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Abstract—Communication limitation at the edge is widely
recognized as a major bottleneck for federated learning (FL).
Multi-hop wireless networking provides a cost-effective solution
to enhance service coverage and spectrum efficiency at the
edge, which could facilitate large-scale and efficient machine
learning (ML) model aggregation. However, FL over multi-hop
wireless networks has rarely been investigated. In this paper, we
optimize FL over wireless mesh networks by taking into account
the heterogeneity in communication and computing resources
at mesh routers and clients. We present a framework that
each intermediate router performs in-network model aggregation
before sending the data to the next hop, so as to reduce the
outgoing data traffic and hence aggregate more models under
limited communication resources. To accelerate model training,
we formulate our optimization problem by jointly considering
model aggregation, routing, and spectrum allocation. Although
the problem is a non-convex mixed-integer nonlinear program-
ming, we transform it into a mixed-integer linear programming
(MILP), and develop a coarse-grained fixing procedure to solve
it efficiently. Simulation results demonstrate the effectiveness of
the solution approach, and the superiority of the in-network
aggregation scheme over the counterpart without in-network
aggregation.

Index Terms—Federated learning, multi-hop wireless network,
wireless mesh network, edge computing, in-network aggregation.

I. INTRODUCTION

Machine learning (ML) lays the foundation for tremendous
innovative applications, such as smart home, e-health, and
autonomous driving. The success of ML rests on the unprece-
dented amount of data that can be used for model training.
However, due to privacy considerations, it may be impractical
to gather privacy-sensitive data, such as personal photos and
videos, at a central location for training. To overcome this
hurdle, federated learning (FL) has been proposed to train a
global ML model across decentralized clients through model
exchange without accessing clients’ raw data [1]. By enabling
privacy-preserving model training, FL is regarded as a key
enabler for deploying ML at scale.

5G/6G cellular networks have attracted intensive interests
in the last few years [2]–[4]. To unleash the potential of
ML, 5G/6G and beyond are envisioned to support intelli-
gence/computing services [5]–[7], including model inference
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and training, at the network edge. In FL, model training
relies on frequent model exchange between parameter servers
and a massive number of clients. Given the fact that a deep
neural network generally contains millions of parameters (e.g.,
the popular model V GG16 contains 138 million parameters,
which is 528MB in 32-bit float), the model transmission-
s would pose a great challenge to the wireless edge [8].
Therefore, to accelerate FL process, resource optimization for
wireless networks plays a crucial role. The existing works in
this field mostly focus on single-hop wireless networks, where
clients upload their models to a base station co-located with
an edge server for global model aggregation. However, given
the limited transmit power, clients far from a base station
may fail to upload models or suffer from low uplink data
rate due to the severe path loss. To offer seamless services
in a large region, wireless mesh network is a cost-effective
and fast deployment choice. Compared with a single cell
site, wireless mesh network can bring significant advantages
like larger coverage, higher spectrum efficiency, and more
adaptive/flexible network reconfigurability, which is deemed
an important component of 5G/6G [9], [10]. In emerging
heterogeneous networks (HetNets), multi-tier network entities,
including macro/small base stations and relay stations, can
naturally form a mesh of multi-hop wireless network [11]–
[14]. In such a case, a macro base station can serve as the
gateway base station (GBS), while the remaining network en-
tities can be wirelessly interconnected to extend the coverage
of the macro base station.
Implementing FL in wireless mesh networks opens some

unique research opportunities. A key observation about FL is
that, a central server is only interested in the aggregated model,
and hence it may be unnecessary to transmit every local model
to the central site if they can be aggregated beforehand. By
leveraging in-network edge computing resource, a multi-hop
network can perform model aggregation at each intermediate
router before sending data to the next hop. This process,
called “in-network aggregation” in this paper, can significantly
reduce the outgoing data traffic from routers, and hence enable
more efficient model aggregation over multi-hop networks
under limited communication resources.
Fully exploiting the potential of in-network aggregation

requires a holistic system design for multi-hop wireless net-
works. First of all, judicious spectrum allocation is required
to mitigate network-wide wireless interference. Second, model
routing must be optimized by considering model aggregation,
which is completely different from traditional flow optimiza-
tion problem with flow conservation (e.g., ingoing flow equals
outgoing flow at intermediate routers). At last, one should
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determine when to aggregate the models at each router by
considering the communication and computing capabilities.
These three issues are tightly intertwined, making the problem
highly challenging. To tackle these challenges, in this paper,
we jointly optimize spectrum allocation, routing, and in-
network aggregation to accelerate FL training over wireless
mesh networks. To our best knowledge, FL over wireless
mesh networks has seldom been studied. The closest work
to ours is [15], where multi-agent reinforcement learning is
employed to accelerate the FL convergence over wireless
mesh networks by learning a routing strategy to minimize
the average end-to-end model transmission delay. However,
in-network aggregation has not been considered in their work.
Besides, they devise a routing scheme operating on contention-
based wireless technology (e.g., 802.11 protocols), whereas
we aim to design a centralized joint routing and spectrum
allocation strategy by taking full advantage of the global
knowledge of GBS.

The major contributions of this paper are summarized as
follows.

• We propose an FL framework over wireless mesh net-
works with in-network aggregation. Specifically, our pro-
tocol sets a deadline for model download, update, and
upload in each training round, and aims to maximize the
aggregated models before the deadline. This objective
is based on the observation that selecting more clients
in each round can improve the training performance in
FL [1], [16]. To fully reap the benefits of the multi-
hop architecture, we jointly optimize routing, spectrum
allocation, and in-network aggregation. As far as we
know, this is the first FL framework over wireless mesh
networks with in-network aggregation.

• We formulate our problem as a non-convex mixed-integer
nonlinear programming, where the non-convexity arises
from the in-network aggregation constraints. We transfor-
m the problem into a mixed-integer linear programming
(MILP), and develop a coarse-grained fixing algorithm to
obtain sub-optimal solution efficiently.

• Simulation results demonstrate the effectiveness of the
proposed coarse-grained fixing algorithm by using the op-
timal solution to the formulated MILP as the benchmark,
and show that in-network aggregation can significantly
improve the training performance comparing to the coun-
terpart without in-network aggregation.

The remainder of this paper is organized as follows. Section
II introduces the related work. Section III presents the system
architecture and federated learning training process. We for-
mulate the optimization problem in Section IV, and offer the
solution approach in Section V. In Section VI, we extend the
formulation to consider traditional multi-hop relaying without
in-network aggregation. Section VII conducts performance
evaluation. We conclude the paper in the last section.

II. RELATED WORK

A number of recent works investigate FL implementations
over wireless networks. To reduce the training time to achieve
a desired learning accuracy, client selection and radio resource

management is the key. In [17], Chen et al. propose a joint
learning and communication resource allocation scheme to
minimize the FL loss by considering the packet errors intro-
duced by wireless channels. In [18], Ren et al. develop a joint
batchsize selection and communication resource allocation
strategy for FL to optimize a novel criterion, called learning
efficiency. In [19], Yang et al. address the joint communication
and computing resource allocation problem for FL, with the
objective to minimize the total energy consumption under la-
tency constraint. In [16], Nishio et al. devise a client selection
policy to aggregate as many model updates as possible with-
in predefined deadline subject to the heterogeneous clients’
computing and communication constraints. Unfortunately, all
aforementioned works focus on FL implementation just for a
single base station.

In FL, multi-level or multi-hop aggregation plays a pivotal
role in increasing coverage and reducing the data traffic from a
large set of clients [15], [20]–[24]. In [20], Liu et al. propose
a two-level cloud-edge-client federated learning architecture
and analyze its convergence property. Under similar two-level
scenarios, the resource allocation problems are studied in [21]
and [22]. In [23], Chen et al. propose a collaborative FL
mechanism where local devices transmit models to nearby
devices via device-to-device communications, and directly
perform model aggregation on local devices. However, the
above schemes focus on special or layered network structure,
which cannot be applied to general mesh networks. Besides,
routing has not been addressed in their works. In [15], Pinyoa-
nuntapong et al. employ multi-agent reinforcement learning
to learn the routing strategy to minimize the average end-to-
end model transmission latency over wireless mesh networks
while failing to consider in-network aggregation and spectrum
allocation.

The design of data aggregation scheme can be traced back
to the studies on wireless sensor networks (WSNs). Analogous
to FL, a sink node in a WSN may require an aggregated
form of sensed data, e.g., temperature, where in-network
computation can also greatly reduce the communication over-
head. Similar to our work, the problem on maximizing the
aggregated information within given deadline in WSNs has
been addressed in several works [25], [26]. Unfortunately, the
existing data aggregation schemes for WSNs cannot be applied
to FL. First, FL has the crucial processes of global model
download and local model update, which do not exist in the
data aggregation problem for WSNs. Due to the heterogeneous
channel conditions and computing resources of clients, the
global model download and local model update times can
be vastly different across clients, which greatly affect the
optimal client/router selection, routing, and resource allocation
strategy. Second, the existing schematic design on WSNs
commonly ignores the in-network aggregation delay. This
assumption may be reasonable for WSNs, since the operations
on sensor information, e.g., temperature, is typically simple.
Nevertheless, given the fact that state-of-the-art deep neural
networks (DNNs) generally contain millions of parameters, in-
network aggregation delay is generally non-negligible in FL,
which cannot be simply neglected.
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Fig. 1: Illustration of in-network aggregation over a toy mesh
network. Each red underlined number represents a specific
parameter of a client’s model, and each bold number is the size
of a client’s dataset, i.e., dc = |Dc|. Although an ML model
is composed of many parameters, we just take one parameter,
i.e., the red underlined number, for the ease of exposition. Each
PoC2 sums up its received models before sending to the next
hop. GBS sums up all the received models and divides the
aggregated model by the total number of data samples.

III. SYSTEM MODEL

A. Federated Learning and In-network Aggregation

Assume that we have a set C of clients with local datasets
Dc for c ∈ C in the considered region. An FL server aims to
train a global model using the data available at these clients.
Considering supervised ML, a training data sample j consists
of input sample xj and label yj . Let lj(θ) , l(θ, xj , yj)
represent the loss function on data sample j based on model
θ. For client c ∈ C, the loss function on its dataset Dc is given
by

Lc(θ) ,
1

|Dc|
∑
j∈Dc

lj(θ). (1)

The global loss function over all the local datasets is defined
as

L(θ) , 1

|D|
∑
c∈C

|Dc|Lc(θ), (2)

where D , ∪c∈CDc.
To minimize the global loss function L(θ), the standard

federated learning algorithm FedAvg proceeds iteratively as
follows [1]. In each training round, each client downloads the
global model from the central server. Each client updates the
model based on its local dataset for several epochs, typically
relying on gradient-descent algorithms, and then uploads the
model to the central server. Upon receiving all the desired
model updates, the central server sets the global model to the
weighted average of these models:

θ =
1

|D|
∑
c∈C

|Dc|θc, (3)

where θc represents the local model updated by client c. In
practice, it may not be feasible to select all the clients in the
every training round because of the limited communication and
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Fig. 2: Federated learning over multi-hop wireless networks.
tcast is the model multicasting time, and t̃m is the PoC2 m’s
update time (explained in Section III-C).

computing resource as well as clients’ activities. Defining S as
the set of selected clients in the considered round, the global
model can still be updated according to (3) by aggregating
only the models from the selected clients, i.e., replacing C
with S and letting D , ∪c∈SDc in (3).
Since the central server is interested in the model average

rather than each individual model update, a multi-hop network
can aggregate the models in each intermediate router to
reduce the data traffic. Specifically, client c can scale up the
model update to |Dc|θc, and upload to the associated router.
Each router aggregates the received models, from clients and
other routers, into one model by summing up the model
parameters, then forwards to the next hop. Finally, the central
server aggregates the models from routers, and scales the
aggregated model by 1

|∪c∈SDc| = 1∑
c∈S |Dc| to recover (3).

While an ML model is composed of many parameters, we
can take one parameter as an example for ease of exposition.
Suppose that the central server desires the weighted average
d1∗1+d2∗2+d3∗3+d4∗4+d5∗5

d1+d2+d3+d4+d5
= 18

6 = 3 from five clients holding
parameter 1, 2, 3, 4, and 5, respectively, where d1 = 1, d2 = 1,
d3 = 2, d4 = 1, and d5 = 1 are the sizes |Dc| of clients’ local
datasets. As illustrated in Fig. 1, the central server can exactly
recover the desired result 3 via in-network aggregation over
the toy mesh network.

B. Network Architecture

Let us consider a static wireless mesh network with one G-
BS g and a set R of wireless routers, as shown in Fig. 2. These
routers, also called points of communication and computing
(PoC2s), are set-top like devices endowed with customized
communication (e.g., software-defined radio), computing, and
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TABLE I: Frequently used nomenclature and notations

Notation Description

PoC2 Point of communication
and computing

Dc The dataset of client c
R The set of PoC2s
Sm The clients selected by PoC2 m
g The gateway base station (GBS)
Bm The set of backhaul channels

around node m
W The bandwidth for each

backhaul channel
Wcast The bandwidth for the downlink

multicast channel
Γm The transmission set of PoC2 m
Im The interference set of PoC2 m
cm/cg The time taken by PoC2 m/GBS

to sum up two models
em,n The capacity of a channel

over link (m,n)
t̃m The time for PoC2 m to collect and

aggregate set Sm of clients’ models
D The length of a training round
∆ The length of a control interval
K Number of control intervals

in a training round
am, rm,n, sb,km,n,
f b,k
m,n, tm, tcast

Decision variables
(explained in Section IV)

vkm, hk
n, ym,n,

bkm, dkn, um,n
Auxiliary variables (to linearize P1)

storage capabilities, or CCS capabilities for short. GBS is
typically a macro base station endowed with significantly CCS
capabilities for global model aggregation. GBS also acts as a
central controller to coordinate PoC2s for model delivery and
aggregation via multi-hop wireless links.

At the beginning of each training round, GBS multicasts a
global model to a set of clients for model training. After local
training at client side, PoC2s aggregate models from their
associated clients and then deliver the models to GBS via
multi-hop relaying. Each PoC2 aggregates models from its
associated clients and other PoC2s before sending to the next
hop, which is the in-network aggregation process. The clients,
PoC2s, and GBS are wirelessly interconnected. However, we
assume that the backhaul links (among PoC2s and GBS)
and access links (from clients to PoC2s) use different set
of channels, and hence do not interfere with each other.
Moreover, we assume that each client is pre-associated with
one PoC2. In this way, we can concentrate on the multi-hop
wireless backhauling in this study, while excluding clients
and access links from our network topology. We want to
first add some explanations for the nodes (PoC2s and GBS),
links, and channels in the wireless backhaul part as follows.
Let Bm represent the set of channels available around node
m ∈ {g} ∪ R, and (m,n) denote the uplink wireless link

from node m ∈ R to node n ∈ {g} ∪ R. The channels
in Bm ∩ Bn can be utilized to support model transmission
between node m and node n. Since the downlink multicasting
from GBS to clients is carried out before model upload, it does
not interfere with Bm around each PoC2 for model upload.
Thus, we do not need to specify the channel used by GBS
for downlink multicasting, but rather simply assume that the
multicast bandwidth is Wcast.
By adopting the deterministic power propagation model, we

characterize the channel gain for link (m,n) on channel b as
γm,n = ηd−α

m,n, where η is an antenna related constant, dm,n

is the distance between node m and node n, and α is the path
loss exponent [27]1. Each channel is assumed to be additive
white Gaussian noise (AWGN) channel with fixed noise power.
Since all transmitted data is assumed to be the models of
the same size for the analysis, we can treat a model as the
basic unit of the transmitted data in our systems. Therefore,
we normalize channel capacity and other parameters related to
data rate/amount by model size M for notational convenience.
The normalized capacity of a channel over link (m,n) is given
by

em,n =
W

M
log

(
1 +

γm,np

WN0

)
, (4)

where W is the bandwidth of each channel, p is PoC2’s
transmit power on each channel, N0 is the noise power spectral
density, and M is the ML model size. We denote by Γm

and Im the transmission set and interference set of PoC2

m, respectively, where Γm and Im contain the nodes within
a transmission range R and a potentially larger interference
range R′ of PoC2 m. Following the well-known protocol
interference model [28], we assume that link (m,n) exists only
if node n is in Γm, and the interference from node m to node
n exists only if node n is in Im. For readers’ convenience,
the frequently used notations are summarized in Table I.

C. Federated Learning Training Process

We next present our FL training process, which consists
of multiple training round. Each training round involves four
stages, i.e., coordination, model download, PoC2 update, and
model upload.
In the coordination stage, GBS collects the channel state

information (CSI) for wireless backhaul links (m,n), down-
link channels to clients (for downlink multicasting), and the
available computing resource at each PoC2 (for measuring in-
network aggregation delay). Meanwhile, each PoC2 collects
the information about its associated clients, including their CSI
and available computing resource. Based on the information,
each PoC2 m computes the set Sm of selected clients, and the
needed time t̃m for collecting and aggregating these clients’
models (called PoC2 update time), and reports Sm and t̃m to
GBS. Finally, GBS makes the centralized coordination (e.g.,
PoC2 selection, routing, and link scheduling) and informs the
decisions to PoC2s for execution. Due to heterogeneous com-
puting and communication resources at PoC2s and clients, t̃m
could be vastly different across PoC2s, as depicted in Fig. 2.

1For simplicity, we assume the same gain model for all channels.
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A key process above is that a PoC2 needs to compute
Sm and t̃m. By assuming that proximate PoC2s are assigned
with different access bands and thus do not interfere with
each other when collecting models from clients, each PoC2

can implement some existing single-cell FL policies to obtain
Sm and t̃m. For instance, the FedCS protocol proposed in
the well-cited paper [16], allowing a PoC2 to aggregate as
many models as possible before a predefined deadline, can be
adopted here to obtain Sm and t̃m.

In the model download stage, GBS multicasts the global
model to the selected clients. Note that our policy will only
select PoC2s, each of which has the autonomy of selecting
clients to update and upload models based on its local situa-
tions. Therefore, the selected clients are those selected by the
selected PoC2s. In other words, any client associated with the
unselected PoC2s would not participate or receive the global
model in the current round. In addition, we have made the
implicit assumption that clients are in the downlink coverage
of GBS. Given the fact that a GBS typically has powerful
communication capabilities (e.g., high transmit power), we
believe that this assumption is reasonable in many cases.

In the PoC2 update stage, the set Sm of selected clients
perform local model update and upload the models to PoC2

m. Then, each PoC2 aggregates the received clients’ models.
As discussed before, some existing single-cell FL protocols
can be used at this stage.

In the model upload stage, the PoC2s collaboratively deliv-
er their aggregated models to GBS. Upon receiving the models
from other PoC2, a PoC2 performs model aggregation before
sending to the next hop. Note that the unselected PoC2s could
also facilitate the multi-hop model delivery, even though they
do not directly collect models from clients.

IV. PROBLEM FORMULATION

Since the aforementioned four stages in one training round
will be repeated until the global model converges to a desired
accuracy, we focus on one training round for analysis. In each
round, being consistent with [16], [29], our design goal is to
aggregate as many model updates as possible at GBS given a
predefined deadlineD and resource constraints. This objective
is motivated by the key observation that increasing the number
of participating clients can accelerate the training process in
FL [1], [16], [29]–[31].

We start by introducing the network resource constraints.
Since ML models are gradually moved from source nodes
to GBS, the link traffic demands are not static over time,
implying that a static resource allocation strategy may not
be able to fully exploit the network resources. Therefore, we
assume that a training round consist ofK control intervals, and
different resource allocations can be made across the control
intervals to accommodate the time-varying traffic. We define
resource tuple ((m,n), b, k) to indicate that over link (m,n),
transmitter m operates on channel b during the k-th control
interval [(k − 1)∆, k∆], where ∆ is the length of a control
interval. For clarity, the decision variables and definitions are
summarized below.

• am ∈ {0, 1} is the PoC2 selection variable, where am =
1 if PoC2 m is selected, and 0 otherwise. As explained

before, a selected PoC2 will collect its clients’ models,
whereas an unselected PoC2 will not.

• rm,n ∈ {0, 1} is the routing decision variable, where
rm,n = 1 if PoC2 m forwards the data to node n (PoC2

or GBS), and 0 otherwise.
• sb,km,n ∈ {0, 1} denotes the resource allocation strategy,

where sb,km,n = 1 if resource tuple ((m,n), b, k) is active,
and 0 otherwise.

• f b,k
m,n ≥ 0 represents the amount of data flow (normalized
by model size) delivered via resource tuple

(
(m,n), b, k

)
.

• tm ∈ [0, D] indicates the aggregation time that node
m (PoC2 or GBS) stops receiving models from other
PoC2s and begins in-network aggregation.

• tcast ∈ [0, D] represents the time for downlink model
multicasting.

We will use boldfaced a, r, s, f , and t to denote the
collections of am, rm,n, sb,km,n, f

b,k
m,n, and tm, respectively.

A. Routing Constraints

For simplicity, we study a single-path routing scheme where
a node can have at most one outgoing link [32]. In other words,
a PoC2 cannot partition its aggregated model into multiple
data pieces for sending to multiple receivers2. We have∑

n∈Γm

rm,n ≤ 1, ∀m ∈ R. (5)

Besides, PoC2 m must transmit if receiving the models
from other PoC2s or selected by GBS (am = 1), leading to∑

n∈Γm

rm,n ≥ rm′,m, ∀m ∈ R,m′ ∈ {m′|m ∈ Γm′}, (6)∑
n∈Γm

rm,n ≥ am, ∀m ∈ R. (7)

For the sake of simplicity, we omit the constraint on storage
by assuming that each PoC2 has enough storage space to
cache the received models for aggregation. Since PoC2 m
aggregates the received models (from clients and/or other
PoC2s) into one model before transmitting to the next hop,
the outgoing link (m,n) must deliver exactly one model over
the total K control intervals if routing decision rm,n = 1 is
made, yielding∑

b∈Bm∩Bn

K∑
k=1

f b,k
m,n = rm,n, ∀m ∈ R, n ∈ Γm, (8)

where the flow amount f b,k
m,n is normalized by model size.

f b,k
m,n is constrained by spectrum allocation and aggregation
time decisions for node m and n, which will be introduced in
the next subsection. (8) also ensures that there is no “routing
loop”, as the flow amount f b,k

m,n (and therefore rm,n) can be
positive only if aggregation time tn > tm, as can be seen
later. Since there is no loop in a route and only GBS g is
not required to transmit after receiving models, all the models
from selected PoC2s can be eventually transferred to GBS.

2While multi-path routing may take advantage of load balancing to improve
throughput, it would introduce more complexity when taking in-network
aggregation into account. Hence, we will not investigate it in this paper.
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B. Aggregation Time and Flow Constraints

At the beginning, GBS multicasts a global model to a set
of clients. To enable multicasting, GBS should employ the
modulation and coding scheme in accordance with the client
experiencing the worst propagation condition. Let eDLm be the
normalized downlink channel capacity (normalized by model
size M ) from GBS to the weakest client (with the lowest
downlink signal-to-noise ratio (SNR)) in Sm, i.e.,

eDLm =
Wcast log

(
1 +

minc∈Sm{γg,c}P
WcastN0

)
M

, (9)

where γg,c is the channel gain from GBS to client c, P is
GBS’s downlink transmit power, and Wcast is the multicasting
bandwidth. Since multicasting is carried out before model up-
load, GBS can re-utilize the backhaul channels to conduct the
downlink transmissions. In this case, we have Wcast = W |Bg|,
recalling that Bg is the set of channels available for GBS, and
W is the channel bandwidth. Furthermore, the multicasting
time tcast is determined by the weakest client among all the
clients selected by different PoC2s, yielding

tcast ≥ 1

eDLm
am, m ∈ R. (10)

Thus, tcast depends on PoC2 selection variables am.
After receiving the global model, local update is performed

by each PoC2. PoC2 m, if selected by the system, should
receive the models from |Sm| clients, and aggregate these local
models into one model, which demands t̃m (i.e. PoC2 update
time) in total. Consequently, the aggregation time tm for PoC2

m must satisfy

tm ≥ tcast + t̃mam, m ∈ R. (11)

We use in-network aggregation delay σm(a, r) to denote
the backhaul-level model aggregation delay (not including the
time PoC2 m aggregates the local models from Sm, which
has already been considered in t̃m), i.e.,

σm(a, r) =

 ∑
{m′|m∈ΓI

m′}

rm′,m + am − 1

+

cm, ∀m ∈ R,

(12)

where cm represents the computation delay for summing up
two models, and x+ denotes the positive part of x, i.e.,
max{x, 0}. The number of models received by PoC2 m
is equal to

∑
{m′|m∈Γm′} rm′,m + am, i.e., the number of

routing decisions made towards it, plus one if the PoC2 is
selected (i.e., plus the aggregated local model). The number of
summations is equal to the number of received models minus
one. The positive part operator x+ ensures that σm(a, r) = 0
if node m receives no model.

Since a PoC2 aggregates all received models into one
model, there is no benefit for it to transmit before completing
the aggregation. Therefore, PoC2 m is allowed to transmit
only after completing in-network aggregation, namely, after
tm + σm(a, r). Moreover, link (m,n) cannot carry data flow
after tn, i.e., the time that receiver n stops receiving models.
These conditions impose the following constraints on how

much data traffic can be carried over each resource tuple:

f b,k
m,n ≤ sb,km,nem,n∆, (13)

f b,k
m,n ≤ em,n

(
∆k −

(
tm + σm(a, r)

))+

, (14)

f b,k
m,n ≤ em,n

(
tn −∆(k − 1)

)+
, (15)

f b,k
m,n ≤ em,n

(
tn −

(
tm + σm(a, r)

))+

, (16)

∀m ∈ R, n ∈ Γm, b ∈ Bm ∩ Bn, k ∈ {1, ...,K}.

As indicated in (13), the data flow f b,k
m,n is upper bounded by

em,n∆ if the resource tuple sb,km,n is allocated, i.e., sb,km,n = 1,
and 0 otherwise, where em,n is the link capacity given in (4)
and ∆ is the length of the k-th control interval [(k−1)∆, k∆].
Moreover, f b,k

m,n is further constrained by time tm + σm(a, r)
and tn, since the transmission can only be conducted between
these two time instants. Overall, (13)-(16) together ensure that
the data transmissions over resource tuple sb,km,n can only be
conducted during the intersection of the k-th control interval
[(k − 1)∆, k∆] and the time interval [tm + σm(a, r), tn].
During the model upload stage, GBS does not transmit

any models. Therefore, the optimal tg (for stopping receiving
models) can be set to the deadline D minus the time that it
should take to perform global aggregation:

tg = D − c− (
∑

{m′|g∈Γm′}

rm′,g − 1)cg, (17)

where c is the time taken by GBS to scale the aggregated
model by 1∑

c∈S |Dc| , and cg is the time for GBS to sum up two
models. The last term indicates that the number of summation
operations will be equal to the number of received models
minus one, if GBS receives at least one model (which is the
non-trivial case).

C. Resource Allocation Constraints

The aforementioned routing and in-network aggregation rely
on appropriate network resource allocation. In our formulation,
the resource allocation strategy is characterized by the time-
frequency resource tuples sb,km,n. Due to the conflict relation-
ship, not all the resource tuples can be chosen together. A node
is not allowed to either receive from or transmit to multiple
nodes on the same channel in an interval, which is expressed
as ∑

{n∈Γm|b∈Bn}

sb,km,n ≤ 1, (18)

∑
{m′|m∈Γm′ ,b∈Bm′}

sb,km′,m ≤ 1,

∀m ∈ R ∪ {g}, b ∈ Bm, k ∈ {1, ...,K}, (19)

To avoid self-interference, a PoC2 cannot use a single chan-
nel for transmission and reception simultaneously, yielding

sb,km′,m +
∑

{n∈Γm|b∈Bn}

sb,km,n ≤ 1, ∀m ∈ R,

b ∈ Bm,m′ = {m′|m ∈ Γm′ , b ∈ Bm′}, k ∈ {1, ...,K}.
(20)
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A feasible scheduling should also ensure that there is no
interference (in the sense of the protocol interference model)
among the nodes. Specifically, if PoC2 m is transmitting to
node n, other PoC2s that have node n within their interference
ranges cannot use the same channel and time resource. We
therefore have

sb,km,n +
∑

{n′∈Γm′ |b∈Bn′}

sb,km′,n′ ≤ 1,

∀m ∈ R, n ∈ Γm, b ∈ Bm ∩ Bn,m
′ ∈ Υb

n, k ∈ {1, ...,K},
(21)

where Υb
n = {m′ ∈ R|n ∈ Im′ , b ∈ Bm′ ,m′ ̸= m} denotes

the set of PoC2s having receiver n within their interference
ranges and with channel b available.

In summary, given the constraints above, our optimization
problem, which jointly optimizes resource allocation sb,km,n,
routing decision rm,n, PoC2 selection am, flow allocation
f b,k
m,n, multicasting time tcast, and node aggregation time tm,
is formulated as follows

P1: max
a,r,s,f ,t,tcast

∑
m∈R

wmam,

s.t. (5)− (21),

sb,km,n ∈ {0, 1}, f b,k
m,n ≥ 0, ∀m ∈ R,

n ∈ Γm, b ∈ Bm ∩ Bn, k ∈ {1, ...,K}, (22)
rm,n ∈ {0, 1}, ∀m ∈ R, n ∈ Γm, tm ∈ [0, D], ∀m ∈ R,

tcast ∈ [0, D], (23)

where wm =
∑

c∈Sm
|Dc|∑

c∈S |Dc| is the weighting factor for PoC2 m,
which is proportional to the number of data samples associated
with PoC2 m. Due to the non-convex constraints (14)-(16) on
aggregation time, Problem P1 is a non-convex mixed-integer
nonlinear programming, for which we have the following
result.

Theorem 1: Problem P1 is NP-hard.
Proof: See Appendix A.

Briefly speaking, it can be shown that the maximum inde-
pendent set problem can be reduced to Problem P1. It has been
proved that the maximum independent set problem is not only
NP-hard but also extremely hard to approximate [33]3. This
fact hinders us from not only finding the exact solution, but
also a constant-factor approximation to Problem P1 in poly-
nomial time. Therefore, we will develop a heuristic solution
approach to Problem P1.

V. SOLUTION APPROACH

In this section, we first transform the mixed-integer non-
linear programming into a mixed-integer linear programming
(MILP). Then, inspired by [34], [35], we develop a heuristic
algorithm, called coarse-grained fixing procedure, to effective-
ly find the solution.

3Reference [33] studies the maximum clique problem, which is
approximation-equivalent to the maximum independent set problem. These
two problems are complementary because a clique in a graph is an indepen-
dent set of the complement graph.

A. Linearization

The main challenge in solving Problem P1 stems from the
non-convex constraints (14)-(16) with positive part operator
“+” and a nonlinear function σm(a, r) (defined in (12)). To
linearize these constraints, we first need to linearize σm(a, r),
for which we can directly remove the positive part operator
“+” as follows

σm(a, r) =

 ∑
{m′|m∈Γm′}

rm′,m + am − 1

 cm, ∀m ∈ R.

(24)

Although σm(a, r) can be −cm based on the linear con-
straint (24), which is not meaningful in practice, it would not
impact the solution. This is because a PoC2 with σm(a, r) =
−cm would never receive or forward any model (since rm′,m

and am are equal to 0), and hence have no impact on the
system.
In order to linearize (14)-(16), we also need to remove

the operator “+” in (14)-(16). We define several auxiliary
variables, including continuous variables vkm ∈ [0, D], hk

n ∈
[0, D], and ym,n ∈ [0, D], and binary variables bkm, dkn, and
um,n. Then, (14)-(16) can be equivalently expressed as

f b,k
m,n ≤ em,nv

k
m, f b,k

m,n ≤ em,nh
k
n, f b,k

m,n ≤ em,nym,n, (25)

∀m ∈ R, n ∈ Γm, b ∈ Bm ∩ Bn, k ∈ {1, ...,K}.

with

vkm ≥ k∆− (tm + σm(a, r)),

vkm ≤ k∆− (tm + σm(a, r)) +Dbkm, vkm ≤ D(1− bkm),

vkm ∈ [0, D], bkm ∈ {0, 1}, ∀m ∈ R, k ∈ {1, ...,K}, (26)

hk
n ≥ tn −∆(k − 1), hk

n ≤ tn −∆(k − 1) +Ddkn,

hk
n ≤ D(1− dkn), hk

n ∈ [0, D],

dkn ∈ {0, 1}, ∀n ∈ R ∪ {g}, k ∈ {1, ...,K}, (27)
ym,n ≥ tn − (tm + σm(a, r)),

ym,n ≤ tn − (tm + σm(a, r)) +Dum,n,

ym,n ≤ D(1− um,n), ym,n ∈ [0, D], um,n ∈ {0, 1},
∀m ∈ R, n ∈ Γm. (28)

The linearization is achieved at the cost of adding three
binary variables bkm, dkn, and um,n. Enforced by (26), (27),
and (28), the auxiliary variable vkm, hk

n, and ym,n are equal to
the term ()+ in (14)-(16), respectively. Consequently, Problem
P1 can be reformulated by replacing (12) and (14)-(16) with
the linear constraints above, i.e.,

P2: max
a,r,s,f ,t,tcast,v,h,y,b,d,u

∑
m∈R

wmam,

s.t. (5)− (11), (13), (17)− (28),

where v, h, y, b, d, and u denote the collections of the
auxiliary variables vkm, hk

n, ym,n, bkm, dkn, and um,n. Since
P2 is a reformulation of P1, it is not hard to see that the
proof for NP-hardness in Theorem 1 can also be applied to P2.
Fortunately, P2 is an MILP, implying that many existing algo-
rithms, such as branch and bound algorithm, or off-the-shelf
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Algorithm 1 Coarse-grained Fixing Procedure

Input: The parameters for Problem P2 and threshold θ.
Output: The solution x to Problem P2.
1: For Problem P2, eliminate the nodes in set Γm farther

from GBS than node m is if Γm is not empty after this
elimination.

2: Relax sb,km,n to [0, 1] in P2.
3: while not all sb,km,n are fixed do
4: Solve the relaxed P2 with fixed sb,km,n (if any), and obtain

the solution for sb,km,n.
5: if there exists sb,km,n > θ then
6: Fix all sb,km,n > θ to 1.
7: else
8: Fix the largest sb,km,n to 1.
9: end if

10: Based on the fixed sb,km,n, fix some other sb,km,n to 0
according to (18)-(21).

11: end while
12: Solve Problem P2 with fixed sb,km,n to obtain the solution

x.

Algorithm 2 Enhanced Coarse-grained Fixing Procedure

Input: The parameters for Problem P2, scale factors
{β1, β2, ..., βN}, and threshold θ.

Output: The solution x to Problem P2.
1: For Problem P2, eliminate the nodes in set Γm farther

from GBS than node m is if Γm is not empty after this
elimination.

2: Initialize i = 0.
3: for i < N do
4: i = i+ 1.
5: Change link capacity em,n to βiem,n.
6: Execute line 1 - 11 in Algorithm 1 to fix sb,km,n.
7: Solve Problem P2 with the original link capacity em,n

and the fixed sb,km,n to obtain the solution zi and the
objective value Vi.

8: end for
9: x = zargmax1≤i≤N{Vi}.

softwares (e.g., MATLAB) can solve it exactly in practice.
However, these approaches may not be applicable to a large-
scale problem, because the time complexity exponentially
increases with the number of the integer variables, particularly
the four-dimension resource allocation variables sb,km,n. In view
of this, we further devise a heuristic for more efficient solution
finding.

B. Coarse-grained Fixing Procedure

1) Basic Coarse-grained Fixing Procedure: The major ob-
stacle in solving Problem P2 lies in the integer variables sb,km,n,
the number of which increases with the network size and
resource dimensions. Our idea is to first develop a heuristic
algorithm to fix sb,km,n, and then solve the problem with
fixed sb,km,n. Specifically, we will fix sb,km,n through an iterative
process. At each round, we relax all the integer variables sb,km,n,

am, rm,n, bkm, dkn, and um,n to [0, 1], converting Problem P2
into a linear programming (LP), which can be easily solved by
LP solvers. Given the solution sb,km,n to the relaxed problem, we
fix all the sb,km,n > θ to 1, where the threshold θ can be chosen
from [0.5, 1]. The threshold range ensures that (18)-(21) will
not be violated upon fixing sb,km,n. If all s

b,k
m,n are less or equal

to θ, we set the largest sb,km,n to 1. Besides, we fix some other
sb,km,n to 0 based on the conflict relationships characterized by
(18)-(21). With fixed sb,km,n, we repeatedly solve the resulting
LP with decreasing number of variables until all sb,km,n are fixed
to either 0 or 1. Since at least one variable of sb,km,n is fixed
at each round, the iteration number of solving LP is limited
by the number of sb,km,n, implying that the iterative process
can converge. However, the actual iteration number is much
smaller than this, since multiple variables sb,km,n can be fixed
during one iteration. Finally, with the sb,km,n in place, we solve
the resulting optimization problem to obtain the solution. Note
that, although variables sb,km,n are fixed, at the last step, we still
need to solve an MILP with binary variables am, rm,n, bkm,
dkn, and um,n. However, the resulting MILP can be efficiently
solved by off-the-shelf optimization software in practice (as
validated in Section VII-B), because the number of integer
variables is not large under a practical problem setting. The
algorithm is summarized in Algorithm 1.

In addition, to reduce the complexity of the solution ap-
proach and forward models to GBS quickly, we eliminate some
receivers in transmission set Γm of each node m to narrow
down the decision space. Specifically, we eliminate the nodes
in Γm which are farther from GBS than node m is if Γm

does not become empty after this elimination (corresponding
to Line 1 in Algorithm 1). The rationale is that forwarding
data far away is typically not the optimal solution given that
our objective is to deliver models to GBS.

2) Enhanced Coarse-grained Fixing Procedure: Although
the approach above can yield a solution efficiently, it relies
on a greedy fixing rule, which is not optimal. The sub-
optimality comes from the fact that the set of sb,km,n, which
are fixed to 1, may not be optimal. Enlightened by [34], we
can obtain different sets of fixed sb,km,n, and choose the best
among them so as to enhance the solution. Specifically, we
change the link capacity em,n of each channel by a scale
factor β ∈ (0, 1] and fix sb,km,n accordingly. When em,n reduces
to βem,n, the channel gain becomes lower. To support model
delivery, the system may need to select more critical resource
tuples, thereby producing a different set of fixed sb,km,n. Then,
with the fixed sb,km,n in place, we solve the resulting problem
with the original link capacity em,n to obtain the solution.
This process can be done multiple times by using different
scale factors. Assuming that we perform N trials with scale
factors {β1, β2, ..., βN}, the solution is set to the best among
these N trials. Essentially, this process potentially improves
the solution at the cost of running the coarse-grained fixing
procedure multiple times. We call this procedure as “enhanced
coarse-grained fixing procedure”, and outline it in Algorithm
2.
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VI. EXTENSION: TRADITIONAL MULTI-HOP RELAYING

For the benchmarking purpose, in this section, we adapt
our problem formulation to consider the traditional multi-
hop relaying scheme without in-network aggregation. In such
a case, we assume that each PoC2 still aggregates its lo-
cal models from set Sm of clients, while directly relaying
other PoC2s’ models to the next hop upon receiving. Let
f
b,k

m,n denote the flow amount delivered via resource tuple(
(m,n), b, k

)
accounting for the local aggregated model at

PoC2 m, which constitutes part of f b,k
m,n. We have the flow

conservation constraints∑
n∈Γm

∑
b∈Bm∩Bn

k0∑
k=1

(f b,k
m,n − f

b,k

m,n) ≤

∑
{m′|m∈Γm′}

∑
b∈Bm∩Bm′

k0∑
k=1

f b,k
m′,m, ∀m ∈ R,

k0 ∈ {1, ...,K − 1}, (29)∑
n∈Γm

∑
b∈Bm∩Bn

K∑
k=1

(f b,k
m,n − f

b,k

m,n) =

∑
{m′|m∈Γm′}

∑
b∈Bm∩Bm′

K∑
k=1

f b,k
m′,m, ∀m ∈ R. (30)

Constraint (29) means that during the first k0 time slots,
for PoC2 m, the outgoing data flow amount should be no
more than the incoming data amount (from other PoC2) plus
its local aggregated model. PoC2 m can temporarily store
some incoming flow and transmit in the upcoming control
intervals, as indicated in (29). Constraint (30) guarantees the
flow balance over the whole training round that spans K
intervals. For simplicity, we do not consider the buffer size
limitation. Furthermore, the flow amount variables f b,k

m,n and

f
b,k

m,n should satisfy

∑
n∈Γm

∑
b∈Bm∩Bn

K∑
k=1

f
b,k

m,n = am, ∀m ∈ R, (31)

f b,k
m,n ≤ rm,nem,n∆, (32)

f
b,k

m,n ≤ f b,k
m,n, f

b,k

m,n ≤ em,n

(
k∆−

(
t̃mam + tcast

))+

, (33)

∀m ∈ R, n ∈ Γm, b ∈ Bm ∩ Bn, k ∈ {1, ...,K},

where (31) ensures that the local aggregated model is trans-
mitted out if this PoC2 is selected, i.e. am = 1. (32) indicates
that the data traffic can be transmitted over link (m,n) only
if routing decision rm,n = 1 is made. In (33), f

b,k

m,n is upper
bounded by f b,k

m,n because it is a portion of f b,k
m,n. (33) also

ensures that resource tuple ((m,n), b, k) can carry f
b,k

m,n only
after PoC2 m aggregates the models from set Sm of clients,
which is analogous to (14). In Problem P2, we replace (8) and
(25)-(28) with (29)-(33) for m ∈ R, yielding a new problem.
While (33) is non-convex, we can linearize it in the same
way as we linearize (14), which hence is omitted. Finally, we
can employ the enhanced coarse-grained fixing procedure (in
Section V-B) to solve the MILP.

TABLE II: Key experimental parameters

Parameters Values

Number of PoC2s |R| 16
Number of channels |Bm| 4 or 6
PoC2’s transmit power p (dBm) 28
GBS’s downlink transmit power P (dBm) 46
Transmission range (meters) R 350
Interference range (meters) R′ 500
Channel bandwidth W (MHz) 10
Downlink multicast bandwidth (MHz) 50
Client’s one-epoch update time (seconds) [1, 2]
Epoch number 5
Delay for PoC2 m to aggregate
two models cm (seconds) [0.05, 0.2]

The deadline for each
training round D (seconds) 60

The length of control interval ∆ (seconds) 15
Number of control intervals K 4
Path loss exponent α 4
Noise power spectral density N0 (W/Hz) 10−16

Antenna-related parameter η 2.5

VII. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of our solu-
tion approach and the learning performance of the proposed
aggregation scheme.

A. Simulation Setup

We consider a 1000 × 1000m2 wireless mesh network,
consisting of one GBS at the center and 16 PoC2s deployed
nearby. We assume each PoC2 provides access services to 10
clients, among which only 3 clients are active at each training
round due to sporadic traffic. The transmission and interfer-
ence ranges for PoC2s are 350m and 500m, respectively. We
set deadline D = 1 minute for a training round, which is
composed of K = 4 control intervals, each lasting 15 seconds.
We adopt two widely used datasets, CIFAR-10 and Fashion

MNIST, to evaluate the learning performance. CIFAR contains
color images of 10 classes of objects, such as dog, cat, and au-
tomobile, whereas Fashion MNIST contains grayscale images
of fashion products, such as T-shirt, bag, and dress. These
two datasets are good representations of object recognition
tasks for many applications, including autonomous driving,
smart cameras, e-commerce, etc. CIFAR-10 has 50000 training
images and 10000 test images, and Fashion MNIST has 60000
training images and 10000 test images. The training data
samples are evenly distributed to 160 clients. We consider both
IID settings and non-IID settings. In the IID setting, the data
samples are shuffled and evenly partitioned into the clients. In
the non-IID setting, each client’s data is randomly drawn from
2 classes of samples.
For both datasets, we implement a convolutional neural

network (CNN), which consists of convolutional layers with
kernel size 3×3 and channel number (32, 32, 64, 64, 128, 128).
Each convolutional layer is activated by ReLU, and every two
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of them is followed by 2×2 max pooling. These convolutional
layers are followed by three fully connected layers (382 and
192 units with ReLU activation and the last one with 10
units with softmax activation) [16]. The model contains 1.14
millions parameters, and is 4.375 Megabytes in 32-bit float.
Each client trains with mini-batch size 32, learning rate 0.01,
and momentum 0.5. Notice that higher test accuracy can often
be achieved by larger models. Nevertheless, since our goal
in this section is to demonstrate the effectiveness of our in-
network aggregation method rather than achieving the best
accuracy, such a small-sized model is sufficient for our need.
Besides, we set epoch number to 5 , i.e., each client performing
5 local updates before uploading. We assume that each client’s
one-epoch update time is uniformly distributed within [1,
2] seconds, and each client’s upload data rate is uniformly
distributed within [10, 20] Mbps. The PoC2 update time t̃m
is set to the maximum value among the summations of local
update and upload times for the active clients with PoC2 m,
plus the model aggregation time at PoC2 m. The aggregation
delay at PoC2s for one-time model summation, i.e., cm, is
drawn from [0.05, 0.1] seconds. Since a macro base station
is typically endowed with significantly powerful computing
resource, the delay cg and c in (17) at GBS are ignored. Given
that our laptop takes about 1 second to perform one-epoch
training on a client’s dataset, and 0.08 seconds to sum up
two models, the above parameters are realistic. The following
simulation results are averaged from 5 trials with different
network topologies. For readers’ convenience, we summarize
the important experimental parameters in Table II.

We will compare the following strategies.
• In-Network Aggregation Scheme: each PoC2 aggre-

gates all the received models before sending to the next
hop, corresponding to the solution to Problem P1.

• Traditional Multi-hop Relaying Scheme: each PoC2

only aggregates the models from local clients. For the
models from other PoC2s, it directly relays them to the
next hop without aggregation. This scheme corresponds
to the solution to the extended problem in Section VI.

• Direct2GBS Scheme: After aggregating the models from
local clients, each PoC2 directly uploads its aggregated
model to GBS via one-hop communications. This is a
special case of Problem P1 where the transmission set of
each PoC2 only contains GBS. To fully reap the benefits
of single-hop communications, we do not consider the
limits of transmission range and interference range as
in the multi-hop modeling, implying that all PoC2s are
allowed to directly communicate with GBS (even though
the received SNR can be very low due to long distance).

B. Algorithm Evaluation

Table III compares the proposed coarse-grained fixing pro-
cedure with the optimal benchmark. To optimally solve Prob-
lem P2 with a tolerable time, we consider a small-scale prob-
lem with 10 PoC2s and only one channel of 50MHz shared
by PoC2s. For the enhanced coarse-grained fixing procedure,
we set the scale factor {β1 = 1, β2 = 0.8, β3 = 0.5} and
threshold θ = 1. Since the weighting factors wm are the same

TABLE III: The number of aggregated models achieved by
different strategies versus the number of control intervals K.

Strategy
K

3 4 5 6 7

Optimal 9.0 15.0 21.0 27.0 30.0
Enhanced
coarse-grained fixing 8.4 12.0 16.8 21.6 25.2

Basic
coarse-grained fixing 4.8 8.4 13.8 16.8 21.0

TABLE IV: The running time (in seconds) for different
strategies versus the number of PoC2s |R|.

Strategy
|R|

4 8 12 16 20

Enhanced
coarse-grained
fixing

0.58 1.82 5.40 11.35 30.09

Basic
coarse-grained
fixing

0.19 0.61 1.80 3.78 10.03

in our parameter settings, the objective of P2 reduces to max-
imizing the number of aggregated models. As shown in Table
III, the enhanced coarse-grained fixing procedure achieves a
reasonable solution to Problem P2 compared with the optimal
benchmark (with about 17.6% performance degradation in
average). Besides, due to the multiple trials, the enhanced
procedure outperforms the coarse-grained fixing procedure.
In fact, the enhanced procedure can be further improved by
adding more trials with different scaling factor βi at the cost
of increasing computation overhead.

Note that we have chosen the number of aggregated models
as the performance metric. By now, we just assume that more
aggregated models generally lead to better training perfor-
mance, as pointed out in [1], [16], [29]–[31]. This relationship
will be studied and confirmed later.

Table IV examines the running time of our proposed
schemes versus the number of PoC2s, which is conducted
via MATLAB on a laptop with 2.60GHz Intel(R) Core(TM)
i7-9750H CPU and 16 GB RAM. The running time for both
enhanced and basic procedures increases with the the number
of PoC2s. Depending on the network scale, the running time
taken by the basic coarse-grained fixing procedures ranges
from 0.19 second to 10.03 seconds, and the time taken by
the enhanced procedure is two times longer than the basis
one because it solves the problem three times with different
scale factors βi. Note that the number of PoC2s (e.g., small
base stations) within one macro cell is typically not large in
practice. Besides, for a stationary wireless backhaul network
where channel gains vary slowly, GBS can collect the channel
state information in advance and solve the optimization prob-
lem before one training round starts. These imply that our
proposed schemes have reasonable running time for practical
implementations.
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TABLE V: The training performance for CIFAR-10 and Fashion MNIST with B = 4 channels under IID settings.

Strategy The average number
of aggregated
models per round

Test accuracy at
the final deadline

Time (in minutes) taken to
achieve a target accuracy

CIFAR-10 Fashion
MNIST

CIFAR-10
@72%

Fashion
MNIST@90%

In-network
aggregation 25.2 77.51% 91.66% 114 115

Traditional
Multi-hop relaying 15.0 72.42% 90.75% 281 146

Direct2GBS 11.4 72.09% 90.47% 399 162

C. Training Performance

Table V shows the test accuracy for the CIFAR-10 and
Fashion MNIST at the final deadline (400 minutes) with
B = 4 channels under IID settings. As shown in the table,
the average number of aggregated models at GBS per round
for the proposed in-network aggregation scheme is 25.2,
which is 68% more than the traditional multi-hop relaying
scheme and 121% more than the Direct2GBS scheme. The
Direct2GBS produces the worst performance because the
direct model transmissions to GBS suffer from severe path
loss resulting from long communication distance. Benefiting
from both multi-hop relaying and in-network aggregation, the
proposed scheme aggregates the largest number of models and
therefore achieves the best test accuracy. For instance, the
proposed scheme achieves 77.51% at the final deadline under
the CIFAR-10 dataset, which is 5.09% more than the multi-
hop relaying scheme and 5.42% more than the Direct2GBS
scheme.

Table V also provides the time required for achieving
a target accuracy, where CIFAR-10@72% and Fashion M-
NIST@91% indicate the time required for achieving 72%
and 91% test accuracy under CIFAR-10 and Fashion MNIST
datasets, respectively. It is shown that the proposed in-network
aggregation scheme significantly reduces the time taken to
achieve a certain accuracy level. For example, the proposed
scheme only takes 114 minutes to achieve 72% test accuracy
under the CIFAR-10 dataset, whereas other two benchmarks
take 281 minutes and 399 minutes to achieve the same
accuracy level, respectively.

Fig. 3-4 show the test accuracy curves under CIFAR-
10 with B = 4 and B = 6, respectively. In the figures,
“Selecting All” assumes that all the active clients’ models are
aggregated at GBS in each round, which can be regarded as
the performance “upper bound”. For these figures, it is found
that the in-network aggregation scheme outperforms other two
benchmark strategies, either under IID or non-IID setting.
Moreover, it is not surprising to observe that B = 6 leads to
higher test accuracy than B = 4 for the three schemes under
both IID and non-IID settings, because more models can be
delivered to GBS under more spectrum resource. Furthermore,
it is shown that the in-network aggregation scheme brings
more significant improvement than other two benchmarks
under the case of B = 4 than the case of B = 6. For example,
the gap between the in-network aggregation and the traditional
multi-hop relaying scheme at the final deadline is 5.09% with
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(a) IID settings with B = 4 channels.
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(b) IID settings with B = 6 channels.

Fig. 3: Test accuracy for the CIFAR-10 dataset under IID
settings.

B = 4 while being 3.34% with B = 6 under IID settings,
implying that the proposed scheme is more beneficial under
limited communication resource due to the reduction in data
traffic.

VIII. CONCLUSION

In this paper, we have proposed an FL framework for multi-
hop wireless networks comprising of a mesh of interconnected
PoC2, where each intermediate PoC2 performs in-network
model aggregation before forwarding the data to the next
hop. By considering the heterogeneous communication and
computing resources in the wireless mesh network, we have
designed a joint routing and spectrum allocation scheme to ac-
celerate the training process. While the formulated problem is
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(a) Non-IID settings with B = 4 channels.
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(b) Non-IID settings with B = 6 channels.

Fig. 4: Test accuracy for the CIFAR-10 dataset under non-IID
settings.

a mixed-integer nonlinear programming, we have transformed
it into a mixed-integer linear programming, and developed a
coarse-grained fixing procedure to find the suboptimal solution
efficiently. We have also generalized our problem formulation
to the case where some PoC2s are not equipped with edge
computing capabilities and unable to perform model aggre-
gation. The simulation results have demonstrated the evident
advantage of the in-network aggregation scheme over the
benchmarks, due to the fact that it can aggregate more models
under the limited communication resources.

APPENDIX A
PROOF OF THEOREM1

Proof: It is known that finding a maximum independent
set in a graph is NP-hard. To prove the theorem, our basic idea
is to consider a special case of Problem P1 such that solving
Problem P1 is equivalent to finding a maximum independent
set of a graph. Specifically, we construct a two-tier wireless
network where a number of tier-1 PoC2s directly connect
with GBS, and a number of tier-2 PoC2s connect with the
tier-1 PoC2s. There is no link between the same tier of
PoC2s. Every PoC2 has one model to transmit. We assume
the number of time interval K = 2, aggregation delay cm = 0,
t̃castm = 0, and weighting factor wm = 1 for all PoC2s. We set
PoC2 update time t̃m = 0 for the tier-2 PoC2s, and t̃m = ∆
for the tier-1 PoC2s, implying that tier-1 PoC2s should wait

until the second interval to conduct transmissions. We also set
e1m,n = 1

∆ for every link (m,n) such that any resource block
can deliver one model within an interval. All PoC2s share
a common channel, and each tier-1 PoC2 has an additional
dedicated channel to communicate with GBS. GBS receives
data from tier-1 PoC2s only through these dedicated channels.
We want to make sure that, under the optimal strategy, every

tier-1 PoC2 will transmit during the second interval, such that
any model transmitted from a tier-2 PoC2 to any tier-1 PoC2

in the first interval will also be successfully transferred to
GBS. This is exactly the case in the constructed network, since
each tier-1 PoC2 has a dedicated channel. We define a set of
effective resource tuples, including the resource tuples from
tier-2 to tier-1 PoC2s in the first interval, and the resource
tuples from tier-1 PoC2s to GBS in the second interval. It
is not hard to see that the optimal objective (the maximum
number of aggregated models) of Problem P1 is exactly equal
to the number of effective resource tuples that are allocated.
We construct a conflict graph G, where the vertices are the
effective resource tuples, and the edge between two vertices
exists if there is a conflict between them according to (18)-
(21). In this way, the optimal objective of Problem P1 is
achieved if and only if a maximum independent set of the
conflict graph G is found. Therefore, Problem P1 is NP-hard.
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