5 O(v,v)u(x,v)dv', in X
Sd—1
u(x,v) = g(x,v), onT_.

We can then integrate the equation by the method of characteristics to obtain that
T_(x,Vv)
u(x,v) =e" Jom T ol Mg (x — 7 (%, V)V, V)
T—(x,v)
+ / oy(x — sv)e Jo ox=nv)dn O(v,vu(x — sv,v')dv'ds
0 gd—1
where 0 := 04, + 05. Using u > 0 and © > 0, we conclude that the second term is nonnegative.

Therefore

T_(%,Vv) _
R O S

where @ := supg, 0. The proof is complete if we define ' := g e, O
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We have the following well-posedness result for with small data.

Theorem A.3. Let Q C R? (d > 2) be an open convex bounded domain. Suppose that o4, 0,0
satisfy . Then there exists a small parameter 0 < e < 1 such that when

geXe:={g€ Lg(I'-): HQHng(r,) <e},
the problem has a unique small solution u € L*°(X) satisfying
lull L x) < Cllgllzgew-),

with the constant C > 0 being independent of u and g.

Proof. We first consider the linear equation

v-Vug+o,ug = 0sK(up), inX
uy = (¢, onI'_.

By Proposition with p = oo, there exists a unique solution ug that satisfies

[uoll oo (x) < HQHng(F_)- (49)

Let us now consider w := u — ug. If such function w exists, then w satisfies the problem:

v-Vw+o,w = osK(w)—G(w), inX

w = 0, onI'_ (50)

with
G(w) = op{up + w)(up + w).
The problem is now to show the unique existence of w to . To this end, we will construct a

contraction map and then apply the Contraction Mapping Principle. We first introduce the set of
functions:

M:={p e L7(X): ¢lr_ =0, [[¢[lp=~(x) < d},

where parameter § will be determined later. For ¢ € L%°(X), the source term G(¢) is also in
L>°(X). Therefore, the problem

v-Vu+o,w = osK(w)—G(¢), in X

w = 0, onI_ (51)
is uniquely solvable due to Proposition [A.T] We can therefore define the solution operator
T1:G(p) € L®(X) — w € L®(X)
to (51]). Moreover, by Proposition again, we have
1T HG(@) |z (x) < C2llG(&) | oo (x)- (52)

Let us define the operator F' by



for any ¢ € M. In what follows, we will show that F' is contractive on the set M for appropriate
parameter ¢.

In the first step, we show that F(M) C M. In fact, for any ¢ € M, we have, by (52), that

IF (D) e (x) < Co2l|G(@)| oo (x)
< Callow(uo + @) (uo + @)l L (x)
< 05Co(e +6)? (53)
where Cj is the constant introduced in . We can then take ¢, § sufficiently small so that CoCy(e+
§)? < 4. This yields F(¢) € M.
In the second step, we show that F' is contractive on M, that is, ||F(¢1) — F(¢2)|lre(x) <
[¢1 — @2l 1o (x) for any @1, ¢2 € M. This follows from the following calculation:
[1E(¢1) = F(¢2)llo(x) < C2llG(d1) — G(@2)| L (x)
< Calloy(uo + ¢1)(uo + 1) — ap(uo + ¢2)(uo + ¢2) | L (x)
< C2Co(e +9)[|¢1 — p2ll=(x)

By taking ¢ and 0 small enough, we can make CyCy(e + 6) < 1. In this case, F' is contractive on

M.

By applying the Contraction Mapping Principle, there exists a fixed point w in M so that
F(w) = w. Then w is the solution to and satisfies

Wl g (xy < C2(e + ) (|luoll oo (x) + lwl| oo (x))

due to (B3). By taking ¢,6 even smaller if needed, we have Cy(e + d)||w| 1 (x) can be absorbed
into the left-hand side, and thus,

|wl| oo (xy < Clluol|Loo(x)-
We then conclude that u = ug + w is the solution to and in particular,
[ull oo () < Nluollzoe (x) + lwllLoe(x) < Clluollex) < Cllgllzg -

by combining and the estimate above. O

In the following, we discuss briefly the differentiability of the solution. For a nonzero g €
L (T-) and small enough g9 > 0, let u. = u(x,v;e) be the solution to the problem (©) with
boundary data eg € X,.

We define the k-th derivative of u. with respect to (w.r.t.) e by WM = OFuc(x,v;e) fork = 1,2.

In particular, the k-th derivative of u. at ¢ = 0 is denoted by u®) instead of ugk)|a=0 = 8§'u5|£:0

for simplicity. We also define the linear operator L by
Lu:=v - -Vu+o4(x)u — os(x)K(u).
(1)

Proposition A.4. For ¢ sufficiently small, us’ exists and satisfies

u( ,v) = 0, in X

e (x,v) = g(x,v), onT_.

Ll (x,v) + oy (u)ul) (x, v) + o (ul
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(2)

Moreover, us’ exists and satisfies
L (x,v) + ab<u5>u§2)(x, V) + ab<u§2)>u6(x, v) = —20b<u§1)>u§1)(x, v), in X

95
ug)(x,v) = 0, on_. (55)

In particular, uY) satisfies and u? satisfies .

Proof. Let Ae # 0 and let @ = W, where ucyac,ue € X,. Then @ satisfies the linear
transport equation with zero source

Lu(x,v) + op(U)ucine(x, V) + op({us)u(x,v) = 0, in X
u(x,v) = g(x,v), onI_.

Thus from Proposition we have

@]l oo x) < Cligllzgg-y,

which yields that
[tuerne — uellpo(x) < C|A5|||9||L3<§(r,)-

Let w = @ — v, where v is the solution to (b4]). Then w satisfies

Lw(x,v) + op{u)w(x,v) + op(w)ue(x,v) = —0p(0) (Uerne — ue)(x,v), in X
w(x,v) = 0, onI'_

and also
Wl zoo(x) < Cllop(Uetae — ue) (@) || L (x) < C\AEIH!JH%EE(F,)-

Therefore when Ae — 0, & converges to v in L*(X), which implies that u. is differentiable w.r.t.

(1)

¢ and thus us’ = v exists.
~(1 U(l) *U((sl) . . . . ~(1
Let oM = —+2——. Following a similar argument as above, we can also derive that M
converges in L*>°(X) and thus u® exists. This completes the proof. O

B Appendix: The well-posedness result for the diffusion equation

Here we establish the well-posedness result for the boundary value problem ((3]) with small boundary
data. Let © be a bounded domain in R¢ with smooth boundary 92. We have the following theorem.

Theorem B.1. Assume that 7,04, 04 satisfy . Let p € Ry be such that p > d. Then there
exists a small parameter 0 < € < 1 such that when f € W2~1/PP(9Q) satisfies [ fllw2-1/m0000) < €

the problem has a unique solution u € W2P(Q) satisfying

lullwze@) < cllflwe-1/pp00)

for some constant ¢ > 0 independent of u and f.
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Proof. Similar as the transport case above, we apply the standard Contraction Mapping Theorem.
We define the set of functions:

Mp = {v € W*(Q) | vlog =0, [[v]lwasq) < 0},

where 6 > 0 will be determined later. By standard theory on the well-posedness of linear elliptic
equations (see for instance [23, Theorem 9.15 and Lemma 9.17]), we have that for S(x) € LP(),

the second-order equation
-V -yWVuv+o,w = S5, in Q

v = f, ondf} (56)

admits a unique solution v € W2P(Q) satisfying

[vllw2r @) < el fllwe-1/m0@0) + 1920 @)

for some constant ¢ > 0. Let ug be the solution to with § = 0 and set w = u — ug. Then we
are set to find w € Mp for § > 0 small enough such that

V- -ywWw+o,w = Gp(w), in Q
w = 0, on 0}

where
GD(U)) = —Jb(uO + w)2.

This is equivalent to find a fixed point in Mp to the contractive operator Fp := T, Lo Gp, where
751 LP(Q) — W2P(Q) denotes the bounded operator S + ug with ug being the solution of
with f = 0.

We first show that Fp(Mp) C Mp. By the Sobolev Embedding Theorem, when p > d, we
have W2P(Q) < CH1=4/P(Q). Therefore, for ¢ € Mp, we obtain
1GD (D)l zr(0) < clluo + Bl oo () lluo + Bl L (o)
< clluo + 8llfy2a(0y (57)
< C(HfHIZ/VQ*UPxP(aQ) + H¢||124/27p(9)) < c(e? +67).
Hence,
IFp(@)lw2r@) < cllGp(d)l|Lr) < c(e® +6%) <6
when 6 > 0 and § > ¢ > 0 are small enough. This then leads to Fp(¢) € Mp.

Next we show that the map Fp is contractive on Mp. Take any ¢1, po € Mp, we have

|1 Fp(¢1) — Fp(é2)llwzr) < cllGp(d1) — Gp(92)| e (0)-

Using the fact that
IGp(61) — Gp(92)| = |ov|(uo + ¢1)* — (uo + ¢2)°|
< o1 — 2| (2ug| + 1] + |@2]),
we obtain
IGp(¢1) — Gp(d2)ll e () < cllor — dallir) (2luoll L) + 01l Loo () + |02]l Lo (@)

< cllpr — dallwzr) Clluollwzr) + lo1llwze@) + l1d2llw2r @)
< c(e +0)|l¢1 — pa2llw2r(a)
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which leads to
1FD(¢1) — Fp(92)lw2r(o) < cle +0)l¢1 — dallwzr(o)-

This implies that Fp is a contraction on Mp when §,¢ are sufficiently small. The Contraction
Mapping Theorem then concludes that Fp has a unique fixed point v € Mp such that Fp(v) = v.
Therefore u = up + v is the solution to (3]). Moreover, following a similar argument as in , we
can derive

[vllw2r@) = 1FD () lw2r@) < cllGp(0)llre@) < cle+ ) ([[uollwzr ) + [[v]w2r@))-

Choosing § > ¢ > 0 small enough, the term containing [|v|[yy2.»() on the right-hand side of the
above estimate can be absorbed by the left-hand side. Therefore, this implies

[vllw2e @) < clluollw2r@)-

Finally we have

[ullw2r @) = lluo + vlwze@) < clluollwzr@) < cll fllwz-1mpo0)-

The proof is complete. ]
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