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ABSTRACT. We establish a second anti-blocker theorem for non-com-
mutative convex corners, show that the anti-blocking operation is con-
tinuous on bounded sets of convex corners, and define optimisation pa-
rameters for a given convex corner that generalise well-known graph
theoretic quantities. We define the entropy of a state with respect to a
convex corner, characterise its maximum value in terms of a generalised
fractional chromatic number and establish entropy splitting results that
demonstrate the entropic complementarity between a convex corner and
its anti-blocker. We identify two extremal tensor products of convex
corners and examine the behaviour of the introduced parameters with
respect to tensoring. Specialising to non-commutative graphs, we ob-
tain quantum versions of the fractional chromatic number and the clique
covering number, as well as a notion of non-commutative graph entropy
of a state, which we show to be continuous with respect to the state
and the graph. We define the Witsenhausen rate of a non-commutative
graph and compute the values of our parameters in some specific cases.
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1. INTRODUCTION

The importance of graphs in information theory was recognised by Shan-
non in the early stages of its formation. The underlying idea, which he
pioneered in [33], is to use the adjacency relation between the vertices of a
graph as signifying the confusability between the symbols from an alphabet,
transmitted via a noisy information channel. This led to the definition of the
zero-error capacity of a channel as an asymptotic parameter, depending on
the behaviour of the independence numbers of the iterated strong products
of the graph. In a similar vein, Witsenhausen [40] identified the optimal
rate of transmission via a channel with side information, nowadays known
as the Witsenhausen rate.

In the coding problem for a source, Kérner [18] employed the asymptotic
behaviour of the chromatic numbers of the conormal graph products to de-
fine the graph entropy H(G, p) of the source p, the optimal compression rate
in the presence of ambiguity captured by the graph G. Very importantly
from a computational viewpoint, he expressed H (G, p) as the solution of an
optimisation problem over a convex polytope in R?, canonically associated
with G. Graph entropy has since attracted a considerable attention in the
literature, see e.g. [7, [13], 19, 2], 20} 32, 34, B5]. The role similar subsets of
R?, canonically associated with the graph G, play in information theoretical
questions was emphasised by Grotschel, Lovész and Schrijver [13] (see also
their monograph [14], as well as Knuth’s survey [17]), who defined convex
corners in R? as a unifying concept, capturing a number of previously con-
sidered contexts. It was thus possible to see graph entropy as a special case
of a much more general entropic quantity, attributed to any convex cor-
ner, leading, among others, to probabilistic versions [24] of the fundamental
Lovész number [23].

Confusability in quantum information was examined in [8, @), 10, 1],
which identify a suitable quantum analogue of graphs. Non-commutative
graphs are simply operator systems in the space My of all complex d by d
matrices, that is, linear subspaces closed under the adjoint operation and
containing the identity matrix [27]. Every graph G on d vertices gives rise
to a canonical operator system Sg C My, which remembers G up to a graph
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isomorphism [28]. This led to defining and studying a number of graph pa-
rameters with relevance in information theory in the non-commutative set-
ting, initiating what can be called non-commutative combinatorics. Fruitful
quantum versions of, among others, the Lovdsz number [I1], the chromatic
number [28], the clique and fractional clique number [6], the minimum semi-
definite rank and the intersection number [22], the Sandwich Theorem [22]
(see [17]) and a Ramsey-type theorem [37] have thereafter been found. In
[6], the authors introduced a non-commutative version of convex corners;
however, a further development was impeded at that stage by the absence
of a second anti-blocker theorem, a fundamental result that holds for classical
convex corners [17].

In the present paper, we fill this gap by proving a quantum version of the
anti-blocker theorem. This allows us, in particular, to establish the equality
between the fractional chromatic number ¢(S) and fractional clique num-
ber wt(S) of a non-commutative graph S, extending the well-known duality
result for classical graphs. We define the non-commutative graph entropy
H(S,p) of a state p with respect to a non-commutative graph S, which re-
duces to the von Neumann entropy H(p) of p in case S coincides with the
complete non-commutative graph M. In addition, it extends classical graph
entropy in that H(Sg,p) = H(G,p), when G is a graph on d vertices and the
probability distribution p on its vertex set is viewed as a diagonal quantum
state in My. The parameter H(S, p) is a special case of the entropy param-
eter H4(p) attached to any non-commutative convex corner A. Another
application of the second anti-blocker theorem yields an optimisation result,
identifying the maximum entropy of a convex corner A in terms of a gen-
eralised fractional chromatic number of A. The latter parameter is defined
also in the present paper, as an extension of the fractional chromatic number
of a non-commutative graph. We further define the Witsenhausen rate of
a non-commutative graph, and study the behaviour of H4(p) as a function
on A, obtaining continuity results which are new also in the classical case.

The paper is organised as follows: in Section [2] we recall the basic notions
from the theory of classical convex corners and introduce several parameters
used subsequently that can be thought of as continuous versions of combi-
natorial parameters associated to graphs, such as the independence number,
the fractional chromatic number and others. In Section [3] we examine non-
commutative convex corners in My as a quantum version of classical convex
corners in R?. These are closed convex subsets A of positive semi-definite
matrices in My, possessing a natural hereditarity property. We extend the
parameters from Section [2] as solutions of optimisation problems over A,
define the non-commutative anti-blocker A" of A and consider some exam-
ples. The latter are used in Section 4]in establishing the second anti-blocker
theorem, stating that convex corners in M, satisfy the relation A% = A.
In addition, we prove the continuity of the anti-blocking operation. In Sec-
tion |5 we define the notion of a non-commutative lift of a classical convex
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corner; non-commutative lifts can be thought of as possible different quanti-
sations of the same classical object. We show that a classical convex corner
in R% possesses two extremal such quantisations, which are indeed distinct
provided d > 1.

In Section|§|7 we introduce the entropy H 4(p) of a state p with respect to a
given convex corner A C M, and identify its maximum value in terms of the
optimisation parameters defined in Section [3| (Theorem . This can be
thought of as a continuous and quantum version of the corresponding facts
[34, 24] for the vertex packing polytope and the Grotschel-Lovasz-Schrijver
convex corner of a graph [I3], and is new in this generality even in the
commutative case. We examine the continuity of H 4(p) both as a function
on A and as a function on p, and obtain quantum versions of the entropy
splitting results from [7] (Theorem [6.16)).

In Section [7}, we define two extremal tensor products of non-commutative
convex corners and establish relations between the value of our parameters
on a tensor product and the values on its components. This leads to inequal-
ities for the entropy of an entangled state with respect to a tensor product
convex corner, new also in the commutative case (Theorem [7.3)).

In Section [§, we consider three canonical convex corners associated with
a non-commutative graph S: the abelian projection corner ap(S), the clique
projection corner cp(S) and the full projection corner fp(S). Viewing projec-
tions as quantum versions of sets, we have that ap(S) is a quantum version
of the vertex packing polytope vp(G), while cp(S) and fp(S) are quan-
tum versions of the fractional vertex packing polytope fvp(G) of a graph G
[13, [14]. Several parameters for a non-commutative graph are thus defined
as a specialisation of the optimisation parameters from Section [3|to the cor-
ners ap(S), cp(S) and fp(S) and their anti-blockers. The non-commutative
graph entropy H (S, p) of S is defined in Section EL and its maximum value
is identified in terms of the fractional chromatic number y¢(S) of S, while
the clique and the clique covering number of & are examined in Section
Section contains some multiplicativity properties of the chromatic,
the fractional chromatic, the clique and the clique covering numbers of a
non-commutative graph that lead to the definition of its Witsenhausen rate.
Finally, in Section we identify the values of our parameters in several
specific examples.

1.1. Notation. For d € N, write [d] = {1,2,...,d}. We denote by R%
the cone of all real d-vectors with non-negative entries, and write Py for its
subset of probability distributions. Sometimes we work with the extended
real line R U {oo} and use the conventions 3 = 0o, = = 0 and 0log0 = 0.
For u,v € R%, we write v < v when v — u € Ri.

Let {e1,...,eq} be the canonical basis of C? and My be the algebra of
all complex d x d matrices. For u,v € C?, let uv* be the rank one operator
in My, given by uv*(w) = (w,v)u, w € C. Here, and in the sequel, we use
the notation (-, -) to refer to both inner product (assumed linear on the first



PARAMETERS OF NON-COMMUTATIVE GRAPHS 5

variable) and bilinear duality. For a vector v € C?, let v; = (v,¢;), i € [d].
We set Dy = span({e;e] : i € [d]}); thus, Dy is the subalgebra of My of all
diagonal matrices. We write M (resp. M) for the set of all Hermitian
(resp. positive) matrices in My, and we set D;{ =Dy N MJ. We call a
matrix in My strictly positive if it is positive and invertible; we denote by
MJJF the set of all strictly positive matrices in My and, for a set A C My,
write ATT = AN MJJF. Similarly, we call a vector v € C? strictly positive
if v; > 0 for every ¢ € [d]. For M = (m;;) and N = (n;;) € My, we let
(M,N)=Tr(MN) = Z?,jzl m; ;n;ji. The Hilbert-Schmidt (resp. operator)
norm of a matrix M € M, will be denoted by || M|z (resp. ||M]|). For o > 0,
we write B(M, d) for the open ball with centre M and radius 0 with respect
to || - ||2. Given an orthonormal basis V' of a Hilbert space H of dimension
d, we make a (relative to V') identification L(H) = My. We will often write
My in place of L(H) even if we have not specified a particular basis. For an
orthogonal projection P € L(H), we write P+ =1 — P.

2. CONVEX RI-CORNERS

In this preliminary section, we recall relevant concepts and facts regarding
classical convex corners and formalise some parameters, implicitly used in
the literature, which will be used throughout. A conver R%-corner [13] is a
non-empty closed convex subset A of Ri such that

veA 0<u<v = uecA

The latter property will be referred to as hereditarity. A convex R?-corner
is called standard if it is bounded and has non-empty topological interior.

Lemma 2.1. Let A be a convex R%-corner. The following are equivalent:
(i) A has a non-empty interior;
(ii) there exists r > 0 such that rl € A;
(iii) A contains a strictly positive element.

Proof. (i)=-(ii) Suppose that A has non-empty interior. Let a € A and 6 > 0
be such that B(a,d) C A. Then a + %dé]l € A and, since A is hereditary

Vd
1
and a > 0, we have —2\/35]1 c A.

(ii)=>(iif) is trivial.

(iii)=(i) Let b € A be strictly positive. Setting r = min;c[q) b;, we have
that ¢ < b for all ¢ € B(0,7). By the hereditarity of A it follows that
R% NB(0,r) C A. It is trivial to verify that

r

.
B(——1,—— ) CRYNB(0,r) C A
(2\/& 2\/21>‘ +NBOr) €

The anti-blocker of a non-empty subset A C ]Ri is given by
A = {v €RY : (v,u) <1 for all u € A}.
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It is clear that A" is a convex Re-corner. Moreover, the following second
anti-blocker theorem holds:

Theorem 2.2. [I7, Lemma, p. 35| A non-empty subset A C Ri is a convex
corner if and only if A = A.

We note that Theoremvvas formulated in [I7] only for standard convex
corners, but a direct verification shows that the same proof remains valid in
our generality.

We define the unit R%-corner Cq and the unit R%-cube By by letting

Ca={veRL: vy <1} and By={veRL:|jv]|ls < 1}.

It is clear that C; and B are standard convex R%corners; moreover, if A > 0
then
b1 1
(ABy)" = XCd and (ACy)’ = XBd'
It follows easily that a non-empty subset A C Ri is a standard convex
corner if and only if A is so.
For a bounded convex R%corner A, we set

v(A) = max{(u, 1) : u € A}.

It is clear that v(.A) = 0 if and only if A = {0}. If the convex R%corner A
is unbounded, we set y(A) = co.

If A is a convex R%-corner with A # Ri, then the set {5 € Ry : 51 € A}
is bounded, and we set

N(A) =max{s: 51 € A}.

We write N(R%) = co. By Lemma N(A) = 0if and only if A has empty
interior.
For a convex R%corner A with non-empty interior, we set

k k
M(A) :inf{Z)\i:)\i >0and Jv; € A7 € [k], s.t. Z)\ivi > ]1}.
i=1

i=1
If A has empty interior, we set M (A) = co. Note that M (R%) = 0.

Lemma 2.3. If A is a standard convex corner, the infimum in the definition
of M(A) is attained. In fact,
M(A) =min{u € Ry : there exists v € A s.t. pv > 1}.

Proof. Let m be the right hand side of the displayed identity (its existence
is a consequence of the compactness of A). It is clear that M (A) < m. For

n €N, let z, = Zfﬁl )\Z(-n)vl(n) > 1, with vi(n) € A and )\Z(-n) > 0, be such

that M(A) < S0 A™ < M(A)+1/n. Thus, S5 A™ -, M(A). By
~1

convexity, (Zfﬁl )\En)) zn € Afor alln € N. Let v € A be a cluster point
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~1
of the sequence ((ngl /\Z(.n)) xn) . Then M(A)v > 1; this shows
neN
that m < M(A) and hence m = M (A). O
Proposition 2.4. Let A be a convexr R%-corner. Then
1
M(A) = —— =~(A4).
) = 5 =1 4)

Proof. We first consider the case where A # Ri and A has non-empty
interior. Set y = N(A)1, and observe that y € A and N(A) > 0. We have
ﬁy = 1 and hence M(A) < ﬁ. By Lemma there exists v € A

satisfying M(A)v > 1. This gives M%A)]l < v and thus ﬁ]l e A by
hereditarity. It follows that N(A) > M% vy and the first equality is proved.

It is easy to see that
A=R} = A ={0} < (L) =0,
and that A" is bounded when A has non-empty interior. Thus when A # Ri
has non-empty interior, 0 < v(A”) < oo. To prove the second equality in
this case, let w € A° satisfy (w,1) = v(A°). Then 1 > (w, N(A)1) =
N(A)7Y(A), and so (A") < 5. For the reverse inequality, set v = ﬁ]l.

N(A
For all u € A°, we have (v,u) = ﬁ (1,u) < 1. This shows that v € A”,

and so v € A by Theorem Thus, N(A) > ﬁ, as required.

In the case where A = RY, the statement holds with M (A) =0, N(A) =
oo and y(A”) = 0.

Finally, suppose that A has empty interior. By Lemma there exists
i € [d] such that v; = 0 for all v € A and hence u; can be arbitrarily large
for u € A’, implying that A" is unbounded. The statement thus holds with
M(A) = 0o, N(A) = 0 and v(A”) = cc. O

3. CONVEX CORNERS AND ANTI-BLOCKERS IN My

3.1. Definitions and basic properties. We begin by defining several con-
cepts that will play an essential role in the sequel.

Definition 3.1. A non-empty subset A C Md+ will be called a convex Mgy-
corner (or just a convex corner where the context allows), if A is closed,
convex, and

(1) Bed, 0<A<B = Ac A

A convex M -corner will be called standard if it is bounded and has non-
empty relative interior.

We will refer to property as hereditarity.

Remark 3.2. The intersection of an arbitrary family of convex Mg-corners is
a convex My-corner. Thus, given a non-empty subset G C Mj, there exists
a smallest convex corner C(G) containing G.
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Recall that (e;)%_, is the standard basis of R?, and let ¢ : Ri — D:{ be
the one-to-one map given by

d d
=1 i=1

Definition 3.3. A non-empty subset B C D:{ is called a diagonal convex
Mgy-corner (or simply a diagonal convexr corner when the context allows it),
if ~1(B) is a convex R?-corner. A diagonal convex corner B C D; is called
standard if ¢~1(B) is standard.

It is often convenient to identify the convex R%-corner A with the diagonal
convex Mgy-corner ¢(A).

Definition 3.4. Let A C M j be a non-empty subset. The anti-blocker of
A is the set

A ={N e M :(N,M)<1foral M e A}.
IfBC D:{ is non-empty, its diagonal anti-blocker is given by B’ := Dy N B

Remark 3.5. It is clear that, if A C M is a convex corner then Dy N A is
a diagonal convex corner. Theorem and the fact that B’ = ¢ (¢_1(B)b)

implies that if B C M; is a diagonal convex corner then B” = B.

Let B C D:{ be a diagonal convex corner. We set
1(B) == 1(¢"1(B)), N(B) := N(¢~\(B)) and M(B) := M(¢"\(B)).
Note that
v(B) =max{TrT : T € B} and N(B) = max{: I € B}.
Proposition shows that, if B is a diagonal convex corner then

Definition 3.6. A non-empty subset A C M j is called reflezive if A = A%,

Lemma 3.7. Let A and C be non-empty subsets of M(;r with A C C. Then
(i) CF C A%
(i) A C A¥;

(iii) A" is a reflexive convexr My-corner;

(iv) If {Ba}a is a non-empty family of non-empty subsets of MJ then
(UozEABoz)ﬁ = maEABgz-

(v) The intersection of a non-empty family of reflexive convex corners
s a reflexive convex corner.

Proof. Set B = A*. Properties (i) and (ii), as well as the convexity and the
closedness of B, are trivial. Let B € A* and C € Mj be such that C' < B.
Then Tr(CA) < Tr(BA) < 1 for every A € A, and so C € B; thus, B is
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hereditary and hence a convex corner. By (ii), B C B*. However, A C A
and so, by (i), B¥ = A% C B.
(iv) For each 8 € A we have Bg C UyepBa, and (i) gives (UaeaBa)? C Bg;
thus, (Une ABa)ﬁ C ﬂaeABg{. The reverse inclusion is equally straightforward.
(v) Let A be a non-empty set, A, C Mj be a reflexive convex corner,
a € A and A = NgeaAdn. By Remark A is a convex corner. By (iv)
and the reflexivity of A,, we have

§
A= ﬂaeAAg? = (UaEAAg) .
By (iii), A* = A. 0
We isolate for future reference two straightforward statements.

Lemma 3.8. Let {v; : i € [d]} be an orthonormal basis of C* and M =
Z?’j:l mi,jviv;-‘ be a positive matriz. Then

[mi 5| < /maimyj < max{m;;, mj;}.

Thus, if m;; = 0 for some i € [d] then m; j =m;,; =0 for all j € [d].

Lemma 3.9. The following are equivalent for a non-empty subset A C Md+ :

(i) the set A is bounded;
(ii) the set {Tr M : M € A} is bounded;
(i) the set {(u, Mu): M € A,u € C%, ||lu|| = 1} is bounded.

In the sequel, if A C M, we say that A has a non-empty relative interior
if there exists A € A and § > 0 such that B(A4,6) N M C A.

Lemma 3.10. Let A C M; be a convexr corner. The following are equiva-
lent:

(i) A has a non-empty relative interior;
(i) there exists r > 0 such that rI € A;
(iil) for every non-zero vector v € C¢ there exists s > 0 such that svv* €
A;

(iv) A contains a strictly positive element.

Proof. (i)=>(ii) Let A € A and § > 0 be such that B(A,§) N M; C A. Then

1 R _1 _1_ 1
A+ m&] € A,; since 2\/351 <A+ 2\@51, we have that 2\@5[ € A

(ii)=(iii) Suppose that r > 0 is such that rI € A and let v € C¢ be
a non-zero vector. Since va* < rl, the hereditarity of A implies that
va* € A

(iii)=(ii) Let {v;}%_, be an orthonormal basis of C? and, for each i € [d],
let s; > 0 be such that s;v;v] € A. Since A is convex, A = Z?Zl Tovf € A,
Letting s = min;cq %, we have that s > 0 and sI < A; by hereditarity,
sl € A.

(il)=(iv) is trivial.
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(iv)=-(i) By hereditarity, there exists r > 0 such that rI € A. It follows
that any M € M with |[M]|| <risin A. O

Remark 3.11. Lemmas and imply that if A is a standard convex
M-corner then Dy N A is a standard diagonal convex corner.

Proposition 3.12. Let A C M; be a convex corner.

(i) A has non-empty relative interior if and only if At is bounded;
(i) A is bounded if and only if A* has non-empty relative interior;
(iii) A is standard if and only if A* is standard.

Proof. (i) If A has non-empty relative interior then, by Lemma rle A
for some r > 0. Then r Tr M = (M,rI) <1 for all M € Al Thus, Tr M <
1/r for all M € A* and, by Lemma A is bounded.

Suppose that A has empty relative interior. By Lemma A contains
no strictly positive element. Let &€ = {A;};en be a countable dense subset
of A. Write

K = {v eCl: v =1,Aw=0,ic [m]}.

It is clear that K, is compact and K,,+1 C K, m € N. Set B, =
%221 A;. By convexity, B,, € A; by assumption, B,, is not strictly
positive. Thus there exists v € C% such that B,,v = 0, and hence A;v = 0
for all ¢ = 1,...,m; in other words, K, is non-empty for all m € N. It
follows that (2, KC; # 0, that is, there exists a unit vector v € C? such that
Av = 0 for all A € £. Since £ is dense, Mv = 0 for all M € A. But then
Tr(Mvv*) = 0 for all M € A; thus, \vv* € A* for all A > 0, showing that
Af is unbounded.

(ii) If A" has non-empty relative interior then, by (i), A* is bounded.
By Lemma A is bounded. Conversely, suppose that A is bounded. By
Lemma there exists ¢ > 0 such that Tr M < ¢ for all M € A. Thus
<%I, M> < 1 for all M € A, that is, %I € A*. By Lemma AP has
non-empty relative interior.

(iii) is immediate from (i) and (ii). O

Definition 3.13. Let B be a non-empty subset of MJ. The hereditary cover
of B is the set

her(B) = {M € M} : there exists N € B such that M < N}.

Proposition 3.14. Let G C M; be non-empty. The following hold:
(i) If G is bounded then C(G) = her(conv(G));
(ii) G* = her(G)F = C(G)".

Proof. (i) Set A = her(conv(G)). It is clear that A is a hereditary and
bounded (non-empty) subset of M. Let A, B € A, A € [0,1], and choose
C,D € conv(G) with A < C and B < D. Then AC' + (1 — \)D € conv(G);
since AA+ (1 = X\)B < AC + (1 —\)D, we have that A\A+ (1 - \)B € A. It
follows that A is convex.
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To show that A is closed, suppose that (T},)pen € A and T), —n—00 T
Let C,, € conv(G) be such that T;, < C,, n € N. Since conv(G) is compact,
(Cn)nen has a cluster point C' in conv(G). Then T' < C and hence T € A.
Thus, A is a convex corner containing G. Its minimality is straightforward.

(ii) Since G C her(G) € C(G), Lemma [3.7| gives

C(G)* C her(G)* C G

Let M € Gt and Q = Yoy NiAg, with A; € Gand \; € Ry, @ € [n], satisfying
S A =1 Then Tr(MQ) < 37, \; = 1; thus, M € conv(G)*. Finally, if
N’ € conv(G) and 0 < N < N’ then Tr(MN) < Tr(MN’) < 1, and hence
M e C(g)jj as required. O

We list some immediate consequences of Proposition [3.14] and Lemma

B.101

Corollary 3.15. Suppose G C MJ is bounded and conv(G) contains a
strictly positive element. Then C(G) s a standard convex corner.

Corollary 3.16. If C is a diagonal convex corner then C(C) = her(C).

Corollary 3.17. IfC is a bounded (resp. standard) diagonal convex corner,
then her(C) is a bounded (resp. standard) convex corner.

3.2. Examples of convex My-corners. In this subsection we consider
some examples of convex My-corners that will be used subsequently. For
CGMQ and A € R, let

(3) Acy={M e M : Te(MC) < A}
and Ac = Ac,1. Further, let

Ne={Me M} :Tr(MC) =0}
and
(4) Be={MeM]:M<C}

It is clear that if A > 0 then Acx = A(/y)c- Note that, if C > 0 then
Ne = Acyp.

Lemma 3.18. Let C € M; and A > 0. Then

(i) Be is a reflexive convex corner and Bﬁc = Ac;

(ii) Ac is a reflexive convex corner and .AﬁcA = Ba/ne-

Proof. (i) It is clear that B¢ is a convex corner. Suppose that 0 < M < C
and N € Ac. Then 0 < Tr(MN) < Tr(CN) < 1, and hence N € Bﬁc. Thus,
Ac C Bﬁc. Conversely, if N € Bg, then Tr(C'N) < 1, giving that N € A¢;
thus, Buc =Ac.
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By Lemma in order to show that B¢ is reflexive, it suffices to prove
that Bﬁcg C Be. Suppose that @ > 0 and Q ¢ Bc; then C — Q ¢ MJ. Write

d
C-Q= ZAiUiva
i=1

where {vy,...,v4} is an orthonormal basis of C%, Ai,...,\q € R, i € [d],
and A; < 0 for some j € [d]. Let D = av;v} with a > 0 to be fixed shortly.
We have D > 0 and Tr(C'D) = a Tr(Cv;v}) = a (Cvj,vj) > 0as C > 0. On
the other hand,

d
(5) Tr ((C - Q)D) =Tr (Z a)\i(viv;‘)(vjv;f)> = \jo.
i=1

We will show that @ ¢ Bg; we consider two cases:
Case 1. (Cvj,vj) = 0. Set o = —2/\;. Then Tr(CD) = 0, and so
DeAc = Bé. By (), Tr(@D) = Tr(CD) — Aja = 2, and hence Q ¢ Bg.
Case 2. (Cvj,v;) > 0. Set a = (Cv;,v;)""; then Tr(CD) = 1 and so
D € Ac = BY. On the other hand, Tr(QD) = Tr(CD) — A\jo > 1, and
hence Q ¢ Bﬁcg, completing the proof of (i).
(i) By (i),

Acx = Aame =Bl e

Applying anti-blockers and using (i), we get .Aﬁc’A = Ba/ne- O

Proposition 3.19. Let C € MC?.

(i) If C € M then Ac and Aﬂc are standard convex corners;

(i) If C € MI\M/™ then Ac and Aﬁc are convex corners, but neither
of them is standard;

(iii) If —C € My, then Ac = My ;

(iv) If £C ¢ M then Ac is not a convex corner and Auc = {0}.

Proof. By Lemmas and Ac and .Aﬁc are convex corners. Write

C= Z?Zl piviv} for some orthonormal basis {v;,...,v4} of eigenvectors of
C and some pq, ..., uq € R.

(i) Let M € M and write M = Y7 m;juivs. Then Tr(MC) =
Z?Zl pimig. If M € Ac then 0 < m;; < maxje] /% for each i € [d],
and hence A¢ is a bounded convex corner by Lemma By Lemma [3.18
Aﬁc = B¢, and hence Aﬁc is bounded. By Proposition 3.12}7 Ac and .Aﬁo have
non-empty relative interiors.

(ii) If C € M\M;]* then y; > 0 for all i € [d] and p; = 0 for some j.
Then av;jvi € Ac for all @ > 0, and A¢ is unbounded. By Lemma

Lemma and Proposition Aﬁc = B¢ has empty relative interior.
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(iii) In this case, p; < 0 for each i € [d] and hence Tr(MC) < 0 for all
M € M}, giving Ac = M.

(iv) Write C' = Z?:l pivivy with p; < 0 for some j and g, > 0 for some
k. Let M = —“%_vjv;‘ + H%UWZ and N = M—ivkv,’;. Then 0 < N < M,
Tr(MC) = 0 and Tr(NC) = 2; thus, M € A¢ while N ¢ Ac. It follows
that the set A¢ is not hereditary.

Let A€ M and A = (A,C). If A < 1, then A € Ac C her(Ac). If A > 1,
then A < A" where A’ := A — /%Ujv;-‘ satisfies (A’,C') = 0. Thus A’ € Ac

and therefore A € her(Ac), showing that her(Ac) = M. By Proposition
Af, = {0}, O

We complete a similar analysis for the sets Bo and N¢.

Proposition 3.20. Let C € Mg.

(i) IfC e MU'lH', then Bo is a reflexive standard convex corner;
(ii) If C € MJ\MC}H, then Bo is a reflexive convex corner with empty
relative interior;
(iif) If C € MI\M], then Be = 0.
Proof. The set B¢ is clearly bounded for any C' € M Cfl‘. By Lemma if
C > 0 then B¢ is a reflexive convex corner satisfying Bﬁc = Ac.
(i) By Lemma ifC e MJJF then Be has non-empty relative interior
and is hence a standard convex corner.
(ii) Let u € C? be a non-zero vector with (u, Cu) = 0. Then (u, Mu) =0

whenever M € Bo. By Lemma B¢ has empty relative interior.
(iii) is trivial. O

Proposition 3.21. Let C € Mg.
(i) If C € M and P is the projection onto ran(C) then

(6) Ng = {M ®0p: M e c(Plcdﬁ}

and

(7) N ={0pr ® N2 N € £(PThyt};

thus, N¢ and Né are reflerive convex corners with empty relative
nterior;

(i) If C € MJ*, then No = {0};

(iif) If £C ¢ M, then N¢ is not a convex corner and Ng = {0}.

Proof. (i) It is clear that N is a convex corner. Write C' = Zle Aiv;vf
where {v;}¢_, is an orthonormal basis of C¢%; by assumption, \; > 0, i € [d].
For M € M7, write M = Zgjzl @i jvivj, where o;; € C, 4,7 € [d]; then
Te(MC) = Zf-l:l Aicvii. Suppose that M € Ng. Then «;; = 0 whenever
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Ai > 0 and, by Lemma [3.8} a;; = 0 whenever A; > 0 or A; > 0. Thus,

d
NC: MEMJ:M:Zaijvw;Withaij:()when/\i>00r)\j>0
ij=1

This shows @; equation (7) is now straightforward. Clearly, N¥ = N

(ii) In this case, P = I and the claim follows from (i).

(iii) Write C' = Z;‘i:l \vvf, where {v;}¢_, is an orthonormal basis of C?
and \; € R, 7 € [d]. Let j,k € [d] be such that A\; > 0 and A\, < 0. Let
M = Xjvgv, — Agvjvi. Note that M > 0 and Tr(MC) = 0, giving that
aM € N for all @ > 0. Thus, N¢ is unbounded. Since M > \jupvf ¢ Ne,
we have that N¢ lacks hereditarity.

Let N = Zfﬁﬂ Q. sVpVE € N? ,where a, s € C, 1, s € [d]. Then o ; € Ry,
i € [d]. We have that

a(Njogp — Apajj) = Tr(aMN) <1, a>0;
thus, aj; = o = 0. It follows that o;; = 0 whenever A\; # 0. On the
other hand, if Ay = 0 and amm > 0, then Tr( 2 (vmv:n)c) — 0, and

am,m

S0 ;=—vmvy, € Ng. However, Tr (ajm(vaL)N ) = 2, a contradiction.
Thus, qy,m = 0. By Lemma N = 0 and the proof is complete. O

Remark 3.22. Note that N_c = N, so the case —C € M; does not require
separate consideration in Proposition [3.21

4. REFLEXIVITY OF CONVEX M;-CORNERS

In this section, we show the reflexivity of convex My-corners and note
some of its consequences.

4.1. The second anti-blocker theorem. The next lemma is certainly
well-known, but we include its proof for the convenience of the reader.

Lemma 4.1. Let uy,...,u, be linearly independent vectors in C%. Then

n
ran ( E umf) = span {ug, ..., up}.
=1

Proof. Set M = 3", uwul, U = span{uy,...,u,} and, for k € [n], write
U, = span{u; : i # k}. It is clear that ran(M) C Y. Since uq,...,u, are
linearly independent, Uy # U. Let v be a non-zero vector in U ﬂZ/{kL. Then
Muvy, = (ug, vg)ug, and hence ug € ran(M). O

In the following, we fix a convex Mg-corner A. Let

(8) U= {v € C?: there exists 7 > 0 such that rvv* € A}

and P be the projection onto span (/).
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Lemma 4.2. The set U is a subspace. Moreover, there exists r > 0 such
that P € A.

Proof. Let {u;}¥_, C U be a linear basis of span(i). By the definition of i,
there exists ; > 0 such that ryu;u} € A, i € [k]. Since A is convex, R :=
%Zle riwju; € A. Letting ro = %minie[k] r; and QQ = rg (Zle uzu:), we
have 0 < @ < R. By hereditarity, @ € A. By Lemma ran(Q) = ran(P).
Let r be the smallest positive eigenvalue of (). Then 7P < () and hence
rP € A, again by hereditarity.

Suppose that u € span(Uf); there exists ¢ > 0 such that uu* < tP. By the
previous paragraph, rP € A and thus juu* € A. It follows that u € U, and
so U = span(U). O
Lemma 4.3. Let A be a convex corner. The following hold:

(i) PMP =M for every M € A;
(ii) (M, PL> =0 forall M € A;

(iii) (M,PL+) >0 for all M € M satisfying PMP # M.

Proof. (i) follows from the fact that if v € C? is an eigenvector of M € A
corresponding to a positive eigenvalue then v € U.

(ii) is a direct consequence of (i).

(iii) Suppose that M € MJ and PMP # M. Then M has an eigenvector
v & U whose eigenvalue )\ is positive; note that P-v # 0. Thus,

<M, PL> > )\ <w*,Pl> = AP > 0.

Set k = rank(P) and let
M} ={M € M] : PMP = M and rank(M) = k}.
Note that
(9) MJ ={M € M] : there exist s > r > 0 such that rP < M < sP}.

Lemma 4.4. Let A C M; be a convex corner and let P be the projection
onto U as defined in . Set

Ay={AcMInA:(1+e)A¢ A forall e >0}
There exists a set {RA € M;‘ A€ Ao} such that

A= () Ar,NNp.
Ac Ay

Proof. Let A € Ay and A,, = (1 + %) Aj; thus, A, ¢ A, n € N. By the
Hahn-Banach Theorem, there exist ()4, € My and v € R such that

Re (M,Qa4,) <v<Re(4,,Q4,), MeA
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After replacing Q4, by %(QAH + @7, ), we may assume that Qa, € M?.
Since 0 € A, we have that v > 0. After further replacing @ 4, by %Q A, We
may assume that v = 1, that is,

(10) (M,Qa,) <1< (An,Qa,), MecA
Note that A, A,, € Mf, n € N. By Lemma (i),
<M7QAn>:<PMP7QAn>:<M7PQAnP>a MEA7

similarly, (A,,Qa,) = (An, PQa, P). We may thus assume that Q4, =
PQ 4, P and hence that the eigenvectors of ()4, , corresponding to non-zero
eigenvalues, are contained in U.

Fix A € Ap. We claim that the set {Q4, : n € N} is bounded. Write

Qa, = E’“ )\(.")v(”)y(”)*, where {vl(") = [d]} C U is an orthonormal

1=1"" [ 7

set. Using Lemma let » > 0 be such that 7P € A; by hereditarity,
rol™u™* € A for all i € [k] and all n € N. By (T0), <m§”)v§”)*, QAn> <1,

) i

and so

(1) A<l e, nen.
'
By ([10),
1
<1 + n) (A,Qa,)>1, neN,
and hence
k
(n) (n), (n)*\ _ 1
(12) Y <A,vi o] >_<A,QAn>> 5 meN.

i=1
Since A € M(f, there exists t > 0 such that A > tP. We have that

t < <A,v§">v§”>*> <|A|l, ie[k], neN.

Suppose /\g-n) < 0. Then and give

A 1 5\
(n) J (n), (n)* i (n), (n)*
)‘j > T<A’Uj v; >>2—t— T<A’Ui v, >
i#]
1 d-1 d—1
> - s -

Together with , this shows that {)\gn) ci € [k]l,n e N} is bounded, and

hence the set {Q4, : n € N} is bounded as claimed.
Let Ry € Mé‘ be a cluster point of the sequence (Q 4, )nen; clearly,

(13) Rj = PRAP.

By (10),
(14) (M,Ra) <1, M €A,
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and

(15) <<1+:L> A,QAn>>1, n € N.

Since A € A, and show that
(16) (A,Ry) =1.

We claim that R4 > 0 for all A € Ay. Suppose, towards a contradiction,
that there exists A € Ay for which R4 has an eigenvalue A < 0. By ,
an associated unit eigenvector v of A lies in . Since A € M f , there exists
t >0 with A > tP, and hence 0 < A — tvv* < A, giving A — tvv* € A by
hereditarity. However,

(A—tov",Ra) =1— Xt > 1,
contradicting .

Set C = nAer Ag, N Np.. We complete the proof by showing that
C=A. By (4), AC Ag, for all A€ Ayg. By Lemma[t.3] A C Np., and
thus A C C. Fix M ¢ A; we will show that M ¢ C. Let r > 0 be such that
rP € A (such r exists by Lemma . We identify four cases.

Case 1. M ¢ M. Since C C M, we have M ¢ C.

Case 2. M € MY. Let p = max{\ € Ry : A\M € A}. By (9), 0 < p < 1.
Setting A = M we have A € Ag. Then C C Agr,. By , (M,Rp) = i >
1, and so M ¢ C.

Case 3. M = PMP € MJ\MY. Since the sets Ag, and Np. are convex,
C is convex. By Case 2,

(17) MPnA=MInc.

Suppose, towards a contradiction, that M € C. Letting M,, = (1 — %) M+
—P, the convexity of C gives that M, € C for all n € N. Since M =
PMP >0 and rP € Méj, we have that M, € Mé) for all n € N. By ,
M, € A, n € N. Since M,, =, 00 M and A is closed, M € A, the required
contradiction.

Case 4. M € M, and PMP # M. By Lemmawe have M ¢ Np.,
and hence M ¢ C. O

We can now prove the non-commutative version of Theorem

Theorem 4.5. A non-empty set A C M; is reflexive if and only if A is a
convex corner.

Proof. Let A be a convex corner. By Lemma [£.4] A is the intersection of
convex corners of the form Agr and Np, where R is positive and P is a
projection. By Proposition [3.21] and Lemma [3.18 such Ag and Np are
reflexive. Lemma now implies that A is reflexive. Conversely, if A
is reflexive then A4 = A" and now Lemma [3.7 shows that A is a convex
corner. (|
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Theorem and Lemma have the following immediate consequence.

Corollary 4.6. If A and B are convex My-corners then
(i) A C B if and only if A* D BY;
(ii) A = B if and only if A* = BE;
(iii) A C B if and only if A* D BE.

4.2. Consequences of reflexivity. In this subsection we give some corol-
laries of the reflexivity of convex My-corners.

Theorem 4.7. Let A be a non-empty subset of MJ‘ Then C(A) = A,

Proof. By Proposition|3.14] A* = C(A)¥; Theoremyields Al = C(A)H =
C(A). O
Corollary 4.8. If A C M; is a diagonal convex corner then A% = her(A).

Proof. If A is a diagonal convex corner, then conv(.4) = A. By Proposition
C(A) = her(A), and now the claim follows from Theorem O

Proposition 4.9. Let A be a non-empty set and By be a convex corner,

a € A. Then .
(0] -<(u)
acA acA

Proof. By Theorems and [£.7] and Lemma [3.7]
i i it
acA a€cA a€A acA

By analogy with convex R?-corners, we introduce several parameters for
convex My-corners. Recall that a set (P;)¥_, C My of projections is called

a projection-valued measure (PVM) if Zle P, = 1. Let A be a convex
M 4-corner.

(a) If A is bounded, let
v(A) =max{TrA: A € A};
If A is unbounded, set v(A) = oco.
(b) If A# My, let
N(A) =max{f: I € A}.

O

We set N (M) = oo.
(c) If A has non-empty relative interior, let
k k
M(A) :inf{Z)\i IR EN, A € A N >0, € K], st > NA; > I} .
i=1 =1
If A has empty relative interior, set M(A) = oo.
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(d) If A, C A, let
I'(A) = min {k € N: there exists a PVM (P)k_, C .A}

otherwise, set I'(A) = oo;
(e) If A;, C A, let

k k
Ff(.A):inf{Z)\i:ElkeN, proj. B € A\ > 0, s.t. Z)\iPiZI};

i—1 i=1
otherwise, set I'¢(A) = oo.

Remark 4.10. (i) We have that v(A) = 0 if and only if A = {0};
(ii) By Lemma N(A) = 0 if and only if A has empty relative
interior;
(iii) The parameter I't can be thought of as a real relaxation of I'. In
particular, it is clear that I't(A) < T'(A).

Theorem 4.11. Let A be a convex My-corner, P C My be a non-empty set
of non-zero projections and B = C(P). Then
(i) M(A) = inf{u eRy:FAecAst. pA>1};

( ) ( ) N(A) = (-Aﬁ);'
(iii) M(B) = I't(B);
(iv) D(B)y(B) = d.
Proof. The proof of (i) is similar to that of Lemma[2.3] and the proof of (ii)
to that of Proposition using Theorem [4.5] instead of Theorem

(iii) Since P C B, we have that M (B) < T'¢(B). Set R =T'¢(B). Let ¢ > 0,
A € Ry and A € B be such that

A>T and A< M(B) +e.

Let § > 0 be such that 1 — Ad > 0. By Proposition there exists
B € conv(P) such that A < B and, hence, a sequence (BY)) ey C conv(P)
such that BW —jsoo B. Let n € N be such that B™ 4+ 67 > B. Then
AB(™ > (1 — \5)I and hence

A
(n)>
1—)\63 >1.

Write B™ = Y"1, 1y P with P, € P and p; € Ry satisfying S, = 1.

By (18),

(18)

RZ

Letting § — 0, we obtain R < M (B) + ¢; letting ¢ — 0, we conclude that
R < M(B).

Y ,ul —1/\(5(M(B)+6)
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(iv) Suppose that (P;)¥_; is a PVM contained in B. Then

k
d= Zrank(Pi) < kvy(B).
i=1

Minimising over k implies the statement. (]

We next show the continuity of the anti-blocker. We use a classical con-
cept of convergence due to Kuratowski. Let X be a topological space. For
a sequence (F,)nen of subsets of X, set

lim ierlf F, = {lim 00y : (Tn)nen € enFy, a convergent sequence}
ne

and

limsup F,, = {z : a cluster point of a sequence (z,)nen € penFn}.
neN

We say that the sequence (F},),en converges to the subset FF C X, and write
F =1lim, ;o Fy,, if F' = liminf, ey F, = limsup,,cy Fp.-

Proposition 4.12. Let A, A,, n € N, be conver Mg-corners such that
UnenAn is bounded.
(i) limsup,en An C A if and only if A* C liminf, e AL
(ii) A Climinf,en Ay, if and only if limsup,,cy Al C Ab;
(iii) A = limpen An if and only if A = lim,ey A

Proof. (i)-(ii) By [6, Lemma 6.9],

(19) limsup A, C A = A* C liminf A%,
neN neN
Suppose, on the other hand, that A C liminf,cy A, Let (Bp, )ken C M;

be a sequence with limit B such that B, ¢ A&Lk, ke N. Let A€ A, and
(Ap)nen C M; be a sequence, such that 4, € A,, n € N, and lim,,_,o, A, =
A. Then

(B,A) = lim (B, ,A,,) <1,
k—o0
and thus B € A!. Hence
(20) A Climinf A, = limsup A} C A%
'YLEN TLGN

Now suppose that A? C lim inf,,cy AL By and Theorem

lim sup A,, = limsup Aflﬁ C A¥ = A
neN neN

Similarly, if lim sup,,cy Al C oA then, by and Theorem
A = A% C liminf A¥ = liminf A,,.
neN neN

(iii) is immediate from (i) and (ii). O
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Corollary 4.13. (i) The parameters M, N and ~ are continuous on
bounded sets of convex corners.

(ii) Let P and P, be non-empty sets of projections in My, B = C(P),
and B, = C(P,), n € N. Suppose that B has non-empty relative
interior. If limsup,eyPn € P (resp. P C liminf,enPy) then
I'¢(B) < liminf,enT¢(B) (resp. limsup, .y [e(B) < T'¢(B)).

Proof. (i) By Propositions and it suffices to show the continu-
ity of N. Suppose that A, A,, n € N, are convex Mgy-corners such that
UnenAy, is bounded and limsup,cy A, C A. Let p, = N(Ay); then
pnl € Ay, n € N. Selecting a convergent subsequence (i, )geny with limit
i, the assumption implies that uI € A, and hence N(A) > pu, showing that
limsup,cy NV (Ap) < N(A).

Now suppose that A C liminf,en A, and let 4 € Ry be such that ul € A.
Let A, € A,, n € N, be such that A, —, 0 pl. By the continuity
of the spectrum, there exist u, € Ry with pu,I < A,, n € N, such that
tn —n—oo p- 1t follows that N(A) < liminf,eny N(Ay).

(ii) By Theorem and the proof of (i), it suffices to show that that

P C liminf P, = B C liminf B,, and limsupP, CP = limsupB, C B.
TLEN nEN TLGN TLGN

Suppose that P C liminf,cy Pp. It is clear that

conv(P) C liminf conv(P,,).
neN

Suppose that 0 < A < B for some B € conv(P), and let B,, € conv(P,),

n € N, converge to B. Then A, := B, — (B — A) —n500 A, A, < B, for

each n and, eventually, A,, > 0. It follows that A € liminf,cy B,. Since B

has non-empty interior, Lemma shows that any A € B is the limit of

strictly positive elements of B, and the first implication is proved.

Suppose that limsup,cyPn € P. Using the Carathéodory Theorem,
we can express every element of conv(P,) as a convex combination of at
most 2d? + 1 elements of P,,. It readily follows that lim sup,,cy conv(P,,) C
conv(P), and hence limsup,,cyconv(P,) C conv(P). Let A; € B,,, k € N,
converge to A € M, and By € conv(P,, ), with Ay < By, k € N. Passing
to a subsequence if necessary, we can assume that (By)ren converges to an
element B of conv(P). Now A < B and hence A € B. O

5. NON-COMMUTATIVE LIFTS

In this section, we discuss the connection between convex R%-corners and
convex My-corners. We show that, a given convex R%corner has two ex-
tremal quantisations and establish several results that will be used in the
next section.

For an orthonormal basis V' = {vy,...,v4} of C%, we let

Dy = span {vv; : i € [d]}
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be the algebra of matrices diagonal with respect to V. We write D‘J; =
Dy N M, and set

d
Av(A) = Z <A’U¢, U¢> Uﬂ};(, A € My;

=1
thus, Ay : My — Dy is the diagonal expectation with respect to V. We
write A for the diagonal expectation with respect to the canonical basis
{e1,...,eq}.
Definition 5.1. Let A be a diagonal convex corner in My. The convex
M g-corner B is called a non-commutative lift of A if A(B) =DyNB = A.

Remark 5.2. Let V. = {v1,...,v4} be an orthonormal basis of C?. The
following hold:
(i) If M, N € My then Tr((Ay(M))N) = Tr(MAy(N));
(ii) If B is a convex Mg-corner, we have that Dy N B = Ay (B) if and
only if Ay(B) C B, if and only if Ay (B*) C B,

(iii) If B is a convex My-corner and A = A(B), then vy(A) = v(B).
Proof. (i) is straightforward.

(ii) The first equivalence is trivial. Assume Ay (B) C B and let B €
Bf. Then (Ay(B),A) = (B,Ay(A)) < 1 for all A € B. This shows that
Ay (B) € B, and hence Ay (B*) C B*. The converse implication now follows
from Theorem [£.5

(iii) We have

Y(B) =max{TrT : T € B} = max{Tr(A(T)) : T € B} = ~(A).
U

Lemma 5.3. Let V be an orthonormal basis and B be a non-empty subset
of Mj.
(i) IfDyNB= Av(B) then
(21) Dy N (Ay(B))F =Dy N B = Ay (B).
(ii) Suppose that B is a convex corner. Then Dy N B = Ay (B) if and
only if Dy N B = Ay (Bﬁ).

Proof. (i) Write A = Ay (B), and suppose that Dy N B = A. Then A C B;
thus, B C A% and so Dy N B C Dy N AL Let T € Dy N Af and N € B.
Using Remark we have

Te(TN) = Tt (Ay(T))N) = Tr (TAy(N)) < 1,

and so T' € Dy N B Thus Dy NA! C Dy N BY, and the first equality in
is proved.

Let R € B*, M = Ay(R) and Q € B. By assumption, Ay (Q) € B and
hence

Tr(MQ) = Tr (Av(R))Q) = Tr (RAy(Q)) < 1.
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Thus, M € B* and so Ay (B¥) C B% (21) now follows from Remark
(ii) Suppose that B is a convex corner such that Dy N Bt = B (B*). By
(i), Dy N B% = Ay (B*); now Theorem 4.5 implies Dy N B = AV (B). O

Proposition 5.4. Let A be a diagonal convex corner, and B be a convex
corner, in Mg. The following are equivalent:

(i) B is a non-commutative lift of A;
(ii) B is a non-commutative lift of A°.

Proof. (i)=(ii) By Lemma Dy N B = A(BY), while the equality A° =
D, N B is immediate from the definitions of the anti-blockers.

(ii)=(i) By the previous paragraph, A” = Dy N B¥ = A(B#). The claim
now follows from Theorem 4.5l O
Lemma 5.5. Let A be a non-zero diagonal convex corner in My. Then

(i) (L) ={Me M :AM)ec A};
(i) If A is bounded then
her(A) C (A°)* = (her(A"))*
and, if d > 1, the inclusion is proper.
Proof. (i) Let A € A" and M € M, with A(M) € A. Then
(A, M) = (A(A), M) = (A, A(M)) <1

and so M € (A°)%. On the other hand, suppose that M € (A°)f. If A € A
then

(A(M), A) = (M, A(A)) = (M, A) <
thus, A(M) € A”. By Remark. 3.5, A(M) € A
(ii) By Proposition [3.14] (A”)* = (her(Ab)) Clearly, A> C A!; Corollary
and Lemma imply

her(A) = A% C (A")F.

We show that if d > 1 then her(A) C her(A°). By Corollary it suffices
to show that her(A)* O her(A”). By Proposition her(A)* = AF so,
to prove the latter inequality, we seek M € Af such that M ¢ her(A%).
By assumption, A # {0}; thus, A" # M; and so N(A*) # co. Since A is
bounded, by Proposition , A? has non-empty relative interior and, by
Lemma N(A") > 0. Set u = N(A). Since A* = DyN A, we have that

(22) = N(A).

If M € My and A € A then, by Remark Tr(MA) = Tr(MA(A)) =
Tr(A(M)A). Thus, if M >0 and A(M) € A* then M € A% Tt follows that,
if J is the matrix in My with all entries equal to one, then pJ € Af. We
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show that yJ ¢ her(A°). By way of contradiction, suppose that

M1 0 ... 0
0 175) 0

puJ <N = _ e A
0 0 Hd

Let Q = (¢ij)i; = N — pJ; then p; > p, i € [d]. But if p; = p, then ¢;; =0
and Lemma implies that —u = ¢; j = gj; = 0 for all j # 4, contradicting
the fact that > 0. Thus there exists € > 0 such that pu; > u+¢€, ¢ € [d].
Then (u + €)I < N; by hereditarity, (1 + €)I € A° contradicting (22). O

We can now prove the main result of this section. It provides a charac-
terisation of the non-commutative lifts of a given diagonal convex corner,
showing that there are two extreme such lifts which, in the case where d > 1,
do not coincide.

Theorem 5.6. Let A be a diagonal convex corner, By = her(A) and By =
(A*)E. Then By and By are convex My-corners. Moreover, the following are
equivalent for a convexr Mg-corner B:

(i) B is a non-commutative lift of A;

(ii) By C B C By.

Proof. By Corollary and Lemma B and By are convex corners.

(il)=(i) Trivially, A C DyN By C A(B1). Let T' € By and N € A be such
that 0 <7 < N. Then 0 < A(T') < A(N) = N. It follows that A(T) € A
by the hereditarity of A. Thus,

(23) A=A(By) =DygNB.

Using reflexivity and Proposition we have Bg = her(A"). By the
previous paragraph, A° = A(Bg) =DyN Bg and, by Proposition

(24) A= A(By) =Dy N Bs.

Equations and imply that any convex Mg-corner B with By C B C
Bs is a non-commutative lift of A.

(i)=(ii) Suppose that B is a non-commutative lift of A. By the hered-
itarity of B, we have By C B. By Proposition A" = D,y N B Thus
A° C BY and so her(A”) C B* by the hereditarity of Bf. By Theorem
B =B C B, as required. O

Remark 5.7. Let N € D$ and A > 0. We note that Ay (Ay ) C Ana
(equivalently, Ay (Anxx) = Dy N Ay). Indeed, if A € Ay then, by
Remark 5.2 (Ay(A), N) = (4, Ay(N)) = (A,N) <\

6. ENTROPY WITH RESPECT TO A CONVEX CORNER

In this section, we define the entropy of a quantum state with respect
to a convex Mg-corner. Our motivation stems from the classical case, and
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parallels with it are drawn as we go along. We obtain non-commutative
versions of several fundamental results about the entropy of a probability
distribution with respect to a convex Re-corner [7, 24 34]. Applications of
those will be made in the subsequent sections.

6.1. Background. We let
Ra={pe M :Trp=1}
be the (closed convex) set of all states in My, and recall that P, stands for all
probability distributions on [d]. Note that, up to a canonical identification,
Ps = RaNDy If A= Z?:l Aiuul € MJ+, where {uj,...,uq} is an
orthonormal basis of C? (and \; > 0, i € [d]), the logarithm log A of A is
given by
d
log A = Z(log Aiuiug;
i=1

it is clear that log A € M!.

Let p, A € M, and write A = Z?:l Aiuiuf

*, where {ui,...,uq} is an
orthonormal basis of C? and \; > 0, i € [d]. Set

d .
: g 4 c
Tr(plog A) = {21:1 (pui, ui)log A;  if ker(A) C ker(p)

—00 otherwise
(we recall the conventions 0log0 = 0 and log0 = —oc). The quantity
o : +
H(p) := —Tr(plogp) is the von Neumann entropy of an element p € M.

Given p,0 € Md+, the relative quantum entropy of p with respect to o is the
quantity

Tr(plog p) — Tr(plogo) if ker(o) C ker(p)
+00 otherwise.

mez{

We recall some basic properties of D(pl||o) that can be found as [39, Theorem
11.9.2], [38, p.250], [30, Theorem 7], [38, p.251] and [2].

Lemma 6.1. (i) If p,o € R4 then D(pllc) > 0 and equality holds if
and only if p=o;
(i) If p = S ep®™ € M and o = 7 \o®) € M, where
Ak >0 and 7 M\ = 1, satisfy ker(a®) C ker(p™*)), then

D (pllo) < 3 MD (pPo®).
k=1
If pt) (k) ¢ Md++, k € [m], equality holds if and only if logp —
log o = log p®) —loga™® for all k € [m);
(iii) For a fized p € Ry, the function o — D(p||o), from M to the
extended real line, is conver and lower semi-continuous.
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We next state a form of the well-known von Neumann minimax theorem
that will be needed in the sequel. A proof of this version of the theorem can
be obtained along the lines of [29], and can be found in [5].

Theorem 6.2. Let K be a convex, compact subset of a normed vector space
X, and let C be a convex subset of vector spaceY . Let f: K xC — RU{oo}
be a function, satisfing the conditions

(i)  — f(x,y) is convex and lower semi-continuous for each y € C,
and
(ii) y — f(z,y) is concave for each z € K.

Then

inf su x,y) = sup inf f(x,y).
weKyegf( y) yegmer( y)

6.2. Quantisation of entropy. We use the notation of and to write
the Mg-unit corner as A;, = {T € M; : TrT < 1}, and the My-unit cube
as By, ={T e M : T <TI}.

For a convex corner A and a state p € Ry, let

A%(p) = {A e A:ker(A) C ker(p)}.

Lemma 6.3. Let p € Ry and A be a bounded convexr Mg-corner. The
function f : A — R U {+o0}, given by f(A) = —Tr(plogA), attains a
minimum value f(Ag) for some Ay € A. If p > 0 and A has non-empty
relative interior then Ay is unique and f(Ag) < 400.

Proof. By Lemma f is lower semi-continuous, and since A is compact,
it attains a minimum. Suppose that p > 0 and A has non-empty relative

interior. Then A%(p) = AN M;"; by Lemma A%(p) # 0. Since
Ag € A%(p), we have that f(Ag) < +oo.

Assume, towards a contradiction, that there exist distinct Ag, By € A°(p)
satisfying f(Ao) = f(Bo) = minge4 f(A). Since

f(A)=D(pl|A) — Tr(plogp), A€ A,
Lemma (ii) implies

f <A0—|—B0

! ) < 57(Ao) + L F(B) = min f(4).

Since A is convex, @ € A, yielding a contradiction. It follows that the
minimum is achieved for a unique Ag € A. O

Definition 6.4. Let A be a bounded convex Mg-corner and p € Ry be a
state. The parameter

Ha(p) = min —Trplog A

is called the entropy of p over A.
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Let A be a convex R-corner and p € Py. The entropy of p with respect
to A was introduced in [7] as the quantity

d
1
H = mi log—:veAv>0,.
A(p) = min {;pz og v €A }
Thus, the parameter H 4(p), introduced in Definition can be viewed as

a non-commutative version of H4(p). This viewpoint will be made more
rigorous in Theorem [6.7] below.

Remark 6.5. (i) It is clear that, if A and B are convex My-corners and A C B
then H4(p) > Hp(p), p € Ra-

(ii) Let p € Rq and A be a convex Mg-corner. We have that H4(p) = +o0
if and only if A°(p) = 0.

(iii) If A has empty relative interior then, by Lemma A has no strictly
positive element, and there exists p € Ry, for example the maximally mixed
state 21, such that A%(p) = 0. In this case, Ha(p) = +oo. On the other
hand, if A has non-empty relative interior then A%(p) # () and, by (ii),
H 4(p) is finite for every p € Ry.

(iv) If A is a standard convex corner then
25 H = inf —TrplogA.
(25) alp) =  inf —Trplog

Indeed, by (iii), H4(p) is finite and hence there exists a minimiser A for
Hu(p) in A%(p). Setting A, = (1 —1) A+ 11, we have that 4, € A*T,
n € N, and

lim Tr(plog(Ay)) = Tr(plog(4)),

n—oo
implying .
(v) Fix p € Rq. It is not difficult to see that the minimising element of Ay,
in the definition of Ha4, (p) has unit trace. Thus,

Ha;,(p) = min —Tr(plogo)
and hence it coincides with the von Neumann entropy H(p) of p (see e.g.
[26]).

(vi) Since the elements of By, have eigenvalues in the interval [0, 1], we have
—Tr(plog A) > 0 for all A € By,. Thus, Hg, (p) = Tr(plogl) = 0.

(vii) By (i), (iv) and (v),
(26) 0 < Hy(p) < H(p) whenever A;, C A C By,.

There exist convex My-corners B and C satisfying Hg(p) < 0 and He(p) >
H(p) for all p € R4. For an example, let A > 1 and B = A\By,; then

Hg(p) = Hp,,(p) —log A = —log A < 0.
Similarly, if C = }A;, then
He(p) = Ha,,(p) +1og A = H(p) +log A > H(p).
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For the next theorem, note that, if A is a standard convex corner then
N(A) > 0 and hence, by Theorem the logarithms in its statement are
well-defined.

Theorem 6.6. Let A be a standard convex Mg-corner. Then

max Ha(p) = —log N(A) = log M(A) = log y(A%).

Proof. Note that R4 and A are compact and convex subsets of Md+. Let
g:Rqgx A— RU{+00} be the function, given by g(p, A) = —Tr(plog A).
For a fixed A € A, the function p — g(p, A) is linear, and hence concave. On
the other hand, g(p, A) = D(p||A) — Tr plog p and so, by Lemma for a
fixed p € Ry, the function A — g(p, A) is convex and lower semi-continuous.

Let Amin(A) denote the smallest eigenvalue of a positive matrix A and set
[t = SUP e Amin(A4). Since N(A)I € A, we have that u > N(A). On the
other hand, for every ¢ > 0, there exists A € A such that g — € < Apin(A)
and hence (u — €)I < A. By hereditarity, (u—¢€)I € A. Thus N(A) > pu—e
for all € > 0, and so N(A) > pu. Hence u = N(A). Using Theorem [6.2, we
now have

max H = sup inf ,A) = inf su JA
max A(p) pegdAeAg(p ) AeApeag(p )
= inf su ,A) = inf  sup Tr(plog A~1
AeAHpE%g(p )= Inf sup (plog A7)
= inf |[logA7Y|| = inf —logAmn(A
s = i -l
= —log < sup )\min(A)> = —log <sup )\min(A)>
AcAt+ AecA
= —logN(A).
The remaining equalities follow from Theorem O

Recall that ¢ : R; — D; is the canonical bijection, given by .

Theorem 6.7. Let A be a standard diagonal convex corner in My and
B be a non-commutative lift of A. If p € Py and p = Zlepieief then
Hy-104)(p) = Hg(p).
Proof. Since A C B, we have Hp(p) < Hg-1(4)(p). Since A is standard,
so is B and, by Remark Hp(p) < +00. Let B € B be a minimiser for
Hpg(p). Write B = Zle bjviv}, where {v1,...,v4} an orthonormal basis of
C% and b; > 0, i € [d]; thus, Hg(p) = —Z?:1<pvi,vi>log b;. Suppose that
by = 0 for some k. Then Z;l:lpj\(vk,ejHQ = (pvg,vE) = 0. Thus, for all
J € [d], either p; = 0 or (vg,e;j) = 0.
Note that
d

d
A(B) = Z <B€i, 61'> eie;‘ = Z Z bj|<vj, 61‘>‘2 61'6;.
! 1

i=1 i=1 \j=
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By the concavity of the logarithm and the fact that Z;l:l [(vj,e)]? = 1,
i € [d], we have

d d
—Tr(plog(A(B))) =— > pilog | Y b;l(vj,en)?
i=1 j=

d
= — Z p; log Zb]] (vj, €]
7j=1

i:pi >0
== Y pilog| > bilfv e
1:p; >0 J:(vj,e;)#0
d d
- Zpi Z (v, e;)|*logb; = — Tr(plog B).
i=1 j=1
Since A(B) € A, we have Hy-1(4)(p) < Hp(p), and the proof is complete.

O

In the special cases where A = vp(G) and A = thab(G), the next result
was given in [34] and [24], respectively (we refer the reader to Subsection
for the definition of the latter convex corners).

Corollary 6.8. Let A be a standard convex R%-corner. Then
max H 4(p) = —log N(A).
PEPq

The next two propositions give straightforward but useful characterisa-
tions of the extreme values for the entropy over the convex corners lying
between A7, and By,.

Proposition 6.9. Let A be a conver Mgy-corner with A;, € A C By,. The
following are equivalent:

(i) Ha(p) =0 for all p € Ry;

(i) y(AF) = 1;
(iii) I € A;
(iv) A= B[d,
(v) v(A) =

Proof. (1)< (ii) follows from Theorem
(ii)=-(iii) By Proposition N(A) =1 and hence I € A.
(iii)=(iv) By hereditarity, By, C A, and now by assumption A = By,.
(iv)=(v) is trivial.
(v)=(iv) The assumption implies that I € A and hence A = By,.
(iv)=-(ii) follows from the fact that Bgd = Ay, O

Proposition 6.10. Let A be a convex Mg-corner with A;, € A C Br,. The
following are equivalent:
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Proof. (i)=-(iv) Suppose that there exists B € A with TrB =t > 1; we
have that t™'B € R4. Since é[d € A, there exists € > 0 such that B’ :=
(1 -€¢B+ 5I; € AN MJ™" satisfies Tr B* > 1. Thus, without loss of
generality, we may assume that B € Md++. We have

H(t'B) = —Tr(t ' Blog(t ' B)) = logt — Tr(t ' Blog B),
and

Ha(t™'B) = min — Tr(t7'Blog A) < — Tr(t 'Blog B) < H(t™'B),

contradicting (i).

(iv)=-(iii) follows from the assumption that A;, C A.

(iii) = (i) This was proved in Remark [6.5] (iv).

(i)« (iii) We have A7, C A* C Br,. Thus, A= A;, <= A =B, <—
v(A*) = d by Proposition O

6.3. Dependence on the state and on the convex corner. In this
subsection, we examine the properties of the entropy as a function of the
state and of the convex corner.

Proposition 6.11. Let A be a bounded convex Mg-corner. Then the func-
tion Hp : Rg — RU{+o0}, p = Hu(p), is concave. If A is standard then
H 4 is upper semi-continuous and attains a finite mazimum.

Proof. Let p; € Rqgand \; € RT, i =1,2, with A\ + Ao = 1. By Lemma
there exists Ay € A such that
Ha(Mp1 + Aap2) =M1 Tr(—p1log Ag) + Ao Tr(—p2 log Ap)
21 0in Tr(—py log A) + Az min Tr(—pz log A)

=M Ha(p1) + A2H4(p2).

Assume A is standard. For p € Rgand B € MJ satisfying ker(B) C ker p,
let g(p, B) = —Tr(plog B). By Remark Hu(p) < 400 for all p € Ry.
Let (p("))neN be a sequence in R4 converging to p € Ry. Let A € A and
A ¢ A n € N, be the elements of A such that H4(p) = g(p, A) and
Ha(p™) = g(p™,A™), n € N. By Lemma , there exists r > 0 such
that rI € A. Since A is convex, By, := (1 —p)A+purl € ANM]™ for every
we (0,1).

Write A = Zle Aiviv}, where {v,...,v4} is an orthonormal basis of
C% and \; > 0, i € [d]. Setting p;; = (pv;,v;), i € [d], we have that
g(p, A) = — Z?:l piilog \;. Since Ag € A%(p) (see the proof of Lemma,
(27) Ai=0 = pi; =0, i€ld].
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We have that
g(p, A) < g(p, B,) = — Tr(plog (1 — p) A+ prl))

d
= - sz’b log (1 = p)Ai + pr) .

i=1
By 7). 9(p, Bu) —u—0 g(p, A). For § >0, let pu € (0,1) be such that
(28) 9(p, A) < g(p, Bu) < g(p, A) + 0.

On the other hand,
Ha(p™) = g(p™, A™) < g(p"™,B,), neN,
Since B,, > 0, we have

lim sup H 4(p™) < limsup g(p™, B,) = g(p, By.).
n—roo n—oo
By , lim sup,,_,o Ha(p™) < H4(p)+5, and H 4 is upper semi-continuous
as stated. By [I, Theorem 2.43], the compactness of R4 implies that a max-
imum value is attained. O

Theorem 6.12. Let p € Ry, and A and A, be convex Mg-corners, n € N,
such that UpenA, is bounded.
(i) Iflimsup, ey An € A then Hy(p) < liminf,eny Ha, (p);
(ii) If p > 0, A has non-empty relative interior and A C liminf,cn A,
then limsup, ey Ha, (p) < Ha(p);
(iii) If p > 0, A has non-empty relative interior and A = lim,ecn A, then
Hu(p) = limpen Ha, (p)-

Proof. (i) Assume first that H4(p) = oco. By Remark (ii), A%(p) = 0.
Suppose, towards a contradiction, that there exists C' > 0 and a sequence
(Ag)ken € Mj, such that Ay € A,, and

(29) —TrplogAr, <C, kel

Assume, without loss of generality, that Ay —p_o A for some A € My; by
assumption, A € A. Write A = erzl ArP,. in its spectral decomposition,
where ()\T)lrzl is the family of distinct eigenvalues of A in increasing order
and A, = fo; 1 Agk)Pﬁk) analogously. We have that, eventually, I, = [, and
hence we assume the latter equality holds for all £ € N. By the continuity of
the functional calculus, ng) — koo Pr and )\S’“) —k—oo Ary T € [l]. Decom-
posing further A = 25:1 oy ArUr iy, Where {vri}ir, is an orthonormal

basis for the range of P,, assume that § := (pv,;,v,;) > 0 but A\, = 0, for
some r and i. We have that Tr(pP,gk)) > g for sufficiently large k, while
)\,(nk) —k—oo 0, contradicting .

Now suppose that H4(p) < oco. If liminf, en H .4, (p) = oo then the con-

clusion holds trivially, so suppose that A, € A,,, k € N, satisfy for
some C' < oco. Assume, without loss of generality, that A is the minimiser
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of Ha,, (p) and that Ay —j_. A for some A € A; thus, A; € A%(p) for all
k. Since A°(p) is closed, the continuity of the functional calculus implies that
A € A°p). Now the lower semi-continuity of the function X — Tr —plog X
implies that H4(p) < C. Thus, H4(p) < liminf,ey H 4, (p)-

(ii) If H4(p) = oo, the conclusion holds trivially; suppose thus that
Hy(p) < co. Let A € ANM;™" be such that Ha(p) = —Trplog A. Let
(An)nen be a sequence such that A, € A,, n € N, and 4,, =p00 A. We
have that A, € MJJF eventually. Suppose that Ha, (p) —k—oo 0 for some
0 € R. Then

H4(p) = — lim Trplog A, > 9.
n—oo
(iii) is a direct consequence of (i) and (ii). O

6.4. Entropy splitting. This subsection is motivated by [7, Section 2],
and contains non-commutative analogues of the entropy splitting results
obtained therein. If V is an orthonormal basis of C?, we call a convex M-
corner V -aligned if Ay (A) C A. Recall that AT is the set of all invertible
elements of a convex corner A. We define the set

log ATt = {logA: Ae AT},

Lemma 6.13. Let V be an orthonormal basis of C* and A be a bounded
V -aligned convex Mg-corner. Then
(i) Ay (log A**) Clog ATF;
(ii) If p € RgN Dy then there exists A € AN Dy, such that Ha(p) =
—Tr(plog A).

Proof. (i) Write V. = {v1,...,v4} and A = % Nuu? € A, for a set
{u1,...,uq} of orthonormal eigenvectors of A and some \; > 0, i € [d].
Then Ay (A) = ijzl il (s, v5) |2v]v and log A = 25:1 log \ju;u}. Thus,

v(log A) = Z log ;| (ug,v) 2 v;V; .
t,j=1

Set
d d
- Zexp (Z | (ui, v;) |* log )\Z-) Vs
j=1 i=1

and note that Ay (log A) = log A’. Since Zle | (ui,vi) |2 = |jv||> = 1, the
convexity of the exponential function in the extended real line implies that
A" < Ay (A). Since Ay (A) C A, it follows by hereditarity that A’ € A, and
hence Ay (log A) =log A’ € log AT+,

(ii) If Ha(p) = +oo then A%(p) = 0, and we can pick any A in Ay (A).
Suppose that H 4(p) is finite. Working with the extended real line [—o0, +00]
and the conventions 0log0 = 0, log0 = —oo and exp(—o0) = 0, the oper-
ators Tr(plog A) and Tr(pAy (log A)) can be defined for any p and A (see
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e.g. [26]). By Lemma [6.3] and its proof, there exists A € A such that
—Tr(plog A) = HA(p).

The operator A’ € A from (i) belongs to Dy and hence commutes with p.
We have Ay (p) = p and so, by Remark

—Tr(plog A) = — Tr (Ay(p)log A) = — Tr(plog A').

The following result was proved in [7] and will be needed below.

Theorem 6.14. [7, Theorem 1] If A, B are convex R%-corners with A° C B
then for any p € Py there exist a € A and b € B such that p = ab.

Proposition 6.15. Let V be an orthonormal basis of C¢, p € RgNDy and
A and B be convex Mgy-corners.

(i) If Ae Aand B € B, and p = AB then H(p) > Ha(p) + Hg(p).
Equality holds if and only if A and B are elements of A and B
achieving the respective minima in Definition [6.4)

(ii) If A and B are V-aligned and A* C B then there exist A € A and
B € B such that p = AB.

Proof. (i) Since p = p*, we have that AB = BA. Thus,
Hu(p) + Hp(p) < — Tr(plog A) — Tr(plog B)
=—Tr (,0 log(AB)) =—Trplogp = H(p).

The equality condition holds trivially.

(i) Let Ao = Ay (A) and By = Ay (B). By Remark[5.2] Ay = Dy NA and
Bo =Dy NB. Let ¢: Ri — Dy N M; be the bijection defined analogously
to (2); then ¢~ (Ap) and ¢~1(By) are convex Re-corners. We claim that

(30) Dy N Al = Dy N AL
Since Ay C A, we have Dy N A! C Dy ﬂAg. Fix M € Dy ﬂAg and A ¢ A.
By Remark
(M, Ay = (Ay(M),A) = (M,Ay(A)) < 1.
Thus, M € Dy N Af and follows. We therefore have
(31) Dy N AL C Dy N B = By.

It is clear that ¢~ (Ap)” = ¢~ (Dy N Ag). By (31), ¢ (Ao)’ € ¢ H(Bo).
For a state p = Z?Zl pivivy € Dy, we set p = ¢~ (p) € Pyg. By Theorem
there exist a € ¢ 1(Ap) and b € ¢~ 1(By) such that p; = a;b;, i € [d].
Then ¢(a) = 34 auw; € Ag € A and ¢(b) = 34 bow! € By C B
satisfy ¢(a)@(b) = p as required. O
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It was shown in [7, Section 2| that if A is a convex R%corner then
H(p) = Ha(p) + H(p) for all p € Py,
We provide a non-commutative version of this result.

Theorem 6.16. Let V be an orthonormal basis of C¢, p € RgN Dy and A
and B be V-aligned bounded convex My-corners.

(i) If B C A* then H(p) < Ha(p) + Hs(p);
(i) If A* C B then H(p) > Ha(p) + Hp(p);
(ili) H(p) = Halp) + H4:(p)-
Proof. (i) By Lemmal[6.13] there exist A € ANDy and B € BNDy such that

Hy(p) = —Tr(plog A) and Hp(p) = —Tr(plog B). Write V' = {v1,...,v4},
d d d
p= Zpivivf, A= Z Aiviv; and B = Z,u,-viv;‘.
i=1 i=1 i=1
We have

H(p) — Ha(p) — Hp(p) =Tr(plog A) + Tr(plog B) — Tr(plog p)

)\A .
:'Z pilog< ;’:Z> <log | > Am| <0,

i:p; >0
where the first inequality follows from the concavity of the log function
and the fact that Zlepi = 1, while the second one from the fact that
Sy Aipi = (A, B) < 1.
(ii) follows from Proposition
(iii) By Remark Ay (AF) C A" The result follows by setting B = A
in (i) and (ii). O

The following result is the non-commutative analogue of a bound estab-
lished in [4] and [19].

Proposition 6.17. Let V be an orthonormal basis of C¢, p € RgqNDy, and
A be a V-aligned bounded convex My-corner. Then

(32) Ha(p) = H(p) —log~(A).

Equality holds in (39) if and only if v(A)p € A.

Proof. By Lemma there exists B € A N Dy such that Ha(p) =
—Trplog B. Write p = Z?Zl piviv; and B = Zgzl wiviv; with p; > 0,
pi >0, i € [d]. Then

d d
H(p) = — sz‘ logp; and Ha(p) = — Zpi log f4;.
i=1 i=1

Hence

d d
> pilog <Z’> > —log (Z ,Ui) > —logy(A).
i=1 v i=1
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The equality condition follows as in [4]. O
As in [4], the lower bound is attained.

7. TENSOR PRODUCTS OF CONVEX CORNERS

The behaviour of the entropy with respect to tensor products of convex
R%-corners was examined in [7, Section 5]. In this section, we introduce
tensor products of non-commutative convex corners, and discuss their be-
haviour in relation to the parameters defined earlier.

Definition 7.1. Let A; be a convex Mgy, -corner, ¢ = 1,2.
(i) The mazimal tensor product of A; and Aj is the convex My, 4,-corner
Al @max A2 = C({A1® A2 1 A; € Ajyi = 1,2});

(ii) The minimal tensor product of A; and Aj is the convex My, 4,-corner
#
Al @min A2 = (Ag Pmax Aﬁg) .
We note that
(33) -’41 Omax AZ - -Al @min AZ;

the somewhat counterintuitive choice of notation becomes natural in view of
the close resemblance of these tensor products with the tensor products of
operator systems as defined in [15]. One defines tensor products of diagonal
convex corners in an analogous way [7, Section 5.

Theorem 7.2. Let A; be a bounded conver Mgy,-corner, i = 1,2, 7 €
{min, max}, and § € {M,N,~v}. Then

§(A; ®; Ag) = §(A1)8(Ag).
In addition,
['(A1 Omin A2) < T(A1 Omax A2) < T(ADD(Ay).
Proof. We have
v(A1)y(A2) = max{Tr(A; ® Ag) : A; € A;,i =1,2}
< max{Tr(4): A € A; ®max A2} = 7(A1 @max A2).

The inequality (A1 Qmax A2) < v(A1)7v(A2) is straightforward from the
definition of A ®max A2 and Proposition and hence v(A; ®mpax A2) =
v(A1)v(Az2). By Theorem

(34) M (A @min A2) = 7 ((A1 ®min Az)ﬁ) =7 (Aﬁ ®max Ag)

(35) = ()Y (AL) = M (A1) M (A).

Suppose that A; € A; and p; > 0 are such that u;4; > I, i =1,2. Then
(1p2) (A1 ® Ag) > I and hence M (A1 ®max A2) < pipe. After taking the
infimum over all p1 and pg, we obtain

M (A1 ®max A2) < M (A1) M (Az).
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Inclusion and equality now imply
M(Al Qmax -/42) =M (-Al) M ("42) .
Thus,

7 (A1 Gin Az) = M (Af G Ah ) = M(ADM(A) = 7(A1)(A2).

An application of Theorem now completes the proof of the multiplica-
tive identities. .

Suppose that (P\”)™ is a PVM in A;, i = 1,2. Then {PV @ P - j ¢
[mi], k € [ma]} is a PVM in Aj ®pax Aa. Together with , this shows the
inequality chain. ([

Suppose that p is a state in My, ® Mgy,. We denote by Tr; p the reduced
state of p in My,, ¢ = 1,2; thus, Tr1 p € M;;,

(Tr1p7A1>:<p7A1®I>a AlGMdl,
and similar identities hold for Try p.

Theorem 7.3. Let A; be a standard convex Mg -corner, i = 1,2, 7 €
{min, max}, and p be a state in My, ® My,. Then

Hp 0,4, (p) < Hay (Tr1p) + Ha,(Trop).
If Vi is an orthonormal basis of C%, p; € Ra, N Dy, and A; is V;-aligned,
i=1,2, then
(36) Hu,0,45(p1 @ p2) = Ha, (p1) + Ha,(p2).
Proof. Let A; € Af i =1,2. If B; € My, then
((Trip)log Ay, Br) = ((Tr1p), (log A1)B1) = (p, (log A1) B1 @ I)

= (. ((log A) & T)(By 1))

= (plog(A1®1I),B; ®I)

= (Tri(plog(A1 ® 1)), By);
thus, (Tr1p)log A1 = Tr(plog(A; ®I)) and, by symmetry, (Trop)log Ay =
Tra(plog(I ® As)).

Since A; and A are standard, so are A ®@max A2 and A ®min Az. Using
Remark we have

H o @ Ao (P)
< inf{—Tr(plog(4; ® A3)): A; € AFT,i=1,2}
= inf{—Tr(plog(A1 ® I)) — Tr(plog(I ® As)) : A; € AFT,i=1,2}
= inf{—Tr((Tr1p)log A1) : A; € AT}

+inf{— Tr((Trap) log A2) : Ay € AT}
= Ha,(Trip) + Ha,(Trop).
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The inequality in Theorem for the minimal tensor product now follows
from (33). Using Theorem we hence have
H(pr@pa) = Haiomaxda (01 @ p2) + H s i (p1 @ p2)
< Hay(pr) + Hay(p2) + H g2 (p1) + H 45 (p2)
H(p1) + H(p2) = H(p1 ® p2).
Equality is now immediate. ([

Remark. Tensor products of convex R?-corners were introduced in [7]
in an analogous way to Definition where for the definition of the mini-
mal tensor product one uses the classical anti-blocker b instead of the non-
commutative one f. Equality generalises [7, Theorem 16], where the
similar equality was shown for the entropy of product probability distribu-
tions with respect to products of classical convex corners.

Proposition 7.4. Let A; be a diagonal convex corner in My,, B; be a non-
commutative lift of A;, i = 1,2, and 7 € {min, max}. Then B &, By is a
non-commutative lift of A1 @, As.

Proof. Denote by A; the conditional expectation onto Dy,; we have that
Ai(B;) C B;, i = 1,2. It follows that

(Al ® AZ)(BI ®max 82) g Bl ®max BQa
and hence (see Remark ,
(A1 ® A2)(B1 @max B2) = (B1 @max B2) N (D4, ® Dy,).

Thus, B Qmax B2 is a non-commutative lift of A; ®uax A2. By Proposition
5.4 (Bﬁ Omax l’)’g)ti is a non-commutative lift of (A? Pmax Ag)b, and the proof
is complete. [l

8. CONVEX CORNERS FROM NON-COMMUTATIVE GRAPHS

8.1. Motivation. In this subsection, we recall some basic notions from zero-
error information and quantum information theory; we refer the reader to
[25] for some of the basic notions, such as completely positive maps and
quantum channels. Given a classical information channel N” with an input
alphabet [d] and an output alphabet [k], its confusability graph Gr, as
defined by Shannon in [33], has vertex set [d], and two symbols 7, j € [d] are
adjacent if they may result in the same output from [k] after transmission via
N. Shannon observed that the one-shot zero-error capacity of NV — that is,
the size of a largest subset of [d], no two elements of which can result in the
same output after applying N — is equal to the independence number a(G y/)
of Gy. The zero-error transmission properties of A/ were thus reduced to
the study of various asymptotic combinatorial parameters of Gs. Given
two information channels with confusability graphs G; and Ga, on vertex
sets [d1] and [ds], respectively, the product channel has confusability graph
equal to the strong product G1 X G2 of G1 and G, that is, the graph with
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vertex set [d1] x [d2], in which (i, k) ~ (7,0) if and only if ¢ ~ j in G; and
k ~ 1 in Go. (Here, and in the sequel, we write i ~ j to denote adjacency,
and i ~ j if i ~ j or i = j.) Writing G®" for the n-fold strong product of
G, the Shannon capacity [33] of G is the parameter

O(G) = nh_}ngo VY a (GEn).

In the zero-error quantum communication task, Alice uses a quantum
channel — that is, a completely positive trace preserving linear map @ :
My — M, — to send to Bob states from R4, received at Bob’s site as states
from Ry. The one-shot zero-error capacity of ® is the maximum number
m of pure states £1&7, &85, ... ,EmE;, in Ry such that ®(&£7) L @(fjfj) for
i # j (here, and in the sequel, for p1, p2 € My, we write p; L py if p1 and p
are orthogonal in the Hilbert-Schmidt inner product). Let ® have a Kraus
representation

O(T)=> ATA;, TeM,,
p=1

where A, : C* — C*, p € [r], are such that > g1 ApAp = I. Set
Se = span {A;Aq :p,q € [r]}
and note that S is an operator system in My, in the sense that
IeSs andSGSq>:>S*ESq>.

The operator system Sp was shown in [II] to depend only on ® — and
not on the particular Kraus representation of ® used to define it — and to
capture many zero-error transmission properties of ®, playing the role of
a confusability graph of ® in the quantum setting. For example, it was
observed that, for two unit vectors &, € C%, we have ®(£€%) L ®(nn*) if
and only if £én* L Sg; thus, the one-shot zero-error capacity of ® coincides
with the independence number a(S) of S = Sg, defined as

a(S) = max{m : 3 unit vectors & € C?,i € [m], s.t. §& L Sifi# j} .
It is easy to note that, if S and T are operator systems in My then a(SQT) >
a(S)a(T); by Fekete’s Lemma, the Shannon capacity

O(S) = lim {/a(S%")
n—oo
of § is well-defined.

An arbitrary operator system in My was hence called a non-commutative
graph in [I1]. Given a graph G with vertex set [d], let

Sc = span{e;ej 14,7 € [n], i ~j in G}

be the graph operator system of G. It was observed in [I1] that a(Sg) =
a(@G) for every graph G. Since Sgyxa, = S, ® Sag,, this implies that
O(Se) = 0(G).
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Identifying computable bounds on the Shannon capacity of a graph, to-
gether with questions about information sources equipped with non-uniform
probability distributions that describe the likelihood of a particular symbol
from [d], leads naturally to the consideration of several convex R%corners
canonically associated with the graph G [13]. In the next subsection, we
recall these convex corners, their non-commutative counterparts [6], and
establish some relations between them.

8.2. Canonical convex corners from graphs. Let G be a graph with
vertex set [d]. Recall that a subset S C [d] is called independent (resp. a
clique) if i ¢ j (vesp. i ~ j) whenever 4,j € S. The complement G of G has
vertex set [d], and i ~ j in G if i 2 j in G. The vertex packing polytope [13]
of G is the set

vp(G) = conv{xs : S C [d] an independent set} ,
while the fractional vertex packing polytope [13] of G is the set

fvp(G) = {$ € Ri : le <1, for all cliques K C [d]} :
€K
note that fvp(G) = vp(G)’. (We denote by xs the characteristic function of
a set S.) We view these sets as diagonal convex corners in My via the map
2)-
The notion of an S-independent set in Definition below was first given

in [28], while the notions of an S-full set and an S-clique were introduced in
[6].

Definition 8.1. Let S C M, be a non-commutative graph. An orthonormal
set {vq,...,v,} C CYis called
(i) S-independent if v;v; € St for all i # j;
(ii) S-clique if vv; € S for all i # j, and
(iii) S-full if vv; € S for all 4, j € [k].
A projection P € My is called S-abelian (resp. S-clique, S-full) if its range
is the span of an S-independent set (resp. an S-clique, an S-full) set.

We let Po(S) (resp. Po(S), Pi(S)) be the set of all S-abelian (resp.
S-clique, S-full) projections. We have that a projection P is S-abelian if
and only if the set PSP consists of commuting operators; this fact was
communicated to us by Vern Paulsen (see [0]).

Remark. If G is a graph with vertex set [d] and S C [d] is an independent
set of G then the set {e; : i € S} is Sg-independent. Similarly, if K C [d] is a
clique of G then the set {e; : i € K} is Sg-full, and hence an Sg-clique. The
notion of an S-independent set — and that of an S-abelian projection — can
thus be viewed a non-commutative version of the notion of an independent
set of a graph. Similarly, S-clique and S-full projections are (distinct) non-
commutative versions of the notion of a clique of a graph.
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Recall the following convex My-corners, associated with a non-commu-
tative graph S C My [0]:
e ap(S) = C(Pa(S)), the abelian projection convex corner;
o cp(S) = C(Pc(S)), the clique projection convex corner;
o fp(S) = C(P:(S)), the full projection convex corner.

Remark 8.2. Let § C My be a non-commutative graph.

(i) Since every S-full projection is S-clique, we have fp(S) C cp(S).

(ii) Since every rank one projection is trivially S-abelian and S-clique,
Ap, Cap(S) C By, and Ay, C cp(S) C By,.

(iii) The convex corners ap(S) and cp(S) are standard. This is not always
true for fp(S), which can reduce to {0}.

(iv) If T C My is a non-commutative graph with & C T then ap(7) C
ap(S), cp(S) € cp(T) and fp(S) < fp(T).

Parts (i)-(ii) of the next proposition were established in [6], while (iii)-(iv)
follow after an application of Proposition

Proposition 8.3. Let G be a graph. The following hold:
(i) ap(Sgq) is a non-commutative lift of vp(G);
(ii) cp(Sg) and fp(Sg) are non-commutative lifts of vp(G);
(iii) ap(Sg)* is a non-commutative lift of fvp(G);
(iv) cp(Sg)f and fp(Sg)* are non-commutative lifts of fvp(G).

Now Theorem [5.6 Remark [8:2] and Proposition [8.3] imply the following.

Corollary 8.4. Let G be a graph. The following hold:

(i) her(vp(G)) C ap(Se) € (vp(G)"):

(i) her(vp(G )) C p(Sc) S ep(Sa) < fvp(G)F;

(i) her(vp(G)°) C ap(Se)* C vp(G)*;

(iv) her(fvp(G)) C ep(Se)* € fb(Sa)* C (fvp(G)’)*.

By Lemma [5.5 the outer terms in Corollary are distinct whenever
d > 1. We next examine when the middle terms reduce to their extreme
values. We denote by K, the complete graph with vertex set [d], in which
i~ j for all i,j € [d]. Tts complement K, is thus the empty graph on [d], in
which ¢ ~ j precisely when i = j.

’U’U

Theorem 8.5. Let G be a graph on d vertices.
(i) her(vp(G)) = ap(Sg) if and only if G is empty;

(ii) ap(Sg) = (vp(G ) )¥ if and only if G is complete;
(iii) cp(Sqg) = fvp(G)* if and only if G is empty;

(iv) cp(Sg) = her(vp(G)) if and only if G is complete;
(v) (Sg) = her(vp(G)) for every graph G.

Proof. (i) By (40), ap (S[(d) = Br,, and as Iy € vp (Kd) we have vp (f(d) =
{MeMfnNDy: M < I;}, giving

(37) her (vp (Kq)) = Bi,.
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%(61‘ +
e;); we have that vv* € ap(Sg). Suppose that vv* < Q € vp(G). Write
Q = (qz-,j)fl’j:1 = > iy Py, where P, = Ziesk eie; for an independent
set S of G and scalars py, > 0, k € [m], with >, pup, = 1. Then ¢;; > 1/2
and ¢; ; > 1/2. Since no independent set Sy, contains both ¢ and j, we have
¢ii = qj; = 1/2. Thus ((Q —vv¥)e;, e;) = ((Q —vv*)ej,e;) = 0. By Lemma
3-8 and the fact that @ is diagonal,

0= ((Q—wvv)eiej) = —((vv*)es,e5) = —1/2,

a contradiction. It follows that vv* ¢ her(vp(G)) and hence her(vp(G)) #
ap(Sa)-

(ii) We have Sk, = My and so the Sk -abelian projections are precisely
the rank one projections; thus, ap(Sk,) = Ar,. It is clear that vp(Ky) =
{M eD}:TrM <1}; by Lemma

Conversely, suppose that G is non-empty with i ~ j in G. Let v =

(38) (vp(a)) = {M € M - M) € vp(K)} = A,

Conversely, suppose that k 2 [ in G. Let A = (ex +¢;)(ex + €;)* and note
that I — A # 0. Since ap(Sq) C By, it follows that A ¢ ap(Sg). However,
A(A) = epej + eef € vp(G). By Lemma A € (vp(G)*)f and hence
ap(Sc) # (vp(G)")*.

(iii) We claim that cp(Sg,) = {M € M; : Tr M < 1}. To see this note
that a projection P lies in cp(Sg,) if and only if rank(P) = 1. To establish
the latter assertion, suppose there exist orthogonal unit vectors u = (u;)%_,
and v = (v;)&, such that uwv* € Sk, = Dg. Suppose u; # 0; then v; # 0
for some j # i. Thus (ejef, uv*) # 0, contradicting the fact that uv* € Dy.
By (38), cp(Sk,) = (vp(K4)°)E. Suppose that k ~ [ in G. As in (ii), let
A = (e + ¢)(ex + €)*; by Lemma A € (vp(G)*). On the other hand,
since A £ I, we have that A ¢ cp(Sg).

(iv) By and below, cp(Sk,) = her(vp(Ky)). Suppose that i % j

and let v = %(ei + e;). Using the argument from (i), we conclude that

vv* ¢ her(vp(G)). B
(v) By Corollary her(vp(G)) C fp(Sa); we show the reverse inclusion.

Let {v1,...,v,} be an Sg-full set and P =), v;v}. Set v; = 2?21 )\;i)ej

with )\g-i) € C,jeld, i€ [r]. Nowovw; € Sg for all 4,j € [r] and
hence, if )\gi))\,(j) # 0 for some ¢,j5 € [r] then | ~ k in G. We conclude
that the set K = {j €ld]: )\gk) # 0 for some k} is a clique of G. Thus,

Q= Z]EK ejej € vp(G). Note that vy,...,v, € span{e; : j € K}; thus,
ran(P) = span{v; : i € [r]} C span{e; : j € So} = ran(Q).

Hence P < @ and so P € her(vp(G)). Since her (vp(G)) is closed and
convex, Proposition implies that fp(S¢g) C her (vp(@)), as required. [
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Remark 8.6. Recall that a graph G is called perfect if every induced subgraph
has equal clique and chromatic numbers. It is shown in [7] that a graph G
is perfect if and only if vp(G) = fvp(G). By Proposition vp(G) =
Dy Nap(Sa) and vp(G) = Dy Nip(Sq) = A(fp(Se)), whence Propositions
and give
tvp(G) = vp(G)’ = Dy (fp(Sa)?).

Thus, G is perfect if and only if Dy N ap(Sg) = Dy N p(Sg)t. It is
worthwhile to note that the latter condition is not equivalent to ap(Sg) =
fp(Sq)¥; in fact, ap(Sg) = fp(Sg)? if and only if G is complete. To see

this, note first that, by Proposition if vp(G) # fvp(G) then ap(Sg) #
fp(Sg)f. Combined with Theorem this means that if G is perfect then

fp(Sg) = her(vp(G)®) and fp(Sg)* = her(vp(G)°):. However, by Theorem
ap(Sa) = (vp(G)*)* = her(vp(G)°)! if and only if G is complete.

Recall [6] that, for any non-commutative graph S, we have
(39) ap(8) C cp(S)*F C fp(S)*.

Equality in this chain, for graph operator systems, is characterised in the
next proposition.

Proposition 8.7. Let G be a graph on d vertices. The following are equiv-
alent:

(i) ap(Sg) = cp(Sa) = fp(Sa);

(i) G = Kg;
(ii) ap(Se) = cp(Se)* = fp(Sa)*-
Proof. (ii)=>(i) It is clear that {e1,...,eq} is an Sk -independent set, an

*

Sk, -clique and an Sk ,-full set. Thus I; = Zf-l:l eie; is an Sk -abelian
projection, an Sk ,-clique projection and an Sk -full projection, and hence

(40) ap(SKd) = Cp(SKd) = fp(SKd) = By,.

(i)=(ii) Suppose that G # K4 and let i,j € [d] such that ¢ % j. Let
v = %(Gi + €;); then vv* € ap(Sg) and vv* € cp(Sq).

Consider an Sg-full set {vy, ..., v} with associated Sg-full projection P.
Write vy = Zle ale,, 1 € [k]. Now vjvf, = Zis:l aﬁl)ﬁgm)ere: € S¢ for all
I,m € [k]. Thus for all I,m € [k] we have al(»l)ﬁg-m) = 0, so either al(-l) =0 for

all € [k], or /™ = 0 for all m € [K]. Thus, <P, eie;f> = Y e o™ =
0. It follows that <A, e@ — 0 forall A € conv(P¢(S¢)). On the other hand,

by and Theorem A € ap(Sg)¥, and hence (e;, Ae;) + (ej, Aej) <1,

_ . 11 10
whenever A € conv(P¢(Sg)). Since 3 (1 1) £ 4 01
vo* £ A for all A € conv(Pr(S¢)), and we conclude vv* ¢ fp(Sq).

(i)« (iii) is immediate from and Remark O

, we have that
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We now turn to the theta corners of classical and non-commutative graphs.
Let G be a graph with vertex set [d]. A family (a;);c[q of unit vectors in
a finite dimensional complex Hilbert space is called an orthogonal labelling
(0.l.) of G if

127 = a; L aj.
Let

Po(G) = {(](ai,cHZ)j:l : (ai)gl:l is an o.l. of G and ||| < 1},

viewed as a subset of Dy, and set thab(G) = Py(G)’. We note that the
original definition of thab(G) was given in real Hilbert spaces, but inspection
of the proofs shows that the results in [13| 17, 23] are true for complex Hilbert
spaces as well.

Let S C M, be an operator system. Set [0]

E(S)={P: My — My : ke N, ®is a quantum channel with S C S}
and
th(S) = {T € M : ®(T) < I for every ® € €(S)}.
It was shown in [6] that the set th(S) is a convex Mg-corner, which we call
the theta corner of S. Note that if S, 7 C My are operator systems then
(41) SCT =th(T) Cth(S).

It was shown in [6] that, if G is a graph then th(S¢) is a non-commutative
lift of thab(G). By Proposition th(Sg)* is a non-commutative lift of
thab(G)’. Thus, Theorem [5.6/ has the following corollary.

Corollary 8.8. Let G be a graph. Then
(i) her(thab(@)) C th(Sg) C (thab(G)")%, and
(i) her(thab(G)") C th(Sc)* C thab(G)F.
We examine when we have equalities in the inclusions of Corollary [8.8]

Theorem 8.9. Let G be a graph. The following hold:

(i) th(Sg) = (thab(G)")! if and only if G is complete;

(ii) th(Sg) = her(thab(QG)) if and only if G is empty.
Proof. (i) It is easy to see that th(Sk,) = Ay, and thab(K,) = Dy N Aj,.
By Lemma we hence have

(thab(K4)’)* = {M € MJ : A(M) € thab(Kg)}
= {MeM Tt M <1} =th(Sk,).

Conversely, suppose that G is not complete, and let k % [. Let A = (ef +
er)(er +€)*. Then I — A # 0 and, since th(Sg) C B,, we have that
A ¢ th(Sg). Tt is straightforward that A € (vp(G)°)f. Since vp(G) C
thab(G), we have vp(G)® 2 thab(G)?, and (vp(G)")* C (thab(G)")!. Thus
A € (thab(G)")! and so th(Sg) # (thab(G)")!.
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(ii) It is easy to see that
her(thab(Ky)) = B, = th(Sg,).-
Conversely, assume that ¢ ~ j in G. Setting v = \%(ei + €j) we have
Tr(vv*) = 1 and vv* € th(Sg). Choosing an o.l. (a(i))ie[d} with a® = a0
and (a,aW) = 0 when [ ¢ {i,;j} and letting ¢ = a¥ gives e;e} + eje; €
Po(G). Suppose that vo* € her(thab(G)), that is vv* < @ for some Q €
thab(G) C Dy. This requires (e;, Qe;) > 4 and (e;,Qe;) > 4. (Indeed,
note that, since @ € Dy, we have that (e;, (Q —vv*)e;) = —%. But if
(e;,Qe;) = L, we have e}(Q — vv*)e; = 0, and since @ > vv*, Lemma
implies that (e;, (QQ —vv*)ej) = 0. A similar argument applies for j.)

Thus, <Q,eie;k + eje;f> > 1 and so Q ¢ Po(G)’ = thab(G), a contradiction.
We conclude vv* ¢ her(thab(G)). O

9. NON-COMMUTATIVE GRAPH ENTROPY

In this section, we provide a quantum version of the notion of graph
entropy, introduced by J. Kérner in [I8] and a non-commutative analogue
of the fractional chromatic number of a graph. We examine the continuity
properties of non-commutative graph entropy and show its connection to
the fractional chromatic number, extending to the non-commutative case a
classical optimisation result from [35].

9.1. Entropy and fractional chromatic number. Let G be a graph with
vertex set [d] and let p € Py be a probability distribution over its vertices.
The entropy H (G, p) of p with respect to G was defined in [18] as the optimal
coding rate of the source ([d],p) in the presence of ambiguity between the
symbols from [d], captured by the adjacency relation of G (two symbols
i,J € [d] are distinguishable if ¢ ~ j in G). The entropy functional H (G, p)
is thus defined as an asymptotic parameter, whose computation requires
knowledge of the limiting behaviour of a sequence of chromatic numbers
of powers of G. An elegant closed formula for H(G,p), reminiscent of the
definition of the classical Shannon entropy of p, was obtained in [I8]:

d
1
H(G,p) = min {Zpl log —:v=(v;)L, € vp(G),v > 0}

i=1 vi
or, equivalently,

(42) H(G,p) = min —Tr(plogv).
vevp(G)
Let S C My be a non-commutative graph and p be a state in My. Since
ap(S) is a quantum version of vp(G), taking as a starting point in the
non-commutative case, it is natural to make the following definition.

Definition 9.1. The entropy H(S, p) of a non-commutative graph S C My
with respect to a state p € Rq is the quantity H(S, p) = Haps)(p)-
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It follows from Theorem and Proposition that, if p € Py and
p= Zle pieie} then H(G,p) = H(Sg, p). Thus, the parameter introduced
in Definition @.1] can be viewed as a non-commutative version of classical
graph entropy.

Remark 9.2. Let § be a non-commutative graph in My and p € Ry. It
follows from and Remark [8.2| that 0 < H(S, p) < H(p). It is clear that

81 €S = H(S1,p) < H(S2,p).

Let G be a graph with vertex set [d] and S C My be a non-commutative
graph. Recall that the chromatic number x(G) of G is given by

X(G) = min{kz € N: Jindep. sets Si,..., S s.t. UF, S = [d}} .

Taking into account that the S-abelian projections are the quantum ana-
logue of independent sets, the following definition of a chromatic number of
S, given in [28], becomes natural:

k
X(S):min{k‘ENl Py, ..., P, € Pa(S), ZPZ':I}.
i=1

It was shown in [28] that, if G is a graph then x(Sg) = x(G). Recalling the
definitions made after Proposition we note that

(43) I'(ap(5)) < x(S)-

Similarly, recall that the fractional chromatic number x;(G) of G is de-
fined by letting

(44) x¢(G) = min {Z AstAg >0, Agxs > 1} ,
5 5

where the summation is taken over independent sets S of G. By a duality
argument, xf(G) coincides with the fractional clique number w¢(G) of G,
defined by

d
wi(G) = max {Z Wit g >0, Z'“i < 1V independent set S} .

i=1 €S

In [6], we defined a non-commutative version of the fractional clique number
by letting, for an operator system & C My,

we(S) = max {Tr(A) : A€ M, Tr(AP) <1 for all P € P(S)}.
It is clear that
(45) w(S) = 2(ap(S)P).
and it was shown in [6] that w¢(Sq) = wi(G).
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With the definition of the fractional chromatic number of a classical
graph in mind, it is natural to define the fractional chromatic number of a
non-commutative graph & C My by setting
(46)

k k
xt(S) = inf {in A >0and 3 Py, Py € Pa(S) st > NP> I} :

i=1 i=1
Proposition 9.3. If S is a non-commutative graph then x¢(S) = T'¢(ap(S)).
Proof. Since P,(S) C ap(S), we have that I't(ap(S)) < x¢(S). By [6, Re-
mark 2.7], the set P, is closed. Carathéodory’s Theorem now implies that
conv(P,) = conv(P,). Suppose that P € ap(S) is a projection. Then
P <k AP for some Py € Pa, Ai > 0,0 =1,...,k, with 3%\ = 1.
If £ is a unit vector with £ = P¢ then 1 < Z?Zl Ai(Pi&, &) < 1, and hence
(Pi&,€) = 1 for each i € [k]. It follows that P;§ = &, and hence P < P;,
for each ¢ € [k]. Thus, if I < Zé’:l 1 Q; for some positive scalars p; and
some projections Q; € ap(S) then I < >, v, P,, for some positive scalars
vy and some P, € P,, with " | v, = Eé‘:l pj, completing the proof. [
As noted, if G is a classical graph G then x¢(G) = w¢(G). The non-

commutative counterpart of this identity also holds, but is much deeper and
replies on the second anti-blocker theorem we proved in Section [4

Theorem 9.4. If S C My is a non-commutative graph then we(S) = x¢(S).

Proof. By Proposition[9.3]and Theorem xt(S) = M(ap(S)). The claim
now follows from and Theorem O

It was shown in [35, Lemma 4] that

H(G.p) =1 Q).
max (G,p) = log x¢(G)

The next theorem, which is a direct consequence of Proposition [9.3] and
Theorems [6.6] and establishes a quantum version of this identity.

Theorem 9.5. Let S C My be an operator system. Then
H(S,p) =1 S).
max H(S, p) = log x1(5)

9.2. Further properties. In this subsection, we include observations re-
garding the continuity, multiplicativity and extreme value properties of the
non-commutative graph entropy.

Theorem 9.6. Let S and S, be non-commutative graphs in My, n € N,
such that S C liminf,en S,. Then H(S,p) < liminf,cx H(Sy, p) for every
p ERq.

Proof. We first claim that

(47) lim sup ap(S,,) C ap(S).
neN
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Suppose that (P)ken is a sequence of projections such that P € Pa(Sy, ),
k€ N, and P, =k 00 P. Let A,B € S, and (Ap)neny and (Bp)nen be
sequences such that A,, B, € S,, n € N, and A, =00 A and B, —p_00

B. Then
(PAP)(PBP) = (PrAn, Pr)(PrBn, Pr)

(Py B, Pr)(PyAp, Pr) = (PBP)(PAP);

i
i
thus, P € P,(S).

Now suppose that (Ai)ken is a sequence with Ay € ap(S,,), k € N,
and A, —p00 A. Let By = Z;”:’fl M§k)]3j§k) be a convex combination
of Sy, -abelian projections Pj(k), j € [mg], k € N, such that Ay < By.
By Carathéodory’s Theorem, we may assume that my = 2d> + 1 for all
k € N. Passing to subsequences, we may assume that Pj(k) —k—oo P and

,ugk) — ko0 [j, J € [2d? + 1]. By the previous paragraph,

2d2+1
B := Z wiP; € ap(S).
j=1
Since A < B, we conclude that A € ap(S), and is proved. The claim
now follows from Theorem [6.12] O

Let G be a graph with vertex set [d]. We note that H(G,p) = 0 if and
only if there exists v = (v;)%_; € vp(G) such that p; > 0 = v; = 1. This is
equivalent to the condition that {i € [d] : p; > 0} is an independent set of
G. Note that H(G,p) = 0 for all p € P, if and only if G = K4. We now
address the analogous questions in the non-commutative setting.

Proposition 9.7. Let S C My be an operator system.

(i) Suppose that p € Ry. We have that H(S,p) = 0 if and only if
there exists an orthonormal basis {vi,...,vq4} of C¢ such that, if
T = {i€[d]: {pvi,vi) > 0} then ) ,crvivy € ap(S).

(ii) H(S,p) =0 for all p € Ry if and only if there exists an orthonormal
basis V of C% such that S C Dy .

Proof. (i) Note that H(S, p) = 0 if and only if there exists A € ap(S) such
that —Tr(plog A) = 0. Write A = Zle Aivivf for some orthonormal basis
{v1,...,v4} and \; € Ry, i € [d]. We have Z;‘i:l (pvi,v;)log A; = 0, and
hence A; = 1 whenever (pv;,v;) > 0. It follows that P := ), rvvfy < A
and so P € ap(S). Conversely, if P € ap(S) then Tr(plog P) = 0 and hence

H(S,p) =0.
(ii) Choose p > 0. By (i), if H(S,p) = 0 then I € ap(S). Thus, for
some orthonormal basis V' = {v1,...,v4} of C? we have that vV} € S+t for

all i # j. We conclude that S is diagonal in basis V. Conversely, if S is
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diagonal in some orthonormal basis then [ is an S-abelian projection, and
(i) gives H(S,p) =0 for all p € Ry. O

We next consider the extremal cases for the values of H(S, p); Proposi-

tions and should be compared to Propositions and

Proposition 9.8. The following are equivalent for a non-commutative graph
S C My:

(i) S is diagonal in some orthonormal basis;

(ii) H(S,p) =0 for all states p € Ry;

)< (ii) is Proposition

iii)<(iv)<(v) Apply Proposition recalling that
H(S’ p) = Hap(S) (P)

and using that «(S) = y(ap(S)) and x¢(S) = y(ap(S)¥).

(iv)<(vi) is clear from the definition of x(S). O
Proposition 9.9. The following are equivalent for non-commutative graph
S C My:

(i) H(S,p) = H(p) for all states p € Ry;

(ii) xe(S) = d;
(iii) x(S) = d;
(iv) ap(S) = Ay,
(v) a(S) =1.

Proof. (iii)=-(iv) All rank one projections are trivially S-abelian. Suppose
that P is an S-abelian projection with rank(P) > 2. Then I can be expressed
as the sum of P and at most (d—2) rank one projections, giving x(S) < d—1.
(ii)=(iv) From their respective definitions, it is clear that x¢(S) < x(S) <
d.
(i) (ii)<(iv)<(v) follow from Proposition O

Remark 9.10. Clearly, the equivalent conditions of Proposition are satis-
fied if S = M. However, there exist proper operator subsystems of M, for
which these conditions are also satisfied, for example, the operator system
Sy considered in Section |12|for d > 1 (this follows from Propositions and
12.6).

We finish this section with noting the subadditivity of the entropy.

Proposition 9.11. Let §; C My, be a non-commutative graph, i = 1,2,
and p € Rq,4,- Then

H(S1 ® S2,p) < H(S1,Tr1p) + H(S2, Trap).
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Proof. Tt is clear that, if P; € P,(S;), i = 1,2, then P} ® P2 € P,(S1 ® S2).
Thus,

(48) ap(S1) @max ap(S2) € ap(S1 @ So).

The statement now follows from Theorem [T.3] O

10. CLIQUES AND CLIQUE COVERING NUMBER

In this section, we discuss the non-commutative versions of cliques and the
clique covering number, and their entropic meaning, and provide a bound on
the Shannon capacity of a non-commutative graph. Recall that the clique
number w(G) of a graph G is defined as the size of a largest clique of G.
In the non-commutative case, clique and full projections both constitute a
legitimate quantum version of a clique, and so we have two versions of w(G)
for an operator system S C My [6, Corollary 3.9]: the cliqgue number

w(S) = max {rank P : P is an S-clique projection}
of S, and the full number
@(S) = max {rank P : P is an S-full projection}
of §. Note that
(49) w(8) =7 (cp(5)) and w&(S) =~ (fp(S)).

The clique covering number of GG, on the other hand, is the minimum number
of cliques of G whose union is equal to the vertex set of G. It is clear

that the latter parameter coincides with the chromatic number x(G) of
the complement G of G, which is often denoted by Y(G). We thus have
the following natural non-commutative analogues of x(G) and its fractional
versions:

Definition 10.1. Let S C M, be an operator system. We define

(i) the clique covering number of S by

k
Q(S):min{k:EN: Pi,..., P, € P(S), Zpi:-[};
i=1

(ii) the full covering number of S by

k
Q(S)—mm{keN Pl,,PkEPf(S), ZPZ_I}
=1

If the condition on the right hand side of the last equation cannot
be satisfied, we set Q(S) = oo;
(iii) the fractional clique covering number of S by

k k
Qf(S):inf{Z/\i:keN, Ai >0, Pi,...., P e Pe(S), Z)\Z-Pizf};
=1

=1
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(iv) The fractional full covering number of S by

k k
(M&:m%zypkﬂ&M>Qﬂwwﬂeﬂﬁhipﬂ21}
=1 =1
If the condition on the right hand side of the last equation cannot

be satisfied, we set Q¢(S) = 0.

Similarly to Proposition 9.3 one can show that
(50) Q4(S) = T(cp(S)) and () = Tr(fp(S)).

It now follows from Theorem that Q¢(S) (resp. Q4(S)) coincides with
the complementary fractional clique number (resp. the complementary frac-
tional full number) defined in [6] and denoted therein by x(S) (resp. ¢(S)).

We collect the main properties of these parameters in the next theorem.

Theorem 10.2. Let G be a graph with vertex set [d], and S and T be
non-commutative graphs in My with S C T . The following hold:

(1) 0 <B(S) < wl(S) < wr(S) < x(S) < d.

(i) 1< Q(S) < US) < d and 1 < Q(S) < AS) < 4o00;

(iii) Q(S) < Q(S) and a(S) < U(S) < X (S);
(iv) (S) =1 w(S) =d;
(V) U(S) =16 QS) =1 a(S)=ds 8= M,
(vi) If &(S) = 0 then Q4(S) = oo;
(vii) Q(S) = 0o & p(S)! is unbounded < fp(S) has empty relative in-
terior;
(vili) x¢(Se) = x¢(G); )
(ix) Q(Se) = %u(Se) = x1(G);
(x) Sq) = Q(Se) = x(G);
(xi) If ¢ € {Qf, Q, Q,Q}, then ((S) > (T);
(xii) If ¢ € {w,w,wr, x}, then ((S) < ((T); )
(xiil) a(S)x(S) > d, w(S)QAS) > d and, if ©(S) > 1 then @(S)Q(S) > d.

Proof. (i) Theorem and (39) give fp(S) C cp(S) C ap(S)* C By,. The
assertion follows from (49) and Theorem

(ii) Using and Remark we have

Q(S) = Ti(ep(S)) < Tep(S)) < QAS).

The rest of the statements follow from Theorem [I1] and the fact that
Ar, Ccp(S) C By, and fp(S) C By,.

(iii) Using (39), and Theorem we have

M (fp(8)) = M(cp(S)) = %(S) = M(ap(S)) = 7(ap(S)) = a(S).

(iv) follows from the fact that (S) = 1 if and only if I € P.(S), if and
only if w(S) =d. )

(v) Since fp(S) C Br,, we have that A;, C fp(S)*. Thus, if Q¢(S) = 1 then
fp(S)* = Ay, yielding fp(S) = By, and @(S) = d. It follows that I € fp(S)
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and so [ is an S-full projection, implying & = M. The proof is completed by
noting that if S = My, then fp(S) = By, and Q¢(S) = v(fp(S)f) = (A7) =
1.

(vi) The condition @(S) = 0 holds if and only if fp(S) = {0} or, equiva-
lently, fp(S)* = M, which yields Q¢(S) = oo.

(vii) The second equivalence is immediate from Proposition On
the other hand, if Qf(S) < oo then there exist S-full projections Py, ..., Py
such that Zk—1 AP > I for some positive scalars Ay, ..., Ax. It follows by
hereditarity that Z I € fp(S), and hence fp(S) has non-empty relative

interior by Lemma Conversely, if fp(S) has non-empty relative interior
then, by Lemma rI € fp(S) for some r > 0. Thus, there exist P; €

Pe(S) and \; > 0, i € [k], such that Zle Ai=1landrl < Zle AiP;. This
implies that Qf(S) < 1

(viii) follows from Theorem and the fact that wi(Sg) = wi(G) [0}
Corollary 3.9].

(ix) follows from [6l, Corollary 3.9].

(x) If {i1,... zk} is a clique in G, then {e;,...,e; } is an Sg-full set
and hence P = Z 1€ ;‘J is an Sg-full, and thus an Sg-clique, projection.
Thus, Q(Sg) < USa) < x(G).

Let G be a graph on d vertices and let {v1,...,v4} be an orthonormal
basis of C%. A standard combinatorial result (see [28, Lemma 7.28] and
[16, Lemma 13]) shows that there exists a permutation o on [d] such that
<e ,vi) # 0 for all i € [d] and so, for j,k € [d], we have that

(51) (070k eoi€omy) = (ot o) (V1 €0) 7 0.

Let P = Zle vivy. If P is an Sg-clique, then vyvy € Sg for distinct
p,q € [k] and, by , eg(p)ez(q) ¢ Sé. Thus, o(p) ~ o(q) in G and
{c(1),...,0(k)} is a clique in G. Then, corresponding to any family of n
Sg-clique projections which sum to I, there is a family of n cliques in G
which partition V(G), and x(G) < Q(Sg).

(xi) Note that Q4(S) = (cp(S)) and Q¢(S) = v(fp(S)?), and then apply
Remark to obtain the results for s and Q. For Q and €, it suffices to
see that if S C T then P.(S) C Pc(T) and Pe(S) C Pr(T).

(xii) The results for wf, w and @ follow from Remark If § €T then
Pa(T) C Pa(S) and the result for x follows.

(xiii) The first inequality follows from and Theorem and the

rest are similar. O

Remark. Part (xiii) of Theorem can be viewed as a non-commutative
version of the inequality a(G)x(G) > d for classical graphs G. Note that
corresponding results for operator anti-systems are considered in [16, Section
3.1].
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The following fact — an immediate corollary of Theorem — gives an
entropic significance to the parameters (¢ and 2.

Theorem 10.3. Let S C My be an operator system. Then

max Hep(s) (p) =1og Q(S) and max Hiy(s) (p) = log Q(S).

Theorem 10.4. Let S and S, be non-commutative graphs in Mg, n € N.
(i) If S Climinf,en Sy then x¢(S) < liminf,en x¢(Sn): )
(i) IfQ%(S) < o0 andlimsup, cn Sy € S then Q(S) < liminf, ey Q¢ (S,).

Proof. (i) By and Proposition ap(S)! C liminf,eyap(S,)f, and
the claim now follows from and the proof of Corollary

(ii) It is straightforward that limsup,,cyfp(S,) C fp(S). By Theorem
fp(S) has non-empty relative interior, and the statement follows from
(50

0) and Corollary O

Remark.  Operator systems satisfying the conditions of Theorem [10.2
(vi) are precisely those for which no unit vector v satisfies vv* € S (for
example, span{l;} for d > 1). Note that the converse of Theorem m
(vi) does not hold. Indeed, let d > 3 and K = span{ly,e1ej} C My. It is
straightforward to see that the only K-full projection is ejej. Thus, fp(K) =
{M e Mj : M < ee}} and ©(K) = 1. By Lemmawe have fp(K)* =
{M € M] : Tr(Mere}) < 1} and so keze} € fp(K)* for all k € Ry, giving
that Qf(K) = oo.

11. THE WITSENHAUSEN RATE

In this section, we define the Witsenhausen rate of a non-commutative
graph, extending the well-known Witsenhausen rate of a classical graph [40].
En route, we examine the multiplicativity of some of the non-commutative
graph parameters discussed earlier. Some of our bounds are more conve-
niently expressed in terms of orthogonal complements of non-commutative
graphs, already employed in [36] and [16]. More specifically, a subspace
T C My is called an operator anti-system [6] if there exists an operator
system S C My such that 7 = S*. (Such subspaces are called trace-free
non-commutative graphs in [36].) As was pointed out in [I6, Proposition
8], a subspace T C M, is an operator anti-system precisely when it is self-
adjoint and traceless, in the sense that Tr7T = 0 whenever T' € 7. Given a
graph G with vertex set [d], its operator anti-system [36, Equation (7)], [L6,
Definition 6] is the space

Tc = span{e;e; 1 i~ jin G}.

Note that
(52) Ta = (Sa)*.
Let T C My be an operator anti-system. An orthonormal set {v1,...,vx}

in C? is called T -independent (resp. strongly T -independent) if vVF € T+
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for all 4,5 € [k] with ¢ # j (resp. for all 4,5 € [k]). It is clear that a set
is T-independent (resp. strongly T-independent) if and only if it is 7+-
clique (resp. T+-full). The chromatic number x(T) and strong chromatic
number xs(T ) of an operator anti-system 7 were introduced in [16] and can
be expressed in our terms as follows:

(53) X(T) = Q(TH) and x(T) = Q(T).
Thus, Q(S) (resp. Q¢(S)) can be regarded as the fractional version of

Xs(St) (resp. x(S1)). It was shown in [I6, Corollary 28 and Theorem 14],
and follows from and Theorem that

xX(Ta) = xs(Tq) = x(G).

Recall that, if G; and Gg are graphs with vertex sets [di] and [da], re-
spectively, their disjunctive product G * Gy has vertex set [d;] x [d2] and
two pairs (i, k), (4,1) of vertices are adjacent if i ~ j in G1 or k ~ [ in Gj.
The co-normal product of operator anti-systems [36] 7; C My,, i = 1,2, is
the operator anti-system

TieTa=Ti® My, + My, @ T
It is straightforward that
Tey * Tay, = Tay+Gs-

Note that, if S; and S are operator systems then (S} ® Sz)* = Si- * S5-.

The next theorem collects the submultiplicativity properties of the chro-
matic, the fractional chromatic, the clique and the clique covering numbers.
Part (i) answers [0, Question 7.5].

Theorem 11.1. Let S; € My, be a non-commutative graph, and T; C My,

be an operator anti-system, i = 1,2.

(i) If ¢ € {x: x1, %, Q} then (81 @ S2) < ((S1)((S2);

(ii) (:J(Sl &® 82) > &)(81)(1)(52),

(iil) w(S1 ® S2) > min{w(S1),w(S2)};

(iv) If ©(S2) > 1 then w(S1 ® S2) > w(S1). Thus, if ©(S;) > 1,i=1,2,
then w(S1 ® S2) > max{w(S1), w(S2)};

(V) Xs(7-1 * 7~2) < XS(ITI)XS(,B)-

Proof. (i) Suppose that {Pi(k)}f;’; , is a PVM consisting of projections in
Pa(Sk), k = 1,2. Then {Pi(l) ® Pj(z) 21 € [l1],j € [l2]} is a PVM consisting
of projections in P,(S1 ® S2); minimising over /; and Iy proves the claim if
¢ = x. A similar argument shows the claim for ¢ = Q. For ¢ = g, the

statement follows from Theorems and Proposition and .

The claims in the case ( = {2t follow from the — straightforward to verify —
inclusion

(54) fp(S1) @max fp(S2) C fp(S1 ® Sa).
(ii) follows from (54)).
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(iii) Without loss of generality, let w(S1) = p < ¢ = w(S2), and choose an
Si-clique {uy, ..., u,} and an Sp-clique {vy, ..., v,}. Theset {u;@v; : i € [p]}
is then an &1 ® Sa-clique.

(iv) Since w(S2) > 1, there exists an So-full projection vv* of rank one.
Let {u1,...,up} be an Si-clique, where p = w(S1). We have

(u; @ v)(u; ®v)* = wu; @™ € S1 @Sy, i # 7,

and hence the set {u; ® v : 4 € [p]} is an S; ® Sa-clique.
(v) Using and (i), we have

Xs(Ti# T2) = AT @ T3) < UTHUTE) = xs(T1)xs(T2).-
O

Remark. It is well-known that the clique number of classical graphs is
multiplicative with respect to strong graph products [12, Chapter 7, Exercise
13]. The same does not hold true for non-commutative graphs; indeed, we
will see in Section [12] that there exist operator systems S and 7 such that
wERT) <w(T).

An application of Theorems (iii) and yields the following bound
on the Shannon capacity of a non-commutative graph:

Corollary 11.2. Let S C My be a non-commutative graph. Then ©(S) <
0 (S).

In [40], Witsenhausen identified the zero-error capacity of noisy channels
in the presence of side information. In this scenario, in addition to a noisy
channel N : [d] — [m], Alice can communicate to Bob using an identity
channel [k] — [k] for any k € N of her choice, which she runs in parallel
with N so that Bob can retrieve with certainty her input ¢ € [d]. Thus,
Alice seeks a function f : [d] — [k], such that the output of the channel N/
applied to i € [d], together with the value f(i), completely determine i. The
minimum value of k£ such that these constraints can be satisfied is denoted
X(N) and known as the packing number of N. Witsenhausen showed that
X(N) coincides with the chromatic number x(G) of the confusability graph
G of N. The zero-error capacity of N (or, alternatively, of G) in the presence
of side information, is the Witsenhausen rate

R(G) = lim {/x(G=n).

The quantum zero-error side information problem was examined in [28)
Section 7.3]. Given a quantum channel ® : My; — My, here we seek an
orthonormal basis {v1,...,v4} € C% k € N and a function f : [d] — [k] such
that the outputs (P ®Z)((vi®@ey;))(vi®ep(;)*) are perfectly distinguishable
for i = 1,...,d, where Z is the identity channel and {ej,...,ex} is the
canonical orthonormal basis of C". The least k¥ € N with this property is
the packing number x(®) of ®. It was shown on [28, p. 59] that, if S is
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the confusability graph of ® then x(®) = x(S). Theorem and Fekete’s
Lemma now show that the limit

R(S) := lim {/x(S8%n),
n—oo
which we call the Witsenhausen rate of S, exists and coincides with the
infimum of the sequence (” X(S®”)) . It is immediate that, if G is a
ne

graph then R(Sg) = R(G).

Let 7™ denote the disjunctive product of n copies of an operator anti-
system 7. It follows from Theorem and Fekete’s Lemma that the limit

lim,, 00 ¥/ xs(7*") exists and is equal to inf,en{ ¥/xs(7")}. To appreciate

the significance of this limit, recall that, by [31, Corollary 3.4.3],
(55) Vx(G") = xe(G),

where G™ denotes the disjunctive product of n copies of a graph G. An
application of and Theorem shows that

lim ¥/ xs(T3) = Qe (TE).

n—oo

lim
n—oo

Since Q¢(7T7) is a fractional version of ys(7), the following question about
a non-commutative version of is natural:

Question 11.3. Let T be an operator anti-system. Is it true that
lim {/xs(T") = Qe(T5)?
n—oo
12. SOME EXAMPLES

In this subsection, we consider some examples of non-commutative graphs
and evaluate the parameters we introduced. For a graph G, let

0(G) = v(thab(G)) = max {Tr(A) : A € thab(G)}
be the Lovdsz number of G [23]. The non-commutative versions 6(S) and
0(S) of the Lovasz number were introduced in [6]; we refer the reader to [6]

for their definitions and note here that, by [6, Corollary 4.8 and Theorem
5.2], if S C My is an operator system then

(56) a(8) < 0(8) < 6(S) < d.

It was shown in [6] that, if G is a graph then 6(Sg) = 0(Sg) = 6(G). It
follows from and Theorem (and was shown in [6]) that Q¢(S) =
Y(fp(S)F) and Q¢(S) = ~(cp(S)F). For completeness, whenever they are
known, we include in the following the values of 6 and 0.

Proposition 12.1. Let d € N. The following hold:
(i) Oz((CId) = G(C[d) = Q(Cfd) = Qf((CId) = Q(Cfd) = d,’
(i) w(Cla) = x¢(Cly) = x(Cla) = 1; ) )
(iii) Qe(Cly) = QCly) =1 if d = 1, and Q(Cly) = Q(Cl;) = o if
d>2;
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(iv) @(CI) =1 ifd=1 and &(Cly) = 0 if d > 2;
(v) H(Clg,p) =0 for all p € Ry;
(Vi) @((Cfd) =d and R(Cfd) =1.

Proof. (i), (ii) For orthonormal u,v € C? we have (u,v) = (uwv*,I) = 0,
and so uwv* € CI j. It follows that a projection in My is Clz-clique if and
only if it has rank one. Thus w(CI;) = 1, whence Q(CI;) = d. Proposition
implies a(CIy) = d and x(Cly) = x¢(Cly) = 1. It is immediate that
Q¢(CI,) = d, and yields 0(CI;) = 0(Cl,) = d.

(iii), (iv) Note that if d = 1 we have ejef € fp(CI;) and fp(CI;) = [0,1] =
fp(C1Iy)%. This gives &(CI) = Q(CI;) = Q¢(CI;) = 1. However, if d > 2, no
unit vector v satisfies vv* € CIy. Thus fp(CI;) = {0} and fp(Cly)* = My,
giving &(Cly) = 0 and Q(CI,) = Q(Cly) = oo.

(v) This follows from Proposition

(vi) We have a ((CI4)®") = a(Clgn) = d", giving ©(CI,) = d. Similarly,
X ((CI4)®™) = x(CI4) =1, and so R(CIy) = 1. O

Letting J; be the d x d matrix all of whose entries are equal to one, we
define the operator system T4 = CI; + CJy.

Proposition 12.2. Let d € N. The following hold:
(i) a(Ta) = 0(Ta) = 6(Ta) = u(Ta) = ATa) = d;

Proof. (i)-(iii) As T4 is commutative, Proposition (9.8  gives (iii) and the fact
that a(73) = d and x¢(7q) = x(Tq) = 1. Theore and give the
remaining results.

(iv) That ©(7;) = d follows from (i) and the fact that a(S) < ©(S) <
0(S) (see [6, Corollary 5.5)). Theoremh gives x(7;°") =1 for all n € N,
whence we have R(7;) = 1.

(v) Suppose unit vector v = (v;)?_; € C? satisfies vv* € T3, so that {v} is
To-full. Then |v1|? = |v2|? = 1/2. Since we have v173 = vo07, it follows that
v1 = %vo. Setting vy = €9 /\/2 = v, for 6 € [0,27), gives
(57) w = < L if) T,

and we conclude that the 7a-full singleton sets are those of the form

{f/; (L)} 6 € [0,27).

By (ii) and Theorem [10.2) &(72) < w(72) = 1, and so @(T3) = 1. I
follows from Theorem [10.2 that Q(’Tg) > 2. Now let v = -1 <}>, v o=
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% (11>, P, = uwu* and P, = vv*. Noting that {u} and {v} are T-full sets
and that P, + P, = I yields Q(73) = 2.

By (57)), P, and P» are the only 7>-full projections. Thus by Proposition

a b) € M, belongs to fp(72)* if and only if

3.14 a matrix M = (b d

1 - 1 _
§(a+b+b+d)§1 and §(a—b—b—|—d)§1.

It follows that if M € fp(72)* then Tr M = a + d < 2. Since I € fp(T3)¥, we
have that Q¢ (73) = 2.

(vi) Let unit vector v = (v;)L,; € C? satisfy vo* € Ty. This requires that
|vi|? = 1/d for all i € [d]. Letting i, j, k € [d] be pairwise distinct, we require
ViU = Tk, and so v; = vj. Then v = %IL for some 6 € [0,27), and

1
(58) vt = ng €T

Thus for d > 3, the T4-full singleton sets are precisely those of the form
{%ﬂ}, 6 € [0,2m). As in (v), for d > 3 we have @(73) < w(Tg) =1
and we conclude that @(7;) = 1. From (58)) we see that the only 7g-full
projection is éJd. Then for M € MJ we have M € fp(Ty)* if and only
if Tr(MJ;) < d. Let unit vector w = (w;)%, € C% satisfy 3% w; = 0,
and thus (w,1) = 0. For k € Ry form M = kww* € M], giving that
Tr M = k and Tr(MJy) = k| (w,1)|?> = 0. Hence we have M € fp(73)* for
all k € Rt, and Q¢(73) = v(fp(T3)!) = oo. Finally note by Theorem

that Q(73) = co. O

Ezample 12.3. Here we give some quantum channels whose related operator
systems are of the form 7; for some d € N.

(i) Consider a quantum channel ® : My — M, with Kraus representation
O(T) = 2| ATA:, p € My, where

1 /11 1 /0 0
=alo o) ma-Z5 (1 5)

It is easy to verify that S = Ts.
(ii) The operators

1 00 0 1 1

010 1 0 1

1 10 01 1 1 1 0
Bi="7%10o 0ol 2= &[1 -1 o0
0 0O o 1 -1

0 00 1 0 -1
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satisfy Bf By = BBy = 313 and B3 By = Bi By = %(J3 — I3). It follows that
the channel ¥ : M3 — Mg given by W(p) = Bi1pBi + B2pBj3, p € M3 is a
quantum channel with Sg = 73.

Proposition 12.4. Consider operator systems R; C My, where x(R;) =1
fori=1,...,m. Then
() (@1 Re) = (@) Ro) = (@, Ri) = R@, Ry) = 1
(ii) a(@i:l Ri) = URZ; Ri) = %(QiL; Ri) = 0(Q52, Ri)
=0(Q1,Ri) =c(Q21Ri) =di...dp.

Proof. (i) By Theorem X(®;", Ri) = 1, whence it is immediate that
R(Q®;~, Ri) = 1. The remaining equalities follow from Theorems and
110.2)

(ii) By (i) and Proposition a(®;~ Ri) = di...dn, which implies
O(Q;~, Ri) =di ...dp. Theorem and give the rest of the equali-
ties. 0

Propositions [12.2] and [12.4) have the following corollary.

Corollary 12.5. We have that
() X(@P Ta) = (@ Ta) = @@y Ta) = RI® Tay) = 1
(11) a(@i:l 7&1) = Q(®i=1 7;11) = Qf(@i:l 7&1) = 9(®i=1 7&1)
= 0(@;11 7&1) = @(®;'11 7&1) =dy...dp.

Next we discuss an operator system that has been widely considered in
the literature, see for example [16] and [22], namely

Sq = span{e;e;, Iy i # j} C My, deN.

For d > 2, S; is not commutative, and so it does not reduce to the rather
trivial case of Proposition [0.8] and nor is it equal to S for any graph G.
In [22] it was shown that a(S2) = 1, and in [16, Examples 4, 22] that
X(Sq) = XS(Sj) = d, while the parameters «, ws, x, @ were identified in [6,
Proposition 3.12]. Here we extend these results by identifying the values of
some of the parameters introduced in Sections [I0] and [I1]

Proposition 12.6. Let dy,...,d,, € N. Then
(i) @(@:il ‘S:dz) =di,... 7dm~; B
(i) Q(S2) = U(S2) =2 and YR~ Sa;) = (R, Sa,) > di...dm;
(iii) Q¢(Sq) = Q(Sq) = 1.

Proof. (i) In [6, Proposition 3.12] we have x (Q);", Sa,) = d1 ... d,, and the
result follows.

(ii) It follows from Proposition and the expression for fp(Q);~ | S4,)
given in [6, Proposition 3.12] that I, 4, € fp(®}";Ss )" Theorem
then gives that Q(®7", Su,) > U(Q®7,Ss,) > di...dm. As To C So,
Theorem and Proposition give Q(S2) < Q(Tz) = 2 and Q(Sy) <
Q(T2) = 2, and we conclude that Q(Ss) = Q¢(Ss) = 2.
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(iii) It is clear that {e1,...,eq} is an Sg-clique. Thus I; is an Sy-clique
projection and hence Q(S;) = 1. By Theorem Q¢ (Sy) = 1. O

We conclude with an example of an interesting phenomenon pointed out
at the end of Section [Tl

Ezample 12.7. Consider the operator system CI,®S5. Recall from [6, Propo-
sition 3.12] that w(Ss) = 2 and observe that w(CI,) = 1 by Proposition[12.1]
We claim that w(Cla ® S2) = 1 < w(S2). Since {u} is an Cly ® Sa-clique
for any unit vector u € C*, it suffices to show that no (CIy ® S)-clique has
cardinality greater than 1. To establish this, we show that if uv* € CI;,® S,
then v = 0 or v = 0. We note that

Aa 00
Cl,® S = 8 g g 2 . AabeC
00 b A

For u,v € C*, write u = (u;)}_, and v = (v;)}_,, and suppose that uv* =
(uﬁj)szl € CIy ® Ss. This requires w103 = 4104 = u2v3 = ugv4 = 0, giving
u; = ug = 0 or v3 = v4 = 0. Since for uv* € CIy ® Sy we also have

U1V = UV2 = U3V3 = U4y,
it must then hold that all these terms vanish. Similarly, w172 = ugvs and
vanishes because either v4 = 0 or u; = 0. Finally, uov; = u4v3 and vanishes

because us = 0 or v3 = 0. We then have uv* = 0, and it follows that © = 0
or v =0, and {u, v} is not a CIy ® Sa-clique.

Acknowledgement. The authors are grateful to the anonymous referees
for their suggestions which led to an improvement of the manuscript. AW
acknowledges financial support by the Spanish MINECO (projects FIS2016-
86681-P and PID2019-107609GB-100) with the support of FEDER funds,
and the Generalitat de Catalunya (project CIRIT 2017-SGR-1127). It is
our pleasure to thank Giannicola Scarpa for fruitful discussions on the topic
of graph entropy, and Péter Vrana for valuable comments concerning convex
corners.

REFERENCES

[1] C. ArLipraNTIS AND K. C. BORDER, Infinite-dimensional analysis, Springer-Verlag,
Berlin, 1999.

[2] K. M. R. AUDENAERT, AND J. EISERT, Continuity bounds on the quantum relative
entropy, J. Math. Phys. 46 (2005), no. 10, 102104, 21.

[3] W. B. ARVESON, Subalgebras of C*-algebras, Acta Math. 123 (1969), 141-224.

[4] G. BORELAND, A lower bound on graph entropy, Math. Proc. R. Ir. Acad. 118A
(2018), no. 1, 9-20.

[5] G. BORELAND, Information theoretic parameters for graphs and operator systems,
PhD thesis, Queen’s University Belfast, 2020.

[6] G. BORELAND, I. G. TODOROV AND A. WINTER, Sandwich theorems and capacity
bounds for mon-commutative graphs, J. Combin. Theory Ser. A 177 (2021), 105302,

39 pp.



60
(7]

(8]

(9]
(10]
(11]
[12]
(13]
(14]
[15]
(16]

(17]
(18]

(19]
20]
(21]
(22]
23]
24]
(25]

[26]
27]

(28]

29]
(30]

(31]

32]

G. BORELAND, I. G. TODOROV, AND A. WINTER

I. Cs1sZAR, J. KORNER, L. LovAsz, K. MARTON AND G. SIMONYI, Entropy splitting
for antiblocking corners and perfect graphs, Combinatorica 10 (1990), no. 1, 27-40.
T. S. CuBiTT, J. CHEN AND A. W. HARROW, Superactivation of the asymptotic
zero-error classical capacity of a quantum channel, IEEE Trans. Inform. Theory 57
(2011), no. 12, 8114-8126.

T. S. CuBITT AND G. SMITH, An extreme form of superactivation for quantum zero-
error capacities, IEEE Trans. Inform. Theory 58 (2012), no. 3, 1953-1961.

R. DUAN, Super-activation of zero error capacity of noisy quantum channels, preprint
(2009), arXiv:0906.2527.

R. Duan, S. SEVERINI AND A. WINTER, Zero-error communication via quantum
channels, noncommutative graphs, and a quantum Lovdsz number, IEEE Trans. Inf.
Theory 59 (2013), no. 2, 1164-1174.

C. GobpsiL AND G. ROYLE, Algebraic graph theory, Springer-Verlag, New York, 2001.
M. GROTSCHEL, L. LOVASZ AND A. SCHRIJVER, Relazations of vertexr packing, J.
Combin. Theory Ser. B 40 (1986), 330-343.

M. GROTSCHEL, L. LOVASZ AND A. SCHRIJVER, Geometric algorithms and combi-
natorial optimization, Springer-Verlag, Berlin, 1988.

A. KAVRUK, V. I. PAULSEN, I. G. TODOROV AND M. TOMFORDE, Tensor products
of operator systems, J. Funct. Anal. 261 (2011), 267-299.

S. KiMm AND A. METHA, Chromatic numbers and a Lovdsz type inequality for non-
commutative graphs, preprint (2017), arXiv:1709.05595.

D. E. KNUTH, The sandwich theorem, Electron. J. Combin. 1 (1994), 48p..

J. KORNER, Coding of an information source having ambiguous alphabet and the
entropy of graphs, Transactions of the Sixth Prague Conference on Information The-
ory, Statistical Decision Functions, Random Processes (Tech Univ., Prague (1971),
411-425.

J. KORNER, Fredman-Komlds bounds and information theory STAM J. Algebraic Dis-
crete Methods 7 (1986), no. 4, 560-570.

J. KORNER AND G. SIMONYI, Graph pairs and their entropies: modularity problems,
Combinatorica 20 (2000), no. 2, 227-240.

J. KORNER, G. SIMONYI AND Z. TUzA, Perfect couples of graphs, Combinatorica 12
(1992), no. 2, 179-192.

R. LEVENE, V. I. PAULSEN AND I. G. ToDOROV, Complexity and capacity bounds
for quantum channels, IEEE Trans. Inf. Theory 64 (2018), no. 10, 6917-6928.

L. LovAsz, On the Shannon capacity of a graph, IEEE Trans. Inf. Theory 25 (1979),
no. 1, 1-7.

K. MARTON, On the Shannon capacity of probabilistic graphs, J. Combin. Theory Ser.
B 57 (1993), no. 2, 183-195.

M. A. NIELSEN AND I. L. CHUANG, Quantum computation and quantum information,
Cambridge University Press, Cambridge, 2000.

M. OHYA AND D PETZ, Quantum entropy and its use, Springer-Verlag, Berlin, 1993.
V. 1. PAULSEN, Completely bounded maps and operator algebras, Cambridge Univer-
sity Press, Cambridge, 2002.

V. 1. PAULSEN, Entanglement and non-locality, Lecture notes, University of Waterloo,
2016.

D. POLLARD, Minimaz theorem, Unpublished notes, University of Yale, 2003.

M. B. RuskAl, Inequalities for quantum entropy: a review with conditions for equality,
J. Math. Phys. 43 (2002), no. 9 4358-4375.

E. R. SCHEINERMAN AND D. H. ULLMAN, Fractional graph theory. A rational ap-
proach to the theory of graphs, Dover Publications, New York, 2011.

S. REzZAEI AND E. CHINIFOROOSHAN, Symmetric graphs with respect to graph entropy,
Electron. J. Combin. 24 (2017), no. 1.



PARAMETERS OF NON-COMMUTATIVE GRAPHS 61

[33] C. E. SHANNON, The zero error capacity of a noisy channel, Institute of Radio En-
gineers, Transactions on Information Theory IT-2 (1956), 8-19.

[34] G. SIMONYI, Graph entropy: a survey, DIMACS Ser. Discrete Math. Theoret. Com-
put. Sci. 20 (1995), 399-441.

[35] G. SIMONYI, Perfect graphs and graph entropy. An updated survey, Wiley-Intersci.
Ser. Discrete Math. Optim. (2001), 293-328,

[36] D. STAHLKE, Quantum zero-error source-channel coding and non-commutative graph
theory, IEEE Trans. Inform. Theory 62 (2016), no. 1, 554-577.

[37] N. WEAVER, A “quantum” Ramsey theorem for operator systems, Proc. Amer. Math.
Soc. 145 (2017), no. 11, 4595-4605.

[38] A. WEHRL, General properties of entropy, Rev. Modern Phys. 50 (1978), no. 2, 221-
260.

[39] M. M. WILDE, Quantum information theory, Cambridge University Press, Cam-
bridge, 2017.

[40] H. S. WITSENHAUSEN, The zero-error side information problem and chromatic num-
bers, IEEE Trans. Inform. Theory 22 (1976), no. 5, 592-593.

MATHEMATICAL SCIENCES RESEARCH CENTRE, QUEEN’S UNIVERSITY BELFAST, BELFAST
BT7 1NN, UNiTED KINGDOM
Email address: gboreland01@qub.ac.uk

SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF DELAWARE, 501 EWING HALL,
NEWwWARK, DE 19716, USA
Email address: todorov@udel.edu

ICREA AND GRUP D’INFORMACIO QUANTICA, DEPARTAMENT DE FisicA, UNIVERSI-
TAT AUTONOMA DE BARCELONA, 08193 BELLATERRA (BARCELONA), SPAIN
Email address: andreas.winter@uab.cat



	1. Introduction
	1.1. Notation

	2. Convex Rd-corners
	3. Convex corners and anti-blockers in Md
	3.1. Definitions and basic properties
	3.2. Examples of convex Md-corners

	4. Reflexivity of convex Md-corners
	4.1. The second anti-blocker theorem
	4.2. Consequences of reflexivity

	5. Non-commutative lifts
	6. Entropy with respect to a convex corner
	6.1. Background
	6.2. Quantisation of entropy
	6.3. Dependence on the state and on the convex corner
	6.4. Entropy splitting

	7. Tensor products of convex corners
	8. Convex corners from non-commutative graphs
	8.1. Motivation
	8.2. Canonical convex corners from graphs

	9. Non-commutative graph entropy
	9.1. Entropy and fractional chromatic number
	9.2. Further properties

	10. Cliques and clique covering number
	11. The Witsenhausen rate
	12. Some examples
	References

