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Abstract

Many organisms use environmental cues to time events in their annual cycle, such as
reproduction and migration, with the appropriate timing of such events impacting survival and
reproduction. As the climate changes, evolved mechanisms of cue use may facilitate or limit the
capacity of organisms to adjust phenology accordingly, and organisms often integrate multiple
cues to fine-tune the timing of annual events. Yet our understanding of how suites of cues are
integrated to generate observed patterns of seasonal timing remains nascent. We present an
overarching framework to describe variation in the process of cue integration in the context of
seasonal timing. This framework incorporates both cue dependency and cue interaction. We then
summarize how existing empirical findings across a range of vertebrate species and life cycle
events fit into this framework. Finally, we use a theoretical model to explore how variation in
modes of cue integration may impact the ability of organisms to adjust phenology adaptively in
the face of climate change. Such a theoretical approach can facilitate exploration of complex
scenarios that present challenges to study in vivo but capture important complexity of the natural

world.
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Introduction

The ability of organisms to time events in the annual cycle (e.g., reproduction, migration,
hibernation) such that they coincide with suitable environmental conditions can be critical to
fitness (Post and Forchhammer 2008; Thomas et al. 2001). Consequently, many animals have
evolved to use proximate environmental cues (e.g., photoperiod, food availability, temperature)
to appropriately time these events (Bradshaw and Holzapfel 2007; Wingfield 2008). Yet climate
change poses a serious challenge to the maintenance of appropriate timing of life cycle events.
Of particular concern is the potential for climate change to alter the correlation between
proximate environmental cues and suitable environmental conditions. Such cue-environment
mismatch can occur under climate change if the phenology of important resources (e.g., food)
changes relative to the timing of proximate cues (Visser 2008). For instance, many animals use
changes in photoperiod as an important cue to time annual events (Bradshaw and Holzapfel
2007). However, photoperiod cycles will remain unaltered in all locales with ongoing climate
change, regardless of other phenological changes. Climate change may also lead to cue-
environment mismatches by inducing range shifts, if such shifts bring organisms into areas
where the relative timing of proximate cues and environmental conditions are different than in
the environment in which they evolved (Coppack and Pulido 2004; Huffeldt 2020). To
understand the potential for such cue-environment mismatches and to predict their impact, an
understanding of cue use in the timing of annual events is essential.

We now have a wealth of knowledge about how particular proximate cues can influence
the timing of life cycle events, including reproduction, migration, and hibernation. Photoperiod is
arguably the best studied proximate cue (Bradshaw and Holzapfel 2007; Bronson 1989; Dawson

et al. 2001), but our understanding of the roles of others, such as temperature, food availability,
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and social cues, is growing (Caro et al. 2013; Chmura et al. 2020; Helm et al. 2013; Williams et
al. 2014). Moreover, although these cues have often been studied independently, there is a long-
standing recognition that animals typically use multiple cues to fine-tune the timing of events
(Ball 1993; Bronson 1989; Wingfield 1983; Wingfield et al. 1992). Nonetheless, our
understanding of how cues are integrated to time annual events remains nascent.

There is a pressing need to better understand cue integration if we wish to understand and
predict changing phenology and the consequences of climate change (Chmura et al. 2019;
Edwards and Yang 2020; Visser et al. 2010). Here, we present a new framework for describing
variation in cue integration for the timing of life events and then summarize how existing
findings across a range of life events fit into this framework. We then develop and apply a
theoretical model to examine how different modes of cue integration may facilitate or limit the
capacity of organisms to adjust phenology in the face of changes in cue-environment
relationships. This modeling approach affords an opportunity to explore questions that can be
challenging to address in vivo (e.g., requiring experiments that are time- and animal-intensive).
Overall, the focus of our approach is on organismal-level processes; however, it could be applied
or expanded to address questions at other levels of organization, including neural or molecular

mechanisms (e.g., Stevenson and Ball 2011).

Cue integration framework and examples

Our cue integration framework describes variation in the modes by which cues can be
integrated by considering both cue dependency and cue interaction (Figure 1). Previous models
of cue integration have typically focused on what we call cue dependency, describing two

alternatives: serial (also called hierarchical) or parallel (Ball 1993; Chmura et al. 2020; Hahn et
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al. 2015; Perfito et al. 2008). When cue dependency is serial, the presence of one cue is a
prerequisite for response to another cue. When cue dependency is parallel, any one of a suite of
alternate cues can generate a similar response on its own, independent of the other cue(s), and
each cue can therefore substitute for the others. For instance, if a threshold photoperiod must be
reached before an animal will respond to additional cues, this would be a case of serial cue
dependency. Our framework builds on previous conceptual work on cue dependency to add
another important, but overlooked in this context, dimension of cue integration — the interaction
among cues. Here, we draw from the field of sensory ecology (Partan and Marler 1999) to
identify three different modes of cue interaction (or lack thereof), which can occur in conjunction
with serial or parallel cue dependency. Cue interactions can be redundant, enhancing, or
differential. In the case of a redundant interaction, each cue elicits the same response alone or in
combination. In contrast, in an enhancing interaction, cue combinations generate greater
responses than any cue alone. Finally, a differential interaction occurs when the cues elicit
different behavioral or physiological responses involved in the life-cycle transition. The
outcomes of different combinations of cue dependency and interaction are illustrated in Figure 1.
By considering both cue dependency and cue interactions, this framework allows important
nuances of cue integration to be examined in greater detail than was possible with previous
models that have focused only on a single dimension (cue dependency; Ball 1993; Chmura et al.
2020; Hahn et al. 2015; Perfito et al. 2008), or on the relative reliance on long-term versus short-
term predictive cues (Stevenson and Ball 2011; Wingfield et al. 1992). Below, we draw from the
literature to illustrate examples of different modes of cue integration across a range of life history
events. In examining the literature, we have focused on studies that use full factorial designs of

cue combinations, as these are necessary to distinguish among modes of cue integration.
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Parallel and enhancing cue integration has been observed in the timing of reproduction,
hibernation, and migration. For instance, in deer mice (Peromyscus maniculatus), both long
photoperiods and abundant food are stimulatory cues for the onset of reproductive development,
with each cue showing a positive effect on its own but the combination of the two cues together
yielding the strongest effect (Nelson et al. 1997). These cues — photoperiod and food availability
— are also integrated in a parallel and enhancing manner to time termination of reproduction in
California voles (Microtus californicus, Nelson et al. 1983). Parallel and enhancing integration is
also seen in the integration of photoperiod and temperature cues to time hibernation in Arctic
ground squirrels (Urocitellus parryii, Drescher 1967) and reproductive development in female
green anoles (4nolis carolinensis; Licht 1973). Finally, red crossbills (Loxia curvirostra)
integrate food availability and social cues in this manner in the context of a facultative migratory
response (Cornelius et al. 2010).

Serial and enhancing cue integration has been documented primarily in the context of
reproductive timing. This type of integration has been found to occur in small mammals,
particularly rodents, with appropriate photoperiod cues being necessary for further enhancing
effects of food availability (Peromyscus californicus, Steinman et al. 2012), social cues
(Phodopus sungorus, Paul et al. 2009; Peromyscus leucopus, Pyter et al. 2005), or temperature
(Peromyscus maniculatus, Desjardins and Lopez 1983; Microtus ochrogaster, Kriegsfeld et al.
2000). Similarly, it occurs in small mammals with the integration of food cues with other non-
photic cues (Peromyscus maniculatus, Demas and Nelson 1998; Suncus murinus, Wayne et al.
1991). It has also been documented to occur in the integration of temperature and photoperiod
cues in the context of reproductive timing of fishes and reptiles (Menidia beryllina, Huber and

Bengtson 1999; male Anolis carolinensis, Licht 1971; Stenotherus odoratus, Mendonga and
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Licht 1986; Heteropneustes fossilis, Sundararaj and Vasal 1976). Finally, serial and enhancing
cue integration also occurs in the integration of photoperiod and a social cue, male song, by
female white-crowned sparrows (Zonotrichia leucophrys) — male song was only stimulatory
when photoperiod was sufficiently long (Morton et al. 1985).

Differential cue integration is illustrated primarily by work in birds. In male white-
crowned sparrows, Moore (1983) has described a parallel differential response to the integration
of a long day photoperiod cue and the presence of a sexually receptive female in the transition to
a breeding state — the photoperiod cue stimulated gonadal development and the receptive female
stimulated the expression of sexual behavior. Moreover, neither cue was necessary for a response
to the other, indicating parallel cue dependency. That is, males on short day photoperiods still
expressed sexual behavior when paired with a sexually receptive female. Yet, both cues in
combination were necessary for the expression of traits associated with a mature breeding state.
Differential cue integration has also been noted in female birds, whereby a photoperiod cue will
stimulate initial maturation of the ovaries, but additional cues from males are necessary to
stimulate progression to yolk deposition (Perfito et al. 2015; Watts et al. 2016; Wingfield et al.
1997).

Although we have illustrated the cue integration framework focusing primarily on the
integration of two cues, it can also be applied to interactions among multiple cues. For instance,
in male red crossbills, Hahn and colleagues (Hahn 1995; Hahn et al. 1995) found that
photoperiod alone, or food and social (i.e., access to females) cues in combination, can stimulate
gonadal development during the transition to a breeding stage. Thus, we can describe
photoperiod as being parallel and redundant with the combination of food and social cues,

though either food or social cues alone appear to be insufficient to reach full reproductive
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capabilities. Further, when we consider the integration of food and social cues in this example,
these cues could be described as serial and enhancing. The example of food and social cues here
highlights that when cues are serial and enhancing, it can be the case that an initial cue generates
some response which is further enhanced by a subsequent cue, or alternatively, as appears to be
the case in crossbills, it can be that it is only when both cues are present that a response is
generated. The latter situation has also been observed in Siberian hamsters (Phodopus sungorus)
where the combination of an intermediate photoperiod, such as would occur in the late summer
or autumn, and reduced food availability can stimulate termination of breeding, though either cue

alone has minimal effect (Paul et al. 2009).

Potential consequences of variation in cue integration under climate change

Considering the evidence for variation in modes of cue integration, it is worthwhile to
consider the potential consequences of differences in cue integration. As a first step towards
examining the potential consequences of different modes of cue integration under climate
change, we have developed a theoretical model. This theoretical model combines information
about cue integration and the optimal timing of a seasonal life history event to examine the
effects on fitness under different cue-environment associations (the code used to implement the
model is available as described in the Data Availability Statement). For simplicity, we focus here
on comparing two types of cue integration: parallel and enhancing integration and serial and
enhancing integration. Although the number of cues that could conceivably be combined to
determine a particular response is potentially quite large, we will consider the simplest case of
just two cues, which we denote by ¢ and c>. For example, ¢1 might represent photoperiod and ¢

might be a measure of temperature. Our model assumes that an animal uses these two cues to
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determine the timing at which a life cycle event or transition occurs. For illustration, we imagine
that a female uses these two cues to determine its day of breeding (e.g., initiation of egg laying),
but our model could be applied to other events. If we denote this day by b, then in mathematical
terms, the day of breeding is determined by b = f(c1, c2), where f'is a cue integration function.
We represent each mode of cue integration as an integration function form. The first form is
parallel and enhancing: b = zic1+ z2¢2, where z1 and z; are coefficients that describe the animals’
“sensitivities” to the two cues. The second form of cue integration we consider is serial and
enhancing. In this form, breeding date is influenced by the second cue only if the first cue
reaches a threshold value, C;, sothat b=zic1ifc1 <Crand b=z ¢1 +z2 ¢z if ¢1 > C;. Thus,
when the first cue value exceeds C;, the function assumes the same form as parallel and
enhancing.

To examine potential consequences of these different forms of cue integration, we
assume that the organism’s fitness depends on its breeding date b and that there is an optimal
breeding date during the season, denoted by 6, at which a female’s fecundity 7 would be
maximized; fecundity at earlier and later breeding dates declines with the magnitude of deviation
from this optimum. A relatively simple mathematical function that describes this intermediate

optimum scenario is the Gaussian function

_(b-6)?

where s > 0 and F is the maximum fecundity a female achieves when breeding on the optimal

date, b = 0. The parameter s, a measure of the magnitude of selection, describes how quickly
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fecundity declines from the maximum for females that breed on non-optimal dates, b # 0; the
squared term in the exponent indicates that the extent of decline is the same for breeding dates
the same distance before and after 8. Environmental conditions could affect any or all of F s,
and 8. We will consider only effects on the optimal breeding date 8 in this article to illustrate
our main points as simply as possible and leave examination of effects of the other parameters to
future study. Moreover, we note that other functions could be used to describe the relationship
between breeding day and fecundity, and for example, declines in fitness before and after 6 need
not be symmetrical as our model assumes.
We assume that the optimal breeding date in this original environment is statistically

associated with the two cues, specifically, that it is described by the linear regression equation

0 = picy + Bac

where 3; and [, are partial regression coefficients. Thus, the partial regression coefficient, 5, for
a given cue reflects the reliability of that cue as an indicator of optimal timing. In an organism
with parallel and enhancing cue integration, that is, b = z1 ¢1+ z2 ¢2, for all cue values,
multivariate quantitative genetic theory (Lande 1979) tells us that with sufficient genetic
variation, selection in a stable environment will favor the evolution of mean sensitivities that
match the regression coefficients; that is, the mean of sensitivity zi would evolve to the value f;
and the mean of sensitivity z> would evolve to f,, because those values would optimize the
fecundity function (). For parallel and enhancing integration then, females with sensitivities z1
= B, and z2 = , would always choose the optimal breeding date and, thus, obtain maximal

fecundity F, across all cue combinations (Figure 2A). By comparison, females that rely on serial

10
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and enhancing cue integration would breed on non-optimal dates under many cue conditions
when the first cue value is below the threshold C; (even if z; = f; and z, = f3;) and thus would
realize less than optimal fecundity in these conditions (Figure 2B). We should note that our
model only considers the fitness consequences of timing in terms of expected fecundity in the
current breeding season. It may be, for example, that serial and enhancing integration has
evolved in a number of species because it confers advantages in terms of future survival and
fecundity that are not considered in the present model.

To consider the potential consequences of climate change, we next imagine that the
environment changes in such a way that the regression relation between the two cues and the

optimal breeding date is changed to

6 = pic, + Bic

where S and [5; describe the new associations between the optimal breeding date and cues
c,and c,, respectively. In this novel environmental scenario, we set 57 and 5 so ¢; now has a
weak relationship to optimal breeding date and c, has a strong relationship. As the animals’ cue
sensitivities (z1 and z2) do not change, this case sets up greater potential for cue-environment
mismatch. In this scenario, we see fecundities reduced across both forms of cue integration for
many cue conditions (Figure 3). Even females using parallel and enhancing cue integration that
was optimal in the previous environment (i.e., z; = f; and z, = [3,) will frequently select
breeding dates b that are suboptimal in the novel environment (Figure 3A). Moreover, when we
compare fecundity between serial and parallel modes of integration in the first environment (i.e.,

z, = B; and z, = 3,) and in our novel environment, we see that serial integration leads to a

11
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greater reduction in fecundity compared to parallel integration over a range of cue values (Figure
4). However, there are conditions under which serial integration will perform better than parallel
(Figure 4).

In comparing performance of the two modes of cue integration across environmental
scenarios, two aspects of our findings are particularly noteworthy. First, it can be seen that
differences in fecundity between serial and parallel integration arise when the first cue is below
the C; threshold (Figure 4). This could be representative of the type of situation that animals
might encounter if optimal timing of an event were to advance such that it was occurring earlier
than a photoperiod threshold needed to stimulate appropriate physiological and behavioral
changes. Second, our examination of the literature suggests that serial and enhancing cue
integration is frequently used in the context of reproductive timing, with a photoperiod cue being
necessary for responsiveness to a second cue. This suggest that these species may be particularly
vulnerable to negative effects of cue-environment mismatch such as what we have modeled here.
More generally, by modeling relatively simple scenarios, our results suggest that mechanisms of
cue integration can be an important determinant of the extent to which animals may be able to

adjust timing to match novel environmental conditions.

Conclusions and future directions

It is generally understood that animals typically integrate multiple environmental cues to
time events in their annual cycles. However, we still have much to learn about how this cue
integration occurs. Here, we have presented a framework to describe variation in modes of cue
integration that considers both the cue dependency and interactions between the cues. Drawing

from the vertebrate literature, we find empirical evidence for variation in the modes of cue
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integration within this framework. Finally, using a theoretical approach, we find evidence that
differences in modes of cue integration may impact the abilities of animals to shift timing in
response to climate change. We suggest that future work using both empirical and theoretical
approaches will be important if we wish to understand how climate change will impact
phenology.

Empirical studies to test modes of cue integration across more species, life cycle events,
and environmental cues are needed to develop a comprehensive understanding of cue integration.
Studies that yield data for comparative analyses will be particularly useful for elucidating the
circumstances under which different cue integration mechanisms evolve and discerning general
‘rules’. For instance, constancy/contingency models of environmental predictability (Stevenson
and Ball 2011; Wingfield et al. 1992) could be used in comparative analyses to evaluate whether
particular patterns of environmental predictability are associated with different modes of cue
integration. Studies that allow for comparisons between sexes will also be particularly valuable.
Although we know that the sexes often differ in their use of a given environmental cue (Ball and
Ketterson 2008; Chmura et al. 2020; Tolla and Stevenson 2020), the extent of sex differences in
cue integration has received relatively little attention (but see Licht 1971; 1973). We suggest that
considering these differences and their potential consequences will be an important area for
future work.

In combination with empirical work, theoretical approaches will be an important tool for
predicting how different patterns of cue use and cue integration are likely to impact phenological
responses to climate change. Here, we start with a relatively simple model that considers two
environmental cues and two modes of cue integration. This approach could well be expanded to

incorporate more cues and modes of cue integration, as well as to consider a range of life cycle
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events and even full annual cycles. Theoretical approaches could facilitate exploration of these
more complex scenarios that present considerable logistical challenges to empiricists, but that

likely capture important complexity of the natural world.
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Figures

Figure 1. Conceptual overview of different modes of cue integration. Responses to two cues, A
and B, alone and in combination are illustrated using the examples of gonadal (testicular)
recrudescence (larger testes indicate greater advancement to breeding state) and vocal production
(e.g., courtship vocalization shown as present/absent). Note that only differential cue interactions

will result in two responses, so vocal production is only a potential response in those cases.
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Figure 2. Fecundity realized based on breeding date using (a) parallel and enhancing cue
integration, and (b) serial and enhancing cue integration for two environmental cues (c; and c2)
and cue sensitivities (z1 and z2) that matched partial regression coefficients (5; and f3,) that
describe the relationship between the cues and optimal breeding date (i.e., cue-environment
match). Results are shown for model parameters: z1 =z = 1= [,=0.5,C; =1, 5 = 0.5 and are
qualitatively representative of a range of values that we ran to reflect the described scenario. For

serial cue integration (b), the change in fecundity at c; = 1 reflects the change in influence of ¢

on breeding date.

(A)
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Figure 3. Fecundity realized based on breeding date using (a) parallel and enhancing cue
integration, and (b) serial and enhancing cue integration for two environmental cues (c; and c2)
and cue sensitivities (z1 and z2) under a novel relationship between environmental cues and
optimal breeding date (described by partial regression coefficients 7 and [5; cue-environment
mismatch). In this case, c; now has a weak association with optimal breeding date (;=0.1) and
¢2 has a strong association (,= 0.9). Other model parameters remained the same as for Figure 2
(z1i=22=0.5, C; =1, s = 0.5). Results for the parameter values shown here are qualitatively
representative of a range of values that we ran to reflect the described scenario. For serial cue
integration (b), the change in fecundity at c; = 1 reflects the change in influence of c; on breeding

date.
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Figure 4. Difference in fecundity between serial and parallel enhancing cue integration (F'serial —
Fparallel) under original (a) and novel (b) relationships between two environmental cues (c; and c¢?)
and optimal breeding date. Negative values indicate that parallel integration yields higher
fecundity. Inset shows the same plot as (b) but rotated around z-axis so that positive values for
difference in fecundity are visible. Fecundity values used to calculate difference are shown in
Figures 2 and 3. Note that the difference in fecundity changes at ¢;= 1 due to the change in

influence of ¢z on breeding date under serial cue integration.
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