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4)Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Chemin des Étoiles 8, B-1348
Louvain-la-Neuve, Belgium
5)Materials Department, University of California, Santa Barbara, California 93106-5050, USA

(*Electronic mail: fgiustino@oden.utexas.edu)

(Dated: 13 May 2022)

The key obstacle toward realizing integrated gallium nitride (GaN) electronics is its low hole mobility. Here, we explore
the possibility of improving the hole mobility of GaN via epitaxial matching to II-IV nitride materials that have recently
become available, namely ZnGeN2 and MgSiN2. We perform state-of-the-art calculations of the hole mobility of GaN
using the ab initio Boltzmann transport equation. We show that effective uniaxial compressive strain of GaN along the
[11̄00] by lattice matching to ZnGeN2 and MgSiN2 results in the inversion of the heavy hole band and split-off hole
band, thereby lowering the effective hole mass in the compression direction. We find that lattice matching to ZnGeN2
and MgSiN2 induces an increase of the room-temperature hole mobility by 50% and 260% as compared to unstrained
GaN, respectively. Examining the trends as a function of strain, we find that the variation in mobility is highly nonlinear;
lattice matching to a hypothetical solid solution of Zn0.75Ge0.75Mg0.25Si0.25N2 would already increase the hole mobility
by 160%.

Wurtzite gallium nitride has become a fundamental semi-
conductor component in a variety of electronic and opti-
cal devices, including radio-frequency applications,1,2 power
electronics,3 and light emitting diodes (LEDs).4–6 Many re-
markable properties of GaN can be traced back to its elec-
tronic structure. As a wide-gap semiconductor with a band
gap of 3.4 eV at room temperature,7,8 GaN can support higher
voltages without experiencing field-induced breakdown when
compared with Si. GaN can be alloyed with other nitride
semiconductors such as AlN9,10 and InN11,12 to tune the band
gap between 0.6 and 6.2 eV, allowing for the realization of an
array of materials for optoelectronic applications.

Electrons in GaN exhibit high room-temperature mobility,
reaching up to 1000 cm2/Vs13–19 at low defect concentration.
Conversely, hole carriers in GaN exhibit comparatively low
mobility, usually below 31 cm2/Vs.20–25 The imbalance be-
tween electron and hole mobility hinders the application of
GaN to integrated electronics based on complementary field-
effect devices, and severely limits the uses of p-channel GaN
in power electronics and radio-frequency switching.3,26 In or-
der to meet these technological demands, materials engineer-
ing approaches aimed at increasing the hole mobility of GaN
are needed.

A common approach to improving the carrier mobility of
semiconductors is via strain engineering. In the case of
GaN, several experimental and theoretical/computational re-
ports explored this possibility. Using k ·p perturbation theory,
Suzuki et al. found that compressive uniaxial strain along the
in-plane [1̄100] axis (see Fig. 1) induces the inversion of the
heavy hole and split-off hole bands.27 The resulting valence-
band maximum has a small effective mass along the ky direc-
tion, leading to increased hole mobility. Using an effective-
mass-theory approach, Yeo et al. found that for growth in
the (101̄0) crystal orientation, strain induced in a GaN quan-

tum well sandwiched between AlGaN layers would lead to
a lighter effective mass along the compression direction.28 In
recent experiments, Gupta et al. realized uniaxial compressive
strain of GaN in the basal plane of the wurtzite structure (per-
pendicular to the [0001] axis, see Fig. 1) by using a fin geom-
etry, while allowing for strain release in the other directions.29

This setup achieved a 25%-50% reduction in sheet resistance
of p-type GaN along the compressive uniaxial strain direction.
Using the ab initio Boltzmann transport equation (aiBTE),
Poncé et al. showed that imposing tensile biaxial strain in the
(0001) plane, resulting in 2% compression along the c axis,
raises the split-off band above the heavy- and light-hole bands,
thereby increasing the hole mobility along the same direction
by 250%.17,18

In this work, we explore an alternative strategy for improv-
ing the hole mobility of GaN via strain engineering. A possi-
ble route to inducing in-plane uniaxial strain perpendicular to
the GaN crystal c ([0001]) axis is via epitaxial growth of GaN
on II-IV nitride materials with mismatched lattice parame-
ters. Two candidate materials for this purpose are ZnGeN2
and MgSiN2, which crystallize in an orthorhombic lattice with
space group Pna21. To discuss the relation between the lattice
parameters of ZnGeN2, MgSiN2, and GaN, we use a common
reference frame for the hexagonal and the orthorhombic lat-
tices, as shown in Fig. 1. The correspondence between hexag-
onal and orthorhombic directions is provided in Table S1.

For ZnGeN2, a range of values has been reported for the
room-temperature (300 K) lattice parameters along the [100]
and [010] directions [see Fig. 1(b)]: a =6.38-6.45 Å and
b =5.46-5.52 Å.30,31 We consider the values a =6.425 Å and
b =5.478 Å to be representative as averages over the experi-
mentally measured lattice parameters and will proceed to use
these to determine strain values. For MgSiN2, accurate x-ray
and neutron diffraction measurements at room temperature in-
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