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A B S T R A C T   

In this study, mechanotransduction is investigated through a physics-based viscoelastic model describing the 
arterial diameter response during a brachial artery flow mediated dilation (BAFMD) test. The study is a signif
icant extension of two earlier studies by the same group, where only the elastic response was considered. 
Experimental BAFMD responses were collected from 12 healthy volunteers. The arterial wall’s elastic and viscous 
properties were treated as local variable quantities depending on the wall shear stress (WSS) sensed by 
mechanotransduction. The dimensionless parameters, arising from the model which serve as a quantitative 
assessment of the artery’s physical state, were adjusted to replicate the experimental response. Among those 
dimensionless parameters, the viscoelastic ratio, which reflects the relative strength of the viscous response 
compared to its elastic counterpart, is of special relevance to this paper’s main conclusion. Based on the results, it 
is concluded that the arterial wall’s mechanical behavior is predominantly elastic, at least in the strict context of 
the BAFMD test. Recommendations for potential future research and applications are provided.   

1. Introduction 

Flow Mediated Dilation (FMD), which is arteries’ expansion in 
response to an increase in blood flow is one of the telltales of arterial 
integrity. A well-known, inexpensive, in-vivo, and noninvasive way to 
inspect this function is the brachial artery FMD (BAFMD) test. An indi
vidual undergoing the BAFMD test, has a pressure cuff wrapped around 
their upper arm and inflated for a duration that is enough to cut off the 
blood flow to the lower arm, and completely collapse the brachial artery 
as it is being monitored via an ultrasound scanner. The cuff is then 
deflated, and the artery’s recovery to its baseline diameter is observed. 
An illustration of the test is shown in Fig. 1. 

Suboptimal FMD has been linked to many underlying cardiovascular 
health problems and risk factors (Stoner et al., 2004; Celermajer et al., 
1993; Nakamura et al., 2011; Hashimoto et al., 1998; McCully, 2012; 
Birk et al., 2012; Pyke and Tschakovsky, 2005; Ka ́z mierski et al., 2010). 
Furthermore, a recent experimental study has shown a much-improved 
correlation between acetylcholine-induced coronary vascular function 
and the brachial artery’s FMD (Broxterman et al., 2019) Therefore, a 
rigorous understanding of the mechanisms driving the observed artery’s 
behavior after cuff deflation could offer valuable insights into a subject’s 

overall arterial health, and through regular monitoring, early tran
spiring signs of emerging problems could prop up treatments’ prospect 
of success. 

The primary progenitor of FMD is mechanotransduction, through 
which mechanical cues such as blood pressure and wall shear stress 
originating in the flow environment are relayed to the arterial wall’s 
internal structure which then responds accordingly to accommodate 
changing flow conditions by changing the arterial compliance. Mecha
notransduction requires a functional Endothelial Glycocalyx Layer 
(EGL), a negatively charged soft, porous layer lining the arterial wall’s 
inner surface (Weinbaum et al., 2003, 2007). Upon sensing a change in 
flow conditions, the EGL mechanically transmits the signal to the 
Endothelial Cells (ECs) surface, thereby initiating a network of 
biochemical pathways that lead to a change in the wall’s compliance. 

A prominent vasodilator involved in this process is Nitric Oxide 
(NO), the production of which, taking place in the ECs, is triggered by 
WSS. However, not all types of WSS can elicit a response from ECs. Many 
experimental observations have confirmed ECs and EGL’s preferential 
behavior towards forward laminar flows. The EGL only reorients its 
structure in the presence of a flow that has a forward component (Chien, 
2007). ECs release vasodilators upon prolonged exposure to laminar 
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flow (Nishida et al., 1992). Forward WSS magnitude has been shown to 
affect NO production levels (Noris et al., 1995) while upregulation of NO 
failed in response to a turbulent flow. Reduced blood flow, on the other 
hand, has been shown to attenuate vasodilation in-vivo (Kaiser et al., 
1989). 

The details of mechanotransduction and its mechanisms on the level 
of the EGL and ECs have been studied extensively (Fu and Tarbell, 2013; 
Haeren et al., 2016; Baeyens et al., 2014; Yao et al., 2007; Pikoula et al., 
2018; Bartosch et al., 2017; Ebong et al., 2014; Zeng and Liu, 2016; 
Tarbell and Ebong, 2008; Tarbell and Cancel, 2016; Tarbell and Pahakis, 
2006; Shi et al., 2010; Wang et al., 2006; Loth et al., 2003; Secomb et al., 
2001; Thi et al., 2004). However, according to a recent comprehensive 
review on the subject (Weinbaum et al., 2020), this phenomenon had 
never been investigated on a timescale shorter than 10 min. Through the 
lens of physics-based modeling, and guided by the experimental obser
vations cited above, our group was the first to tackle this limitation by 
modeling the arterial response during a BAFMD test (Sidnawi et al., 
2020, 2021). Since mechanotransduction lies at the core of FMD, 
modeling its observable effects on the arterial behavior during this test 
can offer important insights into its short timescale operation. The 
model that was developed in our first study (Sidnawi et al., 2020), 
treated the wall as a thin elastic cylindrical shell, whose stiffness (an 
indicator of compliance) depends on the WSS. In its dimensionless form, 
the resulting equation governing the FMD response independently pre
dicted a hallmark of mechanotransduction that was persistent in all the 
experimental responses, where an initially slow expansion was 
observed, which then picks up pace before eventually reaching a 
dwelling phase. The model that was presented in our second study 
(Sidnawi et al., 2021) was more involved. The thickness of the arterial 
wall was accounted for, and the diffusion time of the vasodilators 
throughout the wall was accommodated via the introduction of a con
ceptual surrogate property representing the vasodilators’ local concen
tration. In addition to replicating the prediction of the first simplified 
model, this one made an intriguingly close prediction of the measured 
outer-to-inner diameter ratio. Each of the dimensionless parameters 
arising from that model has a precise physical meaning that can serve as 
a quantifier of arterial health. In another more recent noteworthy study 
that came out recently (Ma et al., 2021), the authors modeled the NO 
diffusion throughout the wall as it modulated the arterial response to the 
internal blood pressure during the recovery phase of the BAFMD test. 
However, unlike our two earlier models, variability across individuals 
was not accounted for, as the parameters governing the WSS effect on 
NO production, and those governing the latter’s effect on arterial stiff
ness, were obtained from previously reported in-vitro experimental re
sults. Also, the average NO concentration across the wall’s thickness was 
employed as the predictor of the overall arterial stiffness, while our 
latest study (Sidnawi et al., 2021) accounted for the local NO effect on 
the space-and-time-dependent stiffness, albeit through a conceptual 
property as a surrogate to the local NO concentration. 

A prominent limitation shared by our first two models (Sidnawi 

et al., 2020, 2021) though, as well as Ma et al.‘s study (Ma et al., 2021), 
is the lack of a viscous component contributing to the BAFMD response. 
The arterial wall behavior was assumed to be fully elastic. A natural 
question one would ask is: what is the viscous response of the blood 
vessel wall during the FMD process? In this study, in addition to the 
elastic component that was incorporated in the previous model, a 
viscous component will be considered. The wall’s viscous parameter will 
also be treated as a variable quantity that is a function of both the radial 
location inside the wall, and the exposure time to vasodilators. Experi
mental BAFMD data are collected from 12 healthy volunteers, and the 
model is fitted to the observed response by adjusting the values of the 
arising parameters as needed. Key findings about the relative signifi
cance of the viscous response, are then discussed. 

2. Experiment 

Diameter-time response data were collected via ultrasound imaging 
from 12 healthy volunteers (8 males/4 females) aged 23–66, and the 
study was approved by the institutional review committee. The test was 
administered in the morning with all subjects fasting. Images were ob
tained using a Zonare ultrasound scanner (ZONARE Medical Systems, 
Bernardo, CA, USA). 

An ischemic pressure cuff wrapped around a subject’s upper arm was 
held at 250 mmHg for 5 min, while the brachial artery’s diameter is 
being monitored (Fig. 2a). The main goal of applying pressure to the arm 
is to achieve complete arterial collapse, cutting off the blood flow. The 
pressure and duration values that are used in the current study were 
enough to accomplish this in all subjects. The fact that none of them had 
their systolic pressure anywhere near 250 mmHg when it was measured 
prior to each test offers a reasonable explanation as to why these values 
were enough. The same values were also used in the experimental 
protocol of a recent FMD study (Chen et al., 2019). After the artery is 
fully compressed, the cuff is deflated, and the diameter expansion fol
lowed by its eventual recovery to the baseline is observed (Fig. 2b). The 
diameter-time data were extracted after processing the images in 
MATLAB. The brightness contrast between the lumen and the arterial 
wall, which is illustrated in Fig. 2a, was the main indicator used for 
inferring the diameter at each frame. 

As described in Fig. 2b, the arterial response features a relatively 
quick expansion that is followed by a brief dwelling phase before the 
eventual recovery to its baseline value. As in our two previous studies 
(Sidnawi et al., 2020, 2021), recovery will be excluded from the current 
model, which will be focusing on the rising and dwelling phases as they 
are directly prompted by the imposed sudden mechanical stimuli 
entailed by cuff deflation. 

3. Model 

The mathematical formulation, which will be detailed shortly, is 
rooted in the hypothesis proposed in our two previous studies (Sidnawi 
et al., 2020, 2021), describing a feedback loop initiated by a sudden 

Fig. 1. Schematic of the FMD test.  

Fig. 2. (a) An image of the monitored artery. (b) The arterial response after cuff 
deflation. (permission for reuse is acquired) 
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increase in WSS, which is picked up by the arterial wall’s endothelial 
cells, thereby prompting the release of vasodilators leading to a 
compliance change that triggers a diameter change which in turn affects 
the WSS. The hypothesis is illustrated in Fig. 3. 

A diffusing property, s (N /m2), which was introduced in our previ
ous study (Sidnawi et al., 2021) as a surrogate quantity for the softening 
effect of the released vasodilators, will be incorporated here. The 
equation governing its diffusion through the wall in cylindrical co
ordinates is: 

∂s
∂t

= αs

(
∂2s
∂r2 +

1
r

∂s
∂r

)

(1)  

where t(s) is time, r (m) is the radial distance from the center, and 
αs(m2 /s) is the diffusivity. As noted in the earlier study (Sidnawi et al., 
2021), explicitly modeling the NO diffusion through the wall would be 
much more meaningful if in-vivo experimental data on how the wall’s 
local mechanical properties respond to the vasodilator were available. 
Such a challenging experimental undertaking has never been reported 
before. It is important to point out that although s has the dimension of 
stress, it is intended as a surrogate, diffused quantity representing the 
transport of vasodilators throughout the arterial wall’s thickness. 

In addition to the elastic response, E(t), to the softening effect of s, 
which was the only component considered in the previous study (Sid
nawi et al., 2021), the viscous response, η(t), will also be considered 
here. The local values of the elastic modulus, Es(s), and viscous 
parameter, ηs(s), are assumed to take on initial zero-shear maximum 
values, E0, and η0, respectively, and minimum values, E∞, and η∞, cor
responding to s→∞. The subscript in Es(s) and ηs(s) indicates that these 
are the values of the elastic modulus and the viscous parameter that are 
eventually reached in response to a sustained exposure to a softening 
signal of value s. Es(s) and ηs(s) are assumed to have an exponential form 
given by Eq. (2). 

Es(s) = (E0 − E∞)e−β1s + E∞ (2a)  

ηs(s) = (η0 − η∞)e−β2s + η∞ (2b)  

where β1 (m2/N) and β2 (m2/N) are characteristic properties that indi
cate the wall’s resistance to a changing value of s; a higher value means a 
lower resistance for both. The exponential form assumed in Eq. (2) is not 

any more or less special than a sigmoid function or a Prony series for 
example, as both exhibit similar characteristics. However, in the absence 
of the experimental guidance alluded to after Eq. (1), it would be futile 
to dwell on which form is more adequate. At this stage, the fact that a 
change in the parameter entailed by the used exponential function can 
correspond to physical changes in the artery, makes that form a decent 
start. 

The transient responses of E(t) and η(t), to sudden step-changes in the 
value of s, from s1 to s2, occurring at a time t0, are also assumed to be 
exponential functions of time (Eq. (3)) 

E(t) − Es(s2) = [Es(s1) − Es(s2)]e−ξ1(t−t0) (3a)  

η(t) − ηs(s2) = [ηs(s1) − ηs(s2)]e−ξ2(t−t0) (3b)  

where ξ1 (s−1) and ξ2 (s−1) are properties of the artery that quantify its 
responsiveness to a changing WSS. For both, a greater value indicates a 
more responsive artery. From Eqs. (2) and (3), the equations governing 
E(t) and η(t) in response to any continuous signal s(t) can be obtained 
(Eq. (4)). 

dE
dt

+ ξ1E = ξ1Es(s(t)) (4a)  

dη
dt

+ ξ2η = ξ2 ηs(s(t)) (4b) 

The slow expansion observed in the rising-and-dwelling part of the 
FMD response makes it reasonable to assume the process as quasi-static, 
where the elastic and viscous parts of the response are counteracting the 
internal blood pressure to maintain equilibrium. Also, since an oscilla
tory or disturbed flow, lacking a forward component has been shown to 
be practically inconsequential to vasodilation stimulation (Chien, 2007; 
Noris et al., 1995), only the steady components of the local pressure 
signal, flow rate, and WSS will be accounted for. In Fig. 4, the artery is 
depicted as an initially unstretched cylindrical shell of inner and outer 
radii as rin and rout, respectively. At t = 0, a flow rate, q(m3 /s), and in
ternal pressure p(N /m2) are introduced (corresponding to the cuff 
deflation). Evidently, it can still be argued that even q could change 
during the rising phase of the FMD response. However, absent a direct 

Fig. 3. The hypothesis underlying the model.  

Fig. 4. A sketch describing the problem.  

B. Sidnawi et al.                                                                                                                                                                                                                                



Journal of the Mechanical Behavior of Biomedical Materials 131 (2022) 105255

4

measurement of the instantaneous flow rate that is performed in tandem 
with observing the arterial diameter response, an average constant value 
was assumed. Nevertheless, what gives us confidence in the soundness of 
this assumption is that it also underlaid the model in our previous work 
(Sidnawi et al., 2021), where only the elastic aspect of the arterial wall 
was considered, and where the predicted outer-to-inner diameter ratio 
agreed reasonably well with what was experimentally measured, in 
addition to reproducing the arterial behavior up to the peak diameter 
after cuff deflation. Since only steady components are considered, the 
wall shear stress, τw(N /m2) would be derived from Poiseuille’s parabolic 
solution for the velocity profile. 

τw(t) =
4μq

πR(t)3 (5)  

where μ(kg /m.s) is the blood’s dynamic viscosity, and R(t) is the inner, 
deformed radius. Note that τw(t) is s(rin, t). Denoting the radial 
displacement, and the displacement of the inner boundary, as u(r,t), and 
u0(t), respectively, then R(t) = rin+ u0(t), and Eq. (5) is recast as: 

s(rin, t) = s0

(
rin

rin + u0(t)

)3

(6)  

where s0 =
4μq
πr3

in
. An important distinction should be emphasized before 

proceeding. The property s was introduced as a surrogate property to the 
explicit NO concentration, [NO], which to our knowledge, was never 
measured in-vivo during the FMD test, if such a measurement is even 
possible while keeping the procedure noninvasive. s was conceived as a 
diffusing signal carrying the real effect of relaxing the smooth muscle 
cells, which is macroscopically manifested as a decrease in the effective 
stiffness. In our model, according to Eq. (6), s does assume the instan
taneous value of the WSS, but only at the wall’s inner boundary. How
ever, the way Eq. (1) is stated (which governs the value of s beyond the 
inner boundary), does not, in fact, imply any specific relationship be
tween s and [NO], and especially not a linear one. This is because based 
on Eq. (1), any linear relationship between s and [NO], would force the 
diffusivity of the signal s, αs to be the diffusivity of NO itself. But no such 

statement has been made about αs. Still, this conceptual property proved 
instrumental for the successful predictions made in our earlier work 
(Sidnawi et al., 2021). 

As the problem is axisymmetric, dependence on the angular coor
dinate, θ, vanishes, and the wall radial equilibrium equation reduces to: 

∂σrr

∂r
+

1
r

(σrr − σθθ) = 0 (7)  

where σ is the stress tensor, and θ is the angular coordinate. As for the 
axial (z direction) equilibrium, σrz changes in the radial coordinate and 
does contribute to the equilibrium in the axial direction. However, σrz 
would not contribute to the equilibrium in the radial direction, along 
which the artery’s expansion, which is what this study is concerned 
with, is taking place. Especially that the instantaneous flow field is fully 

developed so far from the heart’s left ventricle, making the change with 
respect to z (∂/∂z), in the region where FMD is observed, vanishingly 
small, and therefore implying that ∂σzr

∂z = 0, hence rendering this shear 
component of the stress tensor inconsequential to radial equilibrium. 

The wall’s constitutive equations are: 

[
σrr
σθθ

]

=
1

1 − ν2

[
E Eν η ην
Eν E ην η

]

⎡

⎢
⎢
⎣

εrr
εθθ
ε̇rr
ε̇θθ

⎤

⎥
⎥
⎦ (8)  

where E is the elasticity modulus, ε is the strain tensor, and ν is the 
Poisson’s ratio. The current study is intended as a follow-up on our 
previous one (Sidnawi et al., 2021), in which only the elastic component 
of the artery was considered. In the current work we explore the pos
sibility of a significant viscous contribution, at least in the strict context 
of the FMD response. Therefore, the viscous effect elicited by the 
deformation rates, in contributing to the balance against the inner 
pressure is brought in as a component that is working in parallel with its 
elastic counterpart. Note how in Eq. (8), the viscous response is added to 
its elastic counterpart by including the effect of strain rates, ε̇rr, and ε̇θθ. 
And since we are treating the wall material as a continuum rather than 
discrete, separate viscous and elastic parts, a locally homogenous ma
terial element in that continuum would have its degrees of freedom 
simultaneously affecting both the elastic and the viscous forces, which 
adds them up in response to deformation. In fact, this is simply a con
tinuum version of the traditional Kelvin-Voigt model, which has the 
elastic and viscous components mounted in parallel. Without in-vivo 
experimental techniques that can capture the change in intrinsic me
chanical properties of the wall in response to flow change during FMD, 
this model was deemed a good starting point. Furthermore, this further 
emphasizes the role of our series of studies (Sidnawi et al., 2020, 2021), 
including this one, in laying out a theoretical framework within which 
more refined models can be developed in the future as better measure
ment techniques and experimental protocols become available. Recog
nizing that εrr = ∂u

∂r, and εθθ = u
r, eqs. (7) and (8) lead to the wall’s 

equilibrium equation:  

Substitute Eq. (2) in Eq. (4) to obtain the equations governing E(r, t), 
and η(r, t) as: 

∂E
∂t

+ ξ1E = ξ1
[
(E0 − E∞)e−β1s − E∞

]
(10a)  

∂η
∂t

+ ξ2η = ξ2
[
(η0 − η∞)e−β2s − η∞

]
(10b) 

Introducing the dimensionless variables 

r* =
r

rin
, t* =

ξ1t
2 ln(10)

, u* =
u
rin

, E* =
E
E0

, η* =
η
η0

, s* =
s
s0

(11)  

the system of equation governing the process can then be obtained as: 

η ∂3u
∂t∂r2 +

(
∂η
∂r

+
η
r

)
∂2u
∂t∂r

+

(
ν
r

∂η
∂r

−
η
r2

)
∂u
∂t

+ E
∂2u
∂r2 +

(
∂E
∂r

+
E
r

)
∂u
∂r

+

(
ν
r

∂E
∂r

−
E
r2

)

u = 0 (9)   

Γ
2 ln(10)

[

η* ∂3u*

∂t*∂r*2 +

(
∂η*

∂r* +
η*

r*

)
∂2u*

∂t*∂r* +

(
ν
r*

∂η*

∂r* −
η*

r*2

)
∂u*

∂t*

]

+ E*∂2u*

∂r*2 +

(
∂E*

∂r* +
E*

r*

)
∂u*

∂r* +

(
ν
r*

∂E*

∂r* −
E*

r*2

)

u* = 0 (12a)   
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∂E*

∂t*
+ 2 ln(10)E* = 2 ln(10)

[(
1 − E*

min

)
e−B1s*

+ E*
min

]
(12b)  

∂η*

∂t*
+ 2 ln(10)ξ̂η* = 2 ln(10)ξ̂

[(
1 − η*

min

)
e−B2s*

+ η*
min

]
(12c)  

∂s*

∂t*
= 2 ln(10)γ

(
∂2s*

∂r*2 +
1
r*

∂s*

∂r*

)

(12d) 

The dimensionless parameters characterizing the response are given 
in Eq. (13) below. 

Γ =
η0ξ1

E0
, γ =

αs

r2
inξ1

, B1 = β1s0, B2 = β2s0, ξ̂ =
ξ2

ξ1
, E*

min =
E∞

E0
, η*

min

=
η∞

η0
, p* =

p
E0

, a =
rout

rin
(13) 

As explained in our previous study (Sidnawi et al., 2021), E*
min is a 

measure of the arterial wall’s sensitivity to WSS. As E*
min approaches its 

maximum value of 1, the wall becomes increasingly indifferent to WSS. 
B1, which is related to β1, quantifies the wall’s resistance to the softening 
effect of the vasodilators. The higher B1 is, the less resistant the arterial 
wall becomes to softening. γ provides a measure of how active mecha
notransduction is since it is directly related to the diffusivity αs. A 
decreasing value of γ could therefore signal a deteriorating mechano
transduction. B2 and η*

min are the viscous counterparts of B1 and E*
min, 

respectively, the two latter quantities pertaining to the elastic compo
nent of the response. ξ̂ is the viscous component’s relative responsive
ness to the softening signal, s, as compared to that of the elastic 
component. A value of ξ̂ that is greater than 1 means that the viscous 
parameter, η, responds faster than the elastic modulus, E, to a changing 
value of s. Finally, Γ quantifies the prominence of the FMD response’s 
viscous component, relative to its elastic counterpart. Higher values of Γ 
indicate a more viscous arterial wall. 

Eq. (6) states the boundary condition for s at r = rin. At the outer 
boundary, r = rout , there is no further regions into which s can diffuse, 
thereby requiring its radial gradient there to vanish (∂s

∂r|rout
= 0). In 

dimensionless form: 

s*(1, t) =

(
1

1 + u*
0(t*)

)3

(14a)  

∂s*

∂r* (a, t) = 0 (14b) 

The stress boundary conditions, σrr(rin, t) = − p, and σrr(rout, t) = 0, 
imply those of the dimensionless displacement, u*, as: 
[

E*
(

∂u*

∂r* + ν u*

r*

)

+
Γ

2 ln(10)

(
∂2u*

∂t*∂r* +
ν
r*

∂u*

∂t*

)]⃒
⃒
⃒
⃒

r*=1
= −

(
1 − ν2)

p* (15a)  

[

E*
(

∂u*

∂r* + ν u*

r*

)

+
Γ

2 ln(10)

(
∂2u*

∂t*∂r* +
ν
r*

∂u*

∂t*

)]⃒
⃒
⃒
⃒

r*=a
= 0 (15b) 

Initially, at t* = 0, with no time for any diffusion or displacement to 
have taken place, the displacement field is 0 and the wall starts off with 
homogenous mechanical properties, leading to the initial conditions in 
Eq. (16) below. 

u*(r*, 0) = 0 (16a)  

E*(r*, 0) = 1 (16b)  

η*(r*, 0) = 1 (16c)  

s*(r*, 0) = 0 (16d) 

The system in Eq. (12) is solved subject to Eqs. (14)–(16). The so
lution of Eq. (12) is obtained numerically using finite difference. The 
arterial wall is discretized into nodes separated by increments of size δr*. 
Time is discretized into timesteps of length δt*. The spatial derivatives in 
Eq. (12) are discretized based on a truncation error of O(δr*3

). Based on 
the displacement field obtained at a given timestep, Eq. (12a) is solved 
for the displacement u* at each node for the next timestep. Eqs. 12 b- 
d are then solved to obtain E*, η*, and s* at each node by the next 
timestep, until the end of the chosen duration. To guarantee the stability 
of the diffusion equation’s solution (Eq. (12d)), the upper bound, δt*

max, 
of the timestep, for a given grid size, δr*, is imposed as: 

Fig. 5. δ, E, and η behavior for different values of B1  
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δt*
max =

1

4γ ln(10)
(

1
δr*2 − 1

2δr*(1+δr*)

) (17) 

This limit is due to the physical restriction that a node receiving an 
influx of a certain property by diffusion from an adjacent source node, 
cannot be given enough time between solution steps, to build up a 
concentration that exceeds its value at the source. 

4. Results and discussion 

4.1. Parametric study 

To better understand the effects that key parameters in Eq. (13), after 
which a detailed description of those parameters’ physical meaning was 
provided, have on the FMD response and on the wall’s mechanical 

properties, a parametric study will be presented. In what follows, the 
inner boundary’s displacement, u*(1, t*) will be denoted by δ, and the 
asterisk, ′*

′

, in the dimensionless quantities will be dropped for brevity. 
Also, the plots of E and η in this section are their profiles vs. the radial 
distance at the last timestep of the simulation. 

The parameter B1 (wall’s resistance to the softening effect of the 
vasodilators). 

Fig. 5 shows the effect that changing B1 has on the wall’s response 
and its properties. As B1 increases, δ increases, E decreases, and η in
creases. Since a higher value of B1 indicates a lower resistance in the 
arterial wall’s elastic modulus E to a changing WSS, the highest value of 
B1 leads to the fastest elastic softening of the wall, as exhibited by E(r)
for B1 = 10. This leads to the displacement, δ(t), being the greatest for 
that value, and therefore, the lowest WSS, which keeps η from softening 
as much for B1 = 10, as it does for lower values. 

Fig. 6. δ, E, and η behavior for different values of B2  

Fig. 7. δ, E, and η behavior for different values of Emin  
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The parameter B2 (wall’s resistance to the viscous softening effect of 
the vasodilators). 

The effect of B2 is shown in Fig. 6. As B2 increases, δ and E are un
affected, and η decreases. Since B2 is B1’s viscous counterpart, η is the 
property that is affected the most by its change. The highest value of B2 
leads to the fastest viscous softening of the wall. In the absence of 
deformation at t = 0, implying no elastic contribution to the mechanical 
balance against the inside pressure, it falls entirely on the viscous 
component of the wall’s material to counteract it, therefore necessi
tating an initial sharp rise in δ. As deformation picks up, the elastic 
contribution to the balance dominates, while the viscous response is 
only getting softer. Since B1 is not changing here, B2 has virtually no 
effect on the primarily elastic response that comes later, and therefore 
δ(t) is not affected. It then follows that E, which is only determined by B1 

and δ(t) (through s* as evident from Eq. (12b)), would not be affected 

either. 
The parameter Emin (arterial wall’s sensitivity to WSS). 
Fig. 7 shows the effect of changing Emin. As Emin increases, δ de

creases, E increases, and η decreases. Being a measure of the wall’s 
elastic sensitivity to WSS, when Emin is lowest, the wall can eventually 
get softest (Eq. (13)) compared to higher values of Emin. Therefore, at a 
value of 0.8, which is close to Emin’s upper limit of 1, the displacement 
δ(t) is most restricted due to the profile E(r) being highest. Since a 
restricted displacement maintains a higher WSS, η gets softest for the 
highest value of Emin. 

The parameter ηmin (arterial wall’s viscous sensitivity to WSS). 
The effect of ηmin is shown in Fig. 8. As ηmin increases, δ and E are 

unaffected, and η increases. As in the case of changing B2, which only 
pertains to the viscous softening, the dominantly elastic response that 
comes after the sharp rise in δ makes δ(t) and E(r) practically indifferent 
to changing ηmin. With ηmin being Emin’s viscous counterpart, it affects η(r)

Fig. 8. δ, E, and η behavior for different values of ηmin  

Fig. 9. δ, E, and η behavior for different values of γ  
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in the same way in which Emin affects E(r) (Fig. 7). 
The parameter γ (measure of mechanotransduction activity). 
The effect of changing the mechanotransduction parameter, γ, is 

presented in Fig. 9. As γ increases, δ increases, and E and η decrease. 
Being related to the diffusivity, αs (Eq. (13)), γ which quantifies the 
integrity of mechanotransduction, would lead to the fastest diffusion of 
the softening signal, s, through the arterial wall, when its value is 
highest. This is manifested by the profiles E(r) and η(r) being softest for 
the highest value of γ, and consequently the deformation being highest 
(δ(t)). 

The parameter ξ̂ (viscous-to-elastic ratio of the arterial responsive
ness to the softening signal, s). 

Fig. 10 shows the effect of changing ξ̂. As ξ̂ increases, δ and E are 
unaffected, and η decreases. Since ξ̂ is η’s relative response speed to a 
changing value of s, as compared E’s response, η(r) is softest for the 

highest value of ξ̂. Since this parameter pertains only to the viscous 
response to s, δ(t), which becomes primarily elastic as explained earlier, 
and E(r), which is determined by δ(t) and B1 are practically unaffected 
by ξ’s change. 

The parameter Γ (prominence of the FMD response’s viscous 
component, relative to its elastic counterpart). 

Fig. 11 illustrates the effect of the viscous ratio, Γ. As Γ increases, δ, E, 
and η decrease. Γ indicates the relative strength of the viscous compo
nent of the response, compared to that of its elastic counterpart. 
Therefore, δ‘s required initial rate of increase to balance the internal 
pressure, decreases with Γ; hence the significantly shallower slope of δ(t)
for Γ = 10. Since a slower expansion maintains a longer exposure to 
high WSS, E(r) and η(r) get softest for the highest value of Γ. Note 
however, the behavior of δ(t) for Γ = 0.1. After the initial viscous- 
dominated steep rise, the elastic-dominated response is the one that 

Fig. 10. δ, E, and η behavior for different values of ξ̂  

Fig. 11. δ, E, and η behavior for different values of Γ  
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most closely matches the observed FMD behavior, especially at the early 
stage, where an initial positive curvature can be seen. As will be elab
orated in the next section, this is a strong hint to the fact that at least in 
the context of FMD, the arterial wall’s elastic component is the dominant 
determinant of the FMD response. 

4.2. Comparison with the experimental data 

Through an optimization algorithm that is similar to the one used 
and detailed in the two previous studies (Sidnawi et al., 2020, 2021), the 
values of the parameters in Eq. (13), that led to a response that most 
closely matched the experimental response, were obtained. A repre
sentative comparison is shown in Fig. 12. 

The key feature to be noted in the theoretical curve of Fig. 12, is the 
initial slight jump at t = 0 where the viscous component of the response 
is supposed to be dominant. Almost immediately after this brief jump, an 
abrupt decrease in the slope takes place, signaling the onset of the 
elastic-dominated part of the response. This feature is consistent with 
the observations made in Fig. 11 about δ(t) for small values of Γ. Indeed, 

the value of Γ corresponding to the response in Fig. 12 is found to be 
about 0.07. This shows that, as far as the response induced by the 
BAFMD test is concerned, and in the context of the current model which 
is a generalization that includes the purely elastic case disseminated in 
the previous study (Sidnawi et al., 2021), elastic forces seem to over
whelmingly dominate the response. Note that a value of Γ that is in the 
order of 102 and beyond, coupled with appropriate values for B2 and 
ηmin, can also produce a response, δ(t), that starts off slow then picks up 
pace due to softening, before plateauing again, which would qualita
tively replicate the observed trend of its experimental counterparts. 
However, an arterial wall that is initially so viscous, would be difficult to 
reconcile with the fact that diameter fluctuations due to pressure pul
sations with a period that is on a scale much smaller than that of the 
viscous-dominated expansion, can be observed so discernibly right from 
the beginning. 

As evident from Eq. (12a), when Γ≪1, the viscous contribution to the 
response becomes vanishingly small, and therefore, the values of all the 
parameters in Eq. (13), that pertain to the viscous response, namely B2, 
ξ̂, and ηmin, become practically inconsequential. Hence, pursuing the 
values of the remaining parameters would be repeating the work re
ported in our previous study where only the elastic response was 
considered (Sidnawi et al., 2021). Fig. 13 shows the theoretical arterial 
response, δ(t), for different values of B2, ξ̂, and ηmin, when Γ is of the 
order of 10−2, as was found in the matching result above. As would be 
expected, due to such a small value of Γ, the effect of the parameters that 
modulate the viscous component of the response becomes undetectable, 
which is manifested by the overlapping plots for all three parameters. 

5. Conclusion 

In this paper, the response of the brachial artery during the FMD test 
was analyzed in the context of a viscoelastic model that extends its 
purely elastic counterpart presented in the previously published study 
on the subject (Sidnawi et al., 2021). In addition to the parameters 
pertaining to the elastic response, and the one quantifying the integrity 
of mechanotransduction, a new set of parameters governing the viscous 
response, and which include the viscoelastic ratio, arose from the 
extended model. Experimental sets of FMD data were collected from 
healthy volunteers. Fitting the model’s predictions for the diameter 
change to the experimental FMD responses resulted in values of the 

Fig. 12. The experimental and theoretical responses for one of the FMD cases.  

Fig. 13. The theoretical response when Γ≪1, for different values of B2, ξ̂, and ηmin  
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viscoelastic ratio that are of the order of 10−2, thereby pointing to the 
dominance of the elastic response. Testing the sensitivity of the model to 
the remaining viscous parameters for such a low viscoelastic ratio 
showed that the theoretical response becomes virtually governed by the 
elastic parameters. 

These findings suggest that as far as the FMD response is concerned, 
at the typical expansion rates that it exhibits, and in the context of the 
proposed theoretical tools for modeling it, which proved to possess a 
noticeable predictive power in our earlier work (Sidnawi et al., 2020, 
2021), the arterial wall’s behavior is predominantly elastic. Thus, future 
studies and potential clinical applications investigating cardiovascular 
health in light of the proposed model, can safely rely on its reduced form 
presented in the aforementioned precursor study (Sidnawi et al., 2021). 

Our series of studies on modeling FMD (Sidnawi et al., 2020, 2021), 
including the current one are the first to outline a bottom-up approach 
that managed to reproduce the time course of the arterial response, 
which enabled the extraction of several physically meaningful param
eters hinting at the endothelial and structural state of the arterial wall, in 
addition to the traditionally examined peak percent dilation (FMD%). 
This is far from being an assertion that specific assumptions cannot be 
improved upon. It is hoped that this approach, which is more of a novel 
theoretical framework, than a specific, final model, will spur a renewed 
interest and a paradigm shift in how FMD measurements are acquired 
(concurrent acquisition of Q(t), for example), such that more refined 
models can be developed. 
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