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Preface

This collection of papers stems from the 10th Workshop on the Representation and Processing of
Sign Languages which takes place as a satellite workshop to the Language Resources and Evaluation
Conference in Marseille (France).

While there has been occasional attention to sign languages at the main LREC conference, the focus
there is on spoken languages in their written and spoken forms. This series of workshops, however,
offers a forum for researchers focussing on sign languages, especially on corpus data and corpus
technology for sign languages.

This year’s hot topic “Multilingual Sign Language Resources” aligns with one of the main conference’s
hot topics. It stresses the importance of looking across sign languages whenever testing claims about
signed modality, but it also addresses the problem that for many sign languages only very few languages
resources are available. Combining resources across languages is a promising perspective to draw on
richer sets of data.

Please note that this year LREC has two workshops on sign languages: SLTAT7 covers the topics
automatic translation and avatar technology. In the corresponding proceedings, you find 19 more sign
language-related papers.

The contributions composing this volume are presented in alphabetical order by the first author. For the
reader’s convenience, an author index is provided as well.

Once again, we would like to thank all members of the program committee who helped us tremendously
by reviewing the submissions to the workshop within a very short timeframe!

Finally, we would like to point the reader to the proceedings of the previous workshops that
form important resources in a growing field of research. They are all available online from the
sign-lang@LREC Anthology at

https://www.sign-lang.uni—hamburg.de/lrec/

The site offers an author index across all workshops as well as stable URLs for all workshop papers and
posters. If you need bibliographical (BibTeX) data for all workshops, the site now has them per paper,
per workshop, per author or all in one. Happy browsing!

The Editors
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Abstract

The WLASL purports to be “the largest video dataset for Word-Level American Sign Language (ASL) recognition.” It brings together
various publicly shared video collections that could be quite valuable for sign recognition research, and it has been used extensively for
such research. However, a critical problem with the accompanying annotations has heretofore not been recognized by the authors, nor
by those who have exploited these data: There is no 1-1 correspondence between sign productions and gloss labels. Here we describe a
large, linguistically annotated, video corpus of citation-form ASL signs shared by the ASLLRP—with 23,452 sign tokens and an
online Sign Bank—in which such correspondences are enforced. We furthermore provide annotations for 19,672 of the WLASL video
examples consistent with ASLLRP glossing conventions. For those wishing to use WLASL videos, this provides a set of annotations
making it possible: (1) to use those data reliably for computational research; and/or (2) to combine the WLASL and ASLLRP datasets,
creating a combined resource that is larger and richer than either of those datasets individually, with consistent gloss labeling for all
signs. We also offer a summary of our own sign recognition research to date that exploits these data resources.

Keywords: ASL, isolated sign recognition, gloss labels, ASLLRP, WLASL, ASLLVD

1.

There are several interrelated goals of this paper:

1) To disseminate information about resources shared by
the American Sign Language Linguistic Research Project
(ASLLRP), which can be used for linguistic and
computational research. These resources have recently
been expanded, with new download functionalities.

2) To bring to the attention of the many sign recognition
researchers who have been using (or who may wish to use)
the valuable video data from the WLASL (Li et al., 2020)
serious issues resulting from inconsistent text-based gloss
labeling of signs in that dataset, which adversely affects the
use of these data for computer learning.

3) To share an alternative set of gloss labels for a large
subset of the WLASL data, which follow annotation con-
ventions consistent with those used for ASLLRP data. This
provides internally consistent gloss labeling for the
WLASL, offering added value to this large set of videos.
This also makes it possible to combine WLASL data with
any of the ASLLRP datasets, giving rise to a dataset larger
and richer than either.

Given space limitations, this paper does not aim to present
a comparative survey of datasets available for ASL re-
search, nor an overview of the large literature dealing with
desiderata for sign language annotation.

2. Introduction

Deficiencies in the quality and accuracy of annotated sign
language corpora are a key limitation for progress on sign
recognition research (Bragg et al., 2019). Research based
on gloss labels for signs faces a serious challenge, given
that: (1) there is no 1-1 correspondence between English
words and ASL signs; and (2) there are also no established

Goals of this Paper
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glossing conventions shared by the ASL/research commun-
ity. As an integral part of the research conducted by the
American Sign Language Linguistic Research Project
(ASLLRP), we have, from the outset of our research, esta-
blished conventions to ensure a 1-to-1 correspondence be-
tween gloss label and ASL sign production, which is
essential for use in computational research. See Neidle,
Thangali & Sclaroff (2012) for discussion of challenges in
establishing glossing conventions, and Neidle & Opoku
(2022) for further details about our annotations.

There is widespread recognition of the requirement for
unique text-based gloss labels to represent signs. This is
enforced in all serious corpus research. We have imple-
mented these principles since the mid-1990s; see, e.g.,
Neidle (2002). Many others have also written about these
and other important issues involved in sign language
annotation (e.g., Johnston, 2010; Orfanidou, Woll, and
Morgan, 2015; Cormier, Crasborn, and Bank, 2016).

Major problems arise, however, when researchers use data-
sets where 1-1 gloss label to sign correspondences have not
been enforced; or when multiple datasets using inconsistent
glossing are combined. This is the situation for the WLASL
(Li et al., 2020), which brings together multiple, publicly
shared, ASL video corpora from different sources—thus
offering a potentially valuable resource for research.
However, internal consistency of labeling is not even
enforced within the individual collections that are
combined.

3. The WLASL Dataset

Li et al. (2020) claim that the WLASL is “by far the largest
public ASL dataset to facilitate word-level sign recognition
research.” They report that it contains “2,000 common
different words in ASL” (although for reasons discussed



below, the count of distinct gloss labels does not
necessarily correlate with the number of distinct signs).

The WLASL brings together data shared publicly on the
Web from different sources; various types of metadata,
including a gloss label for each video, are also provided. As
they explain: “We select videos whose titles clearly des-
cribe the gloss of the sign.” However, basing sign identifi-
cation on filenames is problematic, since there is no stan-
dard convention for associating an English-based gloss la-
bel with an ASL sign, and no 1-1 relationship between Eng-
lish words and ASL signs; there is also considerable vari-
ability in how gloss labels are used. As a result, there are
cases where multiple WLASL examples of a single ASL
sign are glossed with different English words, as in the sign
glossed sometimes as woman and sometimes as lady,
shown in Figure 1. Conversely, there are many cases where
the same English gloss is used for totally different ASL
signs, as shown in Figure 2 for the gloss label close: the
sign on the left is a verb, the opposite of ‘open,” whereas
the sign on the right is an adjective, meaning ‘near’. An-
other example is shown in Figure 3, for mean. The sign on
the left is a verb in ASL meaning ‘to signify,” whereas the
sign on the right is an adjective meaning ‘unkind’. They
classify these as ‘dialectal variants,” but that is not correct;
and the designation of dialectal variants throughout the
WLASL dataset is highly problematic.

ID 63678 woman

1D 32051 lady

Figure 1. WLASL: same ASL sign, different English glosses

ID 11257 close [ #to open |

R

Figure 2. WLASL: same English gloss, different ASL signs

ID 37791 close | ~near |

ID 67880 mean, variant 0
[ ~to signify ]

ID 67881 mean, variant 1
[Nunkmd cruel ]

Figure 3. Supposed Dialectal Variants in WLASL

The issues exemplified above are pervasive in the WLASL
data, posing critical obstacles to using this dataset reliably
for computational research, despite the fact that it has been
widely used (e.g., Hassan, Elgabry, and Hemayed, 2021;
Maruyama et al., 2021; Bohaéek and Hruz, 2022; Ebrahimi

1This incorporates our ASLLVD, American Sign Language
Lexicon Video Dataset (Athitsos et al., 2008; Neidle, Thangali,
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and Ebrahimpour-komleh, 2022); for a partial list of re-
search based on these data, see
https://paperswithcode.com/dataset/wlasl.

This surely explains, at least in part, the low recognition
rates that have been reported (e.g., less than 63% for
top-10 accuracy on 2,000 words/glosses (Li et al., 2020)).

We have illustrated these problems with the WLASL data
in some detail precisely because this dataset has been
widely used in recent sign recognition research, and also
because, as discussed below, the consistent gloss labels we
are providing for use with the WLASL data can greatly
increase the value of these data.

4. Other Datasets for Sign Recognition

Another dataset used extensively in recent vision-based
ASL sign recognition research is our ASLLVD); see below.
For example, de Amorim & Zanchetti (2021) introduced 2
datasets “derived from one of the most relevant sign lan-
guage datasets—the American Sign Language Lexicon
Video Dataset (ASLLVD).” Several other papers tested
new sign recognition methods on datasets including the
ASLLVD (Theodorakis et al. (2014): computational phon-
etic modeling; Elakkiya & Selvamani (2019): “three sub-
unit sign modeling”; Lim et al. (2019): use of CNNss to train
hand models; Bilge et al. (2022): new machine learning
method; Kumar et al. (2028): sign recognition using com-
puter vision and neural networks; Rastgoo et al. (2022): a
combination of neural network methods; among others).

Other datasets used in recent computational research
include the recently introduced large-scale How2Sign
dataset of American Sign Language (Duarte et al., 2021;
Duarte et al., 2022); and the MS-ASL Large-Scale Data
Set and Benchmark for Understanding ASL (Joze,
Vaezi, and Koller, 2018). This last article also reviews
older benchmark datasets, including the Purdue RVL-
SLLL ASL database (Kak, 2002) and the RWTH-
BOSTON datasets (Dreuw et al., 2008). It is worth noting
that the RWTH-BOSTON data were collected at Boston
University through the ASLLRP; those videos are included
in our current, much larger, data collection, described next.

5. ASLLRP Resources

We describe here ASL data made available through thsi:
ASLLRP, including isolated signs (23,452 sign videos,
corresponding to distinct signs, from 33 different signers)
and continuous signing corpora (2,651 utterances,
containing a total of 20,560 signs available as video clips
segmented from those utterances and in their utterance
context, from 19 different signers). It incorporates data
collected at Boston University and at the Rochester
Institute for Technology (under the supervision of Matt
Huenerfauth), as well as videos shared by DawnSignPress.
Including the citation-form signs and continuous signing
corpora, we have a total of 44,012 sign tokens cor-
responding to 3,542 distinct signs (not including
fingerspelled signs, classifiers, and gestures).

and Sclaroff, 2012), with >3,300 citation-form signs, produced by
1-6 native ASL signers, for a total of almost 9,800 tokens.
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| Show Related English Words
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T
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OBATH

Original video

DH-End ND-End ID Sign File

O BATH -- 185962 KL-extra-vocab-041918 —_—
! O BATH -- 185543 JB_PM-vocab-053118_" B

DawnSignPress signs from sentences

Search for Sign - HOW TO
Gloss Text: [J Exact Match

English Words:

O 1-Handed © 2-Handed ® Either
DH-Start ND-Start DH-End ND-End

IE‘ ’i‘ DH-Start ND-Start DH-End ND-End  ID Sign File | repiayvideo
oJ[][a]
— O BATH+ - . 189859 TH-sentences-062218_TC_hb | Sign video || Utterance video
[ Include Handshapes | Clear Handshapes
Lookup |
RIT isolated signs
DH-Start ND-Start DH-End ND-End 1D Sign File Play

. - . 206465 PF04_VO2_RIT Sign clip

Figure 4. Screen shot showing Sign Bank Interface for Searching and Viewing ASL Sign Variants

OBATH

The data can be searched, browsed, and downloaded.
We have enforced, to the best of our ability, consistency in
labeling throughout our corpora. Sign-level annotations
include gloss labels, annotations of sign type (lexical, loan,
fingerspelled, classifier, number, and name signs, as well
as gestures and compounds), and phonological properties
(e.g., information about hand configurations on the 2
hands). Utterances include sentence-level information
about such things as non-manual behaviors and grammat-
ical markings, translations, etc..

5.1 ASLLRP Continuous Signing Corpus

Our continuous signing data can be accessed here:
https://dai.cs.rutgers.edu/dai/s/dai. The data can be
browsed or searched based on various sign-level and
utterance-level properties.

Download options are available for:
* American Sign Language Linguistic Research
Project (ASLLRP) SignStream® 3 Corpus
= 47 files with a total of 2,124 utterances;
17,528 sign tokens; and 5 signers
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See https://dai.cs.rutgers.edu/dai/s/runningstats for fur-
ther statistics.

Linguistic annotations for the signs and utterances that can
be downloaded are available in XML format. These
utterances can also be viewed and further analyzed and
annotated within SignStream®, an application we have
developed for analysis of visual language data, shared on
the Web (http://www.bu.edu/asllrp/SignStream/3/ ; a major
new update has just been released).

5.2 ASLLRP Sign Bank

An online ASLLRP Sign Bank (Neidle et al., 2018; Neidle,
Opoku, and Metaxas, 2022) 1is also available:
https://dai.cs.rutgers.edu/dai/s/signbank. It is possible to
search based on various criteria, and to view, for specific
signs, both examples from our citation-form sign datasets
and segmented signs from our continuous signing corpora
(viewable either individually or in their sentential context).
Figure 4 illustrates the interface. It is currently possible to
download the citation-form sign datasets and videos from
our website for use in sign recognition research, with the




ability to download segmented Sign Bank examples from
our continuous signing corpora to be provided from the
same site in the near future. Datasets currently available for
download, with accompanying annotations:

* Boston University American Sign Language
Lexicon Video Dataset (ASLLVD)
= 9,748 sign tokens; 6 signers
* Rochester Institute of Technology (RIT) Dataset
= 11,801 sign tokens; 12 signers
* DawnSignPress (DSP) Dataset
= 1,903 sign tokens; 15 signers

Further statistics are available here:
https://dai.cs.rutgers.edu/dai/s/runningstats

Linguistic annotations for the videos are available in Excel
and csv formats. ASLLRP Sign Bank annotations are
explained in http://www.bu.edu/asllrp/rpt20/asllrp20.pdf,
Neidle & Opoku (2022), with further description of our
general annotation conventions in Neidle (2002, 2007).

6. Alignment of Annotations for WLASL

We selected 19,672 sign videos from the WLASL dataset.
(Some examples were excluded for one of several reasons,
including poor quality of the signing or the video, the
presence in the video of a string of signs rather than a single
sign, the unavailability of the videos in question, cases
where the hands were not within the visible region, etc.) A
spreadsheet, at https://dai.cs.rutgers.edu/dai/s/aboutwlasl,
provides, for signs already in our Sign Bank, annotations
consistent with the rest of the ASLLRP dataset. See Figure
5. In cases where the specific signs do not already exist in
the ASLLRP dataset, new glosses that follow our existing
conventions and that do not conflict with any existing gloss
labels were assigned; we will continue to use the same
labels for additional examples that may be added to our
Sign Bank in the future.

Figure 6 illustrates how WLASL gloss labeling compares
with ASLLVD gloss labels for the sign with ASLLVD
class label ‘COP’. As is evident, the three different
WLASL gloss labels in column 1 (corresponding to
possible designations for such a person in English: cop,
police, policeman) are used indifferently in the WLASL
dataset for all occurrences, with no distinction made at all
in the gloss labels for the handshape variation that
potentially occurs with this sign. In some cases, multiple
gloss labels are associated with identical WLASL video
examples that bear distinct video IDs. See also
“Why Alternative Gloss Labels Will Increase the Value of
the WLASL Dataset” (Neidle and Ballard, 2022).

These alternative gloss labels are shared on the Web. So, it
would be straightforward to use these labels in conjunction
with the WLASL videos and other associated metadata.
It is therefore also straightforward to combine the ASLLRP
data with the WLASL data for research on sign recognition,
to expand the number of examples and distinct signers per
sign and to extend the vocabulary beyond what is contained
only in one or the other of these datasets.

7. Sign Recognition Research using the

Modified-Gloss WLASL Data
Recent research by our group has made use of the revised

WLASL annotations in conjunction with the WLASL
data, combined with the ASLLVD.
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7.1 Bidirectional Skeleton-Based Isolated Sign
Recognition using Graph Convolution

Networks (GCNs)

Dafnis et al. (2022b) report on a new skeleton-based
learning method for isolated sign recognition involving
explicit detection of the start and end frames of signs
trained on the ASLLVD dataset. Using linguistically
relevant parameters based on skeleton input, this method
employs a bidirectional learning approach within a Graph
Convolutional Network (GCN) framework. For 18,141
videos of 1,449 lexical signs from the WLASL dataset
(with a minimum of 6 examples per sign)—with revised
gloss labeling as described earlier in this paper—we
achieved a success rate of 77.43% recognition accuracy for
top-1 and 94.54% for top-5, outperforming other state-of-
the-art approaches. A comparison with the TRN method of
Zhou et al. (2018) and the SL-GCN (SAM-SLR-v2)
method of Jiang et al. (2021) on this same WLASL dataset
with revised gloss labeling is shown in Figure 7.

b=}
P MAIN
- 2 CLASS ENTRY |[entry/variant]

cop 13244 coP cop corp
cop 13246 COP CoP cop
cop 13247 COP corp coP
cop 13249 COP COP CcOoP
cop 13252 COP cop cop
cop 13253 COP cop cop
police 43519 COP cop cop
police 43525 COP COoP coP
police 43527 COoP cop cop
police 43528 COP corp coP
police 43531 COP cop cop
police 43534 COP cop cop
police 43535 COP cop cop
policeman 43536 COP copP copP
policeman 43538 COP CcoP COP
policeman 43539 capP copP cop
cop 13245 COP corp CcoP_2
cop 13248 COP cop CcoP_2
cop 13250 COP cop CcoP_2
police 43522 COP cop COP_2
police 43523 COP cop COoP_2
police 43526 COP coP COP_2
police 43529 COP cop COP_2
police 43532 COP cop COP_2
police 43533 COP cop COP_2
police 66306 COP cop COP_2
policeman 43537 COP cop COoP_2
policeman 43540 COP copP COP_2
policeman 43542 COP copP COP_2
policeman 67087 COP copP COP_2
police 43524 COoP cor COP_3

Figure 5. Excerpt from spreadsheet establishing corre-
lations between WLASL signs (glossed as in Column 1)
and ASLLRP-based gloss labels (with class labels used as
the basis for our sign recognition research)

7.2 Combining Data from the WLASL and

ASLLVD Datasets

In more recent work, Dafhnis et al. (2022a) have been com-
bining the WLASL data used in Dafnis et al. (2022b) with
lexical signs from the ASLLVD dataset, again selecting
those signs for which we had a minimum of 6 examples per
sign—this time from those combined datasets; we ended up
with 1,480 total signs (and 22,853 total video examples).
There is an additional challenge involved in combining
these datasets, because signers in the WLASL are standing,



whereas the ASLLVD signers are seated; see Figure 8. It
should be noted that this makes the combined dataset
especially valuable, since in the real world, signers may be
either sitting or standing.

WLASL

ASLLRP . o
cop police policeman
Main |

Variant

=

b, 4

X

coP | cop

43528 43539

43525 43538

COP | COP_2 13245 43523

13250 43529 43540

Figure 6. Comparison of WLASL and ASLLRP labeling
of signs and sign variants. The WLASL labels cop, police,
and policeman are used indifferently for these examples;
the ASLLRP class label COP is used for all of them, with

variant labels COP vs. COP_2 distinguishing the
handshapes.
@ Ours —®-SL-GCN (SAM-SLR-v2) TRN-based
100%
©93.39% ® 94.64%
0% ©91.49% 89455 "® 91.44%
©87.79% _o-87.03% ’
083.84%
80%
© 77.45% 77.91%
70% '71.04%
60%
50% 49.32%
40% top1 top 2 top 3 top 4 top 5
Comparison of Recognition Accuracy on Modified WLASL Dataset

Figure 7. Comparison of Recognition Accuracy for
18,141 videos of 1,449 Lexical Signs in the WLASL
Dataset with Modified Gloss Labeling
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ASLLLRP
Main |
Variant

WLASL examples ASLLVD examples

COP |
cop

COP |
coP_2

Figure 8. Pooling examples from ASLLVD and WLASL

Sign Min. # Total # | Total # Top-1 Top-5
Types | samples distinct | samples
per sign signs
(class
labels)
Lexical 6 1,480 22,853 | 78.54% | 94.72%
Lexical 12 983 18,362 | 84.23% | 96.69%
All * 6 1,502 23,016 | 78.70% | 94.79%
All * 12 990 18,482 | 84.70% | 96.56%

* Includes lexical signs, loan signs, and compounds

Figure 9. Sign Recognition Accuracy for Different Sets of
Signs (all with WLASL & ASLLVD combined)
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Recognition Accuracy on WLASL + ASLLVD Datasets

Figure 10. Sign Recognition Accuracy for Different
Datasets (WLASL & ASLLVD combined): for lexical vs.
all signs (incl. compounds & loan signs) with minimum
of 6 or 12 samples

This research is based on a spatial-temporal GCN architec-
ture for modeling skeleton keypoints, with use of both the
forward and backward data streams for joints and bones for
isolated sign recognition, following Dafnis et al. (2022b).

In preliminary results—with further improvements antici-
pated as our research proceeds—we achieved a success rate
of 78.54% for top-1, and 94.72% for top-5; see the top
graph in Figure 10.

We also explored how increasing the minimum number of
examples per sign from 6 to 12—thereby also decreasing
the total number of signs from 18,362 total examples to
983, the number of distinct signs for which we have at least

2 Lexical signs still represented a very large proportion of this
expanded ‘All’ dataset; the total number of signs did not increase
by a large amount. As shown here, this expansion made only a
negligible difference in the recognition accuracy. However, it
should be noted that the current methodology did not take
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that many examples, resulting in a more balanced dataset
overall—improved recognition accuracy.

Furthermore, we expanded the set of signs considered from
the combined datasets to include loan signs and
compounds, in addition to lexical signs,” thereby increasing
the number, of total examples for which we have at least
6or 12 examples per sign to 23,016, representing 1,502
distinct signs, or 18,482 representing 990 signs,
respectively. The sign recognition accuracy achieved by
fusion of the forward and backward video streams is shown
in Figure 9 and Figure 10. This research is reported in
Dafnis et al. (2022a), but for present purposes, we offer
these examples of the usefulness of the consistent gloss
labeling across the ASLLVD and WLASL datasets in
enabling sign recognition research on the larger and richer
combined dataset.

8. Benchmark Datasets

Details about the datasets used for our published research
on sign recognition, including identification of videos used
for training, validation, and testing, are available on our
website: http://www.bu.edu/asllrp/signrec.html.

9. Conclusions

Thus, our belief is that the spreadsheet we provide with
internally consistent gloss labeling for the WLASL greatly
increases the value of that dataset for use in research. The
fact that these gloss labels are also consistent with those
used for the ASLLRP Sign Bank (i.e., the ASLLVD and
other available ASLLRP data) makes it possible to use
these datasets in combination, resulting in a resource that is
substantially larger and richer than those datasets
individually. The preliminary research on sign recognition
reported in Section 7 gives an indication of the promise
offered by this approach.

Furthermore, the high accuracy with which a sign can now
be recognized from video within the top-5 makes this
technology potentially useable in applications, such as
search by video example (from the signer’s webcam or a
video clip identified by the user) in an all-ASL dictionary,
where a user could be presented with 5 choices and asked
to confirm the selection. Our research group is, in fact,
currently working to develop such functionality.
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