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Overcomplete Order-3 Tensor Decomposition, Blind Deconvolution, and
Gaussian Mixture Models\ast 

Haolin Chen\dagger and Luis Rademacher\dagger 

Abstract. We propose a new algorithm for tensor decomposition, based on the simultaneous diagonalization al-
gorithm, and apply our new algorithmic ideas to blind deconvolution and Gaussian mixture models.
Our first contribution is a simple and efficient algorithm to decompose certain symmetric overcom-
plete order-3 tensors, that is, three dimensional arrays of the form T =

\sum n
i=1 ai\otimes ai\otimes ai where the ais

are not linearly independent. Our algorithm comes with a detailed robustness analysis. Our second
contribution builds on top of our tensor decomposition algorithm to expand the family of Gaussian
mixture models whose parameters can be estimated efficiently. These ideas are also presented in a
more general framework of blind deconvolution that makes them applicable to mixture models of
identical but very general distributions, including all centrally symmetric distributions with finite
6th moment.
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1. Introduction. Tensor decomposition is a basic tool in data analysis. The order-3
(symmetric) tensor decomposition problem1 can be stated as follows: Given an order-3 tensor
T =

\sum n
i=1 ai \otimes ai \otimes ai, recover the vectors ai \in \BbbR d. The problem is undercomplete if the

ais are linearly independent; otherwise, it is overcomplete. Two problems in data analysis
motivate us here to study tensor decomposition: blind deconvolution and Gaussian mixture
models (GMMs).

A deconvolution problem can be formulated as follows: We have a d-dimensional random
vector

(1.1) X = Z + \eta ,

where Z and \eta are independent random vectors. Given samples from X, the goal is to
determine the distribution of Z. We call it blind deconvolution when the distribution of \eta is
unknown; otherwise, it is nonblind. It is called deconvolution because the distribution of X is
the convolution of the distributions of Z and \eta .
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The following mixture model parameter estimation problem can be recast as a blind de-
convolution problem: Let X be a d-dimensional random vector distributed as the following
mixture model: First sample i from [d], each value with probability wi (wi > 0,

\sum 
iwi = 1),

and then let X = \mu i + \eta , where \eta is a given d-dimensional random vector and \mu i \in \BbbR d. The
estimation problem is to estimate \mu is and wis from samples of X. It is a deconvolution prob-
lem X = Z + \eta when Z follows the discrete distribution equal to \mu i with probability wi. It is
blind when the distribution of \eta is unknown.

The GMM parameter estimation problem can be described as follows: Let X \in \BbbR d be
a random vector with density function x \mapsto \rightarrow 

\sum k
i=1wifi(x), where wi > 0,

\sum 
iwi = 1, and

fi is the Gaussian density function with mean \mu i \in \BbbR d and covariance matrix \Sigma i \in \BbbR d\times d.
GMM parameter estimation is the following algorithmic question: Given i.i.d. samples from
X, estimate wis, \mu is, and \Sigma is.

The GMM parameter estimation problem is a deconvolution problem when the covariance
matrices of the components are the same, namely \Sigma i = \Sigma . Specifically, X = Z + \eta , where
Z follows a discrete distribution taking value \mu i with probability wi, i = 1, . . . , k, and \eta is
Gaussian with mean 0 and covariance \Sigma . It is blind if \Sigma is unknown.

While the undercomplete tensor decomposition problem is well understood (based on algo-
rithmic techniques such as the tensor power method and the simultaneous diagonalization al-
gorithm [28]), the overcomplete regime is much more challenging [21, Chapter 7]. Within the
overcomplete case, there are fewer techniques available for the order-3 case than there are for
higher order ones [21, section 7.3]. We discuss some of these techniques and challenges below
(subsection 1.2).

1.1. Our results.
Overcomplete tensor decomposition. We propose an algorithm based on the simultaneous

diagonalization algorithm for overcomplete tensor decomposition. Our informal claim is as
follows.

Claim 1.1 (informal statement of Theorem 3.1). Given a symmetric order-3 tensor T =\sum d+k
i=1 a\otimes 3

i \in \BbbR d\times d\times d and when any d-subset of the ais is linearly independent, there is a ran-
domized algorithm that recovers ais within \varepsilon error and with expected running time polynomial
in dk, 1/\varepsilon k, and natural conditioning parameters.

Note that our goal is to show that the running time has polynomial dependence in that
sense and the error has inverse polynomial dependence, but we do not optimize the degrees
of the polynomials. Even though the algorithm is exponential in k, the case k = 1 already
makes possible a new GMM result (see below).

Our proposed algorithm (Algorithm 2) and its analysis (Theorem 3.1) are stronger than
Claim 1.1 in two important ways: It is robust in the sense that it approximates the ais even
when the input is a tensor that is \varepsilon \prime -close to T . Also, it turns out that parameter k above,
the number of ais beyond the dimension d, is not the best notion of overcompleteness. In our
result, the tensor is of the form T =

\sum r+k
i=1 ai \otimes ai \otimes ai, where r is the robust Kruskal rank of

ais (informally the maximum r such that any r-subset is well-conditioned; see Definition 2.1),
so that k is the number of components above the robust Kruskal rank. Thus, our analysis
also applies when the Kruskal rank is less than d.
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We show the relevance of our algorithm with new results in two applications: blind de-
convolution and learning GMMs. Our approach to these applications is decomposing the 3rd
cumulant tensor of the underlying distribution, yielding efficient algorithms with Algorithm 2.
We restrict our study to the 3rd cumulant tensor (instead of higher order tensors that could
be used in those applications) mainly because (1) the decomposition of the 3rd order tensor
is less understood compared to tensors of higher order; (2) the cost of estimating higher order
tensors is in principle higher; (3) the decomposition of the 3rd cumulant tensor yields easily
an algorithm for those applications.

Blind deconvolution. We provide an efficient algorithm for the following blind deconvolution
problem.

Claim 1.2 (informal statement of Theorem 5.3). Let X = Z + \eta be a random vector as in
(1.1), where Z is a d-dimensional discrete distribution supported on d points and \eta has zero
mean, zero 3rd moment, and finite 6th moment. Suppose Z satisfies a natural nondegeneracy
condition (Assumption 5.1). Then there is a randomized algorithm that, with probability 1 - \delta 
over the randomness in the samples, recovers Z within \varepsilon error. The expected running time
and sample complexity are polynomial in d, \varepsilon  - 1, \delta  - 1, and natural condition parameters.

Equivalently, it can solve the mixture model parameter estimation problem above under
the same conditions (Algorithm 3 and Theorem 5.3).

GMM. We show an efficient algorithm for the following GMM parameter estimation prob-
lem.

Claim 1.3 (informal statement of Theorem 6.1). Given samples from a d-dimensional mix-
ture of d identical and not necessarily spherical Gaussians with unknown parameters wi, \mu i,
\Sigma satisfying a natural nondegeneracy condition (Assumption 5.1), there is a randomized algo-
rithm that with probability 1 - \delta over the randomness in the samples estimates all parameters
within \varepsilon error. The expected running time and sample complexity are polynomial in d, \varepsilon  - 1, \delta  - 1,
and natural conditioning parameters.

It may seem as if the last two contributions (blind deconvolution and GMM) could be
attacked with standard undercomplete tensor decomposition techniques, given that the num-
ber of components is equal to the ambient dimension and therefore they could be linearly
independent. It is not clear how that could actually happen, as the nonspherical unknown
covariance seems to make standard approaches inapplicable and our contribution is a formu-
lation that involves an overcomplete tensor decomposition and uses our overcomplete tensor
decomposition algorithm in an essential way.

Organization of the paper. In section 2, we introduce the notation and preliminaries needed
in the paper. In section 3, we present the proposed algorithm (Algorithm 2) for overcomplete
tensor decomposition and its analysis (Theorem 3.1), as well as our high level proof ideas.
We implement our proof ideas for Theorem 3.1 in section 4. In sections 5 and 6, we provide
the algorithms (Algorithms 3 and 4) and their analyses (Theorems 5.3 and 6.1) for the two
applications mentioned above.

1.2. Related work. Among basic tensor decomposition techniques for the undercomplete
case we have tensor power iteration (see [21], for example) and the simultaneous diagonaliza-
tion algorithm [28]. Tensor power iteration is more robust than the simultaneous diagonal-
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ization algorithm, while the simultaneous diagonalization algorithm can be applied more gen-
erally: Tensor power iteration is mainly an algorithm for orthogonal tensors (orthogonal ais)
and the general case with additional information, while the simultaneous diagonalization al-
gorithm can decompose the general case without additional information. Our contributions
below are based on the simultaneous diagonalization algorithm because of this additional
power. The robustness of the simultaneous diagonalization algorithm is studied in several
papers; our analysis builds on top of [5, 16].

For the overcomplete regime, we have algorithms such as FOOBI [27] and the works
[1, 2, 5, 14, 15, 18, 30].

Many techniques for the overcomplete case only make sense for orders 4 and higher or
have weaker guarantees in the order-3 case. For example, some techniques use the fact that
a d \times d \times d \times d tensor can be seen as a d2 \times d2 matrix (and similarly for orders higher than
4), while no equally useful operation is available for order-3 tensors. Nevertheless, there are
several results about decomposition in the order-3 case that are relevant to our work.

Kruskal gave a sufficient condition for unique decomposition [25]. A robust version of
Kruskal's uniqueness and an algorithm running in time exponential in the number of compo-
nents is given by Bhaskara, Charikar, and Vijayaraghavan [6]. Kruskal's uniqueness and its
robust version will be building blocks of our results.

Anandkumar, Ge, and Janzamin [1, 2] develop an algorithm based on tensor power itera-
tion that holds up to n \leq \beta d components for any \beta \geq 1. The running time is polynomial in
d and exponential in \beta . The analysis therein requires assumptions such as incoherent compo-
nents (maxi\not =j | \langle ai, aj\rangle | is upper bounded inverse polynomially) to guarantee the convergence
of tensor power iteration.

Recently, sum-of-squares based algorithms are proposed to solve random overcomplete
order-3 tensor decomposition, where all components are Gaussian or uniform on the sphere.
The algorithm in Ge and Ma [14] can decompose up to n \leq d3/2/(log d)O(1) components and
runs in nO(\mathrm{l}\mathrm{o}\mathrm{g}n) time. Furthermore, the algorithm in Hopkins et al. [19] has the running time
boosted to O(nd1+\omega ), where \omega < 2.4 is the exponent of matrix multiplication. At the same
time, the algorithm suffers a sacrifice of handling only up to d4/3/(log d)O(1) components. Ma,
Shi, and Steurer [31] further improved the number of components to d3/2/(log d)O(1) and the
running time to polynomial in n. These works provide an understanding of overcomplete
random tensor decomposition in the regime of high rank, while ours focuses on the mildly
overcomplete case and our main assumption follows naturally from the weaker assumptions
in Kruskal's theorem.

Among works closest to ours, [11, 12] propose an algorithm that is efficient in the mildly
overcomplete case for overcomplete order-3 tensor decomposition under natural nondegeneracy
conditions. Though our results have similar assumptions and computational cost compared to
[11, 12], our algorithm is comparatively a very simple randomized algorithm and we provide
a rigorous robustness analysis.

Blind deconvolution--type problems have a long history in signal processing and specifically
in image processing as a deblurring technique (see, e.g., [29]). The idea of using higher order
moments in blind identification problems is standard too in signal processing, specifically in
independent component analysis (see, e.g., [7, 8]). Our model (1.1) is somewhat different but
very natural and inspired by mixture models.
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With respect to GMMs, we are interested in parameter estimation in high dimension
with no separation assumption (i.e., the means \mu i can be arbitrarily close). Among the most
relevant results in this context we have the following polynomial time algorithms: [20] for
linearly independent means and spherical components (each \Sigma i is a multiple of the identity);
[3] for O(dc) components with identical and known covariance \Sigma ; [5] for O(dc) components
with each \Sigma i being diagonal in the smoothed analysis sense; [17, section 7], [16] for linearly
independent means and spherical components in the presence of Gaussian noise; and [13] for
a general GMM with O(

\surd 
d) components in the sense of smoothed analysis. Our algorithm

expands the family of GMMs for which efficient parameter estimation is possible. It does
not require prior knowledge of the covariance matrix, unlike [3], and can handle more com-
ponents (d components) than [13] at the price of assuming that all covariance matrices are
identical. With respect to recent results on clustering-based algorithms [10, 22], we consider
these works incomparable to ours since clustering-based algorithms typically require some
separation assumptions in the parameters.

2. Notation and preliminaries. For clarity of exposition, we analyze our algorithms in
a computational model where we assume arithmetic operations between real numbers take
constant time. We use the notation poly(\cdot ) to denote a fixed polynomial that is nondecreasing
in every argument. See [17, section 5.3] for a discussion of the complexity of the simultaneous
diagonalization algorithm.

For n \in \BbbN , let [n] = \{ 1, . . . n\} . The unit sphere in \BbbR d is denoted by \scrS d - 1.
Matrices and vectors. For a matrix A \in \BbbR m\times n, we denote by \sigma i(A) its ith largest singular

value, by A\dagger its Moore--Penrose pseudoinverse, and by \kappa (A) = \sigma 1(A)/\sigma \mathrm{m}\mathrm{i}\mathrm{n}(m,n)(A) its con-
dition number. Let vec(A) \in \BbbR mn denote the vector obtained by stacking all columns of A.
Denote by diag(a) the diagonal matrix with diagonal entries from a, where a is a (column)
vector. Let \| \cdot \| 2 denote the spectral norm of a matrix and \| \cdot \| F the Frobenius norm of a
matrix.

In \BbbR d, we denote by \langle a, b\rangle the inner product of two vectors a, b. Let \^a = a/\| a\| 2. For
a set of vectors \{ a1, a2, . . . , an\} , we denote their linear span by span\{ a1, . . . , an\} . We use
[a1, a2, . . . , an] to denote the matrix containing ais as columns. If A = [a1, a2, . . . , an], we have
\^A = [\^a1, \^a2, . . . , \^an] and \~A follows a similar definition. We denote by Am \in \BbbR d\times m the matrix
[a1, a2, . . . , am] for some m < n and by A>m \in \BbbR d\times (n - m) the matrix [am+1, . . . , an]. We say
the matrix A is \rho -bounded if maxi\in [n]\| ai\| 2 \leq \rho . Given a vector a \in \BbbR d or a diagonal matrix

D \in \BbbR d\times d, for r \in \BbbR , notations ar and Dr are used for entrywise power.

Definition 2.1 (see [25, 6]). Let A \in \BbbR m\times n. The Kruskal rank of A, denoted by K-rank(A),
is the maximum k \in [n] such that any k columns of A are linearly independent. Let \tau > 0.
The robust Kruskal rank (with threshold \tau ) of A, denoted by K-rank\tau (A), is the maximum
k \in [n] such that for any subset S \subseteq [n] of size k we have \sigma k(AS) \geq 1/\tau .

Tensors. A symmetric order-3 tensor is a three dimensional array T \in \BbbR d\times d\times d such that
entry Tijk is invariant under permutation of indices i, j, k. For a symmetric order-3 tensor

T \in \BbbR d\times d\times d and a vector x \in \BbbR d, let Tx denote the matrix
\sum d

i,j,k=1 Tijkxieje
\top 
k \in \BbbR d\times d. Let a\otimes 3

be a shorthand for a\otimes a\otimes a. For this paper, the rank of a symmetric tensor T is a shorthand for
its symmetric rank, namely the minimal n such that T =

\sum n
i=1 a

\otimes 3
i . For a rank n symmetric

order-3 tensor T =
\sum n

i=1 a
\otimes 3
i , we say the tensor T is \rho -bounded if maxi\in [n]\| ai\| 2 \leq \rho .
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Cumulants. The cumulants of a random vector X are a sequence of tensors related to
the moment tensors of X: K1(X),K2(X),K3(X), . . . . We only state the properties we
need; see [32] for an introduction. We have K1(X) = \BbbE [X],K2(X) = cov(X),K3(X) =
\BbbE 
\bigl[ 
(X  - \BbbE [X])\otimes 3

\bigr] 
. Cumulants have the property that for two independent random variables

X,Y we have Km(X+Y ) = Km(X)+Km(Y ). The first two cumulants of a standard Gaussian
random vector are the mean and the covariance matrix; all subsequent cumulants are zero.

The simultaneous diagonalization algorithm [28]. The basic idea of the simultaneous diag-
onalization algorithm2 to decompose a symmetric order-3 tensor with linearly independent
components a1, . . . , ad \in \BbbR d is the following: for random unit vectors x, y \in \BbbR d, compute the
(right) eigenvectors of TxT

 - 1
y . With probability 1, the set of eigenvectors is equal to the set of

directions of ais (the eigenvectors recover the ais up to sign and norm). We use a version that
allows for the number of ais to be less than d and that includes an error analysis [17, 16].

3. Overcomplete order-3 tensor decomposition. We consider the problem of decompos-
ing (recovering ais) a symmetric order-3 tensor T \in \BbbR d\times d\times d of rank n:

(3.1) T =
\sum 
i\in [n]

a\otimes 3
i .

When the ais are linearly independent, the simultaneous diagonalization algorithm efficiently
recovers them, given T . But it has no guarantees if the components are linearly dependent.
Our main idea for the linearly dependent case is that it is still possible that a large subset
\{ a1, . . . , ar\} of components is linearly independent, so if we cancel out the other components,
\{ ar+1, . . . , an\} , the residual tensor can be efficiently decomposed via the simultaneous diago-
nalization algorithm. To cancel the other components, we search for a vector x orthogonal to
them so that Tx only involves the linearly independent components. A random or grid search
for an approximately orthogonal x is efficient if the number of components to cancel out is
small.

For clarity, we now describe an idealized version of our algorithm as if we had two vectors
x, y that are exactly orthogonal to the other components. (The actual algorithm uses a
random search to find x, y.) We also want x, y to be generic with this orthogonality property,
so that they can also play the roles of x, y in the simultaneous diagonalization algorithm (see
section 2). Specifically, the genericity here is that the eigenvalues of TxT

 - 1
y are distinct. In that

case, the eigendecomposition of TxT
 - 1
y recovers the directions of \{ a1, . . . , ar\} . Then, a linear

system of equations provides the lengths of \{ a1, . . . , ar\} . Once \{ a1, . . . , ar\} is recovered, the
components of T associated to them can be removed from T (deflation) and the simultaneous
diagonalization algorithm can be applied a second time to the residual tensor to recover
\{ ar+1, . . . , an\} .

3.1. Approximation algorithm and main theorem. In the previous discussion, we argued
that given x, y, and T with exact properties one can decompose T . In this subsection, we show
that by repeatedly trying random choices we can find x, y nearly orthogonal to ar+1, . . . , ar+k.
In practice, instead of the true tensor T , we usually have only an approximation \~T of it,

2The simultaneous diagonalization algorithm has been erroneously called Jennrich's algorithm; see [24] for
a discussion.
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and to be effective in this situation our algorithm comes with a robustness analysis that
shows that if \~T is close to T , then the output is close to the true components of T . Our
formal statements are Algorithm 2 and Theorem 3.1. Our algorithm uses the simultaneous
diagonalization algorithm (Algorithm 1, as presented in [17]) as a subroutine.

Algorithm 1. DIAGONALIZE [17].

Inputs: M\mu ,M\lambda \in \BbbR d\times d, number of vectors r.
1: compute the SVD of M\mu = V DU\top . Let W be matrix whose columns are the left singular

vectors (columns of V ) corresponding to the top r singular values;
2: compute M = (W\top M\mu W )(W\top M\lambda W ) - 1;
3: compute the eigendecomposition: M = P\Lambda P - 1;

Outputs: columns of WP .

Algorithm 2. Approximate tensor decomposition.

Inputs: tensor \~T \in \BbbR d\times d\times d, error tolerance \varepsilon , tensor rank n, overcompleteness k, upper
bound M on \| ai\| 2 for i \in [n]. Let r = n - k (Kruskal rank).

1: repeat
2: pick x, y i.i.d. uniformly at random in \scrS d - 1;
3: invoke Algorithm 1 with \~Tx, \~Ty, and r. Denote the outputs by \~ai for i \in [r];
4: solve the least squares problem: min\xi 1,...,\xi r\| \~Ar diag(\xi i\langle x, \~ai\rangle ) \~A\top 

r  - \~Tx\| 2.
5: set R = \~T  - 

\sum 
i\in [r] \xi i\~a

\otimes 3
i ;

6: pick x\prime , y\prime i.i.d. uniformly at random in \scrS d - 1;
7: invoke Algorithm 1 with Rx\prime , Ry\prime , and k. Denote the outputs by \~ar+i for i \in [k];
8: solve the least squares problem: min\xi r+1,...,\xi r+k

\| \~A>r diag(\xi r+i\langle x\prime , \~ar+i\rangle ) \~A\top 
>r  - Rx\prime \| 2.

9: reconstruct the tensor T \prime =
\sum 

i\in [r+k] \xi i\~a
\otimes 3
i ;

10: until \| T \prime  - \~T\| F \leq \varepsilon , maxi\in [r+k]| \xi i| 1/3 \leq 2M

Outputs: \v ai := \xi 
1/3
i \~ai for i \in [r + k].

Theorem 3.1 (correctness of Algorithm 2). Let T =
\sum 

i\in [r+k] a
\otimes 3
i , 1 \leq k \leq (r  - 2)/2, and

ai \in \BbbR d. Let A = [a1, . . . , ar+k] and K-rank\tau (A) \geq r. Let \tau > 0, M \geq maxi\in [r+k]\| ai\| 2, 0 <
m \leq mini\in [r+k]\| ai\| 2, and 0 < \varepsilon out \leq min\{ 1,m3\} . There exist polynomials poly3.1(d, \tau ,M),

poly\prime 3.1(d, \tau ,M,m - 1), such that if \varepsilon in \leq \varepsilon out/ poly
\prime 
3.1 and \~T is a tensor such that \| T  - \~T\| F \leq 

\varepsilon in, then Algorithm 2 on inputs \~T and \varepsilon = \varepsilon out/ poly3.1 outputs vectors \v a1, . . . , \v ar+k such that
for some permutation \pi of [r+k], we have \| a\pi (i)  - \v ai\| 2 \leq \varepsilon out for all i \in [r+k]. The expected

running time is at most poly(dk, \varepsilon  - k
out, \tau 

k,Mk,m - k).

Proof idea (of Theorem 3.1). The proof has three parts. First, we show that if T \prime (with
which the algorithm finishes) is close to \~T and has bounded components, then the components

of T \prime , \{ \v ai = \xi 
1/3
i \~ai : i \in [r + k]\} , are close to those of T . In the second part, we show that,

assuming good x, y, x\prime , y\prime have been found, the algorithm indeed finishes with a tensor T \prime that
is close to \~T (and therefore close to T via the triangle inequality). We also show how the
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error propagates. In the third part, we show the probabilistic bounds that guarantee efficient
search of good x, y, x\prime , y\prime .

The first part follows from [6, Theorem 2.6] (the version we need is Theorem 4.1 here).
We now informally state what good x, y means. Note that in the idealized case, x, y are

chosen to be orthogonal to k = n  - r vectors and to be generic, meaning that TxT
 - 1
y has

distinct eigenvalues. In Algorithm 2, we rely on random search to find good x, y, namely x, y
that satisfy the following:

1. nearly orthogonal to last k terms: | \langle y, \^ar+i\rangle | are small for i \in [k] (and similarly for x);
2. nonorthogonality on first r terms: | \langle y, \^ai\rangle | are lower bounded for i \in [r] (and similarly

for x);
3. the eigenvalues of TxT

 - 1
y , \langle x, \^ai\rangle /\langle y, \^ai\rangle , are well-separated.

Properties 1 and 2 guarantee that we have r components with noise after contraction, and
property 3 guarantees that the simultaneous diagonalization algorithm can be applied to
contracted matrices. We will revisit these properties in subsection 4.3. There are also similar
properties for x\prime , y\prime .

For the second part, we will assume that we have found good vectors x, y. Theorem 4.3
(from [16]) and Lemma 4.4 guarantee that we can simultaneously diagonalize matrices \~Tx and
\~Ty using the simultaneous diagonalization algorithm (Algorithm 1), and the outputs are close
to the directions of ais. Lemma 4.5 shows that we can recover approximately the lengths of ais
by solving a least squares problem once we have the directions. At this point, we completed
the recovery of r components. Lemma 4.6 shows that when the deflation error is small, the
residual tensor R can be decomposed in the same way and the last k directions are recovered.
At the end of the second part, Lemma 4.7 shows that the lengths of the last k components
are approximately recovered.

The third part is shown in Lemmas 4.10 and 4.11.

Remark 3.2. The constraint 1 \leq k \leq (r - 2)/2 on the rank is because of Kruskal's theorem:
we need 2(r + k) + 2 \leq 3r to guarantee identifiability.

Remark 3.3. Theorem 3.1 has an immediate extension to order-3p symmetric tensors for
integer p > 1 by ``batching"" each set of p modes together and reshaping into a dp \times dp \times dp

tensor. However, for higher order tensors, additional tools are available. Hence we restrict
ourselves to the (in this sense) harder case of order-3 tensors.

4. Proof of Theorem 3.1. In this section, we implement the three parts mentioned in
the ``proof idea"" in subsections 4.1 to 4.3, respectively. We combine them in subsection 4.4.

4.1. Uniqueness of decomposition. We show that if Algorithm 2 satisfies its termination
condition, then its outputs are close to the components of T . We deduce this directly from
the following known result on the stability of tensor decompositions.

Theorem 4.1 (see [6, Theorem 5]). Suppose a rank R tensor T =
\sum 

i\in [R] a
\otimes 3
i \in \BbbR d\times d\times d

is \rho -bounded. Let A = [a1, . . . , aR] with 3K-rank\tau (A) \geq 2R + 2. Then, for every \varepsilon \prime \in (0, 1),
there exists \varepsilon = \varepsilon \prime / poly4.1(R, \tau , \rho , \rho \prime , d) for a fixed polynomial poly4.1 so that for any other
\rho \prime -bounded decomposition T \prime =

\sum 
i\in [R](a

\prime 
i)
\otimes 3 with \| T \prime  - T\| F \leq \varepsilon , there exist a permutation

matrix \Pi and diagonal matrix \Lambda such that \| \Lambda 3  - I\| F \leq \varepsilon \prime and \| A\prime  - A\Pi \Lambda \| F \leq \varepsilon \prime .
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The original statement in [6] explicitly assumes that T (the sum of R rank-1 tensors)
has rank R, but this assumption is redundant: a tensor T =

\sum 
i\in [R] a

\otimes 3
i \in \BbbR d\times d\times d with

3K-rank(A) \geq 2R + 2 cannot have another decomposition with less than R terms because
of Kruskal's uniqueness theorem [25, Theorem 4a]. Also, the original statement in [6] is
for the nonsymmetric case and we only state here the version we need, specialized to the
symmetric case. This restatement is not completely obvious because a symmetric tensor
with minimal length symmetric decomposition of length R (i.e., with symmetric rank equal
to R) could have a nonsymmetric decomposition of shorter length in general. But under
Kruskal's condition, 3K-rank\tau (A) \geq 2R + 2 (implied by the robust Kruskal condition in
Theorem 4.1), Kruskal's uniqueness theorem [25, Theorem 4a] implies that the symmetric
and the nonsymmetric decompositions (and ranks) of such a T coincide.

Note that in Theorem 4.1 a scaling matrix \Lambda is introduced. We will use the following
corollary instead to have a handier result without the scaling matrix.

Corollary 4.2. In the setting of Theorem 4.1, there exists a polynomial poly4.2(R, \tau , \rho , \rho \prime , d)
such that if \varepsilon \prime \in (0, 1) and \varepsilon = \varepsilon \prime / poly4.2(R, \tau , \rho , \rho \prime , d), then for any other \rho \prime -bounded decom-
position T \prime =

\sum 
i\in [R](a

\prime 
i)
\otimes 3 with \| T \prime  - T\| F \leq \varepsilon , there exists a permutation \pi of [R] such that

for all i \in [R], \| a\pi (i)  - a\prime i\| 2 \leq \varepsilon \prime .

Proof. We assume that the permutation is the identity. Let c = (1 + 4\rho /3) and poly4.2 =
cpoly4.1. By Theorem 4.1, we have that for each i \in [R]: \| a\prime i  - \lambda iai\| 2 \leq c - 1\varepsilon \prime and | \lambda 3

i  - 
1| \leq c - 1\varepsilon \prime . Since | x  - 1| \leq 4| x3  - 1| /3 for all x \in \BbbR , the second inequality implies that
| \lambda i  - 1| \leq 4| \lambda 3

i  - 1| /3 \leq 4c - 1\varepsilon \prime /3. Therefore \| a\prime i  - ai\| 2 \leq \| a\prime i  - \lambda iai\| 2 + | \lambda i  - 1| \| ai\| 2 \leq 
(1 + 4\rho /3)c - 1\varepsilon \prime = \varepsilon \prime .

4.2. Robust decomposition. In this subsection, we will derive the forward error prop-
agation of Algorithm 2, i.e., how the output error depends on the input error in each step
of Algorithm 2. We will assume throughout this subsection that we already have two unit
vectors x, y that are nearly orthogonal to \^ar+1, . . . , \^ar+k, that is, | \langle x, \^ar+i\rangle | , | \langle y, \^ar+i\rangle | \leq \theta for
i \in [k], where \theta will be chosen later, and K-rank\tau (A) \geq r. Let E\mathrm{i}\mathrm{n} = T  - \~T be the input
error tensor. Also recall that \| ai\| \in [m,M ]. We summarize the roadmap of this subsection
in Figure 1.

Recover the directions \^a1, . . . , \^ar
Lemma 4.4

Recover the norms \| a1\| 2, . . . , \| ar\| 2
Lemma 4.5

Deflation

Recover the directions \^ar+1, . . . , \^ar+k

Lemma 4.6
Recover the norms \| ar+1\| 2, . . . , \| ar+k\| 2

Lemma 4.7

Figure 1. Roadmap of subsection 4.2.

Part 1: Robust diagonalization. We first cite the robust analysis of Algorithm 1.

Theorem 4.3 (see [16, Theorem 5.4, Lemmas 5.1, 5.2]). Let T\mu =
\sum 

i\in [r] \mu iaia
\top 
i =

Adiag(\mu )A\top , T\lambda =
\sum 

i\in [r] \lambda iaia
\top 
i = Adiag(\lambda )A\top , A = [a1, . . . , ar], ai \in \BbbR d, \| ai\| = 1,
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\lambda i, \mu i \in \BbbR for i \in [r]. Suppose (1) \sigma r(A) > 0, (2) (\forall i) 0 < kl \leq | \mu i| , | \lambda i| \leq ku, and
(3) (\forall i \not = j) | \mu i/\lambda i  - \mu j/\lambda j | \geq \alpha > 0. Let 0 < \varepsilon 4.3 < 1, and let \~T\mu , \~T\lambda be matrices such that

\| T\mu  - \~T\mu \| F , \| T\lambda  - \~T\lambda \| F \leq \varepsilon 4.3k2l \sigma r(A)3 \mathrm{m}\mathrm{i}\mathrm{n}\{ \alpha ,1\} 
211\kappa (A)kur2

. Then Algorithm 1 on input \~T\mu , \~T\lambda outputs unit

vectors \~a1, . . . , \~ar such that for some permutation \pi of [r] and signs s1, . . . , sr \in \{ \pm 1\} and for
all i \in [r] we have \| a\pi (i)  - si\~ai\| \leq \varepsilon 4.3. It runs in time poly(d, 1/\alpha , 1/kl, 1/\sigma r(Ar), 1/\varepsilon 4.3).

Now we apply Theorem 4.3 to our case: let Ex = Tx  - \~Tx and Ey = Ty  - \~Ty. Write \~Tx =
\^ArDx

\^A\top 
r + \^A>rD

\prime 
x
\^A\top 
>r + (E\mathrm{i}\mathrm{n})x, where \^Ar contains \^ais as columns, Dx = diag(\| ai\| 3\langle x, \^ai\rangle )

for i \in [r], and \^A>r contains \^ar+is, D
\prime 
x = diag(\| ar+i\| 3\langle x, \^ar+i\rangle ) for i \in [k]. Then we have

(4.1) \| Ex\| F = \| \^A>rD
\prime 
x
\^A\top 
>r + (E\mathrm{i}\mathrm{n})x\| F \leq kM3\theta + \varepsilon in,

and similarly for Ey. The following lemma guarantees the correctness of step 3 in Algorithm 2.

Lemma 4.4 (direction estimation). Let \~a1, . . . , \~ar be the outputs of step 3 in Algorithm 2.
If (1) \forall i \in [r]: 0 < kl/m

3 \leq | \langle x, \^ai\rangle | , | \langle y, \^ai\rangle | \leq 1, and (2) \forall i, j \in [r], i \not = j:
\bigm| \bigm| \langle x, \^ar\rangle /\langle y, \^ar\rangle  - 

\langle x, \^ar\rangle /\langle y, \^ar\rangle 
\bigm| \bigm| \geq \alpha > 0, then there exist signs s1, . . . , sr \in \{ \pm 1\} and a permutation \pi of [r]

such that for all i \in [r],

\| \^a\pi (i)  - si\~ai\| \leq \varepsilon 4.4 :=
211\tau 4M7r5/2(kM3\theta + \varepsilon in)

k2l min\{ \alpha , 1\} 
.

This step runs in time poly(d, \alpha  - 1, k - 1
l , \tau ,M, \varepsilon  - 1

4.4).

Proof. Condition 1 in Theorem 4.3 holds since K-rank\tau (A) \geq r: \sigma r( \^Ar) \geq \sigma r(Ar)/M \geq 
1/(\tau M). Conditions 2 and 3 in Theorem 4.3 hold because of our assumptions. Combining
(4.1) and K-rank\tau (A) \geq r, which implies \sigma r( \^Ar)

3\kappa ( \^Ar)
 - 1 = \sigma r( \^Ar)

4\sigma 1( \^Ar)
 - 1 \geq (

\surd 
r\tau 4M4) - 1,

the assumptions of Theorem 4.3 are satisfied with parameter ku = M3. The claim follows.

Since x, y are actually chosen at random, we provide the probability for assumptions of
Lemma 4.4 to hold in subsection 4.3.

Part 2: Norm estimation. The next step is to recover \| ai\| 2. This can be done by solving
the least squares problem in step 4. To see this, one can verify that when \~ai = \^ai and \~Tx = Tx

(no error in earlier steps), \xi i = \| ai\| 32 is a zero error solution to step 4. The following lemma
guarantees that we can approximate the norm via step 4.

Lemma 4.5 (norm estimation). Let \~b1, . . . ,\~br be the columns of ( \~A\dagger 
r)\top . If Lemma 4.4 holds

with \varepsilon 4.4 \leq min\{ kl/(2m3), (2
\surd 
r\tau M) - 1\} , then \xi i = \~T (x,\~bi,\~bi)/\langle x, \~ai\rangle for i \in [r] is the unique

solution to step 4 in Algorithm 2 and for the permutation \pi , signs si in Lemma 4.4, and all
i \in [r] we have\bigm| \bigm| \| a\pi (i)\| 32  - si\xi i

\bigm| \bigm| \leq \varepsilon 4.5 := 2k - 1
l m3M2

\bigl[ 
3M\varepsilon 4.4 + rM\varepsilon 24.4 + 4\tau 2(kM3\theta + \varepsilon in)

\bigr] 
.

Proof. For simplicity, we assume the permutation is the identity. We start by showing that
\sigma r( \~Ar) > 0, which implies \~A\dagger 

r
\~Ar = Ir and thus \~bi is orthogonal to \~aj for i, j \in [r], i \not = j. By

Lemma 4.4, the distance between corresponding columns of \~Ar diag(si) and \^Ar is at most \varepsilon 4.4.
Therefore by Theorem B.1 we have

\bigm| \bigm| \sigma r\bigl( \~Ar diag(si)
\bigr) 
 - \sigma r( \^Ar)

\bigm| \bigm| \leq \| \~Ar diag(si) - \^Ar\| 2 \leq 
\surd 
r\varepsilon 4.4,

which implies

(4.2) \sigma r( \~Ar) = \sigma r
\bigl( 
\~Ar diag(si)

\bigr) 
\geq \sigma r( \^Ar) - 

\surd 
r\varepsilon 4.4 \geq (\tau M) - 1  - 

\surd 
r\varepsilon 4.4 \geq 1/(2\tau M).
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Next, we show that \xi i is the unique solution to step 4. We restate the least squares
problem in a matrix-vector product form, min\xi i\| \~A\odot 2[\langle x, \~a1\rangle \xi 1, . . . , \langle x, \~ar\rangle \xi r]\top  - vec( \~Tx)\| 2,
where \~A\odot 2 =

\bigl[ 
vec(\~a1\~a

\top 
1 ), . . . , vec(\~ar\~a

\top 
r )

\bigr] 
\in \BbbR d2\times r. It follows that \sigma r( \~A

\odot 2) = \sigma r( \~Ar)
2 > 0 and

thus the solution is unique. Let \~B\odot 2 =
\bigl[ 
vec(\~b1\~b

\top 
1 ), . . . , vec(

\~br\~b
\top 
r )

\bigr] \top 
, and notice that \~B\odot 2 \~A\odot 2 =

Ir. The solution to the least squares problem is then given by
\bigl[ 
\langle x, \~a1\rangle \xi 1, . . . , \langle x, \~ar\rangle \xi r

\bigr] \top 
=

\~B\odot 2 vec( \~Tx) =
\bigl[ 
\~b\top 1

\~Tx
\~b1, . . . ,\~b

\top 
r
\~Tx
\~br
\bigr] \top 

, which implies \xi i = \~T (x,\~bi,\~bi)/\langle x, \~ai\rangle .
Finally, we show that si\xi i is close to \| ai\| 32. The deviation of si\xi i from \| ai\| 32 is bounded

by

\bigm| \bigm| \| ai\| 32  - si\xi i
\bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| \| ai\| 32  - 1

\langle x, si\~ai\rangle 

\Bigl( \sum 
j\in [r]

\langle x, aj\rangle \langle \~bi, aj\rangle 2 +\~b\top j Ex
\~bj

\Bigr) \bigm| \bigm| \bigm| \bigm| 
\leq 

\bigm| \bigm| \bigm| \bigm| \langle x, \^ai\rangle \langle \~bi, \^ai\rangle 2\langle x, si\~ai\rangle 
 - 1

\bigm| \bigm| \bigm| \bigm| \underbrace{}  \underbrace{}  
\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l} \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n} si\~ai \mathrm{c}\mathrm{l}\mathrm{o}\mathrm{s}\mathrm{e} \mathrm{t}\mathrm{o} \^ai

(\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e} \mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t} \langle \~bi,\~ai\rangle =1)

\| ai\| 32 +
\sum 

j\in [r],j \not =i

\biggl( 
\| aj\| 32

\bigm| \bigm| \bigm| \bigm| \langle x, \^aj\rangle \langle \~bi, \^aj\rangle 2\langle x, si\~ai\rangle 

\bigm| \bigm| \bigm| \bigm| \underbrace{}  \underbrace{}  
\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l} \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n} sj\~aj \mathrm{c}\mathrm{l}\mathrm{o}\mathrm{s}\mathrm{e} \mathrm{t}\mathrm{o} \^aj

(\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e} \mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t} \langle \~bi,\~aj\rangle =0)

+

\bigm| \bigm| \bigm| \bigm| \~b\top i Ex
\~bi

\langle x, si\~ai\rangle 

\bigm| \bigm| \bigm| \bigm| \underbrace{}  \underbrace{}  
\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r} \mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m} Ex

\biggr) 
.(4.3)

We analyze the deviation of each term in (4.3). By standard arguments, using the triangle
and Cauchy--Schwarz inequalities, we have for all i, j \in [r],

| \langle x, si\~ai\rangle | \geq | \langle x, \^ai\rangle |  - \varepsilon 4.4 \geq kl/m
3  - \varepsilon 4.4 \geq kl/(2m

3),

| \langle x, sj\~aj\rangle  - \langle x, \^aj\rangle | \leq \varepsilon 4.4, | \langle \~bi, sj\~aj\rangle  - \langle \~bi, \^aj\rangle | \leq \varepsilon 4.4,
(4.4)

where the first line comes from the assumptions of the lemma, and the last line follows from
Lemma 4.4. Notice that \~bi is orthogonal to \~aj for j \not = i, and \langle \~bi, \~ai\rangle = 1. Equation (4.4)
implies that

(4.5)

\bigm| \bigm| \bigm| \bigm| \langle x, \^ai\rangle \langle \~bi, \^ai\rangle 2\langle x, si\~ai\rangle 
 - 1

\bigm| \bigm| \bigm| \bigm| \leq 6k - 1
l m3\varepsilon 4.4,

\bigm| \bigm| \bigm| \bigm| \langle x, \^aj\rangle \langle \~bi, \^aj\rangle 2\langle x, si\~ai\rangle 

\bigm| \bigm| \bigm| \bigm| \leq 2k - 1
l m3\varepsilon 24.4.

The last term in (4.3) is bounded by

(4.6)

\bigm| \bigm| \bigm| \bigm| \~b\top i Ex
\~bi

\langle x, si\~ai\rangle 

\bigm| \bigm| \bigm| \bigm| \leq 2k - 1
l m3\| Ex\| 2\| \~bi\| 22 \leq 2k - 1

l m3\| Ex\| F\sigma r( \~Ar)
 - 2 \leq 8k - 1

l m3\tau 2M2\| Ex\| F ,

where the second inequality follows from the definition of \~bi, and the last inequality applies
(4.2). Combining (4.1), (4.3), (4.5), and (4.6) gives the desired result.

Part 3: Deflation. After we deflate T with the previously recovered r components, the in-
duced error with respect to the exact deflation

\sum r+k
i=r+1 a

\otimes 3
i is given by E\prime = E\mathrm{i}\mathrm{n}+

\sum 
i\in [r](a

\otimes 3
i  - 

\xi i\~a
\otimes 3
i ). Now we show that the remaining tensor can be decomposed with the same strategy

via step 7 in Algorithm 2.

Lemma 4.6 (direction estimation). Let \~ar+1, . . . , \~ar+k be the outputs of step 7 in Algo-
rithm 2. If (1) \forall i \in [k]: 0 < k\prime l/m

3 \leq 
\bigm| \bigm| \langle x\prime , \^ar+i\rangle 

\bigm| \bigm| , \bigm| \bigm| \langle y\prime , \^ar+i\rangle 
\bigm| \bigm| \leq 1, and (2) \forall i, j \in [k], i \not = j:



OVERCOMPLETE ORDER-3 TENSOR DECOMPOSITION 347\bigm| \bigm| \langle x\prime , \^ar+i\rangle /\langle y\prime , \^ar+i\rangle  - \langle x\prime , \^ar+j\rangle /\langle y\prime , \^ar+j\rangle 
\bigm| \bigm| \geq \alpha \prime > 0, then there exist signs sr+1, . . . , sr+k \in 

\{ \pm 1\} and a permutation \pi \prime of [k] such that for all i \in [k],

\| \^ar+\pi \prime (i)  - sr+i\~ar+i\| 2 \leq \varepsilon 4.6 :=
211\tau 4M7k5/2\| E\prime \| F
(k\prime l)

2min\{ \alpha \prime , 1\} 
.

This step runs in time poly(d, k\prime l
 - 1, \alpha \prime  - 1, \tau ,M, \varepsilon  - 1

4.6).

Proof. The proof is similar to the proof of Lemma 4.4 and is thus omitted here.

With \~ar+1, . . . , \~ar+k, we can further approximate the norm of ar+1, . . . , ar+k, in the same
way we did for the first r components, via step 8. The following lemma guarantees it works.

Lemma 4.7 (norm estimation). Let \~br+1, . . . ,\~br+k be the columns of ( \~A\dagger 
>r)

\top . If Lemma 4.6
holds with \varepsilon 4.6 \leq min\{ k\prime l/(2m3), (2

\surd 
k\tau M) - 1\} , then \xi r+i = R(x\prime ,\~br+i,\~br+i)/\langle x\prime , \~ar+i\rangle , for

i \in [k] is the unique solution to step 8 in Algorithm 2 and for the permutation \pi \prime , signs sr+i

in Lemma 4.6, and all i \in [k] we have\bigm| \bigm| \| ar+\pi \prime (i)\| 3  - sr+i\xi r+i

\bigm| \bigm| \leq \varepsilon 4.7 := 2k\prime  - 1
l m3M2

\bigl[ 
3M\varepsilon 4.6 + kM\varepsilon 24.6 + 4\tau 2\| E\prime \| F

\bigr] 
.

Proof. The proof is similar to the proof of Lemma 4.5 and is thus omitted here.

4.3. Probability bounds. We give here bounds on the probability of finding good x, y, x\prime , y\prime 

so that Algorithm 2 succeeds with positive probability. Throughout this subsection, let x, y
be two i.i.d. random vectors distributed uniformly on \scrS d - 1, and let a1, a2, . . . , ar+k be such
that \| ai\| \in [m,M ] and K-rank\tau ([a1, . . . , ar+k]) \geq r, which implies that their directions satisfy
K-rank\tau M ([\^a1, . . . , \^ar+k]) \geq r.

We first list the events for good x, y to hold to apply Lemma 4.4:
1. nearly orthogonal to last k terms: \scrE 1,y = \{ \forall i \in [k], | \langle y, \^ar+i\rangle | \leq \theta \} ;
2. nonorthogonality on first r terms: \scrE 2,y = \{ \forall i \in [r], | \langle y, \^ai\rangle | \geq kl/m

3\} ;
3. the eigenvalue gap: \scrE 3 = \{ \forall i \not = j, i, j \in [r], | \langle x, \^ai\rangle /\langle y, \^ai\rangle  - \langle x, \^aj\rangle /\langle y, \^aj\rangle | \geq \alpha > 0\} .

We have similar events \scrE 1,x, \scrE 2,x. Note that in this subsection kl, \theta , and \alpha are considered as
fixed parameters.

The structure of this subsection is stated as follows: we will first demonstrate our proof
idea for controlling the probability of \scrE 1,y \cap \scrE 2,y. After presenting our idea, we will first analyze
the probability of \scrE 1,y \cap \scrE 2,y and then the probability of \scrE 1,x \cap \scrE 2,x \cap \scrE 3 when conditioned on
the other events of y. Finally, we will collect these subevents and give the probability that all
of them will hold.

It seems that direct union bound--type arguments are insufficient and some nontrivial
conditioning is necessary: First, \scrE 1,x happens with small probability, as meaningful values of
\theta have to be much smaller than kl/m

3 and \alpha . Naively applying the union bound on some
events and analyzing the rest does not give enough wiggle room for a positive probability.
Besides, \scrE 3 is the most complicated in the sense that it controls the difference of two ratios.
As we will see later, after conditioning on y, the ideas of analyzing \scrE 1,y, \scrE 2,y can be reused for
the rest of the events, which makes the analysis easier to follow.

We now state the idea of our argument to bound the probability of \scrE 1,y \cap \scrE 2,y.
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Bands argument. We analyze the events geometrically and replace random unit vectors
by random Gaussian vectors together with concentration of their norm. Let z be a random
Gaussian vector, and let a and b be two unit vectors. An event of the form \{ | \langle z, a\rangle | \leq t1\} 
corresponds to a band, while an event like \{ | \langle z, b\rangle | \geq t2\} corresponds to the complement of
a band. We call them bands of type I and type II, denoted by \scrB 1 and \scrB 2, respectively. To
better illustrate this, we give a demonstration of bands as the shaded areas in Figure 2.

\scrB 1

(a) Band of type I

\scrB 2

(b) Band of type II

Figure 2. Examples of bands.

The intersection of bands of type I can be lower-bounded with a direct use of the Gaussian
correlation inequality, Lemma B.5, while the intersection of bands of different types needs
special care. Consider \scrB 1\cap \scrB 2: when \langle a, b\rangle = 0, the intersection becomes \scrB 1 with a rectangular
region excluded. In this case, the two bands will be orthogonal, and the two events are
independent. In the general case, the excluded region is a parallelogram depending on \langle a, b\rangle .
See Figure 3 for illustration. In the extreme case, two bands are parallel, and hence the
probability will be zero when t1 \leq t2. But when \langle a, b\rangle is not too close to one, we can, when
bounding the probability, replace the parallelogram by a slightly larger rectangular region
without decreasing the final probability too much, which is shown by the white dashed lines
in Figure 3b. This is essentially done by projecting b onto span \{ a\} and span \{ a\} \bot .

(a) Orthogonal intersection (b) Nonorthogonal intersection

Figure 3. Intersection of bands.

We see that events \scrE 1,y, \scrE 2,y are the intersection of bands and their probability is the prob-
ability measure of their intersection. Specifically, we have \scrE 1,y = \cap k

i=i\scrB 1,i, \scrE 2,y = \cap r
j=1\scrB 2,j ,

where \scrB 1,i := \{ | \langle y, \^ar+i\rangle | \leq \theta \} and \scrB 2,j := \{ | \langle y, \^aj\rangle | \geq kl/m
3\} . For the rest of this subsection,

let S = span\{ \^ar+1, . . . , \^ar+k\} \bot , let S\bot = span\{ \^ar+1, . . . , \^ar+k\} , let projS be the orthogonal
projection onto S, and let projS\bot = I - projS . Now we can bound the probability of \scrE 1,y \cap \scrE 2,y.

Lemma 4.8. If kl > 0 and 0 < \theta \leq 2/
\surd 
d, then \BbbP [\scrE 1,y \cap \scrE 2,y] \geq p1 := (\theta 

\surd 
d/8)k

\bigl( 
1/4  - 

r
\sqrt{} 

d/2\pi \tau M(4kl/m
3 +

\surd 
k\tau M\theta )

\bigr) 
.

Proof. Write y = z/\| z\| 2, where z is a standard Gaussian random vector. Consider the
following events corresponding to z for R1, R2 to be chosen later: \scrB \prime 

1,i := \{ | \langle z, \^ar+i\rangle | \leq R1\theta \} 
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and \scrB \prime 
2,j := \{ | \langle z, \^aj\rangle | \geq R2kl/m

3\} . We have

\scrE 1,y \cap \scrE 2,y = (\cap i\scrB 1,i) \cap (\cap j\scrB 2,j) = (\cap i\scrB 1,i) \setminus (\cup j\scrB c
2,j)

\supseteq (\cap i\scrB \prime 
1,i \setminus \{ \| z\| 2 \leq R1\} )\underbrace{}  \underbrace{}  

z \mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{l}\mathrm{y} \mathrm{o}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{g}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l} \mathrm{t}\mathrm{o} \^ar+i \mathrm{w}\mathrm{h}\mathrm{i}\mathrm{l}\mathrm{e} \| z\| >R1

\setminus \cup j

\bigl( 
(\scrB \prime 

2,j)
c \cup \{ \| z\| 2 \geq R2\} 

\bigr) \underbrace{}  \underbrace{}  
z \mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{l}\mathrm{y} \mathrm{o}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{g}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l} \mathrm{t}\mathrm{o} \^aj \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{s}\mathrm{o}\mathrm{m}\mathrm{e} j \mathrm{o}\mathrm{r} \| z\| \geq R2

.

Set \scrE = \cap i\in [k]\scrB \prime 
1,i. Since \scrE \setminus \{ \| z\| 2 \leq R1\} = \scrE \setminus (\{ \| z\| 2 \leq R1\} \cap \scrE ) \supseteq \scrE \setminus (\{ \| projS z\| 2 \leq R1\} \cap \scrE ),

\scrE 1,y \cap \scrE 2,y \supseteq 
\bigl( 
\scrE \setminus (\{ \| projS z\| 2 \leq R1\} \cap \scrE )

\bigr) 
\setminus \cup j((\scrB \prime 

2,j)
c \cup \{ \| z\| 2 \geq R2\} )

= \scrE \setminus 
\Bigl( 
(\{ \| projS z\| 2 \leq R1\} \cap \scrE )

\bigcup 
\cup j\in [r]((\scrB \prime 

2,j)
c \cap \scrE )

\bigcup 
(\{ \| z\| 2 \geq R2\} \cap \scrE )

\Bigr) 
,

which implies

\BbbP [\scrE 1,y \cap \scrE 2,y]

\geq \BbbP [\scrE ] - 
\sum 
j\in [r]

\BbbP [(\scrB \prime 
2,j)

c, \scrE ] - \BbbP [\{ \| projS z\| 2 \leq R1\} , \scrE ] - \BbbP [\{ \| z\| 2 \geq R2\} , \scrE ].(4.7)

We now bound the terms in (4.7). First,

\BbbP [(\scrB \prime 
2,j)

c, \scrE ] = \BbbP 
\bigl[ 
| \langle z, \^aj\rangle | \leq R2kl/m

3
\bigm| \bigm| \scrE \bigr] \BbbP [\scrE ].

Notice that when conditioning on the event | \langle z, \^ar+i\rangle | \leq R1\theta for i \in [k] we have

(4.8) | \langle z,projS\bot \^aj\rangle | = | z\top \^A>r
\^A\dagger 
>r\^aj | \leq R1

\surd 
k\theta \| \^A\dagger 

>r\^aj\| 2 \leq R1

\surd 
k\tau M\theta ,

where the first equality comes from the definition of the projection, the second inequality
follows from the conditioning, and the last one comes from the robust Kruskal rank condition.
Furthermore, we notice that projS \^aj is orthogonal to \^ar+1, . . . , \^ar+k and the conditioning can
therefore be dropped after applying (4.8):

\BbbP 
\bigl[ 
| \langle z, \^aj\rangle | \leq R2kl/m

3
\bigm| \bigm| \scrE \bigr] \leq \BbbP 

\bigl[ 
| \langle z,projS \^aj\rangle | \leq R2kl/m

3 + | \langle z,projS\bot \^a1\rangle | 
\bigm| \bigm| \scrE \bigr] 

\leq \BbbP 
\bigl[ 
| \langle z,projS \^aj\rangle | \leq R2kl/m

3 +R1

\surd 
k\tau M\theta 

\bigr] 
\leq 2(

\surd 
2\pi \| projS \^a1\| 2)

 - 1(R2kl/m
3 +R1

\surd 
k\tau M\theta )

\leq 
\sqrt{} 

2/\pi \tau M(R2kl/m
3 +R1

\surd 
k\tau M\theta ),

where the last two steps follow from bounding the density of a Gaussian distribution from
above and the fact that \{ \^aj , \^ar+1, . . . , \^ar+k\} also satisfies the robust Kruskal rank condition
so that \| projS \^aj\| 2 \geq (\tau M) - 1.

We use the following bounds for the rest of the terms in (4.7):

\BbbP [\scrE ] \geq (R1\theta /4)
k (Lemma B.5),

\BbbP [\| projS z\| 2 \leq R1, \scrE ] = \BbbP [\| projS z\| 2 \leq R1]\BbbP [\scrE ] \leq \BbbP [\scrE ]/2 (set R1 =
\surd 
d/2),

\BbbP [\| z\| 2 \geq R2, \scrE ] = \BbbP [\| z\| 2 \geq R2 | \scrE ]\BbbP [\scrE ] = (1 - \BbbP [\| z\| 2 \leq R2 | \scrE ])\BbbP [\scrE ]
\leq (1 - \BbbP [\| z\| 2 \leq R2])\BbbP [\scrE ] (Gaussian correlation ineq., Theorem B.4)

\leq \BbbP [\scrE ]/4 (Markov's inequality, set R2 = 2
\surd 
d).
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Combining the previous estimates, we get \BbbP [\scrE 1,y \cap \scrE 2,y] \geq \BbbP [\scrE ]
\bigl( 
1 - 1/2 - r

\sqrt{} 
2/\pi \tau M(R2kl/m

3+

R1

\surd 
k\tau M\theta ) - 1/4

\bigr) 
. The claim follows.

At this point, we are ready to analyze the probability of \scrE 3.
Lemma 4.9. In the setting of Lemma 4.8, let p2 = p1  - (\theta 

\surd 
d/8)kr2\tau M(

\surd 
dk\theta \tau Mk - 1

l m3 +
\alpha ). Then \BbbP [\scrE 3 \cap \scrE 1,x \cap \scrE 2,x | \scrE 1,y, \scrE 2,y] \geq p2.

Proof. We start with our idea to bound the probability of the ``eigenvalue gap""
\bigm| \bigm| \bigm| \langle x,\^as\rangle \langle y,\^as\rangle  - 

\langle x,\^at\rangle 
\langle y,\^at\rangle 

\bigm| \bigm| \bigm| \geq \alpha for s, t \in [r], s \not = t. Since we condition on | \langle y, \^ai\rangle | not being too small for all i \in [r],

when further conditioned on y, we have

\BbbP 
\biggl[ \bigm| \bigm| \bigm| \langle x, \^as\rangle \langle y, \^as\rangle 

 - \langle x, \^at\rangle 
\langle y, \^at\rangle 

\bigm| \bigm| \bigm| \geq \alpha 

\bigm| \bigm| \bigm| \bigm| \scrE 1,y, \scrE 2,y\biggr] = \BbbE 
\biggl[ 
\BbbP 
\biggl[ \bigm| \bigm| \bigm| \langle x, \^as\rangle \langle y, \^as\rangle 

 - \langle x, \^at\rangle 
\langle y, \^at\rangle 

\bigm| \bigm| \bigm| \underbrace{}  \underbrace{}  
\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s} \mathrm{a}\mathrm{r}\mathrm{e} fi\mathrm{x}\mathrm{e}\mathrm{d}

\geq \alpha 

\bigm| \bigm| \bigm| \bigm| y\biggr] \bigm| \bigm| \bigm| \bigm| \scrE 1,y, \scrE 2,y\biggr] .
Therefore it is enough to show a uniform lower bound for \BbbP [| \langle x,Cs\^as  - Ct\^at\rangle | \geq \alpha ], where
| Cs| , | Ct| are in [1, k - 1

l m3]. We notice that the set \{ | \langle x,Cs\^as - Ct\^at\rangle | \geq \alpha \} generates a type II
band, denoted by \scrB 3,st. Therefore the target event is the intersection of k type I bands \scrB 1,i,
r type II bands \scrB 2,j , and

\bigl( 
r
2

\bigr) 
type II bands \scrB 3,st. More precisely,

\BbbP [\scrE 3, \scrE 1,x, \scrE 2,x | \scrE 1,y, \scrE 2,y] \geq inf
| Cs| ,| Ct| \in [1,k - 1

l m3]
\BbbP [\cap i\in [k]\scrB 1,i,\cap j\in [r]\scrB 2,j ,\cap s,t\in [r],s\not =t\scrB 3,st].

We reuse ideas from the proof of Lemma 4.8. Write x = u/\| u\| 2 with u being standard Gauss-
ian. Consider the following events for u: \scrB \prime 

1,i := \{ | \langle u, \^ar+i\rangle | \leq 
\surd 
d\theta /2\} , \scrB \prime 

2,j := \{ | \langle u, \^aj\rangle | \geq 
2
\surd 
dkl/m

3\} , and \scrB \prime 
3,st := \{ | \langle u,Cs\^as  - Ct\^at\rangle | \geq 2

\surd 
d\alpha \} . Set \scrE = \cap i\in [k]\scrB \prime 

1,i. With the concen-

tration of \| u\| 2 in [
\surd 
d/2, 2

\surd 
d], the target probability becomes

\BbbP [\cap i\in [k]\scrB 1,i, \cap j\in [r] \scrB 2,j ,\cap s,t\in [r],s\not =t\scrB 3,st] \geq \BbbP 
\Bigl[ 
\scrE \setminus 

\Bigl( 
(\{ \| projS u\| 2 \leq 

\surd 
d/2\} \cap \scrE )\bigcup 

\cup j\in [r]((\scrB \prime 
2,j)

c \cap \scrE )
\bigcup 

(\{ \| u\| 2 \geq 2
\surd 
d\} \cap \scrE )

\bigcup 
\cup s\not =t\in [r]((\scrB \prime 

3,st)
c \cap \scrE )

\Bigr) \Bigr] 
\geq p1  - 

\sum 
s,t\in [r],s\not =t

\BbbP [\scrE , (\scrB \prime 
3,st)

c].(4.9)

Now we consider the summand, which is the intersection of k+1 type I bands. Take s = 1, t = 2
(the rest is similar), and write v = C1\^a1  - C2\^a2 = projS v + projS\bot v. Then

\BbbP [\scrE , (\scrB \prime 
3,12)

c] = \BbbP 
\bigl[ 
| \langle u, v\rangle | \leq 2

\surd 
d\alpha 

\bigm| \bigm| \scrE \bigr] \BbbP [\scrE ]
\leq \BbbP 

\bigl[ 
| \langle u,projS v\rangle | \leq 2

\surd 
d\alpha + | \langle u,projS\bot v\rangle | 

\bigm| \bigm| \scrE \bigr] \BbbP [\scrE ].(4.10)

When conditioning on \scrE , \langle u,projS\bot v\rangle is bounded by

| \langle u,projS\bot v\rangle | = | u\top \^A>r
\^A\dagger 
>r(C1\^a1  - C2\^a2)| \leq 

\surd 
dk\theta \| \^A\dagger 

>r(C1\^a1  - C2\^a2)\| 2/2

\leq 
\surd 
dk\theta \tau Mk - 1

l m3.
(4.11)
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With (4.11), we can drop the conditioning in (4.10):

\BbbP [\scrE \cap (\scrB \prime 
3,12)

c] \leq \BbbP 
\bigl[ 
| \langle u,projS v\rangle | \leq \alpha +

\surd 
dk\theta \tau Mk - 1

l m3
\bigr] 
\BbbP [\scrE ]

\leq 2(\alpha +
\surd 
dk\theta \tau Mk - 1

l m3)/(
\surd 
2\pi \| projS v\| 2)\BbbP [\scrE ]

\leq 2\tau M(\alpha +
\surd 
dk\theta \tau Mk - 1

l m3)\BbbP [\scrE ].

(4.12)

The last inequality holds because the set \{ \^a1, \^a2, \^ar+1, . . . , \^ar+k\} satisfies the robust Kruskal
rank condition, and thus

\| projS v\| 2 = \| C1\^a1  - C2\^a2  - \^A>r
\^A\dagger 
>rv\| 2 \geq (\tau M) - 1

\sqrt{} 
C2
1 + C2

2 + \| \^A\dagger 
>rv\| 22 \geq 

\surd 
2(\tau M) - 1.

The combination of Lemma B.5 and (4.9) and (4.12) gives the desired probability.

Finally, we are in a place to give the probability that all the events are true for x, y.

Lemma 4.10. In the setting of Lemma 4.8, \BbbP [\scrE 1,x, \scrE 1,y, \scrE 2,x, \scrE 2,y, \scrE 3] \geq p1p2. In particu-
lar, the choices kl =

\surd 
2\pi \tau  - 1M - 1m3r - 1d - 1/2/64, \alpha = \tau  - 1M - 1r - 2/16, and \theta (r

\surd 
dk\tau 2M2 +

64r3\tau 3M3d
\surd 
k/

\surd 
2\pi ) \leq 1/16 imply \BbbP [\scrE 1,x, \scrE 1,y, \scrE 2,x, \scrE 2,y, \scrE 3] \geq 

\bigl( 
\theta 
\surd 
d
\big/ 
8)2k/256.

Proof. The first part follows by combining Lemmas 4.8 and 4.9. For the second part, since
p2 \leq p1, the claim follows by using our choices in \BbbP [\scrE 1,x, \scrE 1,y, \scrE 2,x, \scrE 2,y, \scrE 3] \geq p22.

At this point, we finished the analysis of the randomness in the first partial tensor de-
composition, to recover the first r components. In the next lemma, we give the probability
that random vectors x\prime , y\prime satisfy the assumptions of Lemma 4.6. The events will be de-
noted by \scrE \prime 

2,x = \{ \forall i \in [k], | \langle x\prime , \^ar+i\rangle | \geq k\prime l/m
3\} , \scrE \prime 

2,y = \{ \forall i \in [k], | \langle y\prime , \^ar+i\rangle | \geq k\prime l/m
3\} , and

\scrE \prime 
3 = \{ \forall i \not = j, i, j \in [k], | \langle x\prime , \^ar+i\rangle /\langle y\prime , \^ar+i\rangle  - \langle x\prime , \^ar+j\rangle /\langle y\prime , \^ar+j\rangle | \geq \alpha \prime > 0\} .

Lemma 4.11. Let x\prime , y\prime be i.i.d. uniformly random in \scrS d - 1. For \^ar+1, . . . , \^ar+k, and k\prime l, \alpha 
\prime >

0, we have \BbbP [\scrE \prime 
2,x, \scrE \prime 

2,y, \scrE \prime 
3] \geq (1 - k2

\surd 
ed\tau M\alpha \prime  - 

\surd 
edkk\prime l/m

3)(1 - 
\surd 
edkk\prime l/m

3). In particular,

the choices k\prime l = m3k - 1d - 1/2/(4
\surd 
e), \alpha \prime = \tau  - 1M - 1k - 2d - 1/2/(4

\surd 
e) imply \BbbP [\scrE \prime 

2,x, \scrE \prime 
2,y, \scrE \prime 

3] \geq 
3/8.

Proof. The first part reuses ideas from the proofs of Lemmas 4.8 and 4.9. We first separate
the intersection of events: \BbbP [\scrE \prime 

2,x \cap \scrE \prime 
2,y \cap \scrE \prime 

3] = \BbbP [\scrE \prime 
2,x \cap \scrE \prime 

3 | \scrE \prime 
2,y]P [\scrE \prime 

2,y] \geq (\BbbP [\scrE \prime 
3 | \scrE \prime 

2,y]  - 
\BbbP [(\scrE \prime 

2,x)
c])\BbbP [\scrE \prime 

2,y]. By Lemma B.3, \BbbP [\scrE \prime 
2,x] and \BbbP [\scrE \prime 

2,y] are at least 1 - 
\surd 
edkk\prime l/m

3. Also

\BbbP [(\scrE \prime 
3)

c | \scrE \prime 
2,y] = \BbbE 

\biggl[ 
\BbbP 
\biggl[ 

min
i\not =j,i,j\in [k]

\bigm| \bigm| \bigm| \bigm| \langle x\prime , \^ar+i\rangle 
\langle y\prime , \^ar+i\rangle 

 - \langle x\prime , \^ar+j\rangle 
\langle y\prime , \^ar+j\rangle 

\bigm| \bigm| \bigm| \bigm| \leq \alpha \prime 
\bigm| \bigm| \bigm| \bigm| y\prime \biggr] \bigm| \bigm| \bigm| \bigm| \scrE \prime 

2,y

\biggr] 
.

Consider a uniform upper bound for \BbbP [mini\not =j,i,j\in [k]| \langle x\prime , C \prime 
i\^ar+i - C \prime 

j\^ar+j\rangle | \leq \alpha \prime ], where | C \prime 
i| , | C \prime 

j | 
are lower bounded by 1. Therefore, again by Lemma B.3, we have \BbbP [(\scrE \prime 

3)
c| \scrE \prime 

2,y] \leq k(k  - 
1)
\surd 
ed\tau M\alpha \prime /(2

\surd 
2) \leq k2

\surd 
ed\tau M\alpha \prime . Combining everything gives the desired result. The

second part follows directly from our choices of k\prime l and \alpha \prime .

4.4. Putting everything together. In this subsection, we prove Theorem 3.1.

Proof of Theorem 3.1. Without loss of generality, assume \pi is the identity, and assume for
a moment that \varepsilon in, \theta are small enough so that (1) the assumptions of Lemmas 4.5 and 4.7 are
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satisfied; and (2) \varepsilon 4.4 and \varepsilon 4.6 are smaller than 1 so that we can replace \varepsilon 24.4 and \varepsilon 24.6 by \varepsilon 4.4 and
\varepsilon 4.6 in the expression of \varepsilon 4.5 and \varepsilon 4.7. We trace the error propagation backwards and show how
we can reach \varepsilon accuracy for the algorithm to terminate while achieving nonnegligible success
probability per iteration. The reconstruction error is bounded with Lemmas 4.4 to 4.7:

\| T \prime  - \~T\| F \leq \| \~T  - T\| F +
\sum 

i\in [r+k]

\| a\otimes 3
i  - \xi i\~a

\otimes 3
i \| F

\leq \varepsilon in +
\sum 

i\in [r+k]

\bigm| \bigm| \| ai\| 32  - si\xi i
\bigm| \bigm| \| \~a\otimes 3

i \| F + \| \^a\otimes 3
i  - s3i \~a

\otimes 3
i \| F \| ai\| 32

\leq \varepsilon in + 3rM3\varepsilon 4.4 + r\varepsilon 4.5 + 3kM3\varepsilon 4.6 + k\varepsilon 4.7.

(4.13)

Collecting the results from Lemmas 4.4 to 4.7, we have

(4.14)
\varepsilon 4.4 = O

\bigl( 
\tau 4M10kr5/2k - 2

l \alpha  - 1(\varepsilon in + \theta )
\bigr) 
, \varepsilon 4.6 = O(\tau 4M7k5/2rk\prime l

 - 2\alpha \prime  - 1\varepsilon 4.5),

\varepsilon 4.5 = O(M3m3rk - 1
l \varepsilon 4.4), \varepsilon 4.7 = O(M3m3kk\prime l

 - 1\varepsilon 4.6).

With our choices of kl, \alpha , k
\prime 
l, \alpha 

\prime in Lemmas 4.10 and 4.11, (4.14) can be further written as

\varepsilon 4.4 = O
\bigl( 
\tau 7M13m - 6kr13/2d(\varepsilon in + \theta )

\bigr) 
, \varepsilon 4.6 = O

\bigl( 
\tau 13M25m - 12k11/2r19/2d3(\varepsilon in + \theta )

\bigr) 
,

\varepsilon 4.5 = O
\bigl( 
\tau 8M17m - 6kr17/2d3/2(\varepsilon in + \theta )

\bigr) 
, \varepsilon 4.7 = O

\bigl( 
\tau 13M28m - 12k13/2r19/2d7/2(\varepsilon in + \theta )

\bigr) 
,

which implies the reconstruction error is bounded by

\| T \prime  - \~T\| F = O
\bigl( 
\tau 13M28m - 12k15/2r19/2d7/2(\varepsilon in + \theta )

\bigr) 
.

This gives a polynomial q(d, r, k, \tau ,M,m - 1) = \Theta (\tau 13M28m - 12k15/2r19/2d7/2), increasing in
every argument, such that if we request that \varepsilon in \leq \varepsilon /q(d, r, k, \tau ,M,m - 1) and we set \theta =
\varepsilon /q(d, r, k, \tau ,M,m - 1), then \| T \prime  - \~T\| F \leq \varepsilon (the first termination condition). With this
choice, (1) the assumptions of Lemma 4.10 are satisfied; (2) for each iteration, with posi-
tive probability the events in Lemmas 4.10 and 4.11 happen; and (3) we can take \varepsilon 4.4 =
\Theta (\tau  - 6M - 15m6r - 3d - 5/2\varepsilon ), \varepsilon 4.6 = \Theta (M - 3k - 4d - 1/2\varepsilon ) and they satisfy the assumptions of Lem-
mas 4.5 and 4.7, respectively.

Now we argue that the second termination condition, maxi\in [r+k]| \xi i| 1/3 \leq 2M , holds when
the events in Lemmas 4.10 and 4.11 happen. Notice that at this point | \xi i| is close to \| ai\| 32.
Without loss of generality, maxi\in [r+k]| \xi i| 1/3 = | \xi 1| 1/3. Since for all x, y > 0, | y1/3  - x1/3| \leq 
y - 2/3| y  - x| , we have, for all i \in [r + k],

\bigm| \bigm| \| ai\| 2  - | \xi i| 1/3
\bigm| \bigm| \leq \| ai\|  - 2

2

\bigm| \bigm| \| ai\| 32  - | \xi i| 
\bigm| \bigm| , which implies

| \xi 1| 1/3 \leq \| a1\| 2 +
\bigm| \bigm| \| a1\| 2  - | \xi 1| 1/3

\bigm| \bigm| \leq \| a1\| 2 + \| a1\|  - 2
2 \varepsilon \leq M + m \leq 2M , where the second

inequality comes from \varepsilon 4.5 \leq \varepsilon and the third inequality comes from \varepsilon \leq \varepsilon out \leq m3. Therefore,
the algorithm terminates with a 2M -bounded decomposition with reconstruction error at most
\varepsilon .

Set poly3.1(d, \tau ,M) = 2 poly4.2(2d, \tau ,M, 2M,d) \geq 2 poly4.2(r + k, \tau ,M, 2M,d), and set
poly\prime 3.1(d, \tau ,M,m - 1) = q(d, d, d, \tau ,M,m - 1) poly3.1 \geq q(d, r, k, \tau ,M,m - 1) poly3.1.

3 When the
algorithm terminates, we have

\| T  - T \prime \| F \leq \varepsilon + \varepsilon in \leq \varepsilon +
\varepsilon 

q
\leq \varepsilon out

poly3.1
+

\varepsilon out
q poly3.1

\leq \varepsilon out
poly4.2(r + k, \tau ,M, 2M,d)

.

3Recall that k \leq r \leq d by assumption.
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Thus, we can apply Corollary 4.2 and obtain componentwise \varepsilon out accuracy.
For the running time, in each iteration, steps 3 and 7 run in time poly(d, \varepsilon  - 1, \tau ,M,m - 1).

Least squares steps 4 and 8 and the rest take poly(d) time. By Lemmas 4.10 and 4.11, the

success probability per iteration is at least 3
\bigl( 
\theta 
\surd 
d/8

\bigr) 2k
/211, which implies that the expected

number of iterations is at most 211(\theta 
\surd 
d/8) - 2k/3 and the expected running time is at most

poly(dk, \varepsilon  - k, \tau k,Mk,m - k). Since \varepsilon = \varepsilon out/poly3.1, the expected running time is also at most
poly(dk, 1/\varepsilon kout, \tau 

k,Mk,m - k).

5. Blind deconvolution of discrete distribution. In this section, we provide an application
of Algorithm 2: to perform blind deconvolution of an additive mixture model of the form

(5.1) X = Z + \eta 

in \BbbR d, where Z follows a discrete distribution that takes value \mu i with probability wi for i \in [d],
and \eta is an unknown random variable independent of Z with zero mean, zero 3rd moment,
and finite 6th moment.

Our goal is to recover the parameters of Z when given samples from X. By estimating
the overall mean and translating the samples, we can, without loss of generality, assume that\sum 

i\in [d]wi\mu i = 0 for the rest of this section.

We will see that, under a natural nondegeneracy condition, Assumption 5.1, the param-
eters of Z are identifiable from the 3rd cumulant of X, as the 1st and 3rd moments of \eta are
zero. Let Km(X) be the mth cumulant of X. By properties of cumulants (see section 2),

(5.2) K3(X) = K3(Z) +K3(\eta ) =
\sum 
i\in [d]

wi\mu 
\otimes 3
i .

If the symmetric decomposition of K3(X) coincides with (5.2), then the function w
1/3
i \mu i

of the centers \mu i and the mixing weights wi is identifiable. However, the component vec-
tors satisfy

\sum 
iwi\mu i = 0 (they are always linearly dependent), and therefore applying the

simultaneous diagonalization algorithm naively has no guarantee.4 We show that, under the
following nondegeneracy condition, our overcomplete tensor decomposition algorithm (Algo-
rithm 2) works successfully.

Assumption 5.1. K-rank\tau ([\mu 1, . . . , \mu d]) = d - 1.

Remark 5.2. Note that at this point we are working with a centered mixture (
\sum 

i\in [d]wi\mu i =
0), and thus the assumption is on the centered mixture. Note also that if X = Z + \eta is a
not necessarily centered mixture, the assumption is satisfied automatically by the centered
version of X when Z has affinely independent support.

Under Assumption 5.1, we can decompose (5.2) with Algorithm 2. For simplicity, we re-
formulate the problem: letting ai = \^\mu i, and letting \rho i = \| \mu i\| 2, our goal becomes to decompose
T =

\sum 
i\in [d]wi\rho 

3
i a

\otimes 3
i subject to

\sum 
i\in [d]wi = 1 and

\sum 
i\in [d]wi\rho iai = 0.

We now state our algorithm (Algorithm 3) for blind deconvolution of discrete distribution.

4Note that even when the overall mean is nonzero and the means are linearly independent, K3 still has
linearly dependent components, as it is the central 3rd moment. If one does not use K3, then one loses (5.2).
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Algorithm 3. Blind deconvolution of discrete distribution.

Inputs: i.i.d. samples x1, . . . , xN from mixture X, error tolerance \varepsilon \prime , upper bound \rho max

on \| \mu i\| 2 for i \in [d], lower bound wmin on wi for i \in [d], robust Kruskal rank threshold \tau .
1: compute the sample 3rd cumulant \~T using Fact A.1;
2: invoke Algorithm 2 with error tolerance \varepsilon 5.3 = \varepsilon \prime /poly5.3, tensor rank d, and overcom-

pleteness 1 to decompose \~T and thus obtain \~ai\xi 
1/3
i = \v ai for i \in [d];

3: set \~v to the right singular vector associated with the minimum singular value of \v A;

4: set \~w = \~v3/2/(
\sum 

i\in [d] \~v
3/2
i ), \~\mu i = \~w

 - 1/3
i \v ai for i \in [d];

Outputs: estimated mixing weights \~w1, . . . , \~wd and estimated means \~\mu 1, . . . , \~\mu d.

Theorem 5.3 (correctness of Algorithm 3). Let X = (X1, . . . , Xd) = Z + \eta be a ran-
dom vector as in (5.1) satisfying Assumption 5.1. Assume 0 < wmin \leq mini\in [d]wi, \rho max \geq 
maxi\in [d] \rho i, 0 < \rho min \leq mini\in [d] \rho i, 0 < \varepsilon \prime \leq min\{ 1, wmin\rho 

3
min\} , and \delta \in (0, 1). There exists

a polynomial poly5.3(d, \tau , \rho max, w
 - 1
min) such that if \varepsilon 5.3 = \varepsilon \prime /poly5.3, then given N i.i.d. sam-

ples of X, with probability 1  - \delta over the randomness in the samples, Algorithm 3 outputs
\~\mu 1, . . . , \~\mu d and \~w1, . . . , \~wd such that for some permutation \pi of [d] and for all i \in [d] we
have \| \mu \pi (i)  - \~\mu i\| 2 \leq \varepsilon \prime and | w\pi (i)  - \~wi| \leq \varepsilon \prime . The expected running time over the random-

ness of Algorithm 2 is at most poly(d, \varepsilon \prime  - 1, \delta  - 1, \tau , \rho max, \rho 
 - 1
min, w

 - 1
min,maxi \BbbE [X6

i ]) and will use

N = \Omega 
\bigl( 
\varepsilon \prime  - 2\delta  - 1d11maxi\in [d] \BbbE [X6

i ]
\bigl( 
poly\prime 3.1(d, \tau , \rho max, w

 - 1/3
min \rho  - 1

min)
\bigr) 2\bigr) 

samples.

The proof of Theorem 5.3 has two parts. First, we show that the 3rd cumulant can be
estimated to within \varepsilon accuracy with polynomially many samples. This follows from a standard
argument using k-statistics. The second part is about the tensor decomposition. Note that
Theorem 3.1 guarantees that we can recover \~ai approximately in the direction of a\pi (i) and \xi i
close to w\pi (i)\rho 

3
\pi (i) for some permutation \pi . However, we are not finished yet, as our goal is

to recover both the centers and the mixing weights. Therefore we need to decouple wi and \rho i
from wi\rho 

3
i , which corresponds to steps 3 and 4 in Algorithm 3.

3rd cumulant estimation. The details are in Appendix A; we only give the main result here.

Lemma 5.4 (estimation of the 3rd cumulant). Let T, \~T be the 3rd cumulant of X =
(X1, . . . , Xd) and its unbiased estimate (k-statistic) using Fact A.1, respectively. Given any
\varepsilon , \delta \in (0, 1), and N = \Omega (d9\varepsilon  - 2\delta  - 1maxi\in [d] \BbbE [X6

i ]\} ), with probability 1 - \delta we have \| T  - \~T\| F \leq 
\varepsilon .

Proof. Apply Lemma A.3 with accuracy \varepsilon /d3 and failure probability \delta /d3, and take the
union bound over d3 entries to see that N = \Omega (d9\varepsilon  - 2\delta  - 1maxi\in [d] \BbbE [X6

i ]\} ) samples are suffi-
cient.

Decoupling. We will decouple the mixing weights wi and the norms \rho i after we decompose
the tensor \~T . As \BbbE [X] = 0, the true parameters satisfy

\sum 
i\in [d]wi\rho iai = 0, which can be

reformulated as a linear system

(5.3) AD
1/3

wi\rho 3i
w2/3 = 0,

where Dwi\rho 3i
= diag(wi\rho 

3
i ) and A contains ais as columns. To decouple these parameters in

the noiseless setting, one only needs to solve this system under the constraint that w is a
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probability vector. As rank(A) = d - 1, w will be uniquely determined. In other words, w2/3

lies in the direction of the right singular vector associated with the only zero singular value. It
is natural then to recover the weights using our approximations to terms in the linear system,
namely in the direction of the right singular vector associated with the minimum singular

value of \~AD
1/3
\xi , where \~A = [\~a1, . . . , \~ad] and D\xi = diag(\xi i). The following theorem guarantees

this will work.

Theorem 5.5 (decoupling). Let 0 < wmin \leq mini\in [d]wi, and let \rho max \geq maxi\in [d]\| \mu i\| 2.
Suppose the outputs of step 2 in Algorithm 3, namely \xi 1, . . . , \xi d and \~A = [\~a1, . . . , \~ad], sat-

isfy Theorem 3.1 with \varepsilon out < w
4/3
min/(24d\tau ) and permutation \pi . One can choose positive right

singular vectors v, \~v associated with the minimum singular values of AD
1/3

wi\rho 3i
, \~AD

1/3
\xi , respec-

tively. Define \~w = \~v3/2/
\sum 

i\in [d] \~v
3/2
i and \~\rho i = (\xi i/ \~wi)

1/3. Then | w\pi (i)  - \~wi| \leq 12w
 - 1/3
min d\tau \varepsilon out

and | \rho \pi (i)  - \~\rho i| \leq 48w
 - 4/3
min \rho maxd\tau \varepsilon out.

Proof. We start by showing that v, \~v, and \~w are well-defined. Since w2/3 is a solution

to (5.3) and AD
1/3

wi\rho 3i
is of rank d  - 1, we pick v = w2/3/\| w2/3\| 2. To show that \~v is well-

defined, first we bound the singular values and vectors of \~AD
1/3
\xi . Let \~\sigma i = \sigma i( \~AD

1/3
\xi ). By

Theorem B.1,

\~\sigma d \leq \| AD1/3

wi\rho 3i
 - \~AD

1/3
\xi \| 2 \leq 

\surd 
d\varepsilon out < w

4/3
min/(24

\surd 
d\tau ).(5.4)

To obtain the deviation in the singular vectors, we first show that \~\sigma 1, . . . , \~\sigma d - 1 are bounded

away from zero. Let \Sigma 1 = diag
\bigl( 
\sigma 1(AD

1/3

wi\rho 3i
), . . . , \sigma d - 1(AD

1/3

wi\rho 3i
)
\bigr) 
, \~\Sigma 1 = diag(\~\sigma 1, . . . , \~\sigma d - 1), and

\Delta = w
1/3
min/(2\tau ). Suppose \^\sigma d - 1 is the least singular value of the matrix obtained by deleting the

first column of AD
1/3

wi\rho 3i
; then it follows that \sigma d - 1(AD

1/3

wi\rho 3i
) \geq \^\sigma d - 1 \geq w

1/3
min/\tau , where the first

inequality follows from the interlacing property of singular values of a matrix and its submatrix
obtained by deleting any column, and the second inequality comes from Assumption 5.1. The
minimum diagonal term in \~\Sigma 1 satisfies

min
i

(\~\Sigma 1)ii \geq \sigma d - 1(AD
1/3

wi\rho 3i
) - 

\surd 
d\varepsilon out \geq 

w
1/3
min

\tau 
 - 

w
4/3
min

24
\surd 
d\tau 

\geq 
w

1/3
min

2\tau 
= \Delta .

Therefore by Theorem B.2 with \Sigma 2 = 0, we have for the singular vectors,5

\| v  - \~v\| 2 \leq 
\surd 
2d\varepsilon out/\Delta = 2

\surd 
2dw

 - 1/3
min \tau \varepsilon out.

We get \~vi \geq vi - 2
\surd 
2dw

 - 1/3
min \tau \varepsilon out \geq w

2/3
min - 2

\surd 
2dw

 - 1/3
min \tau \varepsilon out > 0, where the second inequality

follows from
\sum 

i\in [d] v
3/2
i \geq 

\sum 
i\in [d] v

2
i = 1. Hence \~v also has positive entries and \~w is well-

defined.

5Note that even though Theorem B.2 gives the angle between the subspaces spanned by the first d  - 1
right singular vectors of AD

1/3

wi\rho 
3
i
and their perturbed counterparts, the same bound applies to the orthogonal

complement, spanned by v.
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We now derive the bounds on the mixing weights and norms. Without loss of generality,
\pi is the identity. The mixing weight error is bounded by

\| \~w  - w\| 2 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \~v3/2\sum 
i\in [d] \~v

3/2
i

 - v3/2\sum 
i\in [d] v

3/2
i

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq \| \~v3/2  - v3/2\| 2\sum 
i\in [d] v

3/2
i

+
\| \~v3/2\| 2

(
\sum 

i\in [d] v
3/2
i )(

\sum 
i\in [d] \~v

3/2
i )

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
i\in [d]

(v
3/2
i  - \~v

3/2
i )

\bigm| \bigm| \bigm| \bigm| \bigm| .
(5.5)

We bound each term in (5.5) below since \~v, v both have entries in (0, 1]:
\sum 

i\in [d] v
3/2
i \geq \| v\| 22 = 1,\sum 

i\in [d] \~v
3/2
i \geq \| \~v\| 22 = 1, and \| \~v3/2\| 2 = (

\sum 
i\in [d] \~v

3
i )

1/2 \leq \| \~v\| 2 = 1. Moreover,

\| \~v3/2  - v3/2\| 2 =
\Bigl( \sum 
i\in [d]

\bigl( 
\~v
3/2
i  - v

3/2
i

\bigr) 2\Bigr) 1/2
\leq 3

2

\Bigl( \sum 
i\in [d]

(\~vi  - vi)
2
\Bigr) 1/2

=
3

2
\| \~v  - v\| 2,

\bigm| \bigm| \bigm| \sum 
i\in [d]

(v
3/2
i  - \~v

3/2
i )

\bigm| \bigm| \bigm| \leq \sum 
i\in [d]

| v3/2i  - \~v
3/2
i | \leq 3

2

\sum 
i\in [d]

| vi  - \~vi| \leq 
3
\surd 
d

2
\| \~v  - v\| 2,

where the above two inequalities follow from | x3/2  - y3/2| \leq 3| x - y| /2 for x, y \in [0, 1].
We obtain the following bound on the error in mixing weights:

(5.6) \| \~w  - w\| 2 \leq (3/2)(1 +
\surd 
d)\| \~v  - v\| 2 \leq 3

\surd 
2w

 - 1/3
min (d+

\surd 
d)\tau \varepsilon out \leq 12w

 - 1/3
min d\tau \varepsilon out.

Notice that our assumption on \varepsilon out guarantees that \~wi \geq wmin/2, and therefore the error in
the norm is bounded by

| \~\rho i  - \rho i| = | (\xi i/ \~wi)
1/3  - \rho i| \leq \~w

 - 1/3
i

\bigl( 
| \xi 1/3i  - w

1/3
i \rho i| + \rho i| w1/3

i  - \~w
1/3
i | 

\bigr) 
\leq \~w

 - 1/3
i

\bigl( 
\varepsilon out + \rho max| w1/3

i  - \~w
1/3
i | 

\bigr) 
\leq (2w - 1

min)
1/3(\varepsilon out + \rho maxw

 - 2/3
min | wi  - \~wi| )

\leq 48w
 - 4/3
min \rho maxd\tau \varepsilon out,

where the second inequality comes from Theorem 3.1, the third inequality comes from the
fact that | x1/3  - y1/3| /| x - y| \leq y - 2/3 for any x, y > 0, and the last one follows from (5.6).

We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. Set the arguments of poly\prime 3.1,poly3.1 to (d, \tau , \rho max, w
 - 1/3
min \rho  - 1

min) and
(d, \tau , \rho max), respectively. Assume for a moment that N is large enough so that \~T in step
1 satisfies \| T  - \~T\| F \leq \varepsilon out/(poly

\prime 
3.1) and we can apply Theorem 3.1. We start by veri-

fying that we can apply Theorem 5.5. Set poly5.3 = 49w
 - 4/3
min max\{ \rho max, 1\} d\tau poly3.1. By

Theorem 3.1, our choice of \varepsilon 5.3 guarantees that the output error of step 2 in Algorithm 3

is \varepsilon out = \varepsilon 5.3 poly3.1 = \varepsilon \prime /(49w
 - 4/3
min max\{ \rho max, 1\} d\tau ) < w

4/3
min/(24d\tau ) (using our assumption

\varepsilon \prime \leq 1). We now bound our estimation error for \| \mu i\| 2 and wi with Theorem 5.5. Assuming
the permutation is the identity, we have for i \in [d],

\| \mu i  - \~\mu i\| 2 \leq | \rho i  - \~\rho i| \| \~ai\| 2 + \rho i\| ai  - \~ai\| 2 \leq (48w
 - 4/3
min \rho maxd\tau + \rho max)\varepsilon out \leq \varepsilon \prime ,

| wi  - \~wi| \leq 12w
 - 1/3
min d\tau \varepsilon out \leq \varepsilon \prime .
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Next, we derive the sample complexity: we need

\| T  - \~T\| F \leq \varepsilon in \leq \varepsilon out/(poly
\prime 
3.1) = \varepsilon \prime poly3.1 /(poly

\prime 
3.1 poly5.3).

By Lemma 5.4, N = \Omega (\varepsilon \prime  - 2\delta  - 1d11maxi\in [d] \BbbE [X6
i ](poly

\prime 
3.1)

2) many samples are sufficient for
\varepsilon in to meet the assumption. Since N is polynomial in \delta  - 1 and maxi\in [d] \BbbE [X6

i ], the expected
running time will also be polynomial in them.

6. Parameter estimation of Gaussian mixture models (GMM). In this section, we con-
sider a specific family of mixture models, namely GMM with identical but unknown covariance
matrices. The model is as in (5.1), where \eta \sim \scrN (0,\Sigma ). Our goal is to approximate all param-
eters of the mixture: \Sigma , wis, and \mu is. Again, suppose Assumption 5.1 holds and the mean
of the mixture is zero (by translating the samples as in section 5). Algorithm 3 guarantees
that we can recover the mixing weights wis and centers \mu is of Z. To recover \Sigma , notice that
since the mean is zero, cov(X) = \BbbE [XX\top ] =

\sum 
i\in [d]wi\mu i\mu 

\top 
i + \Sigma . The covariance matrix

can be approximated then by taking the difference between the sample second moment of X
and the second moment of the reconstructed discrete distribution. We make this precise in
Algorithm 4 and Theorem 6.1.

Algorithm 4. Parameter estimation for GMM.

Inputs: i.i.d. samples x1, . . . , xN from mixture X, error tolerance \varepsilon \prime \prime , upper bound \rho max

on \| \mu i\| 2 for i \in [d], lower bound wmin on wi for i \in [d], robust Kruskal rank threshold \tau .
1: invoke Algorithm 3 with samples from X and parameters \varepsilon \prime = \varepsilon \prime \prime / poly6.1, \rho max, wmin, \tau 

to get \~wi and \~\mu i for i \in [d];
2: set \~\Sigma = 1

N

\sum 
j\in [N ] xjx

\top 
j  - 

\sum 
i\in [d] \~wi\~\mu i\~\mu 

\top 
i ;

Outputs: estimated covariance matrix \~\Sigma , mixing weights and means \~wi, \~\mu i : i \in [d].

Theorem 6.1 (correctness of Algorithm 4). Let X be a GMM with identical but unknown
covariance matrices satisfying Assumption 5.1. Assume 0 < wmin \leq mini\in [d]wi, \rho max \geq 
maxi\in [d] \rho i, 0 < \rho min \leq mini\in [d] \rho i, 0 < \varepsilon \prime \prime \leq min\{ 1, wmin\rho 

3
min\} , and \delta \in (0, 1). There

exists a polynomial poly6.1(d, \rho max) such that if \varepsilon \prime = \varepsilon \prime \prime /poly6.1, then given N i.i.d. samples
of X and with probability 1  - \delta over the randomness in the samples, Algorithm 4 outputs
\~\mu 1, . . . , \~\mu d, \~w1, . . . , \~wd, and \~\Sigma such that for some permutation \pi of [d] and for all i \in [d]:
\| \~\Sigma  - \Sigma \| F \leq \varepsilon \prime \prime , | w\pi (i)  - \~wi| \leq \varepsilon \prime , and \| \mu \pi (i)  - \~\mu i\| 2 \leq \varepsilon \prime . The expected running time over the

randomness of Algorithm 2 is at most poly(d, \varepsilon \prime \prime  - 1, \delta  - 1, \tau , \rho max, \rho 
 - 1
min, w

 - 1
min,maxi\in [d]\Sigma 

3
ii) and

will use N = \Omega 
\bigl( 
\varepsilon \prime \prime  - 2\delta  - 1d13maxi\in [d]\Sigma 

3
ii

\bigl( 
poly\prime 3.1(d, \tau , \rho max, w

 - 1/3
min \rho  - 1

min)
\bigr) 2\bigr) 

samples.

Proof. Let poly6.1(d, \rho max) = 1+d\rho 2max+2d(2\rho max+1). By Theorem 5.3, with probability
1  - \delta , Algorithm 3 will output the estimated mixing weights \~wi and means \~\mu i within \varepsilon \prime 

additive accuracy. The sample complexity and running time follow therein, where we have
maxi\in [d] \BbbE [X6

i ] = maxi\in [d] 15\Sigma 
3
ii for GMM.

Next, we bound the error in the covariance matrix. Note that when the number of sam-
ples guarantees that K3(X) is estimated to \varepsilon in accuracy with probability 1  - \delta , it can also
guarantee cov(X) is estimated to \varepsilon in accuracy with probability 1  - \delta since the latter takes
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\Omega (d6\varepsilon  - 2
in \delta  - 1maxi\in [d]\Sigma 

2
ii) many samples by an argument similar to Lemmas A.2 and A.3. So

\| \~\Sigma  - \Sigma \| F =

\bigm\| \bigm\| \bigm\| \bigm\| 1

N

\sum 
j\in [N ]

xjx
\top 
j  - 

\sum 
i\in [d]

\~wi\~\mu i\~\mu 
\top 
i  - \Sigma 

\bigm\| \bigm\| \bigm\| \bigm\| 
F

\leq 
\bigm\| \bigm\| \bigm\| \bigm\| 1

N

\sum 
j\in [N ]

xjx
\top 
j  - cov(X)

\bigm\| \bigm\| \bigm\| \bigm\| 
F

+
\sum 
i\in [d]

| wi  - \~wi| \| \mu i\mu 
\top 
i \| F +

\sum 
i\in [d]

\~wi\| \mu i\mu 
\top 
i  - \~\mu i\~\mu 

\top 
i \| F

\leq \varepsilon in + d\rho 2max\varepsilon 
\prime +

\sum 
i\in [d]

(wi + \varepsilon \prime )(2\| \mu i\| 2 + \varepsilon \prime )\varepsilon \prime \leq poly6.1 \varepsilon 
\prime \leq \varepsilon \prime \prime ,

where the second to last inequality follows from bounding \varepsilon in by \varepsilon \prime and wi, \varepsilon 
\prime by 1.

Appendix A. Estimating cumulants. In this section, we provide technical details about
the unbiased estimators of cumulants, called k-statistics. They are the unbiased estimator for
cumulants with the minimum variance and are long studied in the statistics community. We
provide the formula for the 3rd k-statistic given in [32, Chapter 4] here.

Fact A.1. Given i.i.d. samples x1, . . . , xN of random vector X, the k-statistic for the 3rd
cumulant of X is k3(r, s, t) = 1

N

\sum 
i,j,k\in [N ] \phi 

(ijk)(xi)r(xj)s(xk)t, where r, s, t are the position

indices in the tensor, and \phi (ijk) is a family of coefficients defined in the following way: it is
invariant under permutation of indices, and for distinct i, j, k \in [N ],

(A.1) \phi (iii) =
1

N
, \phi (iij) =  - 1

N  - 1
, \phi (ijk) =

2

(N  - 1)(N  - 2)
.

To obtain the entrywise concentration bound for k3, we begin by bounding the variance
of each entry in k3.

Lemma A.2. Let X follow a distribution as in (5.1). The 3rd k-statistics k3 of X satisfies
Var

\bigl( 
k3(r, s, t)

\bigr) 
= O(maxt\in [d] \BbbE [X6

t ]/N).

Proof. An essentially identical result for the 4th cumulant is shown in [4, Lemma 4]. The
argument here is the same. We provide a proof in the supplementary materials (supplemen-
tary.pdf [local/web 206KB]).

Using Chebyshev's inequality yields the following sample bound immediately.

Lemma A.3. Given \epsilon , \delta \in (0, 1), the entrywise error between k3 and K3(X) is at most \epsilon 
with probability at least 1 - \delta when using N \geq \Omega 

\bigl( 
\epsilon  - 2\delta  - 1maxt\in [d] \BbbE [X6

t ]
\bigr) 
samples.

Appendix B. Technical lemmas.

B.1. Perturbed SVD bounds. We state Wedin's theorem, a ``sin(\theta ) theorem"" for per-
turbed singular vectors as well as Weyl's inequality for SVD. The following results are from
[35, 36].

Theorem B.1 (Weyl's inequality). Let A,E \in \BbbR d1\times d2 with d1 \geq d2. Denote the singular
values in nonincreasing order of A and A+E by \sigma i and \~\sigma i, respectively. Then | \sigma i - \~\sigma i| \leq \| E\| 2.

https://epubs.siam.org/doi/suppl/10.1137/21M1399415/suppl_file/supplementary.pdf
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Theorem B.2 (Wedin). With the notation from Theorem B.1, let a singular value decom-
position of A be

[U1, U2, U3]
\top A[V1, V2] =

\left[  \Sigma 1 0
0 \Sigma 2

0 0

\right]  ,

where the singular values can be in arbitrary order. Let the perturbed version be

[ \~U1, \~U2, \~U3]
\top (A+ E)[ \~V1, \~V2] =

\left[  \~\Sigma 1 0

0 \~\Sigma 2

0 0

\right]  .

Let \Phi be the matrix of canonical angles between the column spaces of U1 and \~U1, and let
\Theta be that of V1 and \~V1, respectively. Let \delta = min\{ mini \~\Sigma 1,ii,mini,j | \~\Sigma 1,ii  - \Sigma 2,jj | \} . Then\sqrt{} 

\| sin\Phi \| 22 + \| sin\Theta \| 22 \leq 
\surd 
2\| E\| 2/\delta .

B.2. Probability tail bounds.

Lemma B.3 (see [9, 20]). Suppose \delta \in (0, 1), M \in \BbbR d\times d, Q is a finite subset of \BbbR d, and X

is a uniformly random vector in \scrS d - 1. Then \BbbP 
\bigl[ 
minq\in Q| \langle X,Mq\rangle | \geq \delta \mathrm{m}\mathrm{i}\mathrm{n}q\in Q\| Mq\| 2\surd 

ed| Q| 

\bigr] 
\geq 1 - \delta .

For the next lemma, we need the Gaussian correlation inequality.

Theorem B.4 (Gaussian correlation inequality [26, 33]). For any convex centrally symmetric
sets K,L in \BbbR d and any centered Gaussian measure \mu on \BbbR d, we have \mu (K \cap L) \geq \mu (K)\mu (L).

Lemma B.5 (see [23, 34]). Let X \in \BbbR d be a standard Gaussian random vector, let
a1, . . . , ak \in \scrS d - 1, and let t \in [0, 1]. Then \BbbP 

\bigl[ 
(\forall i)| \langle X, ai\rangle | \leq t

\bigr] 
\geq (t/4)k.

Proof. The claim follows immediately from Theorem B.4 and the fact that the one-
dimensional standard Gaussian density in [ - 1, 1] is at least (2\pi e) - 1/2 \geq 1/8.
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