

1
2 Environmental cue integration and phenology in a changing world
3
4 Heather E. Watts^{1,2}, Ashley R. Robart³, Thomas P. Hahn⁴, Richard Gomulkiewicz¹
5
6 ¹School of Biological Sciences, Washington State University
7 ²Center for Reproductive Biology, Washington State University
8 ³Department of Biology, Southern Oregon University
9 ⁴Department of Neurobiology, Physiology and Behavior, University of California, Davis

10
11
12 Corresponding author:
13 Heather E. Watts
14 School of Biological Sciences
15 Washington State University
16 P.O. Box 644236
17 Pullman, WA 99164-4236
18 (office) 509-335-5591
19 heather.watts@wsu.edu

20
21 Running title: Cue integration and phenology
22 Keywords: annual cycle, climate change, environmental cues, phenology, photoperiod,
23 seasonality

24 **Abstract**

25 Many organisms use environmental cues to time events in their annual cycle, such as
26 reproduction and migration, with the appropriate timing of such events impacting survival and
27 reproduction. As the climate changes, evolved mechanisms of cue use may facilitate or limit the
28 capacity of organisms to adjust phenology accordingly, and organisms often integrate multiple
29 cues to fine-tune the timing of annual events. Yet our understanding of how suites of cues are
30 integrated to generate observed patterns of seasonal timing remains nascent. We present an
31 overarching framework to describe variation in the process of cue integration in the context of
32 seasonal timing. This framework incorporates both cue dependency and cue interaction. We then
33 summarize how existing empirical findings across a range of vertebrate species and life cycle
34 events fit into this framework. Finally, we use a theoretical model to explore how variation in
35 modes of cue integration may impact the ability of organisms to adjust phenology adaptively in
36 the face of climate change. Such a theoretical approach can facilitate exploration of complex
37 scenarios that present challenges to study *in vivo* but capture important complexity of the natural
38 world.

39

40

41

42 **Introduction**

43 The ability of organisms to time events in the annual cycle (e.g., reproduction, migration,
44 hibernation) such that they coincide with suitable environmental conditions can be critical to
45 fitness (Post and Forchhammer 2008; Thomas et al. 2001). Consequently, many animals have
46 evolved to use proximate environmental cues (e.g., photoperiod, food availability, temperature)
47 to appropriately time these events (Bradshaw and Holzapfel 2007; Wingfield 2008). Yet climate
48 change poses a serious challenge to the maintenance of appropriate timing of life cycle events.
49 Of particular concern is the potential for climate change to alter the correlation between
50 proximate environmental cues and suitable environmental conditions. Such cue-environment
51 mismatch can occur under climate change if the phenology of important resources (e.g., food)
52 changes relative to the timing of proximate cues (Visser 2008). For instance, many animals use
53 changes in photoperiod as an important cue to time annual events (Bradshaw and Holzapfel
54 2007). However, photoperiod cycles will remain unaltered in all locales with ongoing climate
55 change, regardless of other phenological changes. Climate change may also lead to cue-
56 environment mismatches by inducing range shifts, if such shifts bring organisms into areas
57 where the relative timing of proximate cues and environmental conditions are different than in
58 the environment in which they evolved (Coppock and Pulido 2004; Huffeldt 2020). To
59 understand the potential for such cue-environment mismatches and to predict their impact, an
60 understanding of cue use in the timing of annual events is essential.

61 We now have a wealth of knowledge about how particular proximate cues can influence
62 the timing of life cycle events, including reproduction, migration, and hibernation. Photoperiod is
63 arguably the best studied proximate cue (Bradshaw and Holzapfel 2007; Bronson 1989; Dawson
64 et al. 2001), but our understanding of the roles of others, such as temperature, food availability,

65 and social cues, is growing (Caro et al. 2013; Chmura et al. 2020; Helm et al. 2013; Williams et
66 al. 2014). Moreover, although these cues have often been studied independently, there is a long-
67 standing recognition that animals typically use multiple cues to fine-tune the timing of events
68 (Ball 1993; Bronson 1989; Wingfield 1983; Wingfield et al. 1992). Nonetheless, our
69 understanding of how cues are integrated to time annual events remains nascent.

70 There is a pressing need to better understand cue integration if we wish to understand and
71 predict changing phenology and the consequences of climate change (Chmura et al. 2019;
72 Edwards and Yang 2020; Visser et al. 2010). Here, we present a new framework for describing
73 variation in cue integration for the timing of life events and then summarize how existing
74 findings across a range of life events fit into this framework. We then develop and apply a
75 theoretical model to examine how different modes of cue integration may facilitate or limit the
76 capacity of organisms to adjust phenology in the face of changes in cue-environment
77 relationships. This modeling approach affords an opportunity to explore questions that can be
78 challenging to address *in vivo* (e.g., requiring experiments that are time- and animal-intensive).
79 Overall, the focus of our approach is on organismal-level processes; however, it could be applied
80 or expanded to address questions at other levels of organization, including neural or molecular
81 mechanisms (e.g., Stevenson and Ball 2011).

82

83 **Cue integration framework and examples**

84 Our cue integration framework describes variation in the modes by which cues can be
85 integrated by considering both cue dependency and cue interaction (Figure 1). Previous models
86 of cue integration have typically focused on what we call cue dependency, describing two
87 alternatives: serial (also called hierarchical) or parallel (Ball 1993; Chmura et al. 2020; Hahn et

88 al. 2015; Perfito et al. 2008). When cue dependency is *serial*, the presence of one cue is a
89 prerequisite for response to another cue. When cue dependency is *parallel*, any one of a suite of
90 alternate cues can generate a similar response on its own, independent of the other cue(s), and
91 each cue can therefore substitute for the others. For instance, if a threshold photoperiod must be
92 reached before an animal will respond to additional cues, this would be a case of serial cue
93 dependency. Our framework builds on previous conceptual work on cue dependency to add
94 another important, but overlooked in this context, dimension of cue integration – the interaction
95 among cues. Here, we draw from the field of sensory ecology (Partan and Marler 1999) to
96 identify three different modes of cue interaction (or lack thereof), which can occur in conjunction
97 with serial or parallel cue dependency. Cue interactions can be *redundant*, *enhancing*, or
98 *differential*. In the case of a redundant interaction, each cue elicits the same response alone or in
99 combination. In contrast, in an enhancing interaction, cue combinations generate greater
100 responses than any cue alone. Finally, a differential interaction occurs when the cues elicit
101 different behavioral or physiological responses involved in the life-cycle transition. The
102 outcomes of different combinations of cue dependency and interaction are illustrated in Figure 1.
103 By considering both cue dependency and cue interactions, this framework allows important
104 nuances of cue integration to be examined in greater detail than was possible with previous
105 models that have focused only on a single dimension (cue dependency; Ball 1993; Chmura et al.
106 2020; Hahn et al. 2015; Perfito et al. 2008), or on the relative reliance on long-term versus short-
107 term predictive cues (Stevenson and Ball 2011; Wingfield et al. 1992). Below, we draw from the
108 literature to illustrate examples of different modes of cue integration across a range of life history
109 events. In examining the literature, we have focused on studies that use full factorial designs of
110 cue combinations, as these are necessary to distinguish among modes of cue integration.

111 Parallel and enhancing cue integration has been observed in the timing of reproduction,
112 hibernation, and migration. For instance, in deer mice (*Peromyscus maniculatus*), both long
113 photoperiods and abundant food are stimulatory cues for the onset of reproductive development,
114 with each cue showing a positive effect on its own but the combination of the two cues together
115 yielding the strongest effect (Nelson et al. 1997). These cues – photoperiod and food availability
116 – are also integrated in a parallel and enhancing manner to time termination of reproduction in
117 California voles (*Microtus californicus*, Nelson et al. 1983). Parallel and enhancing integration is
118 also seen in the integration of photoperiod and temperature cues to time hibernation in Arctic
119 ground squirrels (*Urocitellus parryii*, Drescher 1967) and reproductive development in female
120 green anoles (*Anolis carolinensis*; Licht 1973). Finally, red crossbills (*Loxia curvirostra*)
121 integrate food availability and social cues in this manner in the context of a facultative migratory
122 response (Cornelius et al. 2010).

123 Serial and enhancing cue integration has been documented primarily in the context of
124 reproductive timing. This type of integration has been found to occur in small mammals,
125 particularly rodents, with appropriate photoperiod cues being necessary for further enhancing
126 effects of food availability (*Peromyscus californicus*, Steinman et al. 2012), social cues
127 (*Phodopus sungorus*, Paul et al. 2009; *Peromyscus leucopus*, Pyter et al. 2005), or temperature
128 (*Peromyscus maniculatus*, Desjardins and Lopez 1983; *Microtus ochrogaster*, Kriegsfeld et al.
129 2000). Similarly, it occurs in small mammals with the integration of food cues with other non-
130 photic cues (*Peromyscus maniculatus*, Demas and Nelson 1998; *Suncus murinus*, Wayne et al.
131 1991). It has also been documented to occur in the integration of temperature and photoperiod
132 cues in the context of reproductive timing of fishes and reptiles (*Menidia beryllina*, Huber and
133 Bengtson 1999; male *Anolis carolinensis*, Licht 1971; *Stenotherus odoratus*, Mendonça and

134 Licht 1986; *Heteropneustes fossilis*, Sundararaj and Vasal 1976). Finally, serial and enhancing
135 cue integration also occurs in the integration of photoperiod and a social cue, male song, by
136 female white-crowned sparrows (*Zonotrichia leucophrys*) – male song was only stimulatory
137 when photoperiod was sufficiently long (Morton et al. 1985).

138 Differential cue integration is illustrated primarily by work in birds. In male white-
139 crowned sparrows, Moore (1983) has described a parallel differential response to the integration
140 of a long day photoperiod cue and the presence of a sexually receptive female in the transition to
141 a breeding state – the photoperiod cue stimulated gonadal development and the receptive female
142 stimulated the expression of sexual behavior. Moreover, neither cue was necessary for a response
143 to the other, indicating parallel cue dependency. That is, males on short day photoperiods still
144 expressed sexual behavior when paired with a sexually receptive female. Yet, both cues in
145 combination were necessary for the expression of traits associated with a mature breeding state.
146 Differential cue integration has also been noted in female birds, whereby a photoperiod cue will
147 stimulate initial maturation of the ovaries, but additional cues from males are necessary to
148 stimulate progression to yolk deposition (Perfito et al. 2015; Watts et al. 2016; Wingfield et al.
149 1997).

150 Although we have illustrated the cue integration framework focusing primarily on the
151 integration of two cues, it can also be applied to interactions among multiple cues. For instance,
152 in male red crossbills, Hahn and colleagues (Hahn 1995; Hahn et al. 1995) found that
153 photoperiod alone, or food and social (i.e., access to females) cues in combination, can stimulate
154 gonadal development during the transition to a breeding stage. Thus, we can describe
155 photoperiod as being parallel and redundant with the combination of food and social cues,
156 though either food or social cues alone appear to be insufficient to reach full reproductive

157 capabilities. Further, when we consider the integration of food and social cues in this example,
158 these cues could be described as serial and enhancing. The example of food and social cues here
159 highlights that when cues are serial and enhancing, it can be the case that an initial cue generates
160 some response which is further enhanced by a subsequent cue, or alternatively, as appears to be
161 the case in crossbills, it can be that it is only when both cues are present that a response is
162 generated. The latter situation has also been observed in Siberian hamsters (*Phodopus sungorus*)
163 where the combination of an intermediate photoperiod, such as would occur in the late summer
164 or autumn, and reduced food availability can stimulate termination of breeding, though either cue
165 alone has minimal effect (Paul et al. 2009).

166

167 **Potential consequences of variation in cue integration under climate change**

168 Considering the evidence for variation in modes of cue integration, it is worthwhile to
169 consider the potential consequences of differences in cue integration. As a first step towards
170 examining the potential consequences of different modes of cue integration under climate
171 change, we have developed a theoretical model. This theoretical model combines information
172 about cue integration and the optimal timing of a seasonal life history event to examine the
173 effects on fitness under different cue-environment associations (the code used to implement the
174 model is available as described in the Data Availability Statement). For simplicity, we focus here
175 on comparing two types of cue integration: parallel and enhancing integration and serial and
176 enhancing integration. Although the number of cues that could conceivably be combined to
177 determine a particular response is potentially quite large, we will consider the simplest case of
178 just two cues, which we denote by c_1 and c_2 . For example, c_1 might represent photoperiod and c_2
179 might be a measure of temperature. Our model assumes that an animal uses these two cues to

180 determine the timing at which a life cycle event or transition occurs. For illustration, we imagine
181 that a female uses these two cues to determine its day of breeding (e.g., initiation of egg laying),
182 but our model could be applied to other events. If we denote this day by b , then in mathematical
183 terms, the day of breeding is determined by $b = f(c_1, c_2)$, where f is a *cue integration function*.
184 We represent each mode of cue integration as an integration function form. The first form is
185 *parallel and enhancing*: $b = z_1 c_1 + z_2 c_2$, where z_1 and z_2 are coefficients that describe the animals'
186 "sensitivities" to the two cues. The second form of cue integration we consider is *serial and*
187 *enhancing*. In this form, breeding date is influenced by the second cue only if the first cue
188 reaches a threshold value, C_1 , so that $b = z_1 c_1$ if $c_1 < C_1$ and $b = z_1 c_1 + z_2 c_2$ if $c_1 \geq C_1$. Thus,
189 when the first cue value exceeds C_1 , the function assumes the same form as parallel and
190 enhancing.

191 To examine potential consequences of these different forms of cue integration, we
192 assume that the organism's fitness depends on its breeding date b and that there is an optimal
193 breeding date during the season, denoted by θ , at which a female's fecundity F would be
194 maximized; fecundity at earlier and later breeding dates declines with the magnitude of deviation
195 from this optimum. A relatively simple mathematical function that describes this intermediate
196 optimum scenario is the Gaussian function

197

$$199 \quad F = \hat{F} e^{-s \frac{(b-\theta)^2}{2}}$$

198

200 where $s > 0$ and \hat{F} is the maximum fecundity a female achieves when breeding on the optimal
201 date, $b = \theta$. The parameter s , a measure of the magnitude of selection, describes how quickly

202 fecundity declines from the maximum for females that breed on non-optimal dates, $b \neq \theta$; the
203 squared term in the exponent indicates that the extent of decline is the same for breeding dates
204 the same distance before and after θ . Environmental conditions could affect any or all of \hat{F} , s ,
205 and θ . We will consider only effects on the optimal breeding date θ in this article to illustrate
206 our main points as simply as possible and leave examination of effects of the other parameters to
207 future study. Moreover, we note that other functions could be used to describe the relationship
208 between breeding day and fecundity, and for example, declines in fitness before and after θ need
209 not be symmetrical as our model assumes.

210 We assume that the optimal breeding date in this original environment is statistically
211 associated with the two cues, specifically, that it is described by the linear regression equation
212

214
$$\theta = \beta_1 c_1 + \beta_2 c_2$$

213
215 where β_1 and β_2 are partial regression coefficients. Thus, the partial regression coefficient, β , for
216 a given cue reflects the reliability of that cue as an indicator of optimal timing. In an organism
217 with parallel and enhancing cue integration, that is, $b = z_1 c_1 + z_2 c_2$, for all cue values,
218 multivariate quantitative genetic theory (Lande 1979) tells us that with sufficient genetic
219 variation, selection in a stable environment will favor the evolution of mean sensitivities that
220 match the regression coefficients; that is, the mean of sensitivity z_1 would evolve to the value β_1
221 and the mean of sensitivity z_2 would evolve to β_2 , because those values would optimize the
222 fecundity function (F). For parallel and enhancing integration then, females with sensitivities z_1
223 $= \beta_1$ and $z_2 = \beta_2$ would always choose the optimal breeding date and, thus, obtain maximal
224 fecundity \hat{F} , across all cue combinations (Figure 2A). By comparison, females that rely on serial

225 and enhancing cue integration would breed on non-optimal dates under many cue conditions
226 when the first cue value is below the threshold C_1 (even if $z_1 = \beta_1$ and $z_2 = \beta_2$) and thus would
227 realize less than optimal fecundity in these conditions (Figure 2B). We should note that our
228 model only considers the fitness consequences of timing in terms of expected fecundity in the
229 current breeding season. It may be, for example, that serial and enhancing integration has
230 evolved in a number of species because it confers advantages in terms of future survival and
231 fecundity that are not considered in the present model.

232 To consider the potential consequences of climate change, we next imagine that the
233 environment changes in such a way that the regression relation between the two cues and the
234 optimal breeding date is changed to

235

236
$$\theta = \beta_1^* c_1 + \beta_2^* c_2$$

237

238 where β_1^* and β_2^* describe the new associations between the optimal breeding date and cues
239 c_1 and c_2 , respectively. In this novel environmental scenario, we set β_1^* and β_2^* so c_1 now has a
240 weak relationship to optimal breeding date and c_2 has a strong relationship. As the animals' cue
241 sensitivities (z_1 and z_2) do not change, this case sets up greater potential for cue-environment
242 mismatch. In this scenario, we see fecundities reduced across both forms of cue integration for
243 many cue conditions (Figure 3). Even females using parallel and enhancing cue integration that
244 was optimal in the previous environment (i.e., $z_1 = \beta_1$ and $z_2 = \beta_2$) will frequently select
245 breeding dates b that are suboptimal in the novel environment (Figure 3A). Moreover, when we
246 compare fecundity between serial and parallel modes of integration in the first environment (i.e.,
247 $z_1 = \beta_1$ and $z_2 = \beta_2$) and in our novel environment, we see that serial integration leads to a

248 greater reduction in fecundity compared to parallel integration over a range of cue values (Figure
249 4). However, there are conditions under which serial integration will perform better than parallel
250 (Figure 4).

251 In comparing performance of the two modes of cue integration across environmental
252 scenarios, two aspects of our findings are particularly noteworthy. First, it can be seen that
253 differences in fecundity between serial and parallel integration arise when the first cue is below
254 the C_1 threshold (Figure 4). This could be representative of the type of situation that animals
255 might encounter if optimal timing of an event were to advance such that it was occurring earlier
256 than a photoperiod threshold needed to stimulate appropriate physiological and behavioral
257 changes. Second, our examination of the literature suggests that serial and enhancing cue
258 integration is frequently used in the context of reproductive timing, with a photoperiod cue being
259 necessary for responsiveness to a second cue. This suggest that these species may be particularly
260 vulnerable to negative effects of cue-environment mismatch such as what we have modeled here.
261 More generally, by modeling relatively simple scenarios, our results suggest that mechanisms of
262 cue integration can be an important determinant of the extent to which animals may be able to
263 adjust timing to match novel environmental conditions.

264

265 **Conclusions and future directions**

266 It is generally understood that animals typically integrate multiple environmental cues to
267 time events in their annual cycles. However, we still have much to learn about how this cue
268 integration occurs. Here, we have presented a framework to describe variation in modes of cue
269 integration that considers both the cue dependency and interactions between the cues. Drawing
270 from the vertebrate literature, we find empirical evidence for variation in the modes of cue

271 integration within this framework. Finally, using a theoretical approach, we find evidence that
272 differences in modes of cue integration may impact the abilities of animals to shift timing in
273 response to climate change. We suggest that future work using both empirical and theoretical
274 approaches will be important if we wish to understand how climate change will impact
275 phenology.

276 Empirical studies to test modes of cue integration across more species, life cycle events,
277 and environmental cues are needed to develop a comprehensive understanding of cue integration.
278 Studies that yield data for comparative analyses will be particularly useful for elucidating the
279 circumstances under which different cue integration mechanisms evolve and discerning general
280 'rules'. For instance, constancy/contingency models of environmental predictability (Stevenson
281 and Ball 2011; Wingfield et al. 1992) could be used in comparative analyses to evaluate whether
282 particular patterns of environmental predictability are associated with different modes of cue
283 integration. Studies that allow for comparisons between sexes will also be particularly valuable.
284 Although we know that the sexes often differ in their use of a given environmental cue (Ball and
285 Ketterson 2008; Chmura et al. 2020; Tolla and Stevenson 2020), the extent of sex differences in
286 cue integration has received relatively little attention (but see Licht 1971; 1973). We suggest that
287 considering these differences and their potential consequences will be an important area for
288 future work.

289 In combination with empirical work, theoretical approaches will be an important tool for
290 predicting how different patterns of cue use and cue integration are likely to impact phenological
291 responses to climate change. Here, we start with a relatively simple model that considers two
292 environmental cues and two modes of cue integration. This approach could well be expanded to
293 incorporate more cues and modes of cue integration, as well as to consider a range of life cycle

294 events and even full annual cycles. Theoretical approaches could facilitate exploration of these
295 more complex scenarios that present considerable logistical challenges to empiricists, but that
296 likely capture important complexity of the natural world.

297

298 **Funding**

299 This work was supported by the National Science Foundation [grant numbers IOS-1755245,
300 IOS-1756976 to HEW].

301

302 **Data availability statement**

303 No new data were generated or analysed in support of this research. The code used for the model
304 is available in the Washington State University institutional repository, Research Exchange, at
305 <https://doi.org/10.7273/000003369>.

306

307 **Acknowledgements**

308 We thank three anonymous reviewers for comments that improved the manuscript.

309

310

311 **References**

312 Ball GF. 1993. The neural integration of environmental information by seasonally breeding
313 birds. *American Zoologist* 33:185-199.

314 Ball GF, Ketterson ED. 2008. Sex differences in the response to environmental cues regulating
315 seasonal reproduction in birds. *Philosophical Transactions of the Royal Society B:*
316 *Biological Sciences* 363:231-246.

317 Bradshaw WE, Holzapfel CM. 2007. Evolution of animal photoperiodism. *Annual Review of
318 Ecology, Evolution, and Systematics* 38:1-25.

319 Bronson FH. 1989. *Mammalian Reproductive Biology*. Chicago: University of Chicago Press.

320 Caro SP, Schaper SV, Hut RA, Ball GF, Visser ME. 2013. The case of the missing mechanism:
321 How does temperature influence seasonal timing in endotherms? *PLoS Biology*
322 11:e1001517.

323 Chmura HE, Kharouba HM, Ashander J, Ehlman SM, Rivest EB, Yang LH. 2019. The
324 mechanisms of phenology: the patterns and processes of phenological shifts. *Ecological
325 Monographs* 89:e01337.

326 Chmura HE, Wingfield JC, Hahn TP. 2020. Non-phototic environmental cues and avian
327 reproduction in an era of global change. *Journal of Avian Biology* 51: e02243.

328 Coppack T, Pulido F. 2004. Photoperiodic response and the adaptability of avian life cycles to
329 environmental change. *Advances in Ecological Research* 35:131-150.

330 Cornelius JM, Breuner CW, Hahn TP. 2010. Under a neighbour's influence: public information
331 affects stress hormones and behaviour of a songbird. *Proceedings of the Royal Society B:
332 Biological Sciences* 277:2399-2404.

333 Dawson A, King VM, Bentley GE, Ball GF. 2001. Photoperiodic control of seasonality in birds.
334 *Journal of Biological Rhythms* 16:365-380.

335 Demas GE, Nelson RJ. 1998. Photoperiod, Ambient Temperature, and Food Availability Interact
336 to Affect Reproductive and Immune Function in Adult Male Deer Mice (*Peromyscus
337 maniculatus*). *Journal of Biological Rhythms* 13:253-262.

338 Desjardins C, Lopez MJ. 1983. Environmental Cues Evoke Differential Responses in Pituitary-
339 Testicular Function in Deer Mice*. *Endocrinology* 112:1398-1406.

340 Drescher JW. 1967. Environmental Influences on Initiation and Maintenance of Hibernation in
341 the Arctic Ground Squirrel, *Citellus Undulatus*. *Ecology* 48:962-966.

342 Edwards CB, Yang LH. 2020. Evolved Phenological Cueing Strategies Show Variable
343 Responses to Climate Change. *The American Naturalist* 197:E1-E16.

344 Hahn TP. 1995. Integration of photoperiodic and food cues to time changes in reproductive
345 physiology by an opportunistic breeder, the red crossbill, *Loxia curvirostra* (Aves:
346 *Carduelinae*). *Journal of Experimental Zoology* 272:213-226.

347 Hahn TP, Brazeal KR, Schultz EM, Chmura HE, Cornelius JM, Watts HE, MacDougall-
348 Shackleton SA. 2015. Annual Schedules. In: Scanes CG, editor. *Sturkie's Avian
349 Physiology* (Sixth Edition). San Diego: Academic Press. p. 847-867.

350 Hahn TP, Wingfield JC, Mullen R. 1995. Endocrine bases of spatial and temporal opportunism
351 in Arctic-breeding birds. *American Zoologist* 35:259-273.

352 Helm B, Ben-Shlomo R, Sheriff MJ, Hut RA, Foster R, Barnes BM, Dominoni D. 2013. Annual
353 rhythms that underlie phenology: biological time-keeping meets environmental change.
354 *Proceedings of the Royal Society B: Biological Sciences* 280:20130016.

355 Huber M, Bengtson DA. 1999. Effects of photoperiod and temperature on the regulation of the
356 onset of maturation in the estuarine fish *Menidia beryllina* (Cope) (Atherinidae). *Journal
357 of Experimental Marine Biology and Ecology* 240:285-302.

358 Huffeldt NP. 2020. Photic Barriers to Poleward Range-shifts. *Trends in Ecology & Evolution*
359 35:652-655.

360 Kriegsfeld LJ, Ranalli NJ, Bober MA, Nelson RJ. 2000. Photoperiod and Temperature Interact to
361 Affect the GnRH Neuronal System of Male Prairie Voles (*Microtus ochrogaster*). *Journal
362 of Biological Rhythms* 15:306-316.

363 Lande R. 1979. Quantitative Genetic Analysis of Multivariate Evolution, Applied to Brain: Body
364 Size Allometry. *Evolution* 33:402-416.

365 Licht P. 1971. Regulation of the Annual Testis Cycle by Photoperiod and Temperature in the
366 Lizard *Anolis Carolinensis*. *Ecology* 52:240-252.

367 Licht P. 1973. Influence of Temperature and Photoperiod on the Annual Ovarian Cycle in the
368 Lizard *Anolis carolinensis*. *Copeia* 1973:465-472.

369 Mendonça MT, Licht P. 1986. Photothermal effects on the testicular cycle in the musk turtle,
370 *Sternotherus odoratus*. *Journal of Experimental Zoology* 239:117-130.

371 Moore MC. 1983. Effect of female sexual displays on the endocrine physiology and behaviour of
372 male White-crowned sparrows, *Zonotrichia leucophrys*. *Journal of Zoology* 199:137-148.

373 Morton ML, Pereyra ME, Baptista LF. 1985. Photoperiodically induced ovarian growth in the
374 white-crowned sparrow (*Zonotrichia leucophrys gambelii*) and its augmentation by song.
375 *Comparative Biochemistry and Physiology Part A: Physiology* 80:93-97.

376 Nelson RJ, Dark J, Zucker I. 1983. Influence of photoperiod, nutrition and water availability on
377 reproduction of male California voles (*Microtus californicus*). *Reproduction* 69:473-477.

378 Nelson RJ, Marinovic AC, Moffatt CA, Kriegsfeld LJ, Kim S. 1997. The Effects of Photoperiod
379 and Food Intake on Reproductive Development in Male Deer Mice (*Peromyscus*
380 *maniculatus*). *Physiology & Behavior* 62:945-950.

381 Partan S, Marler P. 1999. Communication Goes Multimodal. *Science* 283:1272-1273.

382 Paul MJ, Galang J, Schwartz WJ, Prendergast BJ. 2009. Intermediate-duration day lengths
383 unmask reproductive responses to nonphototic environmental cues. *American Journal of
384 Physiology-Regulatory, Integrative and Comparative Physiology* 296:R1613-R1619.

385 Perfito N, Guardado D, Williams TD, Bentley GE. 2015. Social Cues Regulate Reciprocal
386 Switching of Hypothalamic Dio2/Dio3 and the Transition Into Final Follicle Maturation
387 in European Starlings (*Sturnus vulgaris*). *Endocrinology* 156:694-706.

388 Perfito N, Kwong JMY, Bentley GE, Hau M. 2008. Cue hierarchies and testicular development:
389 Is food a more potent stimulus than day length in an opportunistic breeder (*Taeniopygia*
390 *g. guttata*)? . *Hormones and Behavior* 53:567-572.

391 Post E, Forchhammer MC. 2008. Climate change reduces reproductive success of an Arctic
392 herbivore through trophic mismatch. *Philosophical Transactions of the Royal Society of*
393 *London, B* 363:2369-2375.

394 Pyter LM, Neigh GN, Nelson RJ. 2005. Social environment modulates photoperiodic immune
395 and reproductive responses in adult male white-footed mice (*Peromyscus leucopus*).
396 *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology*
397 288:R891-R896.

398 Steinman MQ, Knight JA, Trainor BC. 2012. Effects of photoperiod and food restriction on the
399 reproductive physiology of female California mice. *General and Comparative*
400 *Endocrinology* 176:391-399.

401 Stevenson TJ, Ball GF. 2011. Information theory and the neuropeptidergic regulation of seasonal
402 reproduction in mammals and birds. *Proceedings of the Royal Society B: Biological*
403 *Sciences* 278:2477-2485.

404 Sundararaj BI, Vasal S. 1976. Photoperiod and Temperature Control in the Regulation of
405 Reproduction in the Female Catfish *Heteropneustes fossilis*. *Journal of the Fisheries*
406 *Research Board of Canada* 33:959-973.

407 Thomas DW, Blondel J, Perret P, Lambrechts MM, Speakman JR. 2001. Energetic and fitness
408 costs of mismatching resource supply and demand in seasonally breeding birds. *Science*
409 291:2598-2600.

410 Tolla E, Stevenson TJ. 2020. Sex Differences and the Neuroendocrine Regulation of Seasonal
411 Reproduction by Supplementary Environmental Cues. *Integrative and Comparative
412 Biology* 60:1506-1516.

413 Visser ME. 2008. Keeping up with a warming world; assessing the rate of adaptation to climate
414 change. *Proceedings of the Royal Society B: Biological Sciences* 275:649-659.

415 Visser ME, Caro SP, van Oers K, Schaper SV, Helm B. 2010. Phenology, seasonal timing and
416 circannual rhythms: towards a unified framework. *Philosophical Transactions of the
417 Royal Society B: Biological Sciences* 365:3113-3127.

418 Watts HE, Edley B, Hahn TP. 2016. A potential mate influences reproductive development in
419 female, but not male, pine siskins. *Hormones and Behavior* 80:39-46.

420 Wayne NL, Wade GN, Rissman EF. 1991. Effects of food restriction and social cues on sexual
421 maturation and growth in male musk shrews (*Suncus murinus*). *Reproduction* 91:385-
422 392.

423 Williams CT, Barnes BM, Kenagy GJ, Buck CL. 2014. Phenology of hibernation and
424 reproduction in ground squirrels: integration of environmental cues with endogenous
425 programming. *Journal of Zoology* 292:112-124.

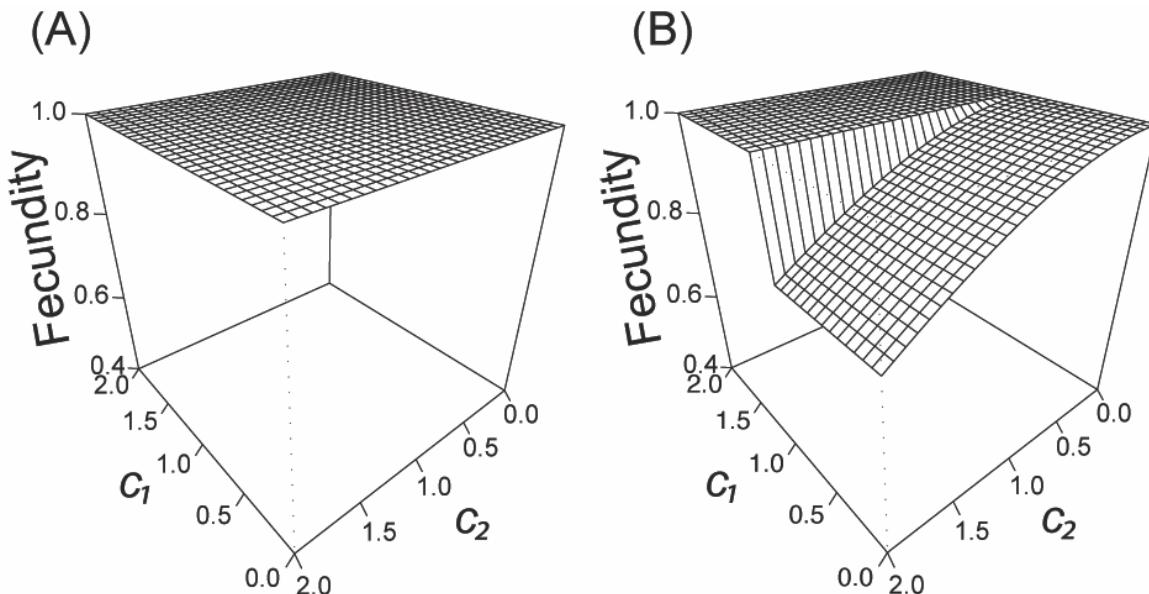
426 Wingfield JC. 1983. Environmental and endocrine control of avian reproduction: An ecological
427 approach. In: Mikami SI, Homma K, Wada M, editors. *Avian Endocrinology: Environmental and ecological perspectives*. Berlin: Japan Scientific Society Press,
428 Springer-Verlag. p. 265-288.

430 Wingfield JC. 2008. Organization of vertebrate annual cycles: implications for control
431 mechanisms. *Philosophical Transactions of the Royal Society B: Biological Sciences*
432 363:425-441.

433 Wingfield JC, Hahn TP, Levin R, Honey P. 1992. Environmental predictability and control of
434 gonadal cycles in birds. *Journal of Experimental Zoology* 261:214-231.

435 Wingfield JC, Hahn TP, Wada M, Schoech SJ. 1997. Effects of day length and temperature on
436 gonadal development, body mass, and fat depots in white-crowned sparrows, *Zonotrichia*
437 *leucophrys pugetensis*. *General and Comparative Endocrinology* 107:44-62.

438

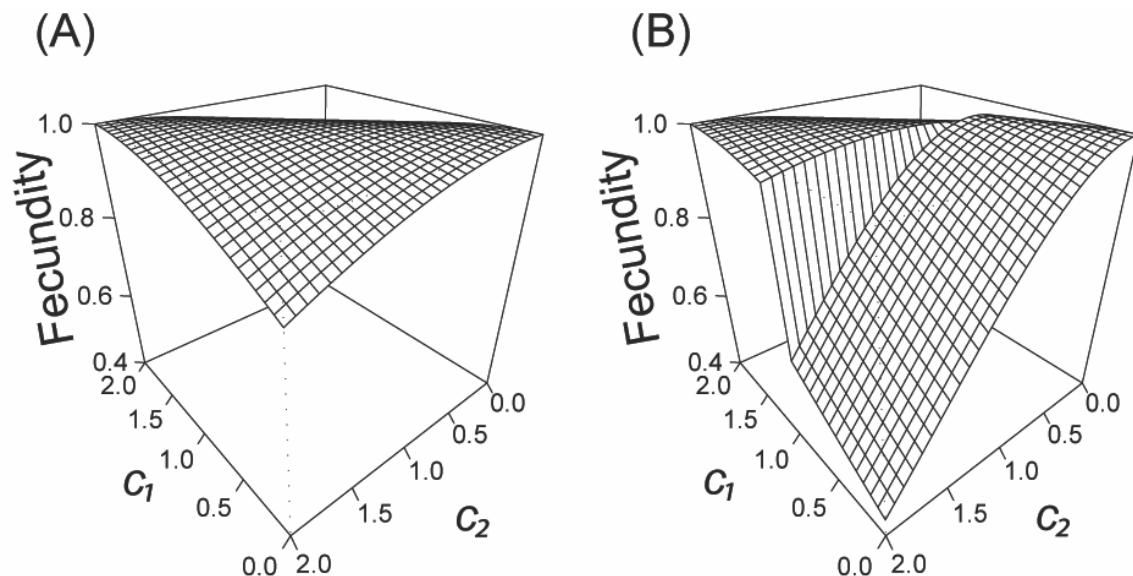

439

440 **Figures**

441 Figure 1. Conceptual overview of different modes of cue integration. Responses to two cues, A
442 and B, alone and in combination are illustrated using the examples of gonadal (testicular)
443 recrudescence (larger testes indicate greater advancement to breeding state) and vocal production
444 (e.g., courtship vocalization shown as present/absent). Note that only differential cue interactions
445 will result in two responses, so vocal production is only a potential response in those cases.

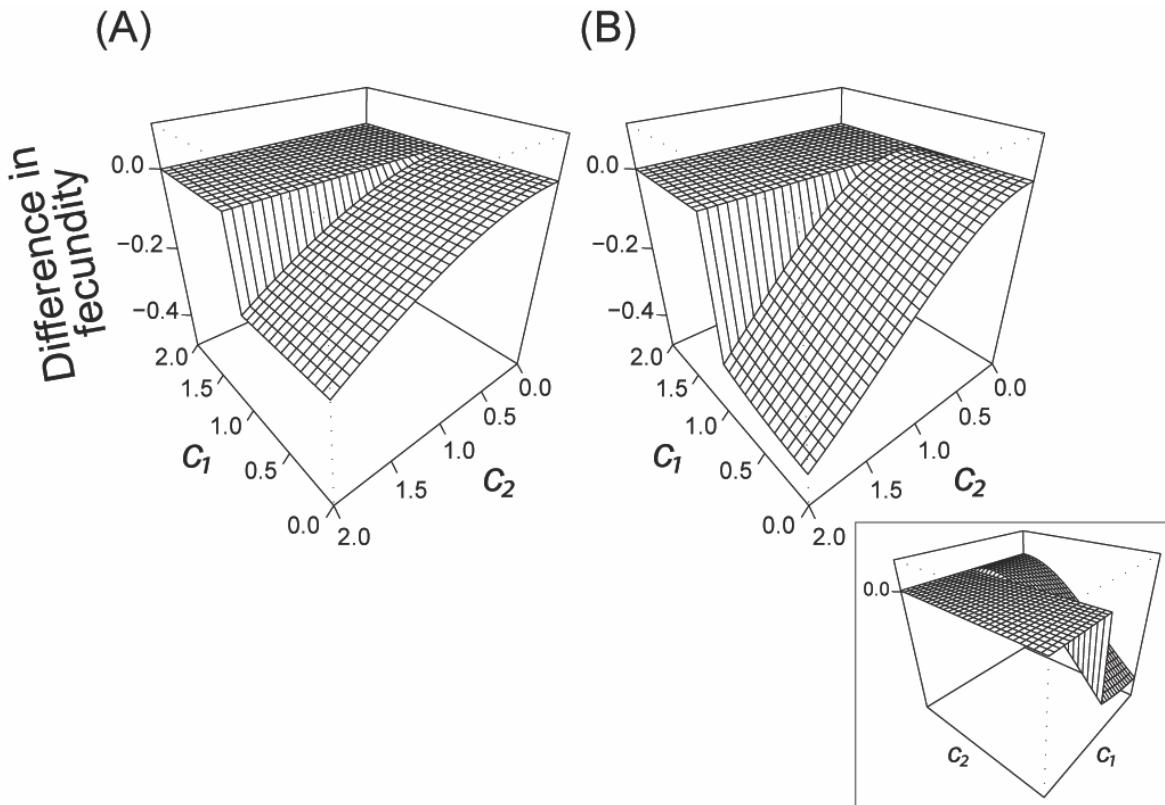
		Cue dependency	
		Serial (A is pre-requisite for B)	Parallel (responses to A and B are independent)
Interaction among cues	Redundant (cue response is same, alone or in combination)	N/A	neither: A: B: A + B:
	Enhancing (cue response is greater in combination than to either alone)	neither: A: B: A + B:	neither: A: B: A + B:
	Differential (cues generate qualitatively different responses; e.g., gonadal development versus vocal production)	neither: A: B: A + B:	neither: A: B: A + B:

447 Figure 2. Fecundity realized based on breeding date using (a) parallel and enhancing cue
448 integration, and (b) serial and enhancing cue integration for two environmental cues (c_1 and c_2)
449 and cue sensitivities (z_1 and z_2) that matched partial regression coefficients (β_1 and β_2) that
450 describe the relationship between the cues and optimal breeding date (i.e., cue-environment
451 match). Results are shown for model parameters: $z_1 = z_2 = \beta_1 = \beta_2 = 0.5$, $C_1 = 1$, $s = 0.5$ and are
452 qualitatively representative of a range of values that we ran to reflect the described scenario. For
453 serial cue integration (b), the change in fecundity at $c_1 = 1$ reflects the change in influence of c_2
454 on breeding date.



455

456


457 Figure 3. Fecundity realized based on breeding date using (a) parallel and enhancing cue
458 integration, and (b) serial and enhancing cue integration for two environmental cues (c_1 and c_2)
459 and cue sensitivities (z_1 and z_2) under a novel relationship between environmental cues and
460 optimal breeding date (described by partial regression coefficients β_1^* and β_2^* ; cue-environment
461 mismatch). In this case, c_1 now has a weak association with optimal breeding date ($\beta_1^* = 0.1$) and
462 c_2 has a strong association ($\beta_2^* = 0.9$). Other model parameters remained the same as for Figure 2
463 ($z_1 = z_2 = 0.5$, $C_1 = 1$, $s = 0.5$). Results for the parameter values shown here are qualitatively
464 representative of a range of values that we ran to reflect the described scenario. For serial cue
465 integration (b), the change in fecundity at $c_1 = 1$ reflects the change in influence of c_2 on breeding
466 date.

467

468

469 Figure 4. Difference in fecundity between serial and parallel enhancing cue integration ($F_{\text{serial}} -$
470 F_{parallel}) under original (a) and novel (b) relationships between two environmental cues (c_1 and c_2)
471 and optimal breeding date. Negative values indicate that parallel integration yields higher
472 fecundity. Inset shows the same plot as (b) but rotated around z-axis so that positive values for
473 difference in fecundity are visible. Fecundity values used to calculate difference are shown in
474 Figures 2 and 3. Note that the difference in fecundity changes at $c_1 = 1$ due to the change in
475 influence of c_2 on breeding date under serial cue integration.

476