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Abstract Molecular dynamics simulations often adopt coarse-grained (CG) models in order to investigate length- and time-
scales that cannot be effectively addressed with atomically detailed models. However, the effective potentials that govern CG
models are configuration-dependent free energies with significant entropic contributions that have important consequences
for the transferability and thermodynamic properties of CG models. This review summarizes recent work investigating the
fundamental origin and practical ramifications of these entropic contributions, as well as their sensitivity to the CG mapping.
We first analyze the energetic and entropic components of the many-body potential of mean force. By adopting a simple
model for protein fluctuations, we examine how these components vary with the CG representation. We then introduce a
“dual potential” approach for addressing these entropic considerations in more complex systems, such as ortho-terphenyl
(OTP). We demonstrate that this dual approach not only accurately describes the structure and energetic properties of the
underlying atomic model, but also accurately predicts the temperature-dependence of the CG potentials. Furthermore, by
considering two different CG representations of OTP, we elucidate how these contributions vary with resolution. In sum,
we hope this work will prove useful for improving the transferability and thermodynamic properties of CG models for soft
materials.

1 Introduction

As detailed in this special issue, molecular dynamics (MD)
simulations provide a uniquely powerful tool for investigat-
ing a vast range of phenomena. However, despite remarkable
advances in computational methods and resources, many in-
teresting phenomena occur on length- and time-scales that
cannot be easily addressed with atomically detailed simu-
lations. Consequently, many MD simulations represent sys-
tems with low resolution coarse-grained (CG) models that
can provide 3-8 orders of magnitude greater computational
efficiency.[1–3]

One can envision many approaches for developing CG
models with varying goals and purposes. For instance, one
can construct simple models to investigate the general con-
sequences of certain basic physicochemical properties, such
as the connectivity of polymers or the amphilicity of surfac-
tants. [4–6] Alternatively, one can construct more detailed
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models to investigate phenomena in specific chemical sys-
tems. These more detailed models can be parameterized via
“top-down” approaches that use lower resolution informa-
tion, e.g., macroscopic thermodynamic observables, via “bot-
tom-up” approaches that use higher resolution information,
e.g., properties observed in atomically detailed simulations,
or via mixed approaches that employ information from a
combination of sources.[7] Several reviews provide a useful
overview of the vast literature on coarse-graining methods
and models.[8–15]

This manuscript seeks to equip readers with certain ba-
sic insights for constructing CG models. Specifically, this
manuscript summarizes and synthesizes recent results by the
present authors and their coworkers that clarify several fun-
damental aspects of CG models, including (1) the choice of
the CG representation; (2) the energetic and entropic proper-
ties of CG models; (3) the transferability of effective poten-
tials across different thermodynamic state points; and, most
importantly, (4) the inter-relationship between these differ-
ent aspects. Moreover, we attempt to highlight the ramifi-
cations of these fundamental considerations for developing



2

approximate CG models in practice. In order to provide a
rather focused and didactic presentation, we attempt a bal-
anced and illustrative, although not exhaustive, treatment of
the relevant literature. For the same reasons, several interest-
ing and important aspects of coarse-graining, including the
dynamics of CG models,[16] are beyond the scope of this
review.

We begin by first considering the basic theory of bot-
tom-up coarse-graining.[8, 17–20] This theory allows us to
define and analyze the exact potential for perfectly reproduc-
ing the structural and thermodynamic properties of an AA
model at the resolution of the CG model. We then consider a
simple microscopic model for which this exact coarse-grain-
ing procedure can be performed. This study illuminates the
impact of the CG representation upon the information con-
tent and thermodynamic properties of the CG model. We
then develop and demonstrate several computational meth-
ods for accurately modeling both structural and thermody-
namic properties of more realistic AA models for which the
exact coarse-graining procedure cannot be performed. Fi-
nally, we describe the application and results of these meth-
ods from ongoing efforts to develop an accurate and predic-
tive CG model for an archetypical glass former, ortho-ter-
phenyl (OTP). Thus, this manuscript seeks to provide both
theoretical and practical insights into the energetic and en-
tropic consequences of coarse-graining complex systems.

2 Exact coarse-graining in theory

This section presents an exact theoretical framework for bot-
tom-up coarse-graining. We focus on the canonical ensem-
ble for a system in a cubic volume V = L3 at temperature
T , although this framework can be readily extended to the
NPT ensemble.[20] We refer to the high resolution model as
an atomistic, or all-atom (AA), model and the low resolu-
tion model as a CG model. More generally, this framework
can be applied to develop a low resolution model from any
classical, particle-based model.

2.1 AA model

We first consider an AA model for a system of n atoms
with a configuration r = (r1,r2, . . . ,rn) and a temperature-
independent potential, u(r). The force on each atom is fi =

−∂u/∂ri and the instantaneous excess pressure is,

pxs(r) =−
(

∂u
∂V

)
r̂
=

1
3V ∑

i
fi · ri −

(
∂u
∂V

)
r
, (1)

where r̂ = (L−1r1,L−1r2, . . . ,L−1rn) defines the scaled AA
coordinates.

The equilibrium configuration probability density is

pr(r) = z−1
r exp [−βu(r)] , (2)

where β = 1/kBT and zr =
∫

V n
drexp [−βu(r)] is the AA

configuration integral.[21] The excess configurational en-
tropy

sr =−kB

∫
V n

dr pr(r) ln[V n pr(r)] (3)

quantifies the configuration information present in the equi-
librium AA configuration distribution.

The excess Helmholtz potential, ar =−kBT ln[zr/V n] is
a cumulant generating function such that(

∂ (−βar)

∂ (−β )

)
= ⟨u(r)⟩ ≡ u, (4)

where the angular brackets denote an average according to
pr(r), and u denotes the mean potential energy. Similarly,
the (excess) specific heat cv ≡ ∂u/∂T is given by(

∂ 2(−βar)

∂ (−β )2

)
= kBT 2cv = σ

2
u , (5)

where

σ
2
u =

∫
V n

dr pr(r)(u(r)−u)2 (6)

is the variance in the AA potential fluctuations.

2.2 Mapped ensemble

We introduce a linear mapping operator, M, to determine the
CG configuration R = (R1,R2, . . . ,RN) as a function of the
AA configuration: R = M(r).[22] The coordinates of CG
site I are determined by:

RI = MI(r) =
n

∑
i=1

cIiri. (7)

where cIi ≥ 0 are constant coefficients. These coefficients
must satisfy

n

∑
i=1

cIi = 1 ∀ I, (8)

such that displacing each atom by δr results in displacing
each CG site by δr. We refer to an atom i as “involved”
in CG site I if cIi > 0. For simplicity, we denote {i ∈ I} as
the set of atoms that are involved in site I. In many cases,
the CG sites correspond to disjoint atomic groups, i.e., no
atom is involved in more than one CG site. However, this
is not a requirement. If one or more atoms are involved in
multiple sites, then it is useful to introduce a second set of
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mapping coefficients, {dIi}, describing atoms that are “spe-
cific" to a CG site.[22] These coefficients must satisfy three
conditions: (1) dIi ≥ 0 ∀ i and I; (2) ∑

i
dIi = 1 ∀ I; and (3)

if atom i is involved in multiple sites, then dIi = 0 ∀ I, i.e.,
dIi > 0 only if atom i is specific to site I. These constant
coefficients then allow us to define a mapped AA force on
each CG site,

fI(r) = ∑
i∈I

dIi

cIi
fi(r). (9)

The dIi coefficients are not unique and different definitions
of the instantaneous force may be adopted as long as they
yield the same mean force.[22–25] In the following, we gen-
erally assume that the CG sites correspond to disjoint atomic
groups. In this case, we can define dIi = cIi for all i and I,
such that Eq. (9) simplifies to fI(r) = ∑

i∈I
fi(r).

The AA equilibrium distribution, pr, and CG mapping
operator, M, define a “mapped ensemble” which is the tar-
get quantity for structure-based coarse-graining methods. In
particular, the mapped probability distribution, pR(R),

pR(R) =
∫

V n
dr pr(r)δ (M(r)−R), (10)

is the total probability density for the AA configurations that
map to the configuration R. The mapped distribution defines
a new excess configurational entropy:

sR =−kB

∫
V N

dR pR(R) ln[V N pR(R)], (11)

which quantifies the configurational entropy in the mapped
AA ensemble. The mapping entropy,

Smap = sr − sR ≤ 0, (12)

then quantifies the information that is lost when viewing the
AA model at the resolution of the CG model.[26] Notice
this mapping entropy is intrinsic to the CG mapping, M, and
does not reflect any approximations, e.g., in constructing a
CG potential.

For any CG configuration R, one can consider a “subensem-
ble” of AA configurations that map to R. This subensemble
is described by the conditioned distribution

pr|R(r|R) = pr(r)δ (M(r)−R)/pR(R), (13)

which gives the conditioned probability density for the AA
model to sample a configuration r, given that r maps to R.
This conditioned distribution allows us to define the condi-
tioned mean of the AA force, potential, and excess pressure
as a function of R,

fI(R) ≡ ⟨fI(r)⟩R (14)

u(R) ≡ ⟨u(r)⟩R (15)

pxs(R) ≡ ⟨pxs(r)⟩R , (16)

where the subscripted angular brackets denote a conditioned
average according to pr|R(r|R). Finally, we define a very im-
portant entropic quantity to describe the mapped subensem-
ble:

SW (R) =−kB

⟨
ln
[

pr|R(r|R)

qr|R(r|R)

]⟩
R
, (17)

where qr|R(r|R) = V N−nδ (M(r)−R) is the uniform con-
ditioned probability distribution. Note that SW is the neg-
ative of the Kullback-Leibler divergence between pr|R and
qr|R.[27] Consequently, SW ≤ 0 and only vanishes when pr|R =

qr|R. More importantly, SW , quantifies the information that is
lost when we replace the AA conditioned distribution, pr|R,
with the uniform conditioned distribution, qr|R, i.e., SW ex-
actly quantifies the information and configurational entropy
that is lost when coarse-graining over the subensemble of
AA configurations that map to R.[28]

2.3 Potential of mean force

The central quantity in bottom-up coarse graining is the many-
body potential of mean force (PMF), W ,[8, 17–20, 22, 29]

exp[−βW (R)] =V−(n−N)
∫

V n
drexp[−βu(r)]δ (M(r)−R),

(18)

which corresponds to the total Boltzmann weight for the
subensemble of AA configurations that map to a single CG
configuration R. Note that the mapped distribution may be
expressed

pR(R) = Z−1
R exp [−W (R)/kBT ] , (19)

where ZR =V−(n−N)zr. Consequently, a properly thermostat-
ted MD simulation of a CG model that employs W as an
interaction potential will perfectly reproduced the mapped
configuration distribution that is implied by the AA model
and CG mapping.[30] For this reason, W is often referred to
as the “exact CG potential.”

2.3.1 Excess free energy

The PMF not only reproduces the mapped AA configuration
distribution, but also preserves the excess free energy of the
AA model such that,

V−N
∫

V N
dRexp[−βW (R)] =V−n

∫
V n

drexp[−βu(r)]. (20)

Thus, W is an excess Helmholtz potential in which the CG
coordinates are treated as additional mechanical variables.[20]
The total differential of this potential is given by

dW =−∑
I

fI ·dRI − pxsdV −SW dT. (21)
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Equation (21) has several important implications for mod-
eling AA properties. First, the configuration-dependence of
the PMF is determined by a conditioned mean of AA forces.
It is for this reason and because it is a function of all N CG
coordinates that W is commonly referred to as the many-
body PMF. Similarly, the volume-dependence of the PMF is
determined by the conditioned mean of the AA excess pres-
sure in the subensemble of AA configurations that map to a
given CG configuration. Moreover, the temperature-depen-
dence of the PMF is determined by the entropy lost from this
subensemble. Because Eq. (17) implies that SW ≤ 0, for ev-
ery fixed configuration and volume, W necessarily increases
with increasing temperature. Note that Maxwell relations re-
late variations in these conditioned averages,(

∂ fI

∂T

)
=

(
∂SW

∂RI

)
. (22)

Most importantly, Eq. (21) implies that the excess pressure
and entropy of the AA model can be determined at the res-
olution of the CG model from the volume and temperature-
dependence of W .

2.3.2 Energetic and entropic contributions

Because W is a configuration-dependent excess Helmholtz
potential, it follows that W can be decomposed into ener-
getic and entropic contributions:[28]

W (R) =UW (R)−T SW (R) (23)

The energetic contribution, UW , is the conditioned average
of the atomistic potential, u(r), over the subensemble of AA
configurations that map to a fixed CG configuration, R:

UW (R)≡ u(R) = ⟨u(r)⟩R . (24)

The entropic contribution, SW is the Kullback-Leibler diver-
gence between pr|R and qr|R, which was defined earlier in
Eq. (17)

SW (R) =−kB

⟨
ln
[

pr|R(r|R)

qr|R(r|R)

]⟩
R
.

Thus, SW (R) quantifies the information loss associated with
coarse-graining over this subensemble of AA configurations.
Note that W , UW , and SW also depend upon V and T , al-
though for simplicity we do not explicitly indicate this de-
pendence.

Since SW ≤ 0, it follows that W ≥UW . Consequently, the
PMF cannot be used to accurately estimate AA energetics.
However, if UW can be determined, then it can be used to
evaluate AA energetics at the resolution of the CG model.
In particular, because∫

V N
dR pR(R)UW (R) =

∫
V n

dr pr(r)u(r) = u, (25)

the thermodynamic average of the AA potential can be de-
termined from the CG model by first sampling configura-
tions with the PMF according to Eq. (19) and by then evalu-
ating UW for each sampled configuration.

Similarly, SW can be used to estimate entropic proper-
ties of the AA model at the resolution of the CG model.
By sampling CG configurations with the PMF according to
Eq. (19), one can determine the configurational entropy, sR,
in the mapped ensemble according to Eq. (11). In order to
determine the excess entropy of the AA model, sr, one must
also determine the mapping entropy, Smap. However, since

∫
V N

dR pR(R)SW (R) = Smap, (26)

this mapping entropy can be determined from the CG model
by sampling configurations according to the PMF and then
evaluating SW for each sampled configuration.[28] There-
fore, while W is the effective potential for sampling config-
urations, UW and SW may be considered “operators" for ex-
actly evaluating energetic and entropic observables, respectively.[31]

2.3.3 Specific heat and energetic fluctuations

The (excess) thermodynamic specific heat cv = ∂u/∂T is
another important thermodynamic property worth briefly con-
sidering. Since the specific heat is a thermodynamic observ-
able, in principle it should be possible for the CG model
to reproduce cv. Equation (25) indicates that the exact CG
model can reproduce the AA energy at any temperature and,
by so doing, reproduce cv according to ∂u/∂T . However,
Eq. (5) demonstrates that cv is also related to the variance,
σ2

u , in the AA potential fluctuations. Since the CG model
cannot directly observe the instantaneous AA potential, it is
not immediately obvious how the CG model can reproduce
the variance in the AA potential fluctuations.[32] This sug-
gests the possibility of a fundamental inconsistency in mod-
eling energetics with CG models. In principle, the CG model
can reproduce the temperature dependence of the mean AA
potential but not the variance in the AA potential fluctua-
tions.

Indeed, the CG resolution only allows one to directly ob-
serve fluctuations in UW , i.e. fluctuations in the conditioned
mean of the AA potential:

Σ
2
UW

=
∫

V N
dR pR(R)

⏐⏐UW (R)−u(r)
⏐⏐2. (27)

The CG model cannot directly observe the potential fluctu-
ations in the subensemble of AA configurations that map to
a given CG configuration:

σ
2
u|R(R) =

∫
V n

dr pr|R(r|R)
⏐⏐u(r)−UW (R)

⏐⏐2 (28)
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Clearly, σ2
u|R(R)≥ 0 and σ2

u|R(R) = 0 only if u(r) is a con-
stant for all AA configurations that map to R. Moreover, it
can be shown that

σ
2
u = Σ

2
UW

+
∫

V N
dR pR(R)σ2

u|R(R), (29)

i.e., the total variance in the AA potential fluctuations can be
decomposed into the fluctuations in the conditioned mean
potential, Σ 2

UW
, plus the average of the fluctuations within

the subensemble of the AA configurations that map to each
CG configuration, σ2

u|R(R).[32] Since σ2
u|R > 0 for any non-

trivial coarse-graining, it then follows that Σ 2
UW

< σ2
u and,

thus, the CG representation of Eq. 6 does not hold:

kBT 2cv ̸= Σ
2
UW

. (30)

This apparent inconsistency can be resolved by account-
ing for the temperature-dependence of the PMF. It is conve-
nient to define a configuration-dependent CG specific heat,

CW (R) = (∂UW (R)/∂T ) = T (∂SW (R)/∂T ) . (31)

Since W is a configuration-dependent Helmholtz potential,
it also acts as a cumulant generating function:(

∂ 2(−βW (R))

∂ (−β )2

)
= kBT 2CW (R) = σ

2
u|R(R). (32)

Thus, the temperature-dependence of W and, more precisely,
CW , directly quantifies the energetic fluctuations hidden by
coarse-graining. Using Eqs. (29) and (32), we obtain a gen-
eralized fluctuation theorem for computing the AA specific
heat in terms of energetic fluctuations that are observable at
the CG resolution:

kBT 2cv = Σ
2
UW

+
∫

V N
dR pR(R)CW (R). (33)

Thus, in principle, CG models are capable of exactly and
consistently reproducing the AA heat capacity, either from
the temperature-dependence of the mean AA potential (i.e.,
according to Eq. (25)) or from the generalized fluctuation
relation (i.e., according to Eq. (33)).

2.4 Insights from a study of exact coarse-graining

While the preceding described an exact coarse-graining pro-
cedure, the exact PMF cannot be determined for most sys-
tems of interest. However, it is possible to derive the exact
PMF for certain simple models. In such simple cases, one
can analyze the exact PMF in order to gain general, qual-
itative insight into the impact of resolution and the details
of specific mappings upon the information content and ther-
modynamic properties of CG models. In the following, we
illustrate the key findings from the study of Foley, Shell, and

Noid,[28] as well as the more recent work by Foley, Kid-
der, Shell, and Noid.[33] Importantly, these studies directly
assess the intrinsic qualities of CG mappings without intro-
ducing confounding effects due to approximating the many-
body PMF.

2.4.1 High resolution GNM

These studies adopted the Gaussian Network Model (GNM)
as a simple high resolution model for proteins.[34–36] In the
GNM, each amino acid of a protein is represented as a bead
located at its α carbon. The α carbons within a specified
cutoff distance of each other are then connected by isotropic
linear springs. Consequently, the GNM potential can be de-
composed into independent components acting in each di-
rection

uGNM(r|r0) =
1
2

Γ δr†
κκκδr, (34)

where δr= r−r0, r is a vector that specifies the coordinates
of the α carbons in one direction, e.g. r = (x1,x2, . . . ,xn),
r0 specifies the equilibrium coordinates in this same direc-
tion, Γ is a dimensional scaling factor, and κκκ is the Kirch-
hoff matrix. The entries of the Kirchhoff matrix are given by
κi j = δi jni − θi j, where δi j is the Kronecker delta, ni is the
number of springs connected to atom i, and θθθ is the contact
matrix of the GNM, i.e., θi j = 1 if there exists a spring be-
tween atoms i and j and θi j = 0 otherwise. Note that θθθ corre-
sponds to the adjacency matrix of a “protein interaction net-
work” in which each amino acid is represented by a vertex
and an edge is drawn between contacting residues. κκκ then
is the graph Laplacian of this protein interaction network.
Also note that the GNM potential is invariant if each atom is
displaced by δx. Consequently, Jn = (1, . . . ,1)† is an eigen-
vector of κκκ with eigenvalue 0 that corresponds to uniformly
translating all n atoms. Assuming that the protein is con-
nected, Jn is the unique 0 eigenvector of the GNM. There-
fore κκκ is a symmetric semi-positive definite matrix with a
1-dimensional nullspace. It is also convenient to introduce a
vibrational projection operator, Qn = 1n − n−1JnJ†

n, where
1n is the n× n identity matrix. Then δrv = Qnδr describes
the atomic vibrational motion.

The configurational probability density of the high reso-
lution GNM is given by a Gaussian distribution:

pr(r) ∝ exp
[
−1

2
βΓ δr†

κκκδr
]
. (35)

The excess configurational entropy of the high resolution
GNM is

sr/kB =
1
2
(n−1)(1+ ln[2π/(βΓV 2)])− 1

2
ln tκκκ , (36)

where V = L is the “volume” in one-dimension and tκκκ =
1
n det1κκκ . Since κκκ is singular we denote the product of its
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n − 1 positive eigenvalues by det1κκκ . According to Kirch-
hoff’s matrix-tree theorem, tκκκ corresponds to the number of
spanning trees in the protein interaction network defined by
the GNM.[37] A spanning tree is a fully connected graph
that contains all of the vertices in the protein interaction net-
work, but edges have been removed such that there are no
loops.[37] Since the first term in Eq. (36) depends trivially
on n and is independent of the protein identity, we define
the “non-trivial information” in the high resolution model
as h = 1

2 ln tκκκ .
The (vibrational) covariance matrix of the high resolu-

tion GNM is c = ⟨δrvδr†
v⟩= (βΓ κκκ)I where the superscript

I denotes the Moore-Penrose pseudo-inverse. We define the
vibrational power of the GNM as the sum of the mass-weighted
mean square displacements, σ =mTrc=

⟨
∑i mδ r2

v;i
⟩
, where

m is the atomic mass.

2.4.2 Exact CG model

We then determine a CG representation by mapping the co-
ordinates of the high resolution GNM according to Eq. (7):
R=M(r). We require that the mapping coefficients are prop-
erly normalized according to Eq. (8) and linearly indepen-
dent such that the rank of M is equal to the number of CG
sites, N. Because a linear combination of Gaussian variables
is also Gaussian,[38] it then follows that the mapped proba-
bility density for the CG coordinates is given by

pR(R) ∝ exp
[
−1

2
βΓ δR†KδR

]
, (37)

where KI =QNMκ IM†QN is the CG Kirchhoff matrix, QN =

1N −N−1JNJ†
N is the vibrational projector for CG displace-

ments, 1N is the N ×N identity matrix, and JN = (1, . . . ,1)†

spans the nullspace of K.[28] Note that K is not a true Kirch-
hoff matrix in the sense that KIJ ̸= δIJNI −θIJ because inte-
grating over the coordinates introduces non-negative off di-
agonal elements.[39] In the following, we will require that
the CG sites correspond to disjoint sets of n/N atoms and
that the site coordinates are given by the mass centers of the
corresponding atomic groups. In this case, KI = Mκ IM†,
which is readily interpreted as a condition ensuring that pR
has the proper covariance matrix.

The excess configurational entropy in the mapped en-
semble is given by Eq. (11) and may be explicitly evaluated:

sR/kB =
1
2
(N −1)(1+ ln[2π/(βΓV 2)])− 1

2
lnTK, (38)

where TK = 1
N det1K and again det1K corresponds to the

product of the positive eigenvalues of K. The first term of
Eq. (38) is independent of protein identity and the CG map-
ping. Accordingly, we define the non-trivial information in
the mapped ensemble as H(M) = 1

2 lnTK. The covariance

matrix in the mapped ensemble is C =
⟨

δ R̂v(r)δ R̂†
v(r)

⟩
=

(βΓ K)I , where δ R̂v(r) = QNMδr. We define the vibra-
tional power in the mapped ensemble by Σ(M) = MTrC =⟨
∑I MδR2

v;I
⟩
, where M = (n/N)m is the CG mass. Impor-

tantly, both H and Σ depend on the CG mapping M.
As discussed in Section 2.3.2, the PMF can be decom-

posed into an energetic and an entropic component, W (R) =

UW (R)−T SW (R). These components are particularly sim-
ple for the linear GNM. The energetic component is given
by

UW (R) =
1
2

kBT (n−N)+
1
2

Γ δR†KδR. (39)

The first term depends linearly upon temperature, is inde-
pendent of protein identity or the details of the CG map-
ping, and simply corresponds to the equipartition result for
the mean energy of the (n−N) harmonic degrees of free-
dom that have been integrated out of the CG model. The
second term is temperature-independent, but depends upon
the protein identity and the details of the mapping. Inter-
estingly, the mapped covariance of the GNM is completely
determined by the energetic contribution to the PMF. The
entropic component is given by

SW (T )/kB =
1
2
(n−N)(1+ ln[2π/(βΓV 2)])+

1
2

ln(TK/tκκκ).

(40)

Again, the first term only reflects the excess entropy lost
from the n−N harmonic degrees of freedom that have been
integrated out of the CG model. The second term in Eq. (40)
reflects the Kirchoff matrix of the underlying protein and
the CG mapping. Because the entropic component is con-
figuration independent, SW = ⟨SW ⟩= Smap and explicitly il-
lustrates the general result from Eq. (12): Smap = sr − sR.
Equations (39) and (40) also illustrate the general result that
CW (R) = ∂UW (R)/∂T = T ∂SW (R)/∂T . In the case of the
GNM, CW is simply 1

2 (n−N)kB, which corresponds to the
specific heat of the harmonic degrees of freedom that have
been integrated out of the CG model.

2.4.3 Block maps

As a preliminary study, we first considered the impact of
resolution upon the information content and thermodynamic
properties of CG models for the GNM.[28] In this section,
we present results for the PDBID 1UBQ (i.e., ubiquitin),
which consists of 72 amino acids after the last four residues
of the “floppy tail" have been trimmed. The inset of Fig. 1
presents a ribbon representation of the folded, equilibrium
structure for 1UBQ. The original work of Foley et al. demon-
strated very similar results for 7 other proteins with rather
diverse structures.[28]
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Fig. 1 The impact of resolution upon the PMF and mapped ensemble
for block CG representations of 1UBQ. The ribbon structure is col-
ored according to secondary structure assignments. Panel A presents
⟨βW ⟩ as a function of the number of CG sites, N. Panel B presents the
excess configurational entropy in the mapped ensemble, −sR (solid)
along with a naïve scaling by N/n of the high resolution excess con-
figurational entropy, −sr (dashed). Both panels employ a log scale for
the x-axis. For these calculations we have employed βΓV 2 = 10.

Specifically, this first study considered “block maps,”
which associated CG sites with equally sized, contiguous
segments along the protein backbone. For example, the N =

2 block map for 1UBQ represents the first 36 amino acids
with one site and represents amino acids 37-72 with a sec-
ond site.

Figure 1 illustrates the impact of resolution upon CG
models for 1UBQ. Panel A presents the average of the PMF,
while panel B presents the excess configurational entropy
retained in the mapped ensemble. At the highest resolution,
N = n = 72 and the CG model is equivalent to the high res-
olution model. At this highest resolution, the PMF is sim-
ply the high resolution potential, which has an average of
1
2 kBT (n−1) according to the equipartition theorem.[40] More-
over, all of the excess configurational entropy is stored in
the high resolution configuration distribution, i.e., sr = sR

and Smap = 0. As the CG resolution decreases, the infor-
mation in the mapped configuration distribution systemat-
ically decreases. In order to preserve the excess free energy
of the high resolution model, the PMF systematically in-
creases to account for the lost configurational entropy. How-
ever, because it is a conditioned average of the high res-
olution potential, the average energetic contribution to the
PMF does not vary with resolution. Consequently, the PMF
becomes increasingly dominated by entropic contributions
as the resolution decreases. Interestingly, the entropy loss
varies less rapidly with resolution than might be naïvely ex-
pected. The dashed curve in panel B presents the naïve ex-
pectation, −sr/(n/N), which is always less than −sR.

The impact of CG resolution upon configurational en-
tropy has also been investigated for more realistic AA models.[41,
42] In particular, the recent work of Bernhardt and cowork-
ers utilized the 2PT method[43] to estimate the rotational,
translational, and vibrational contributions to the configura-
tional entropy of AA models for several small molecules.[44]
Importantly, the 2PT method allowed them to estimate the
configurational entropy in the mapped ensemble of these
molecules. They observed that the configurational entropy
of the mapped ensemble systematically decreases with de-
creasing CG resolution, as expected. Additionally, they also
applied the 2PT method to estimate the configurational en-
tropy for approximate CG models that were parameterized
via the conditional reversible work (CRW) method.[45] They
observed that, in some cases, the translational entropy of
these CRW models actually increased with decreasing reso-
lution. This presumably results from the failure of the pair
additive CRW potentials to accurately describe the many-
body correlations present in the mapped ensemble. Indeed,
early work by Lyubartsev and Laaksonen demonstrated that
pair additive potentials have maximum entropy among all
potentials that reproduce the same pair correlations.[46] More-
over, this artificially enhanced translational entropy of ap-
proximate CG models may be interpreted as a “smoothing”
of the many-body PMF and likely contributes to the accel-
erated dynamics observed in CG models.[16, 47, 48]

2.4.4 Systematic study of mapping space

The previous section considered a single block map at each
resolution. For proteins and other large molecules, though,
there exist many different CG representations with the same
resolution, i.e., the same number of CG sites, N. These dif-
ferent representations correspond to distinct groupings of
the underlying atoms. This section illustrates some of the
key findings from the recent study by Foley, Kidder, Shell,
and Noid that more systematically investigated the space of
CG representations.[33] We defined two metrics to quanti-
tatively assess the intrinsic quality of a given CG mapping,
M. Specifically, we defined the information content, I, of the
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Fig. 2 Effect of the mapping on the mapped ensemble of 2ERL. Left: Illustration of the CG maps that maximize Q (top) and I (bottom). The
ribbon structures are colored according to the assignment of α carbons to the two sites. The colored bar underneath the ribbon structure describes
the sequence of the backbone, which has also been colored according to the CG site assignment of the residue. Right: The normalized probability
distributions of the bond length, x1−x2, in the mapped ensembles defined by two maps for 2ERL. The map with maximal spectral fitness, Q, which
is presented in blue, and the map with maximal information content, I, which is presented in orange, were identified via Monte Carlo sampling.[33]

mapping,

I(M) = H(M)/h, (41)

as the fraction of non-trivial information in the high resolu-
tion model that is preserved by the CG mapping. Because h
and H reflect the protein- and the mapping-dependent con-
tributions to sr and sR, it follows that maximizing I is equiva-
lent to minimizing the (absolute) magnitude of the mapping
entropy Smap. We also defined the spectral quality,

Q(M) = Σ(M)/σ , (42)

as the fraction of the vibrational power in the high resolution
model that is preserved by the CG mapping. Intuitively, I
quantifies the information preserved by the CG model, while
Q quantifies how well the mapping preserves the low fre-
quency, large scale motions of the high resolution model.
Note that I is determined by the eigenvalues of K, while Q
is determined by the eigenvalues of KI. Most importantly,
these two metrics assess the intrinsic properties of the CG
mapping and do not reflect any approximations, e.g., in con-
structing an effective potential.

In order to illustrate the impact of the CG mapping upon
these two metrics, we consider two distinct 2-site maps for
the protein 2ERL. These two maps maximized Q and I among
the 2-site maps that we obtained from Monte Carlo sam-
pling. [33] The left panel of Fig. 2 compares the atomic
groupings of the 2 maps, while the right panel compares the
probability distributions for the bond length, i.e., x1 − x2,
in the corresponding mapped representations. Note that the
mapping that maximizes Q decomposes the protein struc-
ture into two compact regions that are separated by a rela-
tively large equilibrium distance, d0 = 0.906 nm. Conversely,

the mapping that maximizes I forms atomic groups that are
distributed almost uniformly through the protein sequence
such that the equilibrium distance between the two sites is
only 0.052 nm. The bond distribution is much more local-
ized for the most informative map and is much broader for
the map with maximum spectral quality. Thus, although both
CG representations employ only 2 sites, they result in very
different mapped ensembles.

As noted above, our initial studies with the GNM have
considered a restricted class of CG mappings in which each
site corresponds to an equal number of connected atoms.
Even given these restrictions, the number of possible maps
is too large to exhaustively enumerate. Consequently, we
employed Monte Carlo (MC) methods to statistically in-
vestigate the space of CG mappings.[49] We sampled each
map, M, according to the probability distribution p(M) =

exp[−βEE(M)] with E(M) = 1−Q(M) or E(M) = 2H(M),
where βE is a corresponding fictitious inverse temperature.
After performing MC simulations at a range of tempera-
tures, we employed the Multistate Bennet Acceptance Ratio
method to estimate a density of states quantifying the num-
ber of maps with a given quality.[50] While the following
presents results for the small helical protein 2ERL, Ref. [33]
provides similar results for several additional proteins.

We first consider the maps that maximize Q and I. While
Fig. 2 presents the 2-site maps that maximize Q and I, Fig. 3
presents the corresponding optimal maps with N = 4 and 8
sites. Maps that maximize Q tend to associate CG sites with
compact, highly connected atomic groups that correspond to
structural motifs, such as helical segments or loops, in order
to preserve low frequency, large scale motions. These maps
are consistent with various approaches that seek to associate
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Max Max

Fig. 3 Maps with maximal Q (left) and maximal I (right) among CG
representations with N = 4 (bottom) and 8 (top) sites.

CG sites with rigid regions that move coherently.[51–54] In
particular, our numerical studies indicate that Q is highly
(anti-)correlated with the metric, χ2

EDCG(M) , that is mini-
mized in the essential dynamics coarse-graining method.[52,
53] Moreover, Q is closely related to the modularity and sev-
eral other metrics that have been employed in spectral meth-
ods for clustering graphs.[55–58] Conversely, maps that max-
imize I tend to associate CG sites with loosely connected
atomic groups that are often scattered throughout the pro-
tein structure in order to preserve the many and relatively
informative high frequency protein motions.

We next consider statistical properties of the space of CG
mappings. The top and left panels of Fig. 4 present the (log)
density of states (DoS) lnΩ(Q) and lnΩ(I), respectively,
which quantify the number of maps with a given spectral
quality, Q, and information content, I, for a given number
of CG sites. Since lnΩ is characterized by a single dom-
inant maximum at each resolution, the mapping space for
each resolution appears to be dominated by a large num-
ber of “typical” maps with a characteristic spectral qual-
ity and information content. These characteristic values sys-
tematically decrease with decreasing resolution. The DoS
lnΩ(I) remains similarly narrow at each resolution, indicat-
ing that the information content of these maps is primarily
determined by the number of CG sites. In contrast, lnΩ(Q)

is considerably broader, indicating greater variation in the
spectral quality of maps with a fixed N. Moreover, lnΩ(Q)

broadens with decreasing resolution and develops a “fat tail”
of very rare maps with surprisingly high spectral quality. In
particular, one observes rare 4-site maps that provide spec-
tral quality that is comparable to 10-site maps of relatively
low spectral quality. Indeed, similar overlap can also be ob-
served in the lnΩ(I) densities of states. Consequently, in-

creasing resolution does not necessarily increase the quality
of the CG representation.

The center panel in Fig. 4 presents an intensity plot of the
natural logarithm of the joint 2-dimensional DoS, lnΩ(Q, I),
which quantifies the correlation between the spectral quality
and information content of CG mappings. These 2D DoS
are similarly sharply peaked with a single dominant maxi-
mum. At the highest resolution (i.e., N =20 such that each
site corresponds to 2 amino acids), the spectral quality and
information content appear almost statistically independent.
However, at lower resolutions the two metrics appear quite
anti-correlated.

Although this may initially appear surprising, this re-
sult can be directly traced to the definition of the two met-
rics and may be a rather general property of CG mappings.
The information content, I, is defined above by the ratio of
H ∝ lnN−1 det1 K and h ∝ lnn−1 det1 κκκ , while the spectral
fitness, Q, is defined by the ratio of Σ ∝ TrMKI and σ ∝

Trmκκκ I. Consequently, I emphasizes high frequency vibra-
tions, while Q emphasizes low frequency vibrations. More-
over, the vibrational DoS of soft materials often include many
more high frequency modes than low frequency modes. These
relatively few low frequency modes are relatively uninfor-
mative but often describe physically important global mo-
tions. On the other hand, the high frequency modes are rel-
atively informative but often describe unimportant localized
fluctuations. This suggests that maps with maximal Q likely
preserve the few uninformative low frequency modes at the
expense of the many informative high frequency modes. Con-
versely, maps with maximal I likely preserve informative
high frequency modes at the expense of the relatively few
uninformative low frequency modes.

The recent study of Giulini and coworkers provides ad-
ditional, useful insight into these considerations.[59] This
study considered a fully anharmonic molecular mechanics
model for proteins and focused on decimation mappings in
which each site corresponded to a single atom. Giulini and
coworkers determined mappings in order to minimize |Smap|,
which they approximated based upon configurations sam-
pled from MD simulations.[59] Since |Smap| corresponds to
the information lost by the CG representation, this approach
is similar to maximizing the information content, I, of the
CG mapping. Giulini and coworkers observed that CG map-
pings that preserved only backbone atoms were less infor-
mative than randomly sampled maps. Assuming that these
backbone-based maps provide a relatively good description
of low frequency fluctuations, this observation appears con-
sistent with the anti-correlation between Q and I that is ob-
served for the GNM. Moreover, Giulini and coworkers also
observed that more informative maps identified biologically
important amino acids. This suggests that the selection of a
CG mapping should not only consider generic metrics, but
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Fig. 4 Densities of state characterizing the statistics of CG mappings. The top panel presents the log density of states with respect to Q, lnΩ(Q).
The left panel presents the log density of states with respect to I, lnΩ(I). The legend indicates the number of sites, N, considered in each DoS.
The middle panel presents the 2D log density of states with respect to Q and I, lnΩ(Q, I). These 2D DoSs are labelled by N. The blue x’s indicate
the separatrix for the apparent phase transitions that are observed at sufficiently low resolution.

also the biological, chemical, and physical properties that
are relevant to the system and phenomena of interest.

One other aspect of the calculated DoS deserves further
mention. At sufficiently low resolutions, lnΩ(Q) exhibits
regions of alternating curvature. Similar “back-bending” in
the densities of states for mechanical models signals the ex-
istence of a phase transition in a finite system.[60] There-
fore, the inflection points in lnΩ(Q) suggest the possibility
of a “phase transition” in the space of CG representations. In
order to investigate this possibility, Fig. 5 presents both the
mean and variance among sampled 4-site maps as a function
of the fictitious temperature TE . As expected for a first order
phase transition, the mean in Q and I both transition over

a small temperature window in which the fluctuations in Q
and I attain a maximum. Moreover, this transition is only
observed at sufficiently low resolutions, which are indicated
by the blue X’s in Fig. 4. Consequently, these results suggest
the rather intriguing possibility that there exists a “critical
resolution” for viewing physical systems. Below this reso-
lution a phase transition qualitatively distinguishes between
“good” and “bad” maps, while above this critical point no
such qualitative distinction exists.



11

R
e

la
ti

v
e

 V
a

ri
a

n
c

e

Fig. 5 Average (Panel A) and variance relative to the T → ∞ limit
(Panel B) of Q and I for 4-site representations of 2ERL as a function
of the fictitious temperature T = TE . The vertical dashed line represents
the identified transition temperature. Note that the x-axis is presented
on a log scale.

2.4.5 Considerations for more realistic models

In closing this section, it is important to emphasize that the
preceding results were obtained for the GNM, which is a
particularly simple and analytically tractable microscopic
model. Because the GNM corresponds to a Gaussian mi-
croscopic probability distribution, the mapped distribution
is also Gaussian and depends only trivially upon the phys-
ical temperature, T . Consequently, it is important to briefly
speculate upon the generality of the preceding results for
more realistic microscopic models. In such cases, the micro-
scopic configuration distribution may be much more com-
plex and the mapped distribution may demonstrate nontriv-
ial temperature-dependence.

To begin with, we anticipate that the qualitative trends of
Fig. 1 will be robust because the underlying energy-entropy
decomposition of the PMF is quite general. Specifically, be-
cause UW is a conditioned mean of u, ⟨UW ⟩ = ⟨u⟩ at all
resolutions for any microscopic model. Conversely, the en-
tropic contribution, −T SW , to the PMF should always sys-
tematically increase as the model resolution decreases, al-

though SW may potentially demonstrate more complex tem-
perature dependence for more realistic models. Similarly,
we anticipate that the mapped ensemble will quite generally
depend upon the choice of the CG mapping, as illustrated
by Fig. 2. Moreover, because I and Q emphasize opposite
ends of the vibrational spectrum, we suspect that one will
often, though not necessarily always, find significant dif-
ferences between representations with maximal information
and maximal spectral fitness, as illustrated in Figs. 2 and 3.

Conversely, we expect that the physical characteristics
of optimal maps, the statistics of mapping space, and the
existence of a critical resolution, which were considered in
Figs. 3 - 5, may be more sensitive to the specific micro-
scopic model and its temperature-dependent configuration
distribution. We expect that the qualitative insights obtained
for the GNM will remain relatively robust as long as the un-
derlying microscopic ensemble is characterized by fluctua-
tions about a single dominant equilibrium structure. In this
case, we expect that maps with maximal spectral fitness will
be characterized by compact, densely connected structural
subunits that are present in the equilibrium structure. More-
over, we expect that there may exist a critical resolution
below which a phase transition distinguishes good and bad
maps. However, the situation is likely more complex when
the microscopic ensemble features two or more interconvert-
ing metastable conformations. Assuming that these confor-
mational transitions are described by relatively few, low fre-
quency modes, one expects that maps with maximal spectral
fitness will associate CG sites with structural subunits that
are present in multiple conformations and that move coher-
ently during conformational transitions between the confor-
mations. Alternatively, in this case, it may be more appropri-
ate to associate different maps with different regions of con-
figuration space, as suggested by Boninsegna and coworkers.[61]
Finally, we consider the case that the microscopic potential
energy surface includes many competing or degenerate min-
ima, as in the case of a molecular liquid or polymer melt. In
this case, we speculate that maps with high spectral quality
will associate CG sites with the structural subunits that are
preserved among the various minima.

We anticipate that the studies with the GNM have pro-
vided important insights into basic properties of CG repre-
sentations. However, these first studies strongly motivate fu-
ture studies that investigate the generality of their findings
for more complex microscopic models. In such cases, the
mapped distribution cannot be analytically characterized. These
studies should develop accurate approximations for metrics,
such as I and Q, that quantitatively characterize the mapped
ensemble itself, rather than the accuracy of the approximate
potential employed to simulate the CG model. Given accu-
rate approximations for such metrics, MC methods could be
again applied to statistically characterize the space of repre-
sentations. Such studies would clearly provide useful insight
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for constructing particle-based CG models. Moreover, since
the CG mapping is a linear example of more general, nonlin-
ear order parameters, these studies may provide insight for
developing general order parameters and non-linear dimen-
sional reduction techniques.

3 Approximate coarse graining

While the preceding section employed an exact coarse-grain-
ing procedure to analyze general properties of CG models,
this section considers the practical ramifications of this anal-
ysis for bottom-up models of complex systems. In practice,
the first task in constructing a bottom-up CG model is deter-
mining a particular CG representation or mapping, M. This
mapping establishes the fundamental link between the AA
and CG models and, in particular, defines the mapped en-
semble. After defining the mapping, the next task is to de-
fine an effective potential, U , for modeling the interactions
between the CG sites in canonical MD simulations, such
that the resulting equilibrium CG distribution is PR(R;U) ∝

exp[−βU(R)]. Ideally U would equal W and the simulated
distribution would perfectly reproduce the mapped distribu-
tion. Unfortunately, in most cases of interest, W is too com-
plex to calculate or simulate. Instead, bottom-up approaches
often determine U as some systematic approximation to W .
In many cases, the approximate potential, U can be expressed
in a simple molecular mechanics form[22]

U(R) = ∑
ζ

∑
λ

Uζ (ψζ λ (R)). (43)

Here, ζ indicates a particular type of interaction; Uζ is the
corresponding potential governing this interaction; ψζ λ is
a scalar variable that depends upon the coordinates, {R}λ ;
and λ identifies a set of CG sites. For example, if ζ corre-
sponds to a non-bonded pair interaction, then Uζ is a pair
potential, λ identifies a particular pair of sites, and ψζ λ (R)

is the corresponding pair distance in the configuration R.
This potential commonly has terms that describe inter- and,
possibly, intra-molecular pair non-bonded interactions, as
well as intramolecular bonded, angle, and dihedral inter-
actions. Note that the CG representation influences which
terms should be included in the CG potential. For instance,
Eq. (43) will only include intramolecular terms if the CG
model represents each molecule with two or more sites.

3.1 Mapping

While the CG representation is most commonly determined
by the researcher’s physico-chemical intuition, a number of
recent studies have investigated the importance of the CG
mapping for the accuracy of CG models. Several studies
have adopted graph theoretic[54, 62, 63] and machine learning[64,

65] methods to automate the selection of optimal CG map-
pings. In particular, Goméz-Bombarelli and coworkers have
trained variational autoencoders to determine CG mappings
that allow for accurate reconstruction of atomically detailed
configurations, while employing a regularization based upon
the instantaneous CG force in order to ensure that the CG
potential is smooth.[64, 65] This approach may represent
a promising compromise between maximizing the informa-
tion content and spectral fitness of the CG mapping. Inter-
estingly, the variational autoencoders often predict maps that
are “intuitively obvious,” i.e., highly consistent with chemi-
cal intuition. Consequently, White and coworkers have trained
a neural network to predict good mappings based upon a li-
brary of CG mappings constructed by human experts[66].

However, other studies have demonstrated that the CG
mapping can have more significant and more surprising in-
fluence upon the accuracy of bottom-up models. These stud-
ies have often focused on specific molecules and adopted a
particular bottom-up approach to determine the approximate
CG potential. For instance, Chakraborty et al. considered
various small hydrocarbons and compared symmetric CG
representations that preserve the symmetry of the underlying
molecule with asymmetric representations that did not pre-
serve this symmetry.[67] For each CG representation, they
determined an approximate interaction potential via the mul-
tiscale coarse-graining (MS-CG) method,[22, 68–70] which
will be discussed shortly. Chakraborty et al. observed that
asymmetric CG models sometimes provided a more accu-
rate description of the mapped radial distribution function
(rdf) and velocity auto-correlation function, which they at-
tributed to the additional potentials that were introduced to
describe the additional site types that arise in the asymmetric
model.[67] Similarly, Dallavelle and van der Vegt employed
the CRW method to model various alkanes and observed
that lower resolution models can reproduce certain prop-
erties better than higher resolution models.[71] Conversely,
Khot and coworkers found that for several small molecules,
the choice of mapping had relatively little impact upon the
accuracy of the CG models.[72]

These findings likely reflect the impact of the CG map-
ping upon the complexity of the mapped AA ensemble and,
consequently, the accuracy with which simple molecular me-
chanics potentials can accurately approximate the many-body
PMF. Since the simple molecular mechanics potential in Eq. (43)
severely limits the many-body correlations that can be re-
produced by the approximate CG potential, CG mappings
that simplify the mapped ensemble will likely improve the
structural fidelity of the CG model. The work of Kremer and
coworkers has clearly illuminated these considerations for
modeling the conformations of polymers and peptides.[73–
75] In particular, CG models almost invariably describe the
bonded geometry of CG sites with additive bond, angle, and
dihedral potentials. This approximation precludes the CG
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model from reproducing any nontrivial cross-correlations be-
tween these degrees of freedom that may arise in the mapped
ensemble. Accordingly, Kremer and coworkers designed CG
mappings in order to minimize these cross-correlations. The
cross-correlations between 1-4 distances and torsional de-
grees of freedom in C-alpha protein models can have similar
effects for modeling the helix-coil transitions of peptides.[76]
Rudzinski and Noid provided complementary insight into
these considerations by partitioning the AA and mapped AA
conformational spaces into discrete “internal states” associ-
ated with intramolecular degrees of freedom that are explic-
itly governed by AA and CG potentials.[77] In particular,
poor maps result in CG models sampling “forbidden” con-
formational states that are excluded in the mapped ensemble
by complex cross-correlations between CG degrees of free-
dom that cannot be reproduced by additive bond, angle, and
dihedral potentials. Conversely, by avoiding such complex
cross-correlations, good maps preserve a 1-to-1 relation be-
tween the internal states that are sampled by AA and ap-
proximate CG models.

These considerations are also important for the inter-
molecular structure of CG models. In general, the many-
body PMF reflects complex many-body intermolecular cor-
relations, which cannot always be reproduced by simple pair
additive nonbonded potentials.[78] These considerations are
particularly important for the MS-CG method, which de-
termines approximate potentials based upon the assumption
that the approximate potential can reproduce the correspond-
ing cross-correlations in the mapped ensemble.[79] For in-
stance, an early study by Izvekov and Voth demonstrated
that 1-site MS-CG models of methanol provide a more ac-
curate description of intermolecular structure than more de-
tailed 2-site MS-CG models.[68] More recently, Voth and
coworkers have demonstrated that simple pair additive MS-
CG potentials accurately describe the mapped ensemble for
1-site representations of acetic acid, but poorly describe the
mapped ensemble for higher resolution mappings that ex-
plicitly describe the carboxylic acid group.[80] Quite gener-
ally, one expects that the lower the density of CG sites in the
mapped AA ensemble, the more accurately simple pair po-
tentials will reproduce the mapped structure.[79] Moreover,
although iterative structure-based approaches can accurately
reproduce pair correlations of, e.g., water, they may do so at
the expense of poorly describing three-body and higher or-
der correlations.[81–85]

3.2 Approximating the PMF

One of the basic goals of bottom-up CG methods is to re-
produce the structural properties of the mapped ensemble.
According to Eq. (18), the CG model will reproduce the
mapped distribution if the approximate potential, U , repro-
duces the configuration-dependence of the PMF, i.e., if U(R)=

W (R)+ const. In practice, Eq. (43) provides limited accu-
racy for reproducing W . Consequently, bottom-up approaches
often focus on parameterizing approximate potentials that
accurately reproduce the pair structural correlations in the
mapped ensemble, i.e., mapped rdfs. Two variational princi-
ples unify a wide range of bottom-up approaches, clarify the
connection to the PMF, and provide a procedure for system-
atically improving the structural fidelity of CG models.

Shell pioneered a relative entropy variational principle
for determining an optimal approximate potential by mini-
mizing the relative entropy,[86–88]

Srel[U ] = kB

∫
V N

dR pR(R) ln
[

pR(R)

PR(R;U)

]
, (44)

which corresponds to the Kullback-Liebler divergence be-
tween the mapped distribution, pR(R), and the equilibrium
distribution, PR(R;U), for a CG model with an approximate
potential U .[27] According to the Gibbs inequality,[89] Srel[U ]≥
0 and Srel[U ] = 0 only if PR(R;U) = pR(R), i.e., when the
CG model perfectly reproduces the mapped ensemble and
U(R)=W (R)+const.[86, 87] In practice, one cannot deter-
mine this global minimum, but instead minimizes Srel with
respect to the various terms included in the approximate
potential given by Eq. (43). In this case, Srel is minimized
with respect to Uζ when the CG model reproduces the mean
of the conjugate operator in the mapped AA ensemble.[8,
90] In particular, Srel is minimized with respect to a pair
potential when the CG model reproduces the correspond-
ing mapped AA rdf. Thus, the relative entropy framework
provides a variational basis for structure-based approaches
such as Iterative Boltzmann Inversion[91] (IBI) and Inverse
Monte Carlo[92] (IMC), in which the approximate potential
U is iteratively refined to reproduce AA structural correla-
tion functions.[8, 26, 87, 93] Similarly, the relative entropy
framework can be extended to other ensembles to match var-
ious thermodynamic properties. For example, if one extends
Eq. (44) to the constant NPT ensemble, then Srel[U ] is min-
imized with respect to a volume potential, UV (V ), when the
CG model reproduces the AA pressure-volume equation-of-
state.[94]

The relative entropy formalism can also provide insight
into the CG mapping.[86] Specifically, one can define a prob-
ability Pr(r;U) that a CG model with the potential U deter-
mines an AA configuration, r. This requires defining a con-
ditional probability for determining r from a sampled CG
configuration, R. If one defines this conditional probability
in proportion to the AA equilibrium probability distribution,
pr(r), then

Pr(r;U) =
pr(r)

pR(M(r))
PR(M(r);U). (45)

Combining Eqs. 44 and 45, one obtains

Srel[U ] = kB

∫
V n

dr pr(r) ln
[
V n−N pr(r)

PR(M(r);U)

]
+Smap,



14

Fig. 6 Geometric interpretation of the MS-CG variational principle. The AA force field, f, corresponds to a point in a vector space of force fields.
Within this vector space lies a vector subspace of CG force fields, F, that depend upon only upon CG coordinates. The many body mean force
field, f, is one particular element in the space of CG force fields. The dashed line indicates a smaller vector subspace of force fields that correspond
to Eq. (43), including the force fields determined by the relative entropy variational principle, FRE, and the MS-CG variational principle, FMS. The
force-matching functional defines a “distance,” χ[U ], between the AA force field, f, and the force field, F, specified by an arbitrary CG potential,
U . According to this definition, the mean force field, f, is closest to f and can be considered the geometric projection of f into the space of CG force
fields. The corresponding distance, χ[W ], corresponds to the intrinsic noise in the AA force field about the mean forces. Moreover, according to
Eq. (48), χ2[U ], can be decomposed into the noise in the AA force field, χ2[W ], and the error in the CG force field, ||F− f||2, according to the
Pythagorean theorem. Finally, note that, by definition, FFM is the closest CG force field to the exact mean force field. However, it is likely that in
many cases ||FMS − f|| ≈ ||FRE − f|| ≪ χ[W ].

(46)

where Smap = sr −sR quantifies the intrinsic information lost
due to the CG mapping and is independent of the approxi-
mate potential, U .[26] Accordingly, one may employ Srel to
optimize both the approximate potential and the CG mapping.[59,
86]

Independently, Voth and coworkers pioneered a multi-
scale coarse-graining (MS-CG) variational principle[22, 68–
70] that is based upon minimizing a force-matching functional[95–
97]:

χ
2[U ] =

1
3N

⟨
∑

I
|FI (M(r))− fI(r)|2

⟩
(47)

= χ
2[W ]+

1
3N

∫
V N

dR pR(R)∑
I

⏐⏐ FI(R)− fI(R)
⏐⏐2 ,(48)

where FI(R) = −∂U(R)/∂RI and fI is the AA mean force
defined in Eq. (14). Because χ2[W ] is independent of U ,
the global minimum of χ2 corresponds to the condition that
the CG forces reproduce the mean AA forces, i.e., when
U(R)=W (R)+const, which implies that the resulting model

will perfectly reproduce the mapped ensemble. Importantly,
although χ2 employs AA forces, the objective of force-match-
ing is not to reproduce these forces. Instead, the objective
is to reproduce the conditioned mean forces, fI , which di-
rectly quantify the configuration-dependence of the many-
body PMF. The AA forces provide a direct, albeit noisy, es-
timator for the mean forces.[22, 64]

Figure 6 provides an intuitive, geometric interpretation
of the MS-CG variational principle. χ[U ] can be interpreted
as a “distance", ||F− f||, between the AA force field, f, and
the CG force field, F, that is determined by the approximate
potential U . The conditioned mean force, f, can be inter-
preted as the geometric projection of the AA force field into
the space of CG force fields,[79, 97] which is schematically
depicted by a 2-dimensional plane in Fig. 6. Thus, Eq. (48)
can be interpreted as a statement of the Pythagorean theorem
in the space of force fields:

||f−F||2 =
⏐⏐⏐⏐f− f

⏐⏐⏐⏐2 + ⏐⏐⏐⏐f−F
⏐⏐⏐⏐2 . (49)

The first term in Eq. (48) or (49) quantifies the fluctuations
in the AA forces about their conditioned mean and may
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be interpreted as the “noise" in the AA force field when
viewed at a given CG resolution.[64] This noise is some-
what analogous to Smap within the relative entropy formal-
ism, which quantifies the loss of configurational information
when viewing the AA distribution at the CG resolution.[26,
86] Both χ2[W ] and Smap are direct consequences of the
CG mapping and are independent of the CG potential. The
second term in Eq. (48), which can be interpreted as the
“error” in the CG potential, quantifies the difference in the
configuration-dependence of the approximate potential and
the exact many-body PMF.[64] Recent numerical calcula-
tions have demonstrated that the force-matching functional
varies slightly with resolution and has similar values for
rather different potentials, suggesting that the large noise
due to the fluctuations in the AA force field may often dom-
inate χ2[U ].[72, 84]

Although they appear rather distinct, the relative entropy
and MS-CG variational principles are in fact remarkably
similar.[26, 87] Most importantly, the many-body PMF is
the global minimizer of both Srel and χ2.[86, 98] When the
approximate potential depends linearly upon its parameters,
both result in a convex optimization problem with a unique
solution.[26, 87] Furthermore, both can be readily extended
to other ensembles.[20, 99, 100] Moreover, although it is
perhaps not immediately obvious, both can be related to the
information quantity ln [pR(R)/PR(R;U)] and both can be
expressed in terms of structural correlations.[8, 26] Conse-
quently, the two variational principles can be employed to
determine CG potentials that accurately approximate the ex-
act many-body PMF.

In particular, the minimizing condition for χ2 can be ex-
pressed entirely in terms of structural information and corre-
sponds to a generalization of the Yvon-Born-Green (YBG)
integral equation.[98, 101, 102] However, the g-YBG equa-
tion that minimizes χ2 is not self-consistent.[79] Therefore,
although the MS-CG potential can be directly calculated
from structural data, it is not guaranteed to reproduce any
particular structural observable.[79, 98] In contrast, the min-
imization condition for Srel is a self-consistent equation that
requires the CG model to reproduce certain AA structural
observables, but generally requires multiple CG simulations
to determine the potential.[26, 86, 103, 104]

The Noid group typically employs the MS-CG varia-
tional principle to determine the configuration-dependence
of the CG potential, U . We often invoke the relative en-
tropy variational principle to determine a volume potential,
UV (V ), that quantitatively reproduces the AA pressure-vol-
ume equation of state.[20] As noted above, the major disad-
vantage of the MS-CG method is that the CG potential is not
guaranteed to accurately reproduce the AA structure. How-
ever, in practice the resulting models often quite accurately
reproduce structural properties, although water is a particu-
lar challenging system for MS-CG pair potentials.[84, 105]

Conversely, an advantage of the MS-CG approach is that the
approximate potential is easily calculated directly from AA
simulation data without iteration. Consequently, the struc-
tural fidelity of the CG model directly assesses the accuracy
of the approximate CG potential.

3.3 Transferability and representability problems

One major strength of AA potentials is that they are rather
transferable.[106] Having been parameterized once, these
potentials can be directly applied (i.e., transferred) to model
a wide range of systems and thermodynamic state points
without re-parameterization. Another strength of AA poten-
tials is the existence of an established framework for ac-
curately calculating thermodynamic properties.[30, 40] In
contrast to AA potentials, which are assumed to be tem-
perature-independent energies, the exact CG potential (the
many-body PMF) is a temperature-dependent excess Helmholtz
potential.[28] This has important ramifications for the trans-
ferability of approximate CG potentials and also leads to
new challenges in modeling thermodynamic properties, which
are often referred to as “representability” issues.[20, 31, 107–
113]

3.3.1 Transferability issues

The relative entropy[86] and MS-CG variational principles[22]
both determine a unique effective potential that optimally
approximates the many-body PMF at a single thermody-
namic state point. However, since the PMF varies with state
point, the optimal approximate potential should also vary
with state point. Consequently, an approximate potential that
accurately reproduces the structural and thermodynamic prop-
erties of an AA model at one state point may provide a much
less accurate description at others.[7, 28] In practice, most
bottom-up approaches employ AA simulations at one state
point to determine a single interaction potential that is then
treated as independent of thermodynamic conditions.[3, 114–
122] The extended ensemble and multistate iterative Boltz-
mann inversion approaches provide a framework for consid-
ering a range of thermodynamic conditions when determin-
ing this single potential.[123–128] In either case, though, the
transferability of this single potential is then assessed based
upon its ability to accurately model a range of state points.

Many studies have demonstrated that a state-point inde-
pendent CG potential often provides limited transferability.[115,
118, 121, 129–132] However, in some cases a single po-
tential parameterized at a fortuitous state point can provide
surprising transferability.[114, 133, 134] For instance, the
early study by Ghosh and Faller employed IBI to parame-
terize CG models for ortho-terphenyl (OTP) at T = 230 K
and 300 K, which are below and above the OTP glass tran-
sition temperature, respectively. They demonstrated that the
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potential parameterized at T = 300 K failed to reproduce
the pair structure at T = 230 K, although the potential pa-
rameterized at T = 230 K reproduced the pair structure at
T = 300 K quite accurately.[114] More recently, Guo and
coworkers employed IBI to parameterize the potential for
a CG polyimide model at T = 800 K.[134] The resulting
potential provided a reasonable transferability down to T =

300 K.[134]

Fig. 7 Impact of temperature upon MS-CG pair potentials for 1-site
CG models of methanol at constant density. Panel A presents MS-CG
pair potentials. The solid curves present pair potentials calculated from
constant NVT AA simulations at a fixed density ρ0 = 792.3 kg/m3

and the indicated temperatures. The dotted curves present predicted
pair potentials calculated via linear extrapolation using the mean finite
difference approximation of the temperature-dependence according to:
U2(T ) =U2(T0)+∂TU2(T0)∆T where T0 = 250 K and ∆T = T −T0.
Panel B presents estimates for the temperature derivative of the pair po-
tential at constant density, (∂U2/∂T )ρ ). The solid curves present the
finite differences, ∂TU2, calculated at each temperature according to
Eq. (50). The cyan curve corresponds to the mean of these finite differ-
ences, which is employed as ∂TU(T0) in the linear extrapolation. The
blue, black, orange, and red curves correspond to T = 225 K, 250 K,
275 K, and 300 K, respectively.

A growing number of studies have adopted a different
approach to transferability issues. Rather than trying to de-
termine a single state-point independent potential that pro-
vides a compromise for approximating the PMF over a range
of state points, these studies have attempted to directly quan-
tify and then model the variations in the PMF with state
point.[80, 131, 135–147] According to Eq. (21), ∂W (R)/∂T =

−SW (R).[28] Thus, the temperature-dependence of the PMF

in a given configuration, R, is determined by the configura-
tional entropy lost from the subensemble of AA configura-
tions that map to R. For high resolution models, one ex-
pects that SW ≈ 0, which suggests that the corresponding
approximate potentials should be predominantly energetic
and demonstrate little temperature variation.[28, 148] In-
deed, Section 2.4.2 demonstrates that SW → 0 with increas-
ing resolution. Additionally, W will vary linearly over the
temperature range for which SW is approximately constant.
Consequently, one expects that the CG potentials for 1-site
models of methanol and other small molecular liquids will
likely vary linearly with temperature within single-phase re-
gions of the phase diagram. Indeed, a rather large body of
work now confirms this expectation.[32, 80, 108, 131, 137–
139, 146–150]

For instance, an early study by Müller-Plathe and cowork-
ers modeled the temperature-dependence of IBI potentials
for liquid hexane based upon linear interpolation between
the IBI potentials explicitly calculated for two extreme temperatures.[138]
They demonstrated that this simple linear interpolation more
accurately described the temperature-dependent IBI poten-
tials than an empirical nonlinear model motivated by Boltz-
mann weights.[136] Since then, many studies have employed
simple two-point linear interpolation schemes to model ef-
fective potentials across a range of temperatures.[131, 142,
146, 147, 151]

The calculations of Lebold and Noid, which are illus-
trated in Fig. 7, demonstrate this simple linear trend.[146]
The solid curves in Fig. 7A present MS-CG pair potentials
calculated for 1-site models of methanol across a range of
temperatures at a fixed density ρ0 = 792.3 kg/m3. Note that
the potentials become increasingly repulsive with increasing
temperature at the constant density, which is consistent with
SW ≤ 0 according to Eq. (17). The curves in Fig. 7B present
finite difference estimates for the temperature-derivative of
the MS-CG pair potentials, which are calculated according
to

∂TU2(T ) =
U2(T )−U2(T0)

T −T0
, (50)

where T0 = 250 K. Clearly, the pair potentials for 1-site MS-
CG models of methanol vary almost linearly with tempera-
ture at constant density.

Accordingly, a growing number of studies have adopted
an intuitive free energy decomposition of approximate CG
potentials to model their temperature-dependence[80, 131,
139, 146, 149, 150]

U2(T ) =U2(T0)−S2(T0)∆T, (51)

where S2(T0) is estimated as a finite difference according
to Eq. (50) and ∆T = T −T0. The dotted curves presented
in Fig. 7A demonstrate that this linear extrapolation works
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nicely for the 1-site MS-CG methanol model.[146] More-
over, Voth and coworkers have demonstrated that this finite
difference estimate for the entropic contribution to CG pair
potentials, S2, can then be used to estimate entropic proper-
ties of the AA model.[149] Recent studies have also demon-
strated that simple linear interpolation can also accurately
predict the temperature-dependence of volume potentials.[32,
142]

We close this subsection with two brief comments. In
the case of lower resolution CG models, CG sites often rep-
resent atomic groups with considerable flexibility. In such
cases, SW will likely be relatively large in magnitude and
demonstrate more complex temperature-dependence due to
conformational transitions that are internal to each CG site.[152]
Secondly, it is important to emphasize that SW describes
the temperature variation in the many-body PMF at con-
stant density.[146, 147] Indeed, Fig. 7a demonstrates that
the MS-CG pair potentials increase with temperature at con-
stant density. However, to quantify temperature variations at
constant pressure, one must also consider the corresponding
density variations.

As an illustration, Fig. 8A presents the corresponding
1-site methanol pair potentials that are calculated from con-
stant NPT simulations at varying temperatures and a con-
stant external pressure of 1 bar. In striking contrast to Fig. 7A,
the MS-CG pair potentials now become increasingly attrac-
tive with increasing temperature due to the density-depen-
dence of the pair potentials.[108, 131, 146] Figure 8B presents
the corresponding finite difference estimates for this den-
sity-dependence

∂ρU2(T ) =
U2(T,ρT )−U2(T,ρ0)

ρT −ρ0
, (52)

where ρT is the mean density of the constant NPT AA sim-
ulation at the temperature T and ρ0 = 792.3 kg/m3. The re-
sulting finite difference estimates indicate that the CG pair
potentials also vary nearly linearly with density. Indeed, the
symbols in Fig. 8A indicate that the MS-CG pair poten-
tials obtained under different conditions can be accurately
described by linearly modeling both their temperature- and
density-dependence. The recent work of Voth and cowork-
ers suggests that the temperature-dependence at constant ex-
ternal pressure may be naturally interpreted by considering
a Legendre transform of the PMF from constant volume to
constant pressure.[131]

3.3.2 Representability issues

Many prior discussions of representability issues have fo-
cused on difficulties in modeling both structure and pres-
sure-volume equations of state with bottom-up pair potentials.[18,
94, 100] Since structure-based pair potentials tend to be highly
repulsive, many studies introduce corrections to the CG pair

Fig. 8 Impact of temperature upon MS-CG pair potentials for 1-site
CG models of methanol at constant external pressure. Panel A presents
MS-CG pair potentials calculated from constant NPT AA simulations
at the indicated temperatures and an external pressure of 1 bar. The
solid curves present MS-CG pair potentials explicitly calculated from
AA simulations at each state point. The dotted curves present predicted
pair potentials calculated via linear extrapolation using the finite dif-
ference approximations for the temperature- and density-dependence
according to: U2(T ) = U2(T0)+ ∂TU2(T0)∆T + ∂ρU2(T0)∆ρT where
T0 = 250 K, ρ0 = 792.3 kg/m3, ∆T = T −T0, ∆ρT = ρT −ρ0, ρT is
the mean density of the constant NPT AA simulation at the temperature
T , and ∂TU(T0) is the estimate for the temperature-derivative given by
the cyan curve in Fig. 7B. Panel B presents estimates for the density
derivative of the pair potential at constant temperature, (∂U2/∂ρ)T ).
The solid curves present the finite differences, ∂ρU2, calculated for T =
225 K, 275 K, and 300 K according to Eq. (52). The cyan curve cor-
responds to the mean of these finite differences, which is employed
as ∂ρU2(T0) to model the density-dependence for the dotted curves in
panel A. The blue, black, orange, and red curves correspond to T =
225 K, 250 K, 275 K, and 300 K, respectively.

potential in order to reduce the internal pressure and repro-
duce the correct density, although the resulting models tend
to overestimate the compressibility.[153, 154] Following the
insights of Das and Andersen[99], Dunn and Noid demon-
strated that volume potentials can be self-consistently de-
termined to quantitatively reproduce pressure-volume equa-
tions of state for bulk systems.[94, 100] Because these vol-
ume potentials depend only upon the instantaneous volume
and are otherwise independent of configuration, they pre-
serve the structural fidelity of the CG model. Similarly, lo-
cal density potentials, i.e., one-body potentials of the local
density around each CG site, also provide a significantly
improved description of pressure-volume thermodynamics,
while providing remarkable transferability between bulk and
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interfacial systems.[155–161] Since these considerations have
been discussed previously - and in order to provide a simple,
didactic presentation - the present work focuses on the rep-
resentability issues that result from the temperature-depen-
dence of the PMF and, specifically, the difficulty of model-
ing atomic energetics.

Fig. 9 Energetics of methanol models. Panel A presents distributions
of intermolecular energies obtained from constant NVT simulations at
T0 = 280 K and ρ0 = 791.9 kg/m3. The solid black curve presents the
distribution of intermolecular potential energies, uInter, sampled by an
AA simulation. The dashed red and blue curves present distributions
obtained from simulations of the 1-site CG model that employed the
MS-CG potential, U(R) = ∑(I,J)U2(RIJ), to model interactions. The
red curve presents the distribution obtained by evaluating the MS-CG
potential, U(R), for the sampled configurations, while the blue curve
presents the distribution obtained by evaluating the energetic operator,
E(R) = ∑(I,J) E2(RIJ), for the same configurations. Panel B compares
the MS-CG pair potential, U2, (solid red) and the pair energy function,
E2 (dashed blue).

The most straightforward approach for modeling ener-
getics is to simply treat the approximate CG potential, U , as
a potential energy. Figure 9 illustrates this naïve approach to
evaluating energetics for a one-site CG model of methanol at
T0 = 280 K. The black curve in Fig. 9A presents the distri-
bution of intermolecular potential energies, uInter, sampled
by an AA simulation at this temperature. As expected, the
sampled intermolecular potentials are large and negative, re-
flecting the cohesive energy stabilizing the liquid phase in
the AA model. The red curve in Fig. 9B presents the pair

potential, U2, calculated by applying the MS-CG variational
principle to this AA simulation. CG simulations with this
MS-CG potential nicely reproduce the AA pair structure.
However, the red curve in Fig. 9A presents the distribution
that results from evaluating the MS-CG potential, U , over
the configurations sampled by this CG MD simulation. Be-
cause the MS-CG pair potential is almost completely repul-
sive, the resulting energies are large and positive. This dra-
matic discrepancy reflects the same entropic contributions
to approximate bottom-up potentials that also give rise to
their temperature-dependence. Consequently, bottom-up po-
tentials cannot be naïvely treated as potential energies.

3.3.3 Dual potential approach

Both transferability and representability issues arise from
the same root cause, i.e., the state-point dependence of the
many-body PMF, which suggests that a single approach can
simultaneously address both issues.[20] Based upon this rea-
soning, Lebold and Noid recently proposed a dual potential
approach that accurately models AA energetics and simul-
taneously provides a quantitative estimate of the entropic
contribution to the many-body PMF.[32, 148] In this ap-
proach, conventional bottom-up methods are employed to
determine an effective potential, U , that optimally approxi-
mates W at a single state point. Simulations that employ U
as a conservative potential should accurately model the equi-
librium configuration distribution of the underlying atom-
istic model. However, as demonstrated in Section 2.3.2 and
3.3.2, U cannot be used to accurately model energetic prop-
erties. Moreover, due to the state point variation of the PMF,
U may provide a poor approximation to W at other state
points. Thus, we adopt a second, “energy-matching” varia-
tional principle[162] to determine an energetic operator, E,
that optimally approximates the energetic component, UW ,
of the PMF. AA energetics can then be accurately modeled
by evaluating E for the sampled CG configurations. Further-
more, the knowledge of U and E determines an estimate for
the entropic component, SW , of the PMF:

S(R)≡ T−1 (E(R)−U(R)) . (53)

To the extent that U approximates W and E approximates
UW , it follows that S ≈ SW . The entropic function, S(R), can
then be used to model entropic quantities and to predict the
temperature-dependence of U(R),[146, 149] i.e.,

∂U(R)/∂T ≈ ∂W (R)/∂T =−SW (R)≈−S(R). (54)

In practice,[32, 148, 150] UW is approximated with a
simple molecular mechanics form analogous to Eq. (43):

E(R) = ∑
ζ

∑
λ

Eζ (ψζ λ (R)), (55)
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where Eζ may be considered the energetic contribution to
Uζ . For example, if Uζ is an effective pair potential, then Eζ

describes the energetic contribution to this pair interaction.
For each interaction type in the CG model, the energy func-
tion is represented by a linear combination of basis func-
tions, { fζ d(x)}, with constant coefficients, {cζ d}:

Eζ (x) = ∑
d

cζ d fζ d(x). (56)

In particular, we typically use “hat” or spline functions as
basis functions for Eζ . The energetic operator may then be
expressed

E(R) = ∑
ζ

∑
d

Aζ d(R)cζ d , (57)

where

Aζ d(R) = ∑
λ

fζ d(ψζ λ (R)). (58)

The set {Aζ d(R)} included in Eq. (57) form a basis spanning
a linear space of approximate energy operators, while the
coefficients {cζ d} serve as parameters for optimizing E.

The optimal coefficients are determined by minimizing
the energy-matching functional[148]

χ
2
E[E] =

⟨
|E(M(r))−u(r)|2

⟩
. (59)

Because UW is a conditioned mean of u, the energy-matching
functional can be decomposed analogously to the MS-CG
functional [22, 32, 96, 148]

χ
2
E[E] = χ

2
E[UW ]+

∫
V N

dR pR(R) |E(R)−UW (R)|2 ≥ χ
2
E[UW ].

(60)

Consequently, given a space of approximate energy opera-
tors, the operator that minimizes χ2

E[E] provides the optimal
approximation to UW in a least squares sense. While Tóth
originally employed χ2

E to determine an effective potential,
U , that approximated W for modeling interactions in MD
simulations,[162] the dual potential employs χ2

E to deter-
mine an operator, E, that approximates UW for estimating
the energetics of sampled configurations.

In order to minimize χ2
E , we approximate the ensemble

average in Eq. (59) with a set of atomic configurations, {rt},
sampled by an AA MD simulation. The minimizing condi-
tion may be expressed as an over-determined system of lin-
ear equations:

u(rt)∼= E (M(rt)) = ∑
ζ

∑
d

Aζ d (M(rt))cζ d (61)

for each sampled configuration, rt . The symbol ‘∼=’ indi-
cates that this system of over-determined equations is solved
in a least squares sense. For 1-site CG models, U(R) =

∑(I,J)U2(RIJ) and E(R) = ∑(I,J) E2(RIJ). In this case, E2 is
determined to reproduce the intermolecular AA potential by
solving Eq. (61) with u ≡ uInter. For multi-site CG models
that treat both intra- and intermolecular interactions, we de-
compose the AA potential, u = uIntra + uInter, and energetic
operator, E = EIntra + EInter, into corresponding intra- and
inter-molecular contributions. In this case, we consider two
independent over-determined systems of equations. Specifi-
cally, we determine EIntra by solving Eq. (61) with u ≡ uIntra,
while determining EInter by solving Eq. (61) with u ≡ uInter.
It is worth noting that Dannenhoffer-Lafage and coworkers
have proposed alternative approaches for optimizing E, as
well as other observable operators, that may prove more
computationally efficient than the simple energy-matching
approach described above.[163]

Lebold and Noid first introduced this dual potential ap-
proach and demonstrated its compatibility with two distinct
bottom-up approaches for parameterizing the interaction po-
tential, U : IBI for 1-site models water and MS-CG for 1-
site models of methanol.[148] Subsequently, they consid-
ered implicit solvent models of Lennard-Jones fluids, which
contain significantly larger entropic contributions, and also
extended the dual potential approach to the constant NPT
ensemble.[32] More recently, Szukalo and Noid extended
the dual potential approach to treat intramolecular degrees of
freedom in 3-site CG models of ortho-terphenyl (OTP).[150]
Here we briefly summarize results for a 1-site model methanol,
while Section 4 discusses our ongoing work with OTP.

Figure 10 illustrates the results of applying the energy-
matching variational method for the 1-site model of methanol
at the state point T0 = 280 K and ρ0 = 791.9 kg/m3. Specif-
ically, the dashed blue curve in Fig. 10B presents the cal-
culated pair energy function, E2. Interestingly, the MS-CG
pair potential, U2, and the pair energy function, E2, demon-
strate similar features on similar length-scales. However, the
pair energy function is significantly more attractive and ex-
hibits more pronounced features. The dashed blue curve in
Fig. 10A presents the energetic distribution obtained by eval-
uating the energetic operator, E, over the set of CG configu-
rations sampled by simulations with the MS-CG interaction
potential, U . The resulting energy distribution quantitatively
reproduces the mean AA potential, but underestimates the
variance in the AA potential distributions. This discrepancy
fundamentally reflects the AA fluctuations that are hidden
by the CG mapping. According to Sect. 2.3.3, these fluc-
tuations give rise to a configuration-dependent specific heat
CW .

Given the MS-CG interaction potential, U(T0), and en-
ergetic operator, E(T0), calculated at the reference temper-
ature T0 = 280 K, the entropic component of the many-
body PMF was approximated according to Eq. (53): S(T0) =

T−1
0 (E(T0)−U(T0))≈ SW (T0). The solid curve in Fig. 10A

presents the resulting pair entropy function, S2(T0), while
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the dashed curve presents an empirical estimate for the pair
entropy function based upon finite difference estimates for
the temperature derivative of the calculated MS-CG pair po-
tentials according to Eq. (50). The two calculations of the
pair entropy functions agree quite well.

The pair entropy function that is inferred by applying
the dual potential approach at the single temperature, T0 =

280 K, can then be employed to predict MS-CG pair poten-
tials at other temperatures and the same density according to
Eq. (51). The dotted lines in Fig. 10B present the predicted
pair potentials for the 1-site CG model for methanol. The
predicted potentials agree remarkably well with the MS-CG
pair potentials that were independently calculated for each
temperature from corresponding AA simulations. Thus, the
dual potential approach not only accurately reproduces the
energetics of the AA model for methanol, but also accurately
predicts the temperature-dependence of the MS-CG poten-
tial.

Fig. 10 Entropic predictions of the dual potential approach. Panel A
compares the predicted and inferred pair entropy functions. The solid
curve presents the pair entropy function calculated by the dual poten-
tial approach based upon constant NVT simulations at (T0 = 280 K,
ρ0 = 791.9 kg/m3). The dashed curve presents the empirical estimate
of the pair entropy function determined from explicitly calculating
the MS-CG pair potential from constant NVT simulations with ρ0 =
791.9 kg/m3 and T = 270 K, 290 K, and 300 K. Panel B assess the
accuracy of the dual potential predictions for the temperature-depen-
dence of the MS-CG pair potentials. The solid curves present pair po-
tentials calculated from constant NVT AA simulations at ρ0 = 792.3
kg/m3 and several temperatures. The dotted curves present predictions
for these pair potentials based entirely upon information at the refer-
ence state point (T0 = 280 K, ρ0 = 791.9 kg/m3).

4 Coarse graining in practice

The preceding section demonstrated that the dual-potential
approach provides a rigorous and robust framework for ad-
dressing the temperature-dependence of the many-body PMF
for relatively simple systems, such as liquid methanol. This
section summarizes our recent and ongoing work applying
the dual-potential approach to OTP, which is a model glass-
former and a considerably more complex system. Glass tran-
sitions are particularly interesting for bottom-up structure-
based approaches because the dynamic and thermodynamic
properties of the liquid dramatically change, while the local
structure remains relatively unchanged.[164, 165] An early
study by Ghosh and Faller investigated the transferability
of IBI effective potentials across this glass transition.[114]
Douglas and coworkers have also examined the dynamical
properties of CG models for OTP near the glass transition.[166]
More recently, we developed MS-CG models for OTP and
systematically analyzed the temperature- and density-depen-
dence of the effective potentials across the glass transition,
using the techniques discussed in Sect. 3.3.1.[147] Inter-
estingly, the linear trends observed for methanol and other
simple molecular liquids may break down across the glass
transition.[147]

In this section, we present dual potential results for mod-
eling OTP in the constant NVT ensemble at a single fixed
density. By comparing results for two different CG repre-
sentations, we gain insight into the practical ramifications of
resolution upon approximate CG models for complex sys-
tems. Additionally, we outline future work for extending this
approach to develop a simple model for state-point depen-
dent potentials that can accurately and predictively describe
the structure and thermodynamic properties of OTP across
the entire liquid region of its phase diagram and, hopefully,
also for supercooled states below its glass transition.

4.1 Mapping considerations

As discussed in Section 3.1, the first step in constructing the
CG model is to determine an appropriate mapping operator,
M(r). Figure 11A presents the molecular structure of OTP,
as well as two mappings of OTP that are consistent with our
chemical intuition.

The 1-site mapping represents the entire molecule with a
single sphere at the molecular mass center. A 1-site mapping
corresponds to the lowest resolution representation that still
explicitly describes each molecule. (Note that other one-site
mappings are possible that employ different definitions of
the CG site location.) Assuming a pair-additive approxima-
tion to the PMF, the approximate potential, U , is then com-
pletely determined by a single pair potential, U2, which is
likely the most computationally efficient model that explic-
itly models each OTP molecule. (Note that it is possible that
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Fig. 11 Mapping considerations for OTP. Top: AA representation of
the OTP molecular structure, as well as 1- and 3-site CG represen-
tations. The 1-site mapping represents all OTP atoms with a single
CG site located at the molecular mass center, which is shown in red.
The 3-site mapping represents the central benzene ring with a CM site
(shown in green) and the terminal benzene rings with equivalent CT
sites (shown in grey). Bottom: Joint probability distribution, P(θ ,rb),
quantifying the correlation between the OTP bond angle and bond
lengths in the mapped ensemble for the 3-site CG representation.

higher resolution models may be more computationally effi-
cient if they adopt a sufficiently shorter cut-off.) A possible
limitation of this 1-site mapping for OTP, though, is that it
does not properly describe the molecular symmetry of OTP.
In particular, since OTP is relatively flat, an isotropic spher-
ical potential may not be able to accurately reproduce the
intermolecular packing of the underlying AA model.

Accordingly, the second 3-site mapping is perhaps more
consistent with chemical intuition. Here, the central benzene
ring is represented with a CM site (green) and the termi-
nal benzene rings are represented with two equivalent CT
sites (grey), while each site is located at the mass center of
the corresponding atomic group. Two earlier CG studies of
OTP also adopted this 3-site mapping,[114, 167] while the
recent work by Wang and Goméz-Bombarelli demonstrated
that this mapping allowed for an optimal reconstruction of
AA configurations.[25] The approximate potential for this
CG representation describes the molecular geometry with
independent bond, Ub, and angle, Uθ , potentials, while de-
scribing intermolecular interactions with 3 independent pair

potentials: UCM−CM, UCM−CT, and UCT−CT. As discussed in
Section 3.1, the 3-site representation may possibly introduce
complex cross-correlations between bond and angle degrees
of freedom that may impact the accuracy of the CG model.
However, the joint probability distribution in Fig. 11B in-
dicates that the CG bond and angle degrees of freedom are
statistically independent. Consequently, the simple approx-
imate potential in Eq. (43) appears sufficient for describing
the conformation of OTP.

4.2 MS-CG effective potential

We adopted the OPLS-AA model[168] as a simple high res-
olution model for OTP. Our initial simulation study indi-
cated that this AA model undergoes a glass transition at 1
bar external pressure near Tg ≈ 343K.[147] Consequently, in
order to develop a predictive CG model for the liquid phase,
we performed constant NPT simulations of the OPLS-AA
model at 1 bar pressure and T0 = 400 K, which resulted in
an equilibrium density of ρ0 = 1033 kg/m3. We treat the
thermodynamic state point (T0, ρ0) as a reference state for
investigating the temperature-dependence, as well as the en-
ergetic and entropic properties of CG models for OTP at
constant density.

We mapped this reference AA simulation to the 1- and
3-site CG representations illustrated in Fig. 11. The solid
curves in Fig. 12A and B present the mapped AA rdfs for the
1- and 3-site representations, respectively. As expected, the
mapped rdf demonstrates more pronounced structural fea-
tures for the higher resolution 3-site representation than for
the lower resolution 1-site representation. The first peak of
the 3-site rdf occurs at r ≈ 0.5 nm and, presumably, cor-
responds to an intermolecular stacking interaction between
benzene rings. Interestingly, this interaction gives rise to a
shoulder in the first peak of the 1-site rdf, which reaches a
relatively larger maximum at a considerably greater distance
of r ≈ 0.8 nm.

Given these mapped ensembles, we employed BOCS v 4.0[169]
to determine the MS-CG potential, U , that provides a vari-
ationally optimal approximation for the configuration-de-
pendence of the many-body PMF, W , at each resolution.
The dashed black curve in Fig. 12C presents the pair po-
tential, U2, for the 1-site model, while the dashed blue curve
presents the CM-CM pair potential, UCM−CM, for the 3-site
model. Note that the CM-CM pair potential is plotted on a
much smaller scale. For simplicity, we will not present re-
sults for the remaining inter- or intra-molecular interactions
in the 3-site MS-CG model, although they are presented and
analyzed in the original study.[150]

For both resolutions, the pair potentials are almost en-
tirely repulsive. However, the 1-site pair potential is much
more repulsive and larger in magnitude than the 3-site pair
potentials. This is consistent with the expectation that the
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Fig. 12 Pair structure and MS-CG pair potentials for liquid OTP at a
reference state point with T0 = 400 K and ρ0 = 1033 kg/m3. Panel
A presents rdfs for the 1-site model, while panel B presents CM-
CM rdfs for the 3-site model. In panels A and B, the solid curves
present mapped rdfs obtained from AA simulations, while the dashed
curves present rdfs calculated from CG simulations which employed
the corresponding MS-CG potential as an interaction potential. Panel
C presents the MS-CG pair potential, U2 for the 1-site model (black)
and the CM-CM pair potential, UCM−CM, for the 3-site model (blue).
Note that the 1-site pair potential is plotted with respect to the left
scale, while the 3-site CM-CM pair potential is plotted with respect to
the much smaller right scale.

potentials for the lower resolution model should include a
larger, repulsive entropic contribution.

We then performed constant NVT simulations of both
CG models at the reference state point (T0, ρ0), while em-
ploying the corresponding MS-CG potentials to model in-
teractions. The dashed curves in Fig. 12A and B present
the resulting site-site rdfs. The 1-site model understimates
the shoulder and slightly overestimates the first peak of the
AA rdf, while the 3-site model reproduces the AA rdf with
nearly quantitative accuracy. Although not shown here, the
3-site model also accurately reproduced the CM-CT and CT-
CT mapped rdfs, as well as the intramolecular bond and an-
gle distributions.[150] These results suggest that the 3-site
mapping provides a better description of the shape and pack-
ing of OTP molecules than the 1-site model.[64, 150] Nev-
ertheless, both models reproduce the mapped AA ensemble
with relatively high fidelity. Since the MS-CG models are
not guaranteed to reproduce rdfs, the observed agreement in-

dicates that the MS-CG potential quite accurately describes
the configuration-dependence of the PMF at each resolution.

4.3 Modeling AA energetics

Fig. 13 Energetic pair functions and energetic distributions for OTP at
the reference state point with T0 = 400 K and ρ0 = 1033 kg/m3. Panel
A presents the pair energy functions for the 1-site model, E2 (solid
curve), and also the CM-CM pair energy function, ECM−CM (dashed
curve), for the 3-site model. Panel B presents distributions of inter-
molecular potential energies. The solid black curve corresponds to the
AA energy distribution. The blue curves present energy distributions
obtained by evaluating E for the configurations sampled by CG simu-
lations that employ U as the interaction potential. The solid blue curve
presents the distribution for the 1-site model, while the dashed blue
curve presents the distribution obtained for the 3-site model.

Given the configurations and potential energies sampled
by the constant NVT AA simulation at the reference state
point, (T0,ρ0), we employed the energy-matching variational
principle to determine an energetic operator, E, that opti-
mally approximates the energetic contribution, UW , to the
many-body PMF at each CG representation. The 1-site en-
ergetic operator is completely specified by a single pair en-
ergy function, E2, which we determined from the AA in-
termolecular energies according to Eq. (61). The solid blue
curve in Fig. 13A presents the resulting pair energy function
for the 1-site model. The 3-site energetic operator included
pair energy functions for the CM-CM, CM-CT, and CT-CT
intermolecular pairs, as well as intramolecular bond and an-
gle energy functions. The intra- and inter-molecular energy
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functions were determined to match the AA intra- and inter-
molecular potential energies, respectively. The dashed blue
curve in Fig. 13A presents the resulting CM-CM pair energy
function.

In stark contrast to the highly repulsive MS-CG pair po-
tentials, the pair energy functions are highly attractive. The
1-site pair energy function, E2, is much more attractive than
the CM-CM pair energy function, ECM−CM. This is presum-
ably because the 3-site model can distribute the total atomic
potential across many more site-site interactions. It is also
interesting that, while the 1- and 3-site rdfs reach maxima at
rather different distances, the 1- and 3-site pair energy func-
tions both reach a minimum near r = 0.5 nm. This distance
corresponds to the first peak of the 3-site CM-CM rdf and
presumably reflects direct stacking of benzene rings. Since
the peak of the 1-site rdf occurs at considerably greater dis-
tance, this coincidence of the pair energy minima further
emphasizes that the effective MS-CG pair potentials incor-
porate both energetic and entropic contributions.

Figure 13B assesses the accuracy of the dual potential
approach for calculating energetic properties at a given CG
resolution. The solid black curve presents the AA intermolec-
ular potential energy distribution. The solid and dashed blue
curves present CG intermolecular potential energy distribu-
tions obtained from evaluating the 1- and 3-site energetic
operators, respectively, for the set of configurations sampled
from CG simulations that employed the corresponding MS-
CG potentials from Fig. 12 as interaction potentials. Both
CG models reproduce the mean AA intermolecular poten-
tial to within a few percent, although both models under-
estimate the variance in the AA potential distribution due
to the loss of atomic fluctuations. As expected, since the 3-
site model preserves more conformational information and
thus, greater energetic fluctuations, the 3-site energy distri-
bution (dashed curve) is somewhat broader than the 1-site
energy distribution (solid curve). Although it is not shown,
the intramolecular energy operator for the 3-site model also
reproduces the AA distribution of intramolecular potential
energies with similar accuracy.

4.4 Entropic operators

As described in Section 3.3.3, the approximate MS-CG po-
tential, U , and the approximate energetic operator, E, de-
termine an approximation, S, for the entropic contribution,
SW , to the exact many-body PMF, W. Figure 14 presents the
pair entropy operators determined from Eq. (53). The solid
black curve presents the pair entropy function, S2, for the
1-site model. The dashed, dotted, and dashed-dotted blue
curves present the pair entropy functions corresponding to
the CM-CM, CM-CT, and CT-CT interactions for the 3-site
model. For comparison, the solid green curve presents the

Fig. 14 Entropic pair functions, S2(r) = (E2(r)−U2(r))/T0, for the 1-
site and 3-site models of OTP calculated via the dual potential approach
at the reference state point with T0 = 400 K and ρ0 = 1033 kg/m3.
The black and blue curves present the pair entropy function for the
1-site and 3-site model, respectively. The dashed, dotted, and dashed-
dotted blue curves correspond to entropic pair functions calculated for
each non-bonded interaction in the 3-site model: SCM−CM, SCM−CT,
and SCT−CT, respectively. For comparison, the green curve presents the
pair entropy function for a 1-site MS-CG model of methanol at the
same temperature T0 = 400 K and the density ρ0 = 737.31 kg/m3.

corresponding dual potential estimate for the entropic con-
tribution to the MS-CG pair potential for a 1-site model of
methanol at the same temperature T0 = 400 K and density
ρ0 = 737.31 kg/m3.

Figure 14 provides general insight into the entropic com-
ponents of effective potentials for CG models of complex
systems and, moreover, how these entropic components vary
with resolution. As expected from Eq. (17), the pair entropy
functions are almost entirely negative. The absolute value
of the pair entropy functions reach a maximum near con-
tact and then generally decay towards 0 with increasing dis-
tance. Because the CG sites in the 1-site methanol model
only represent two heavy atoms, the corresponding pair en-
tropy function is relatively small and rapidly decays to zero.
Because the CG sites in the 3-site OTP model represent 6
heavy atoms, the corresponding pair entropy functions are
considerably larger and act over considerably longer dis-
tances. Because the CG sites in the 1-site OTP model rep-
resent 18 heavy atoms, the corresponding pair entropy func-
tion is even much larger and acts over a much longer dis-
tance. Thus, as suggested earlier in Section 3.3.1, the en-
tropic contribution to approximate effective potentials ap-
pears to grow in magnitude and range with decreasing reso-
lution.

4.5 Predicted temperature-dependence

In addition to providing an approximate operator for mod-
eling AA entropies,[149] the approximate entropy functions
also provide a predictive estimate for the temperature-de-
pendence of the MS-CG potentials. Given the calculated MS-
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Fig. 15 Pair structure and MS-CG pair potentials characterizing the 1-site (left column) and 3-site (right column) CG models for liquid OTP at
constant density, ρ0 = 1033 kg/m3. Panels A and B present the MS-CG pair potential for the 1-site and 3-site CM-CM pair interactions, respectively.
The dashed curves present the “optimized” MS-CG pair potentials, which were calculated from the AA simulations at the corresponding state point.
The dotted curves present the “predicted” MS-CG pair potentials, which were calculated via the dual potential approach and only employed AA
simulation data from the reference state point (T0 = 400 K, ρ0 = 1033 kg/m3). Panels C and D present the rdfs for the 1-site and 3-site CM-CM pair
interaction, respectively, which were obtained from constant NVT simulations at the fixed density ρ0 and indicated temperature. The solid curves
present mapped rdfs obtained from AA simulations. The dashed and dotted curves present rdfs calculated from CG simulations that employed
the optimized and predicted MS-CG potentials, respectively, as an interaction potential. Panels E and F quantify the difference, δU , between the
optimized and predicted MS-CG pair potentials. The black, orange, and red curves correspond to results for T0 = 400 K, T = 500 K, and T =
650 K, respectively.

CG potential, U(T0), and inferred entropic operator, S(T0),
at the reference state point (T0,ρ0), the dual potential ap-
proach predicts the temperature-dependence of the MS-CG
potential according to Eq. (51). Note that this extrapolation
assumes constant density and that S(T0) is approximately
constant between T0 and T .

Figure 15 presents results of this simple dual potential
approach for predicting the MS-CG potentials for OTP at
T = 500 K and 650 K based upon information sampled
at T0 = 400 K, while maintaining a constant density ρ0 =

1033 kg/m3. In this figure, the left panels present results for
the 1-site model, while the right panels present results de-
scribing the CM-CM pair in the 3-site model. The dashed
black curves in panels A and B present the reference pair
potentials employed in this extrapolation for the 1- and 3-
site model, respectively. The dotted curves in panels A and
B present the predicted pair potential, U2(T ), for the 1-site
model and the predicted CM-CM pair potential, UCM−CM(T ),
for the 3-site model, respectively. The dotted curves in pan-
els C and D present the corresponding site-site rdfs obtained

from constant NVT simulations with the predicted CG po-
tentials.

In order to assess the accuracy of the predicted CG po-
tentials, we performed additional constant NVT AA simula-
tions at T = 500 K and 650 K with the fixed density ρ0 =

1033 kg/m3. The solid curves in panels C and D present the
resulting mapped AA rdfs. Clearly, the predicted CG mod-
els very accurately reproduced the pair structure of the AA
simulations.

From these additional AA simulations, MS-CG poten-
tials were calculated for the 1- and 3-site representations of
OTP. The dashed curves in panels A and B present the re-
sulting pair potentials for the 1-site model and the CM-CM
pair potentials for the 3-site model for comparison with the
potentials predicted via the dual potential approach. Indeed,
the dual potential approach predicts the temperature-depen-
dent MS-CG potentials with remarkable accuracy. The sim-
ple linear prediction slightly overestimates the temperature-
dependence of the 1-site pair potential, but almost quantita-
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tively reproduces the temperature-dependence of the 3-site
potentials.

Panels E and F quantify the difference between the MS-
CG pair potentials specifically optimized for each temper-
ature and the pair potentials predicted via the dual poten-
tial approach. Relative to the magnitude of the effective po-
tentials, this discrepancy is quite small for both resolutions.
This error appears to increase systematically with tempera-
ture in the 1-site model. This systematic error suggests that
the simple linear extrapolation in Eq. (51) fails to account
for the temperature-dependence in the pair entropy func-
tion, S2, for the one-site model. Conversely, the error in the
predictions for the 3-site model are approximately an order
of magnitude smaller and also less systematic. This sug-
gests that the pair entropy functions for the 3-site model are
approximately constant over this temperature range, while
the pair entropy function for the 1-site model varies more
rapidly with temperature.

In order to investigate this hypothesis, we also applied
the dual potential approach at T = 500 K and 650 K. We
first performed energy matching to determine approximate
energetic operators for each model based upon AA simula-
tion data at each temperature. We inferred the correspond-
ing entropic operators based upon the difference between
the MS-CG potentials and the energy operators calculated
for each temperature. We compared these inferred entropy
functions with the empirical entropy functions determined
from the observed temperature-dependence of the MS-CG
potentials specifically calculated for each temperature. Fig-
ure 16 presents the results of this analysis. As in Fig. 15, the
left column presents the results for the 1-site model, while
the right column presents results for the CM-CM interaction
in the 3-site model.

Figure 16 largely confirms our hypothesis. The pair en-
ergy and entropy functions for the 1-site model do indeed
systematically increase with temperature. This temperature
variation then determines an approximation to the config-
uration-dependent specific heat, CW , which is discussed in
Sect. 2.3.2. By accounting for this configuration-dependent
specific heat, the dual potential approach should more ac-
curately predict the temperature-dependence of the MS-CG
pair potentials. Conversely, with the exception of the CM-
CM pair energy function at T = 650 K, the energetic and
entropic pair functions for the 3-site model appear almost
temperature-independent. This is consistent with the expec-
tations of Section 3.3.1, i.e., the entropic contributions to
effective pair potentials should not only systematically in-
crease with decreasing resolution, but also demonstrate in-
creasing temperature-dependence. In particular, the entropic
contributions to the 3-site pair potential appear almost inde-
pendent of temperature. Consequently, the predictions of the
dual approach for the 3-site model should be independent of
reference state point over this temperature range.

We also assess the accuracy of the energetic operators
for reproducing the mean AA potentials at each CG resolu-
tion. Table 1 presents the resulting average energies calcu-
lated at each temperature for the 1-site and 3-site models. As
expected, the approximate energy functions, E, reproduce
the mean AA energies within a few percent. In particular,
the intramolecular operators for the 3-site model, EIntra, ex-
actly reproduce the average AA intramolecular potential at
all three state points.

4.6 Outlook

The preceding work represents the first step towards predic-
tive CG models for the liquid phase of OTP. It will clearly
be important to extend this work for modeling OTP at differ-
ent densities. Lebold and Noid previously applied the dual
potential approach to develop implicit solvent models for
simulating the constant NPT ensemble at a range of temper-
atures. [32] Following their study, the first step will be to
perform constant NPT AA simulations at a range of exter-
nal pressures. From these simulations, we will determine the
density-dependence of the MS-CG interaction potentials, U(R),
as well as the volume potential, UV (V ), that is necessary to
reproduce the AA pressure-density equations of state. We
will then perform energy-matching to estimate the energetic
contributions to the interaction and volume potentials, from
which the corresponding entropic contributions can then be
inferred. Given these energetic and entropic contributions,
as well as their density dependence, it should be possible
to predict pair and volume potentials for modeling the en-
tire liquid region of the phase diagram. As observed in Sec-
tion 4.5, it is likely that simple linear predictions may prove
less successful for the lower resolution 1-site model. In this
case, it may prove necessary to account for the configura-
tion-dependent specific heat, CW . Ultimately, it is hoped that
this work will provide a prototype for efficiently establish-
ing predictive CG models for reproducing the structure and
thermodynamics of molecular liquids across large regions of
their phase diagram.

5 Conclusion

While bottom-up models have been plagued by transferabil-
ity and representability difficulties, our analysis of the many-
body PMF clarifies their fundamental origin. More impor-
tantly, this analysis suggests computational methodologies
for addressing these difficulties in practice. Specifically, by
properly distinguishing the energetic and entropic contribu-
tions to the PMF, the dual potential approach provides a sim-
ple and rigorous approach for addressing the transferability
and representability issues that stem from the temperature-
dependence of the PMF. Similarly, by properly accounting
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Fig. 16 Application of the dual potential approach to the 1-site and 3-site CG models of OTP at a fixed density, ρ0 = 1033 kg/m3. As before,
the left panels present results for the 1-site model, while the right panels present results for the CM-CM pair in the 3-site model. Panels A and
B present the resulting pair energy functions calculated via the energy-matching variational principle, which employed the energies sampled by
AA simulations at the corresponding state point. Panels C and D present the corresponding pair entropy potentials inferred for each temperature.
The black dashed-dotted curve presents an empirical estimate for S2, which was calculated as a finite difference according to Eq. (50). The black,
orange, and red curves correspond to results for T0 = 400 K, T = 500 K, and T = 650 K, respectively.

Table 1 Table summarizing various average energies for AA and CG models of OTP at a fixed density, ρ0 = 1033 kg/m3. The temperatures are
reported in K and the energies are reported in 103 kJ/mol.

1-site 3 -site

T uInter U E T uInter UInter EInter uIntra UIntra EIntra

400 -64.6 131.1 -65.7 400 -64.6 38.6 -66.0 196.5 126.9 196.8

500 -62.3 183.8 -63.5 500 -62.3 74.6 -63.6 222.7 88.2 227.1

650 -59.4 242.1 -60.6 650 -59.4 100.5 -61.2 272.3 27.3 272.7

for the atomic fluctuations that are hidden by the CG resolu-
tion, this approach can accurately and consistently model the
atomic specific heat. The present numerical results demon-
strate that the dual potential approach is not only simple and
predictive, but also remarkably accurate for modeling rather
complex fluids, such as OTP. While additional work is nec-
essary to treat the density-dependence of CG potentials with
similar rigor and to treat more complex polymeric systems,
we hope that our ongoing work with OTP will establish a ro-
bust computational framework for developing predictive CG
models that accurately model both structural and thermody-
namic properties across wide ranges of the phase diagram.
Finally, our analysis of CG mappings for the GNM and for
OTP elucidate the importance of the mapping upon the in-
formation content, thermodynamic properties, and accuracy
of CG models. Consequently, we hope that this work will
provide fundamental insights and useful guidance for devel-
oping and analyzing CG models of complex systems - both
in theory and in practice.
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