
Nested Dissection Meets IPMs:

Planar Min-Cost Flow in Nearly-Linear Time

Sally Dong ∗ Yu Gao † Gramoz Goranci ‡ Yin Tat Lee § Richard Peng ¶

Sushant Sachdeva ‖ Guanghao Ye ∗∗

Abstract

We present a nearly-linear time algorithm for finding a minimum-cost flow in planar graphs with
polynomially bounded integer costs and capacities. The previous fastest algorithm for this problem was
based on interior point methods (IPMs) and worked for general sparse graphs in O(n1.5poly(log n)) time
[Daitch-Spielman, STOC’08].

Intuitively, Ω(n1.5) is a natural runtime barrier for IPM based methods, since they require
√
n iterations,

each routing a possibly-dense electrical flow. To break this barrier, we develop a new implicit representation
for flows based on generalized nested-dissection [Lipton-Rose-Tarjan, JSTOR’79] and approximate Schur
complements [Kyng-Sachdeva, FOCS’16]. This implicit representation permits us to design a data structure
to route an electrical flow with sparse demands in roughly

√
n update time, resulting in a total running time

of O(n · poly(log n)).

Our results immediately extend to all families of separable graphs.

1 Introduction

The minimum cost flow problem on planar graphs is a foundational problem in combinatorial optimization studied
since the 1950’s. It has diverse applications including network design, VLSI layout, and computer vision. The
seminal paper of Ford and Fulkerson in the 1950’s [19] presented an O(n2) time algorithm for the special case of
max-flow on s, t-planar graphs, i.e., planar graphs with both the source and sink lying on the same face. Later,
Itai and Shiloach [28] gave an nearly-linear time implementation of the Ford-Fulkerson algorithm using a priority
queue. Over the decades since, a number of nearly-linear time max-flow algorithms have been developed for
special graph classes, including undirected planar graphs by Reif, and Hassin-Johnson [50, 24], planar graphs
by Fakcharoenphol-Rao [18], and finally bounded genus graphs by Chambers-Erickson-Nayyeri [10]. However,
for the more general min-cost flow problem, there is no known result specializing on planar graphs with better
guarantees than on general graphs. In this paper, we present the first nearly-linear time algorithm for min-cost
flow on planar graphs:

Theorem 1.1. (Main Result) Let G = (V,E) be a directed planar graph with n vertices. Assume that the
demands d, edge capacities u and costs c are all integers and bounded by M in absolute value. Then there is an
algorithm that computes a minimum cost flow satisfying demand d in O(n logO(1) n logM) expected time.

∗sallyqd@uw.edu. University of Washington. Supported by a postdoctoral fellowship from NSERC (Natural Sciences and
Engineering Research Council of Canada).

†ygao380@gatech.edu. Georgia Institute of Technology. Supported by NSF (National Science Foundation) award CCF-1846218.
‡gramoz.goranci@glasgow.ac.uk. University of Glasgow. Part of this work was done while the author was a postdoc at University

of Toronto, and supported by Sushant Sachdeva’s Discovery grant from NSERC.
§yintat@uw.edu. University of Washington. Supported by NSF awards CCF-1749609, DMS-1839116, DMS-2023166, CCF-2105772,

a Microsoft Research Faculty Fellowship, a Sloan Research Fellowship, and a Packard Fellowship.
¶rpeng@cc.gatech.edu. Georgia Institute of Technology and University of Waterloo. Supported by NSF award CCF-1846218 and

CCF-2106444.
‖sachdeva@cs.toronto.edu. University of Toronto. Supported by a Discovery grant awarded by NSERC.

∗∗ghye@mit.edu. Massachusetts Institute of Technology. Supported by an MIT Presidential Fellowship. Part of this work was done
while the author was a student at University of Washington.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited124

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Min-cost flow Time Bound Reference

Strongly polytime O(m2 log n+mn log n) [49]

Weakly polytime Õ((m+ n3/2) logM) [59]

Pseudo polytime + unit-capacity m
4
3+o(1) logM [5]

Planar graph Õ(n logM) This paper

Unit-capacity planar graph O(n4/3 logM) [33]

Graphs with treewidth τ Õ(nτ2 logM) [16]

Outerplanar graph O(n log2 n) [32]
Unidirectional, bidirectional cycle O(n), O(n log n) [56]

Table 1: Fastest known exact algorithms for the min-cost flow problem, ordered by the generality of the result.
Here, n is the number of vertices, m is the number of edges, M is the maximum of edge capacity and cost value.

Our algorithm is fairly general and uses the planarity assumption minimally. It builds on a combination of
interior point methods (IPMs), approximate Schur complements, and nested-dissection, with the latter being the
only component that exploits planarity. Specifically, we require that for any subgraph of G with k vertices, we
can find an O(

√
k)-sized balanced vertex separator in nearly-linear time. As a result, the algorithm naturally

generalizes to all graphs with small separators. Given a class C of graphs closed under taking subgraphs, we say
it is nα-separable if there are constants 0 < c < 1 and b > 0 such that every graph in C with n vertices and m
edges has a balanced vertex separator with at most bnα vertices, and both components obtained after removing
the separator vertices have at most cm edges. Then, our algorithm generalizes as follows:

Theorem 1.2. Let C be a nα-separable graph class such that we can compute a balanced separator for any graph
in C with m edges in s(m) time for some concave function s. Given a graph G ∈ C with n vertices and m edges,
and integer demands d, edge capacities u and costs c, all bounded by M in absolute value, there is an algorithm
that computes a minimum cost flow on G satisfying demand d in O(m1/2+α logO(1)m logM + s(m) logO(1)m)
expected time.

Beyond the study of structured graphs, we believe our paper is of broader interest. The study of efficient
optimization algorithms on geometrically structured graphs is a topic at the intersection of computational
geometry, graph theory, combinatorial optimization, and scientific computing, that has had a profound impact
on each of these areas. Connections between planarity testing and 3-vertex connectivity motivated the study
of depth-first search algorithms [55], and using geometric structures to find faster solvers for structured linear
systems provided foundations of Laplacian algorithms as well as combinatorial scientific computing [43, 23].
Several surprising insights from our nearly-linear time algorithm are:

1. We are able to design a data structure for maintaining a feasible primal-dual (flow/slack) solution that

allows sublinear time updates – requiring Õ(
√
nK) time 1 for a batch update consisting of updating the

flow value of K edges. This ends up not being a bottleneck for the overall performance because the interior
point method only takes roughly

√
n iterations and makes K-sparse updates roughly

√
n/K times, resulting

in a total running time of Õ(n).

2. We show that the subspace constraints on the feasible primal-dual solutions can be maintained implicitly
under dynamic updates to the solutions. This circumvents the need to track the infeasibility of primal
solutions (flows), which was required in previous works.

We hope our result provides both a host of new tools for devising algorithms for separable graphs, as well as
insights on how to further improve such algorithms for general graphs.

1.1 Previous Work The min-cost flow problem is well studied in both structured graphs and general graphs.
Table 1 summarizes the current best algorithms for different settings.

1Throughout the paper, we use Õ to omit polylogarithmic factors in n.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited125

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Min-cost flow / max-flow on general graphs. Here, we focus on recent exact max-flow and min-cost flow
algorithms. For an earlier history, we refer the reader to the monographs [37, 3]. For the approximate max-flow
problem, we refer the reader to the recent papers [11, 51, 35, 52, 53, 6].

To understand the recent progress, we view the maximum flow problem as finding a unit s, t-flow with
minimum `∞-norm, and the shortest path problem as finding an unit s, t-flow with minimum `1-norm. Prior to
2008, almost all max-flow algorithms reduced this `∞ problem to a sequence of `1 problem (shortest path) since
the latter can be solved efficiently. This changed with the celebrated work of Spielman and Teng, which shows
how to find electrical flows (`2-minimizing unit s, t-flow) in nearly-linear Õ(m) time [54]. Since the `2-norm is
closer to `∞ than `1, this gives a more powerful primitive for the maximum flow problem. In 2008, Daitch and
Spielman demonstrated that one could apply Interior Point Methods (IPMs) to reduce computing min-cost flow

to roughly
√
m electrical flow computations and obtained an algorithm with a running time of Õ(m3/2 logM)

[14]. This follows from the fact that IPMs take Õ(
√
m) iterations and each iteration requires solving an electrical

flow problem, which can be now be solved in Õ(m) time due to the work of Spielman and Teng. Since then,
several algorithms have utilized electrical flows and other stronger primitives for solving max-flow and min-cost
flow problems.

For graphs with unit capacities, Mądry gave a Õ(m10/7)-time max-flow algorithm, the first that broke the
3/2-exponent barrier [45]. It was later improved and generalized to m4/3+o(1) logM [5] for the min-cost flow
problem. Kathuria et al. [34] gives a similar run-time of m4/3+o(1)U1/3 where U is the max capacity. The

runtime improvement comes from decreasing the number of iterations of IPM to Õ(m1/3) via a more powerful
primitive of `2 + `p minimizing flows [40].

For general capacities, the runtime has recently been improved to Õ((m+ n3/2) logM) [59] for min-cost flow

and Õ(m
3
2− 1

328 logM) [20] for max-flow. Both algorithms focus on decreasing the per-iteration cost of IPMs by
dynamically maintaining electrical flows.

Max-flow on planar graphs. The planar max-flow problem has an equally long history. We refer the reader
to the thesis [7] for a detailed exposition. In the seminar work of Ford and Fulkerson [19] that introduced the
max-flow min-cut theorem, they also gave a max-flow algorithm for s, t-planar graphs (planar graphs where the
source and sink lie on the same face). This algorithm iteratively sends flow along the top-most augmenting path.
Itai and Shiloach showed how to implement each step in O(log n) time, thus giving an O(n log n) time algorithm
for s, t-planar graphs [28]. For s, t-planar graphs, the current best run-time is O(n) by Henzinger, Klein, Rao,
and Subramanian [25].

For undirected planar graphs, Reif first gave an O(n log2 n) time algorithm for finding the max-flow value
[50]. Hassin and Johnson then showed how to compute the flow in the same run-time [24]. The current best
run-time is O(n log log n) by Italiano, Nussbaum, Sankowski, and Wulff-Nilsen [29].

For general planar graphs, Weihe gave the first O(n log n) time algorithm, assuming the graph satisfies certain
connectivity conditions [61]. Later, Borradaile and Klein gave an O(n log n) time algorithm for any planar graph
[8].

The multiple-source multiple-sink version of max-flow is considered much harder, even on planar graphs. The
first result of O(n1.5) time was by Miller and Naor when sources and sinks are all on same face [47]. This was
then improved to O(n log3 n) in [9].

For generalizations of planar graphs, Chambers, Ericskon and Nayyeri gave the first nearly linear-time
algorithm for max-flow on graphs embedded on bounded-genus surfaces [10]. Miller and Peng gave an Õ(n6/5)-
time algorithm for approximating undirected max-flow [48] for the class of O(

√
n)-separable graphs, although this

is superseded by the previously mentioned works for general graphs [51, 35].
Min-cost flow on planar graphs. Imai and Iwano gave a O(n1.594 logM)-time algorithm for min-cost flow

[27] for the more general class of O(
√
n)-separable graphs. To the best of our knowledge, there is little else known

about min-cost flow on general planar graphs. In the special case of unit capacities, [4, 42] gives an O(n6/5 logM)-
time algorithm for min-cost perfect matching in bipartite planar graphs, and Karczmarz and Sankowski gives a
O(n4/3 logM)-time algorithm for min-cost flow. Currently, bounded treewidth graphs is the only graph family
we know that admits min-cost flow algorithms that run in nearly-linear time [16].

1.2 Challenges Here, we discuss some of the challenges in developing faster algorithms for the planar min-cost
flow problem from a convex optimization perspective. For a discussion on challenges in designing combinatorial

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited126

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

algorithms, we refer the reader to [36]. Prior to our result, the fastest min-cost flow algorithm for planar graphs is

based on Interior point methods (IPMs) and takes Õ(n3/2 logM) time [14]. Intuitively, Ω(n3/2) is a natural run-
time barrier for IPM-based methods, since they require Ω(

√
n) iterations, each routing a possibly-dense electrical

flow.
Challenges in improving the number of iterations. The Ω(

√
n) term comes from the fact that IPM

uses the electrical flow problem (`2-type problem) to approximate the shortest path problem (`1-type problem).
This Ω(

√
n) term is analogous to the flow decomposition barrier: in the worst case, we need Ω(n) shortest paths

(`1-type problem) to solve the max-flow problem (`∞-type problem). Since `2 and `∞ problems differ a lot when
there are s−t paths with drastically different lengths, difficult instances for electrical flow-based max-flow methods
are often serial-parallel (see Figure 3 in [11] for an example). Therefore, planarity does not help to improve the√
n term. Although more general `2 + `p primitives have been developed [40, 2, 1], exploiting their power in

designing current algorithms for exact max-flow problem has been limited to perturbing the IPM trajectory, and
such a perturbation only works when the residual flow value is large. In all previous works tweaking IPMs for
breaking the 3/2-exponent barrier [45, 46, 13, 34, 5], an augmenting path algorithm is used to send the remaining
flow at the end. Due to the residual flow restriction, all these results assume unit-capacities on edges, and it
seems unlikely that planarity can be utilized to design an algorithm for polynomially-large capacities with fewer
than

√
n IPM iterations.

Challenges in improving the cost per iteration. Recently, there has been much progress on utilizing
data structures for designing faster IPM algorithms for general linear programs and flow problems on general
graphs. For general linear programs, robust interior point methods have been developed recently with running
times that essentially match the matrix multiplication cost [12, 57, 60, 26, 58]. This version of IPM ensures
that the `2 problem solved changes in a sparse manner from iteration to iteration. When used to design graph
algorithms, the i-th iteration of a robust IPM involves computing an electrical flow on some graph Gi. The edge
support remains unchanged between iterations, though the edge weights change. Further, if Ki is the number of
edge weight changes between Gi and Gi+1, then robust IPMs guarantee that

∑

i

√
Ki = Õ(

√
m logM).

Roughly, this says that, on average, each edge weight changes only poly-log many times throughout the algorithm.
Unfortunately, any sparsity bound is not enough to achieve nearly-linear time. Unlike the shortest path problem,
changing any edge in a connected graph will result in the electrical flow changing on essentially every edge.
Therefore, it is very difficult to implement (roubst) IPMs in sublinear time per iteration, even if the subproblem
barely changes every iteration. On moderately dense graphs with m = Ω(n1.5), this issue can be avoided by first
approximating the graph by sparse graphs and solving the electrical flow on the sparse graphs. This leads to
Õ(n) � Õ(m) time cost per step [60]. However, on sparse graphs, significant obstacles remain. Recently, there
has been a major breakthrough in this direction by using random walks to approximate the electrical flow [20].

Unfortunately, this still requires m1− 1
328 time per iteration.

Finally, we note that [16] gives an Õ(nτ2 logM)-time algorithm for linear programs with τ treewidth. Their
algorithm maintains the solution using an implicit representation. This implicit representation involves a τ × τ
matrix that records the interaction between every variable within the separator. Each step of the algorithm
updates this matrix once and it is not the bottleneck for the Õ(nτ2 logM)-time budget. However, for planar
graphs, this τ × τ matrix is a dense graph on

√
n vertices given by the Schur complement on the separator.

Hence, updating this using their method requires Ω(n) per step.
Our paper follows the approach in [16] and shows that this dense graph can be sparsified. This is however

subtle. Each step of the IPM makes a global update via the implicit representation, hence checking whether the
flow is feasible takes at least linear time. Therefore, we need to ensure each step is exactly feasible despite the
approximation. If we are unable to do that, the algorithm will need to fix the flow by augmenting paths at the
end like [34, 5], resulting in super-linear time and polynomial dependence on capacities, rather than logarithmic.

1.3 Our Approaches In this section, we introduce our approach and explain how we overcome the difficulties
we mentioned. The minimum-cost flow problem can be reformulated into a linear program in the following

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited127

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

primal-dual form:

(Primal) = min
B>f=0, l≤f≤u

c>f and (Dual) = min
By+s=c

∑

i

min(lisi,uisi),

where B ∈ R
m×n is an edge-vertex incidence matrix of the graph, f is the flow and s is the slack (or adjusted

cost vector). The primal is the minimum-cost circulation problem and the dual is a variant of the minimum-cut
problem. Our algorithm for min-cost flow is composed of two new data structures (Section 2.4) and a novel
application of IPM (Section 2.1). The IPM method reduces solving a linear program to applying a sequence of

Õ(
√
m logM) projections and the data structures implement the primal and dual projection steps roughly in

Õ(
√
m) amortized time.
Robust IPM. We first explain the IPM methods briefly. To minimize c>f , each step of the IPM method

moves the flow vector f to the direction of −c. However, such f may exceed the maximum or minimum capacities.
IPM incorporates these capacity constraints by routing flows slower when they are approaching their capacity
bounds. This is achieved by controlling the edge weights W and direction v in each projection step. Both
W and v are roughly chosen from some explicit entry-wise formula of f and s, namely, Wii = ψ1(fi, si) and
vi = ψ2(fi, si). Hence, the main bottleneck is to implement the projection step (computing Pwv). For the
min-cost flow problem, this projection step corresponds to an electrical flow computation.

Recently, it has been observed that there is a lot of freedom in choosing the weight W and the direction v

(See for example [12]). Instead of computing them exactly, we maintain some entry-wise approximation f , s of
f , s and use them to compute W and v. By updating f i, si only when fi, si changed significantly, we can ensure
f , s has mostly sparse updates. Since W and v are given by some entry-wise formula of f and s, this ensures that
W,v change sparsely and in turn allows us to maintain the corresponding projection Pw via low-rank updates.

We refer to IPMs that use approximate f and s as robust IPMs. In this paper, we apply the version given
in [16] in a black-box manner. In Section 2.1, we state the IPM we use. The key challenge is implementing each

step in roughly Õ(
√
m) time.

Separators and Nested Dissection. Our data structures rely on the separability property of the input
graph, which dates back to the nested dissection algorithms for solving planar linear systems [43, 21]. By
recursively partitioning the graph into edge-disjoint subgraphs (regions) using balanced vertex separators, we
can construct a hierarchical decomposition of a planar graph G which is called the separator tree [18]. This is
a binary search tree over the edges in G. Each node in the separator tree represents a region in G. In planar
graphs, for a region H with |H| vertices, a O(

√
|H|)-vertex separator suffices to partition it into two balanced

sub-regions which are represented by the two children of H in the separator tree. The two subregions partition
the edges in H and share only vertices in the separator. We call the set of vertices in a region H that appear in
the separators of its ancestors the boundary of H. Any two regions can only share vertices on their boundaries
unless one of them is an ancestor of the other.

Nested dissection algorithms [43, 21] essentially replaces each region by a graph involving only its boundary
vertices, in a bottom-up manner. For linear systems, solving the dense

√
n × √n submatrix corresponding to

the top level vertex separator leads to a runtime of nω/2 where ω is the matrix multiplication exponent. For
other problems as shortest path, this primitive involving dense graphs can be further accelerated using additional
properties of distance matrices [18].

Technique 1: Approximate Nested Dissection and Lazy Propagation Our representation of the
Laplacian inverse, and in turn the projection operators, hinges upon a sparsified version of the nested dissection
representation. That is, instead of a dense inverse involving all pairs of boundary vertices, we maintain a
sparse approximation. This sparsified nested dissection has been used in the approximate undirected planar
flow algorithm from [48]. However, that work pre-dated (and in some sense motivated) subsequent works on
nearly-linear time approximations of Schur complements on general graphs [39, 41, 38]. Re-incorporating these
sparsified algorithms gives run-time dependencies that are nearly-linear, instead of quadratic, in separator sizes,
with an overall error that is acceptable to the robust IPM framework.

By maintaining objects with size nearly equal to the separator in each node of the separator tree, we can
support updating an single edge or a batch of edges in the graph efficiently. Our data structures for maintaining the
intermediate vector z, the flow and slack vector and for maintaining Schur complements all ultilize this idea. For
example, to maintain Schur complement of a region H onto its boundary (which is required in implementating
the step), we maintain (1) Schur complements of its children onto their boundaries recursively and (2) Schur

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited128

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

complement of the children’s boundaries onto the boundary of H. Thus, to update an edge, the path in the
decomposition tree from the leaf node H containing the edge to the root is visited. To update multiple edges
in batch, each node in the union of the tree paths are visited. The runtime depends nearly linear to the total
number of boundary vertices on all nodes (regions) in the union. For K edges being updated, the runtime is

bounded by Õ(
√
mK). The edge weight W and direction v are maintained similarly. Each step of our IPM

algorithm takes Õ(
√
mKi) where Ki is the number of coordinates changed in W and v in the i-th step. Such a

recursive approximate Schur complement structure was used in [22], where the authors achieved a running time

of Õ(
√
mKi).

Technique 2: Batching the changes. It is known that over t iterations of an IPM, the number of
coordinate changes (by more than a constant factor) in W or v are bounded by O(t2). This directly gives
∑Õ(

√
m)

i=1 Ki = m and thus a total run-time of
√
m
(∑Õ(

√
m)

i=1

√
Ki

)
= Õ(m1.25). In order to obtain a nearly-linear

run-time, the robust IPM carefully batches the updates in different steps. In the i-th step, if the change in an
edge variable has exceeded some fixed threshold compared to its value in the i − 2l-th step for some l ≤ `i, we
adjust its approximation. (Here, `i is the number of trailing zeros in the binary representation of i, i.e. 2`i is the
largest power of 2 that divides i.) This ensures that Ki, the number of coordinate changes at step i, is bounded

by Õ(22`i). Since each value of `i arises once every 2`i steps, we can prove that the sum of square roots of the

number of changes over all steps is bounded by Õ(m), i.e.,
∑Õ(

√
m)

i=1

√
Ki = Õ(

√
m). Combined with the claim in

the previous paragraph, this gives an Õ(m) overall runtime.
Technique 3: Maintaining feasibility via two projections. A major difficulty is maintaining a flow

vector f that satisfies the demands exactly and a slack vector s that can be expressed as s = c−By. If we simply
project approximately in each step, the flow we send is not exactly a circulation. Traditionally, this can be fixed
by computing the excess demand each step and sending flow to fix this demand. Since our edge capacities can
be polynomially large, this step can take Ω(m) time. To overcome this feasibility problem, we note that different
projection operators Pw can be used in IPMs for f and s as long as each projection is close to the true projection
and that the step satisfies B

>∆f = 0 and B∆y +∆s = 0 for some ∆y.
This two-operator scheme is essential to our improvement since one can prove that any projection that gives

feasible steps for f and s simultaneously must be the exact electrical projection, which takes linear time to
compute.

Technique 4: Detecting large changes by maintaining a random sketch on the separator tree.
To detect the set of edges where the flow (or slack) value has changed by more than the threshold, we would like
to query the sum of changes of squares of flow/slack values in a subgraph. (By supporting such queries efficiently,
we can detect the set of edges recursively on the separator tree.) However, maintaining this sum directly is
challenging since a single update may cause the flow value to change on each edge. We instead maintain a random
sketch of the flow vector for each node. Roughly speaking, the flow vector in any region H can be written as
MHz where MH is defined recursively as MH = (MD1 +MD2)MH , for D1 and D2 being the two children of H
in the separator tree. This forest structure allows us to maintain ΦMz so that each change to MH only affects
its ancestors and any K-sparse update costs Õ(

√
mK) time.

2 Main Theorems and Proof Outline

In this section, we give formal statements of the main theorems proved in the paper, along with an outline of the
proof for our main result. The details of the proofs are deferred to the full version of the paper.

The main components of this paper are: the IPM from [16] (Section 2.1); the data structure to maintain
a collection of Schur complements via nested dissection of the graph (Section 2.2); the sketching-based data
structure to maintain the approximations f and s needed in the IPM (Section 2.3), and finally the data structures
to maintain the solutions f , s and their corresponding projection matrices (Section 2.4).

2.1 Robust Interior Point Method In this subsection, we explain the robust interior point method developed
in [16], which is a refinement of the methods in [12, 57]. Although there are many other robust interior point

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited129

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

methods, we simply refer to this method as RIPM. Consider a linear program of the form2

(2.1) min
f∈F

c>f where F = {B>f = b, l ≤ f ≤ u}

for some matrix B ∈ R
m×n. As with many other IPMs, RIPM follows the central path f(t) from an interior point

(t� 0) to the optimal solution (t = 0):

f(t)
def
= argmin

f∈F
c>f − tφ(f) where φ(f)

def
= −

∑

i

log(fi − li)−
∑

i

log(ui − fi),

where the term φ controls how close the flow fi can be to the capacity constraints ui and li. Following the central
path exactly is expensive. Instead, RIPM maintains feasible primal and dual solution (f , s) ∈ F × S, where S
is the dual space given by S = {s : By + s = c for some y}, and ensures f(t) is an approximate minimizer.
Specifically, the optimality condition for f(t) is given by

µt(f , s)
def
= s/t+∇φ(f) = 0(2.2)

(f , s) ∈ F × S

where µt(f , s) measures how close f is to the minimizer f(t). RIPM maintains (f , s) such that

(2.3) ‖γt(f , s)‖∞ ≤
1

C logm
where γt(f , s)i =

µt(f , s)i

(∇2φ(f))
1/2
ii

,

for some universal constant C. The normalization term (∇2φ)
1/2
ii makes the centrality measure ‖γt(f , s)‖∞

scale-invariant in l and u.
The key subroutine Centering takes as input a point close to the central path (f(tstart), s(tstart)), and

outputs another point on the central path (f(tend), s(tend)). Each step of the subroutine decreases t by a
multiplicative factor of (1 − 1√

m logm
) and moves (f , s) within F × S such that s/t + ∇φ(f) is smaller for

the current t. [16] proved that even if each step is computed approximately, Centering still outputs a point

close to (f(tend), s(tend)) using Õ(
√
m log(tend/tstart)) steps. See Algorithm 1 for a simplified version.

RIPM calls Centering twice. The first call to Centering finds a feasible point by following the central
path of the following modified linear program

min
B

>(f (1)+f (2)−f (3))=b

l≤f (1)≤u, f (2)≥0, f (3)≥0

c(1)>f (1) + c(2)>f (3) + c(2)>f (3)

where c(1) = c, and c(2), c(3) are some positive large vectors. The above modified linear program is chosen so that
we know an explicit point on its central path, and any approximate minimizer to this new linear program gives
an approximate central path point for the original problem. The second call to Centering finds an approximate
solution by following the central path of the original linear program. Note that both calls run the same algorithm
on essentially the same graph: The only difference is that in the first call to Centering, each edge e of G becomes

three copies of the edge with flow value f
(1)
e ,f

(2)
e ,f

(3)
e . Note that this edge duplication does not affect planarity.

We note that the IPM algorithm only requires access to (f , s), but not (f , s) during the main while loop.
Hence, (f , s) can be implicitly maintained via any data structure. We only require (f , s) explicitly when returning
the approximately optimal solution at the end of the algorithm Line 27.

Theorem 2.1. Consider the linear program

min
B>f=b, l≤f≤u

c>f

2Although the min-cost flow problem can be written as a one-sided linear program, it is more convenience for the linear program

solver to have both sides. Everything in this section works for general linear programs and hence we will not use the fact m = O(n)
in this subsection.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited130

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Algorithm 1 Robust Interior Point Method from [16]

1: procedure RIPM(B ∈ R
m×n, b, c, l,u, ε)

2: Let L = ‖c‖2 and R = ‖u− l‖2
3: Define φi(x)

def
= − log(ui − x)− log(x− li)

. Modify the linear program and obtain an initial (x, s) for modified linear program
4: Let t = 221m5 · LR

128 · Rr
5: Compute fc = argminl≤f≤u c>f + tφ(f) and f◦ = argminB>f=b ‖f − fc‖2
6: Let f = (fc, 3R+ f◦ − fc, 3R) and s = (−t∇φ(fc),

t
3R+f◦−fc

, t
3R)

7: Let the new matrix B
new def

= [B;B;−B], the new barrier

φnewi (x) =

{
φi(x) if i ∈ [m],

− log x else.

. Find an initial (f , s) for the original linear program
8: ((f (1),f (2),f (3)), (s(1), s(2), s(3)))← Centering(Bnew, φnew,f , s, t, LR)
9: (f , s)← (f (1) + f (2) − f (3), s(1))

. Optimize the original linear program
10: (f , s)← Centering(B, φ,f , s, LR, ε

4m)
11: return f

12: end procedure

13: procedure Centering(B, φ,f , s, tstart, tend)
14: Let α = 1

220λ and λ = 64 log(256m2) where m is the number of rows in B

15: Let t← tstart, f ← f , s← s, t← t

16: Define Pw
def
= W

1/2
B(B>

WB)−1
B

>
W

1/2

17: while t ≥ tend do
18: Set t← max((1− α√

m
)t, tend)

19: Update h = −α/‖ cosh(λγt(f , s))‖2 where γ is defined in Eq. (2.2)
20: Update the diagonal weight matrix W = ∇2φ(f)−1

21: Update the direction v where vi = sinh(λγt(f , s)i)
22: Pick v‖ and v⊥ such that W

−1/2v‖ ∈ Range(B), B>
W

1/2v⊥ = 0 and

‖v‖ −Pwv‖2 ≤ α‖v‖2,
‖v⊥ − (I−Pw)v‖2 ≤ α‖v‖2

23: Implicitly update f ← f + hW1/2v⊥, s← s+ thW−1/2v‖

24: Explicitly maintain f , s such that ‖W−1/2(f − f)‖∞ ≤ α and ‖W1/2(s− s)‖∞ ≤ α
25: Update t← t if |t− t| ≥ αt
26: end while
27: return (f , s)
28: end procedure

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited131

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

with B ∈ R
m×n. We are given a scalar r > 0 such that there exists some interior point f◦ satisfying B

>f◦ = b

and l+ r ≤ f◦ ≤ u− r. Let L = ‖c‖2 and R = ‖u− l‖2. For any 0 < ε ≤ 1/2, the algorithm RIPM finds f such
that B>f = b, l ≤ f ≤ u and

c>f ≤ min
B>f=b, l≤f≤u

c>f + εLR.

Furthermore, the algorithm has the following properties:

• Each call of Centering involves O(
√
m log(m) log(mR

εr)) many steps, and t is only updated

O(log(m) log(mR
εr)) times.

• In each step of Centering, the coordinate i in W,v changes only if f i or si changes.

• In each step of Centering, h‖v‖2 = O(1
logm).

• Line 19 to Line 21 takes O(K) time in total, where K is the total number of coordinate changes in f , s.

Proof. The number of steps follows from Theorem A.1 in [15], with the parameter wi = νi = 1 for all i. The
number of coordinate changes in W,v and the runtime of Line 19 to Line 21 follows directly from the formula of
µt(f , s)i and γt(f , s)i. For the bound for h‖v‖2, it follows from

h‖v‖2 ≤ α
‖ sinh(λγt(f , s))‖2
‖ cosh(λγt(f , s))‖2

≤ α = O

(
1

logm

)
.

A key idea in our paper is the efficient computation of projection matrices required for the IPM. Recall from
the definition of Pw in Algorithm 1, Line 16, the true projection matrix is

Pw
def
= W

1/2
B(B>

WB)−1
B

>
W

1/2.

We let L denote the weighted Laplacian where L = B
>
WB, so that

Pw = W
1/2

BL
−1

B
>
W

1/2.(2.4)

Lemma 2.1. To implement Line 22 in Algorithm 1, it suffices to find an approximate potential projection matrix

P̃w satisfying
∥∥∥P̃w −Pw

∥∥∥
op
≤ α and W

−1/2
P̃wv ∈ Range(B); and a (not necessarily related) approximation

flow projection matrix P̃
⊥
w satisfying

∥∥∥P̃⊥
w − (I−Pw)

∥∥∥
op
≤ α and B

>
W

1/2
P̃

⊥
wv = 0.

Proof. We simply observe that setting v‖ = P̃wv and v⊥ = P̃
⊥
wv suffices.

In finding these approximate projection matrices, we apply ideas from nested dissection and approximate
Schur complements to the matrix L.

2.2 Nested Dissection and Approximate Schur Complements In this subsection, we give the algorithm
for maintaining a collection of approximate Schur complements. We first focus on a discussion using the two-
layer nested dissection for planar graphs to highlight the key ideas, and then give the extension to the recursive
partitioning scheme with O(log n)-layers. Finally we explain how it relates to our goal of finding the approximate
projection matrices for Lemma 2.1.

As we will discuss later, our LP formulation for the IPM uses a modified graph which includes two additional
vertices and O(n) additional edges to the original planar graph. Although the modified graph is no longer planar,
it has only two additional vertices, which we can include in any balanced vertex separators of the original graph
to obtain a balanced vertex separator of the modified graph. Hence the separator sizes are the same up to an
additive constant, and we can apply the ideas of nested dissection as we would for planar graphs. As such, we
assume the input graph G is a planar graph with n vertices for simplicity here.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited132

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

From the well-known planar separator theorem [44], we know that we can decompose G into two edge-disjoint
(but not vertex-disjoint) subgraphs H1 and H2 called regions, such that each subgraph has at most 2n/3 vertices.
Furthermore, let ∂Hi denote the boundary of region Hi, that is, the set of vertices v ∈ Hi such that v is adjacent
to some u /∈ Hi. Then ∂Hi has size bounded by O(

√
n).

Let C = H1 ∪H2 denote the union of the boundaries, and let F = V (G) \ C denote the remaining interior
vertices. Note that C is a vertex separator of G, with size

|C| ≤ |∂H1|+ |∂H2| = O(
√
n).

The vertex subsets F and C give a natural partition of the vertices of G. Using block Cholesky decomposition,
we can now write3

(2.5) L
−1 =

[
I −L−1

FFLFC

0 I

] [
L
−1
FF 0

0 Sc(L, C)−1

] [
I 0

−LCFL
−1
FF I

]
,

where Sc(L, C)
def
= LCC −LCFL

−1
FFLFC is the Schur complement of L onto vertex set C, and LFC ∈ R

F×C is the
F × C-indexed submatrix of L.

Algorithm 1 requires updating L
−1 in every step; written as the above decomposition, we must in turn update

the Schur complement Sc(L, C) in every step. Hence, the update cost must be sub-linear in n. Computing
Sc(L, C) exactly takes Ω(|C|2) = Ω(n2) time, which is already too expensive. Our key idea here is to maintain a
collection of approximate Schur complements, where each individual Schur complement is of a smaller size based
on the graph decomposition, and we can maintain all the Schur complements in amortized

√
n time per IPM step.

We illustrate the intuition using a two-layer scheme: Let L[Hi] denote the Laplacian of the subgraph Hi.
Since these regions are edge-disjoint, we can write the Laplacian L as the sum

L = L[H1] + L[H2].

We show that based on this decomposition, we have

Sc(L, C) = Sc(L[H1], C) + Sc(L[H2], C).

Our data structure maintains a sparse approximate Schur complement S̃c(L[Hi], C) ≈ Sc(L[Hi], C) for each
region i, which allows us to localize edge weight updates. Namely, if an edge in region i is updated, we only need
to recompute one corresponding Schur complement term in the sum. Each term S̃c(L[Hi], C) can be computed
in time nearly-linear to the size of Hi rather than n.

Furthermore, S̃c(L[Hi], C) is supported only on ∂Hi, which is of size O(
√
n). Hence, any sparse approximate

Schur complement has only Õ(
√
n) edges. Given these matrices, we can define the approximate Schur complement

of L on C by

(2.6) S̃c(L, C)
def
= S̃c(L[H1], ∂H1) + S̃c(L[H2], ∂H2).

To extend the two-level scheme to more layers, we apply nested dissection recursively to each region using
balanced vertex separators, until the regions are of constant size. The resulting hierarchical structure can be
represented by a tree T , which is known as the separator tree of G: Formally, each node of T is a region
(edge-induced subgraph) H of G; we denote this by H ∈ T . At a node H, we store subsets of vertices
∂H, S(H), FH ⊆ V (H), where ∂H is the set of boundary vertices that are incident to vertices outside H in
G; S(H) is the balanced vertex separator of H; and FH is the set of eliminated vertices at H. Concretely, the
nodes and associated vertex sets are defined recursively in a top-down way as follows:

1. The root of T is the node H = G, with ∂H = ∅ and FH = S(H).

2. A non-leaf node H ∈ T has exactly two children D1, D2 ∈ T that form an edge-disjoint partition of H, and
their vertex sets intersect on the balanced separator S(H) of H. Define ∂D1 = (∂H ∪ S(H)) ∩ V (D1), and
similarly ∂D2 = (∂H ∪ S(H)) ∩ V (D2). Moreover, FH = S(H) \ ∂H.

3To keep notation simple, M−1 will denote the Moore-Penrose pseudo-inverse for non-invertible matrices.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited133

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

3. If a region H contains a single edge, then we stop the recursion and H becomes a leaf node. Further, we
define S(H) = ∅ and FH = V (H) \ ∂H. Note that by construction, each edge of G is contained in a unique
leaf node.

Lemma 2.2. Using the above construction, we have that {FH : H ∈ T } partition the vertex set V (G).

The level η(H) of a node H is the number of edges in the path between H and the root. We call the maximum
distance between a leaf node and the root the height of T and we denote it by η.

Theorem 2.2. (Separator tree construction [18]) Given a modified planar graph G, there is an algorithm
that computes a separator tree T of G of height η = O(log n) in O(n log n) time.

Our data structure involving the maintenance of approximate Schur complements crucially relies on bounding
the number of affected nodes in the separator tree and their boundary when a subset of edges in the graph undergo
weight changes. Concretely, for a node H in T , let PT (H) be the set nodes on the path from H to the root of T
including H. Given a set of K nodes H = {H | H ∈ T }, we define

PT (H) :=
⋃

H∈H
PT (H)

to be the set of ancestor nodes of H. Furthermore, we partition these nodes by their level in T , and use PT (H, i)
to denote all the nodes in PT (H) at level i in T , where by convention the root is at level η. Fakcharoenphol and
Rao [18, Section 3.5] showed that the total number of boundary vertices from the nodes in PT (H) is O(

√
mK).

Here, we use a slightly weaker bound that in addition requires bounding the number of separator vertices.

Lemma 2.3. Consider a planar graph G and its separator tree T , a set H of K nodes in T , and the union of
node-to-root paths PT (H) for the nodes in H. We have that

∑

H∈PT (H)

|∂(H)|+ |S(H)| ≤ Õ(
√
mK).

For a height-η separator tree, we generalize the set C from Eq. (2.5) to a sequence of sets V (G) = C−1 ⊃
C0 ⊃ · · · ⊃ Cη−1 ⊃ Cη = ∅, and generalize F to the sets F0, . . . , Fη partitioning V (G), where Fi

def
= Ci−1 \ Ci.

Concretely, Lemma 2.2 allows us to define Fi to be the union of FH over all nodes H at level i in the separator
tree, and Ci = ∪j>iFj .

Now, the decomposition from Eq. (2.5) can be extended as follows:

(2.7) L
−1 = U

(0)> · · ·U(η−1)>




(Sc(L, C−1)F0,F0
)−1

0 0

0
. . . 0

0 0 (Sc(L, Cη−1)Fη,Fη
)−1


U

(η−1) · · ·U(0),

where the U
(i)’s are upper triangular matrices with U

(i) def
= I − Sc(L, Ci−1)Ci,Fi

(Sc(L, Ci−1)Fi,Fi
)
−1

, where we
assume all matrices are n × n by padding zeroes when required. To efficiently compute parts of L

−1, we use
approximate Schur complements instead of exact ones everywhere in Eq. (2.7).

Definition 2.1. (Approximate Schur Complement) Let G be a weighted graph with Laplacian L, and let C

be a set of boundary vertices in G. We say that a Laplacian matrix S̃c(L, C) ∈ R
C×C is an δ-approximate Schur

complement of L onto C if S̃c(L, C) ≈δ Sc(L, C), where we use ≈δ to mean an eδ-spectral approximation.

We use the following result as a black-box for computing sparse approximate Schur complements:

Lemma 2.4. (ApproxSchur procedure [17]) Let L be the weighted Laplacian of a graph with n vertices and
m edges, and let C be a subset of boundary vertices of the graph. Let γ = 1/n3 be the probability parameter.
Given error parameter δ ∈ (0, 1/2), there is an algorithm ApproxSchur(L, C, δ) that computes and outputs a

δ-approximate Schur complement S̃c(L, C) that satisfies the following properties with probability at least 1− γ:

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited134

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Algorithm 2 Data structure to maintain Schur complements

1: private: member
2: Graph G with incidence matrix B

3: Separator tree T of height η, and vertex sets FH and ∂H at every node H in T
4: Weight vector w and diagonal matrix W used interchangeably
5: Schur complement approximation factor δ
6: A Laplacian L

(H) supported on FH ∪ ∂H at every node H in T
7:

8: procedure Initialize(G, w ∈ R
m, εP > 0)

9: B← incidence matrix of G
10: T ← separator tree of G of height η as in Theorem 2.2
11: δ ← εP/η
12: w ← w

13: for i = 0, . . . , η do
14: for each node H at level i in T do
15: ApproxSchurNode(H)
16: end for
17: end for
18: end procedure
19:

20: procedure Reweight(w(new) ∈ R
m)

21: H ← leaf nodes in T that contain all the edges in G whose weight has changed
22: w ← w(new)

23: PT (H)← set of all ancestor nodes of H in T
24: for i = 0, . . . , η do
25: for each node H at level i in PT (H) do
26: ApproxSchurNode(H)
27: end for
28: end for
29: end procedure
30:

31: procedure ApproxSchurNode(H ∈ T)
32: if H is a leaf node then
33: . B[H] is the incidence matrix for the induced subgraph H with edge set E(H)
34: L

(H) ← (B[H])>WE(H)B[H]
35: else
36: Let D1, D2 be the children of H
37: L

(H) ← ApproxSchur(L(D1), ∂D1, δ) + ApproxSchur(L(D2), ∂D2, δ) (Lemma 2.4)
38: end if
39: end procedure

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited135

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1. The graph corresponding to S̃c(L, C) has O(δ−2|C| log(n/γ)) edges.

2. The total running time is O(m log3(n/γ) + δ−2n log4(n/γ)).

We maintain a collection of δ-approximate Schur complements in our data structures carefully, crucially
making use of the separator tree and the transitive property of Schur complements, so that altogether, we maintain
an approximation of the block-diagonal matrix in Eq. (2.7) as edge weights undergo updates throughout the IPM.
Specifically, we show:

Theorem 2.3. (Maintenance of Schur complements) Given a modified planar graph G with m edges and
its separator tree T , there exists a deterministic data structure that maintains the edge weights w from the RIPM
and a collection of Schur complements, and supports the following procedures:

• Initialize(G,w ∈ R
m
>0, εP > 0): Given a graph G, initial weights w, projection matrix approximation

accuracy εP, preprocess in Õ(m) time.

• Reweight(w ∈ R
m
>0 given implicitly as a set of changed coordinates): Set the current weight to w and

updates the relevant Schur complements in Õ(δ−2
√
mK) time, where K is the number of coordinates changed

in w.

• Access to a Laplacian L
(H) at every node H of T in time nearly-linear in |∂H ∪ FH |.

Furthermore, the data structure maintains the L
(H)’s so that for each level i ≥ 0 of T ,

(2.8) L
(i) def

=
∑

H at level i

L
(H) ≈iδ Sc(L, Ci−1),

where we use ≈δ to mean an eδ-spectral approximation, and we assume all L(H)’s are of the same dimension by
padding zeros.

Let us now define

(2.9) Γ̃
def
=




(L
(0)
F0,F0

)−1
0 0

0
. . . 0

0 0 (L
(η)
Fη,Fη

)−1




to be the block-diagonal matrix of Schur complements in Eq. (2.7), except we replace the exact Schur

complements with approximate ones maintained by the data structure given by Eq. (2.8). Similarly, let Π
(i) def

=

I− L
(i)
Ci,Fi

(
L
(i)
Fi,Fi

)−1

be the corresponding approximation of U(i) = I− Sc(L, Ci−1)Ci,Fi
(Sc(L, Ci−1)Fi,Fi

)
−1

.

With the data structure for maintaining the Schur complements, we can therefore maintain Γ̃ and the
associated Π

(i)’s. Finally, we arrive at the approximate projection matrix

(2.10) P̃w = W
1/2

B
>
Π

(0)> · · ·Π(η−1)>
Γ̃Π

(η−1) · · ·Π(0)
B

>
W

1/2 ≈ηδ Pw.

This is in fact what we want as the approximate slack projection matrix, and also a crucial component of the flow
projection matrix.

2.3 Maintaining Vector Approximation In the flow and slack maintenance data structures, one key
operation is to maintain vectors f , s that are close to f , s throughout the RIPM. In this section, we will give a
meta data structure that solves this in a more general setting. The data structure involves three steps; the first
two are similar to [16] and our key contribution is the last step:

1. We maintain an approximate vector by detecting coordinates with large changes. In step k, for every `
such that 2`|k, we consider all coordinates of the approximate vector that did not change in the last 2`

steps. If any of them is off by more than δ
2dlogme from the true vector, it is updated. We can prove

that each coordinate of the approximate vector has additive error at most δ. The number of updates to
the approximate vector will be roughly O(22`k) where 2`k is the largest power of 2 that divides k. This
guarantees that K-sparse updates only happen

√
m/K times.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited136

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

2. We detect coordinates with large changes via a random sketch. We can sample an edge with probability
proportional to its amount of change, given access to sum of the probabilities of edges in any region of the
decomposition tree.

3. We show how to maintain random sketches for a large family of operators, the forest operators. To maintain
the random sketch of Mz for some M with forest structure, i.e. when M is the concatenation of operators
on tree paths, we store intermediate results for every subtrees at their roots. To modify the operator on
some edge or operand on some coordinates, we only need to update nodes on several tree paths. We will
apply this data structure to the separator tree where the cost of updating a node H will be proportional to
its separator size, so that a K-sparse update costs roughly Õ(

√
mK).

We begin with the formal definition of forest operator. Its structure is motivated by the separator tree from
the previous section.

Definition 2.2. (Forest Operator) Given a rooted forest T where each vertex v is associated with a disjoint
set Sv and each upward4 edge v1v2 is associated with a matrix Mv1v2

∈ R
Sv1×Sv2 . For each upward path

p = (u1, u2, · · · , uz), we define
Mp = Mu1u2

Mu2u3
· · ·Muz−1uz

.

Let L =
⋃

leaf l Sl and R =
⋃

root r Sr. We define the forest operator M ∈ R
L×R by

(M)Sl×Sr
= Ml→r for all l ∈ L, r ∈ R

where l→ r denotes the downward path from root r to leaf l. If there is no path from l to r, we set Ml→r ∈ R
Sl×Sr

to be the zero matrix.

The complexity of a forest operator can be parameterized as follows:

Definition 2.3. (Complexity of Forest Operator) For any k ≤ m, we define T (k) be the maximum cost
of computing u>

Me +Mev for k different u,v and k distinct edges e.

For the operator induced by the flow and slack variables, we have T (k) = Õ(
√
mk) where m is the number of

edges in the input graph.
Now, we are ready to state the main result:

Theorem 2.4. (Vector Maintenance for Forest Operator) Given a constant degree forest T with
height η, a forest operator M on T with complexity T . There exists a randomized data structure (Algorithms 3
to 5) that supports the following procedures against adversarial inputs:

• Initialize(M, z1, z2, c1, c2, ρ > 0, δ > 0, β > 0): Initialize the data structure with initial vector v =
M(c1z1 + c2z2), target step accuracy δ, success probability 1 − ρ, speed limit β in O(mη2 logm log(mρ))
time.

• Approximate(M, z1, z2, c1, c2,D): Output a vector v such that ‖D1/2(v−v)‖∞ ≤ δ for the current vector
v = M(c1z1 + c2z2) and the current diagonal scaling D. We assume z1, z2,D are given implicitly as a set
of changed coordinates.

• Exact(): Output the current vector v = M(c1z1 + c2z2) in O(η2 log(mρ) · T ((η + logm) ·m)) time.

Suppose ‖v(k+1) − v(k)‖D(k+1) ≤ β for all k, where D
(k) and v(k) are the D and v at the k-th step. We use

k-th step to denote the state of the data structure after the k-th Approximate. 0-th step means the state after
Initialize. At the k-th step, we have the following:

• Excluding the coordinates i where D
(k)
ii 6= D

(k−1)
ii , there are

Nk
def
= O(22`k(β/δ)2 log2m)

coordinates in v that are changed, where `k is the largest integer ` with k = 0 mod 2`.

4The edge v1v2 is upward if v2 is closer to a root than v1.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited137

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

• The cost of the k-th Approximate call is

Θ(η2 log(
m

ρ
) logm) · T (O(η + logm) · (Nk +∆))

where ∆ = |{e : Me 6= M
(last)
e }|+ |{root r : zd,Sr

6= z
(last)
d,Sr

for some d = 1 or 2}|+ |{i : Dii 6= D
(last)
ii }|.

Algorithm 3 Data structure MaintainVector

1: private : member
2: Accuracy target δ > 0
3: Current step k and approximate vector v ∈ R

m

4: Previous inputs {v(j) ∈ R
m}kj=0 and diagonal matrices {D(j) ∈ R

m×m}kj=1

5:

6: procedure Initialize(v ∈ R
m, δ > 0)

7: v ← v, δ ← δ, k ← 0
8: end procedure
9:

10: procedure Approximate(v ∈ R
m,D ∈ R

m×m
>0)

11: k ← k + 1, v(k) ← v, D(k) ← D.
12: if k ≥ 2 then
13: vi ← v

(k)
i for all i such that D

(k)
ii 6= D

(k−1)
ii and vi 6= v

(k−1)
i .

14: end if
15: for ` = 0, 1, · · · , dlogme do
16: if k = 0 mod 2` and k ≥ 2` then

17: I
(k)
`

def
= {i ∈ [m] : (D

(k)
ii)1/2 · |v(k)

i − v
(k−2`)
i | ≥ δ

2dlogme . Implemented in Algorithm 4

18: and v̄i has not been updated in Line 13 or Line 24 since the (k − 2`)-th step}

19: I ← I ∪ I(k)`

20: if ` = dlogme then I ← [m]
21: end if
22: end if
23: end for
24: vi ← v

(k)
i for all i ∈ I

25: return v

26: end procedure
27:

28: procedure Exact()
29: Let {uH}H∈ forest T be temporary variables
30: Let uR = (c1z1 + c2z2)|SR

for each root R in the forest
31: for each node H ∈ T by height in decreasing order do
32: Let P be the parent of H
33: uH ←MH,PuP

34: end for
35: return {uH}leaf H

36: end procedure

2.4 Maintaining Flow and Slack In this section, we outline the data structures for maintaining the flow
and slack solutions f , s as needed in Algorithm 1, Line 23. To this end, we make crucial use of ideas from nested
dissection and approximate Schur complements.

As we will discuss later, our LP formulation for the IPM uses a modified graph, which includes two additional
vertices and O(n) additional edges to the original graph. Therefore, the following data structures work with these
modified planar graph.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited138

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Algorithm 4 Implementation of Line 17 in Algorithm 3

1: Let D be the diagonal matrix such that

Dii =

{
D

(k)
ii if v

(j)
i = vi for j ≥ k − 2`

0 otherwise
.

2: Let q = D
1/2

v(k) −D
1/2

v(k−2`).
3: Let T be a height-η tree with n leaves corresponding to the coordinates of q.
4: Let the number of samples N = Θ(22`(β/δ)2 log2m log(m/ρ)) where ρ is the failure probability.
5: Let the sketch dimension w = Θ(η2 log(mρ)).

6: Let Φ ∈ R
w×m be a random matrix with each entries samples independently from N(0, 1

w).
7: Let I be the set of candidate coordinates.
8: For any node u ∈ T , let D(u) be the set of leaf nodes in the subtree under u, and let ID(u) be the diagonal

matrix with 1 on the entries indexed by D(u) and zero otherwise.
9: for j = 1, · · · , N do

10: . Sample a coordinate u with probability proportionally to q2
i .

11: while True do
12: u← root(T), pu ← 1.
13: while u is not a leaf node do
14: Sample a child u′ of u with probability

P(u→ u′)
def
=

‖ΦID(u′)q‖22∑
u′′ is a child of u ‖ΦID(u′′)q‖22

15: pu ← pu ·P(u→ u′)
16: u← u′

17: end while
18: With probability paccept

def
= q2

u/(2 · pu · ‖Φq‖22), break
19: end while
20: I ← I ∪ {u} . u corresponds to a coordinate of q
21: end for
22: return {i ∈ I such that |qi| ≥ δ

2dlogme}.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited139

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Algorithm 5 Data Structure for Sketch Maintenance

1: private : member
2: Forest Operator {Me}edge e in T .
3: Rooted tree T .
4: Sketch matrix Φ ∈ R

w×m.
5: Current vector z ∈ R

R.

6: Partial Sketch { ΦM̂u }vertex u in T where M̂u =
∑

leaf l Ml→u and · · · denotes the memoization of · · ·

7: Sketched value { ΦM̂rz }root r in T or vertex r∈T \T .
8:

9: procedure Initialize(a forest T , Φ ∈ R
w×m)

10: Set Me, z, ΦM̂u , ΦM̂rz to 0 with correct sizes.

11: Set T to a rooted tree obtained by connecting the roots of forest T via a binary tree with height O(logm).
12: Set Φ← Φ.
13: end procedure
14:

15: procedure Update({M(new)
e }e∈δM , {z(new)

i }i∈δz)

16: Update Me to M
(new)
e for e ∈ δM , zi to z

(new)
i for i ∈ δz.

17: Let the affected vertices Vaff =
(⋃

(u,v)∈δM
{v and its ancestors in T }

)
∪ {δz and its ancestors in T }.

18: for v ∈ Vaff sorted by height of v in increasing order do

19: If v ∈ T , then set ΦM̂v =
∑

child u of v ΦM̂u Muv.

20: If v is a root of T , then set ΦM̂vz = ΦM̂v · z.

21: If v ∈ T \T , then set ΦM̂vz =
∑

child u of v ΦM̂vz .
22: end for
23: end procedure
24:

25: procedure MemoizedQuery(i ∈ T)
26: If i is a root, then return zi.
27: if zj and Muv for all ancestors (u, v) and j of i have not been changed since the last call of

MemoizedQuery(i) then
28: return the result of the last MemoizedQuery(i) .
29: else
30: Let p(i) be the parent of i.
31: Call MemoizedQuery(p(i)) and let u be the result. . u = Mp(i)→rz.
32: return M(i,p(i))u.
33: end if
34: end procedure
35:

36: procedure Estimate(u ∈ T)
37: if u is a root of T or u ∈ T \T then

38: return ΦM̂uz

39: else
40: Let u be the result of MemoizedQuery(u).

41: return ΦM̂u u.
42: end if
43: end procedure
44:

45: procedure Query(i ∈ [m])
46: return MemoizedQuery(i).
47: end procedure

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited140

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

In all procedures in these data structures, we assume inputs are given by the set of changed coordinates and
their values, compared to the previous input. Similarly, we output a vector by the set of changed coordinates
and their values, compared to the previous output. While the data structures for maintaining flow and slack are
randomized, they are guaranteed to work against an adaptive adversary that is allowed to see the entire internal
state of the data structure, including the random bits.

Finally, in these data structures where we write L
−1x for some Laplacian L and vector x, we imply the use

of an SDD-solver as a black box in nearly-linear time:

Theorem 2.5. ([54, 30]) There is a randomized algorithm which is an ε-approximate Laplacian system solver
for the any input n-vertex m-edge graph and ε ∈ (0, 1) and has the following runtime O(mpoly(log log n) log(1/ε)).

2.4.1 Maintaining the Intermediate Vector z To work with P̃w in Eq. (2.10), we will consider it as the

composition of two operators applied sequentially. Let P̃
U def

= Γ̃Π
(η−1) · · ·Π(0)

B
>
W

1/2 in Eq. (2.10), so that

P̃w = Π
(0)> · · ·Π(η−1)>

P̃
U . We first show how to maintain the intermediate vector

z
def
= P̃

Uv.

Since v is updated at every step of IPM with a set of changed coordinates and their values, we will maintain z

as a sum of two terms z
def
= c · z(prev) + z(sum) to facilitate sparse updates, where z(prev) = P̃

Uv(prev) with v(prev)

being the v from the previous iteration, and z(sum) is the remaining accumulation of z throughout the algorithm.
Specifically, we show:

Theorem 2.6. Given a modified planar graph G with m edges, there exists a deterministic data structure that

maintains the edge weights w from the RIPM and vector z
def
= c · z(prev) + z(sum), and supports the following

procedures:

• Initialize(G,v ∈ R
m,w ∈ R

m
>0, εP > 0): Given a graph G, initial vector v, initial weights w, target

projection matrix accuracy εP, the data structure preprocesses in Õ(m) time.

• Reweight(w ∈ R
m
>0 given implicitly as a set of changed coordinates): Sets the current weight to w and

updates the representation of z in Õ(ε−2
P

√
mK) time, where K is the number of coordinates changed in w,

compared to the last input to Reweight or Move. Updates z(prev)|FH
and z(sum)|FH

for at most Õ(K)
nodes H.

• SparseVectorProject(d ∈ R
n): Computes Γ̃Π

(η−1) · · ·Π(0)d in Õ(ε−2
P

√
mK) time, where K is the

number of non-zero coordinates in d.

• Move(α ∈ R, v ∈ R
n given implicitly as a set of changed coordinates): Maintains z ← z +

αΓ̃Π(η−1) · · ·Π(0)
B

>
W

1/2v in Õ(ε−2
P

√
mK) time, where K is the number of coordinates changed in v

compared to the last input to Reweight or Move. Updates z(prev)|FH
and z(sum)|FH

for at most Õ(K)
nodes H.

When Move(α,v) is called, we decompose v = v(prev) + ∆v, where v(prev) is the v from the pre-
vious IPM step, and ∆v is the change for the current step. We update z to reflect the change of
αΓ̃Π(η−1) · · ·Π(0)

B
>
W

1/2(v(prev)+∆v), and we also update the representation of z = c ·z(prev)+z(sum) so that

at the beginning of the next IPM, z(prev) = P̃
Uv(prev) is maintained.

To accomplish this, we first compute the sparse vector ∆z = Γ̃Π
(η−1) · · ·Π(0)

B
>
W

1/2∆v =
SparseVectorProject(B>

W
1/2∆v). Then, we set c← c+α, z(prev) ← z(prev)+∆z, z(sum) ← z(sum)− c ·∆z.

It can be easily checked that z(new) = z + αΓ̃Π(η−1) · · ·Π(0)
B

>
W

1/2v; that is, we perform the correct update
and maintain the correct representation.

Let us discuss the run-time of SparseVectorProject and use the two-layer nested dissection setup for

intuition. Let d
def
= B

>
W

1/2v, then we have

z
def
=

[
L
−1
FF 0

0 S̃c(L, C)−1

] [
I 0

−LCFL
−1
FF I

]
d.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited141

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

The only difficult part for the next left matrix multiplication is −LCFL
−1
FF . However, we note that LFF is

block-diagonal with two blocks, each corresponding to a region generated during nested dissection. Hence, we can
solve the Laplacians on the two subgraphs separately. Next, we note that the two terms of LCFL

−1
FFd are both

fed into S̃c(L, C)−1, and we solve this Laplacian in time linear in the size of S̃c(L, C). The rest of the terms are
not the bottleneck in the overall run-time. In the more general nested-dissection setting with O(log n) layers, we
solve a sequence of Laplacians corresponding to the regions given by paths in the separator tree. We can bound
the run-time of these Laplacian solves by the size of the corresponding regions for the desired overall run-time.

We use this partial computation z in the data structures for maintaining f and s below.

Algorithm 6 Data structure to maintain the intermediate vector z, Part 1

1: private: member
2: Approximate Schur complements Data Structure ApxSc (Theorem 2.3)
3: Vectors z(prev), z(sum)

4: Coefficient c
5: Vector v(prev)

6: Diagonal weight matrix W (and vector w used interchangeably)
7:

8: procedure Initialize(G,v ∈ R
m,w ∈ R

m
>0, εP > 0)

9: ApxSc.Initialize(G,w, εP)
10: W← diag(w)
11: v(prev) ← v

12: z(prev) ← SparseVectorProject(B>
W

1/2v)
13: z(sum) ← 0

14: c← 1
15: end procedure
16:

17: procedure SparseVectorProject(d ∈ R
m)

18: H ← set of leaf nodes in T containing any edge with a non-zero coordinate in d

19: PT (H)← set of all ancestor nodes of H in T
. z is a sparse vector throughout this procedure

20: z ← d

21: for i = 0, . . . , η do
22: for each node H at level i in PT (H) do

23: z|FH
← (L

(H)
FH ,FH

)−1z|FH

24: z|∂H ← z|∂H − L
(H)
∂H,FH

· z|FH

25: end for
26: end for
27: return z

28: end procedure
29:

30: procedure Move(α ∈ R,v(new) ∈ R
m)

31: ∆v ← v(new) − v(prev)

32: v(prev) ← v(new)

33: ∆z ← SparseVectorProject(B>
W

1/2∆v)
34: c← c+ α
35: z(prev) ← z(prev) +∆z

36: z(sum) ← z(sum) − c ·∆z

37: end procedure

2.4.2 Maintaining Slack Now, we discuss how to maintain the slack solution under the update s ←
s+ thW−1/2

P̃wv as needed in Algorithm 1, Line 23. This is accomplished by a slack maintenance data structure

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited142

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Algorithm 7 Data structure to maintain the intermediate vector z, Part 2

1: procedure Reweight(w(new) ∈ R
m
>0)

2: ∆w ← w(new) −w . We use W and w interchangeably for ease of notation
3: w ← w(new)

4: H ← set of leaf nodes in T that contain all the edges of G whose weight has changed
5: PT (H)← set of all ancestor nodes of H
6: ∆z ← SparseVectorProject(B>(∆W)1/2v(prev))
7: z(prev) ← z(prev) +∆z

8: z(sum) ← z(sum) − c ·∆z

. At this point, z(prev) = Γ̃Π
(η−1) . . .Π(0)d(new), where Γ̃ and the Π

(i)’s are based on the old weights
9:

10: for i = 0, . . . , η do
11: for each node H at level i in PT (H) do

12: z(prev)|FH
← L

(H)
FH ,FH

· z(prev)|FH

13: z(sum)|FH
← L

(H)
FH ,FH

· z(sum)|FH

14: end for
15: end for

. At this point z(prev) = Π
(η−1) . . .Π(0)d(new), where the Π

(i)’s are based on the old weights
16:

17: A ← ⋃
H∈PT (H) FH

18: y|A ← z(prev)|A
19: for i = 0, . . . , η do
20: for each node H at level i in PT (H) do

21: z(prev)|∂H ← z(prev)|∂H + L
(H)
∂H,FH

· (L(H)
FH ,FH

)−1y|FH
. Remove the old computation

22: end for
23: end for
24:

25: ApxSc.Reweight(w(new))
. At this point, all L(H)’s are based on the new weights

26:

27: for i = 0, . . . , η do
28: for each node H at level i in PT (H) do

29: z(prev)|∂H ← z(prev)|∂H − L
(H)
∂H,FH

· (L(H)
FH ,FH

)−1 · z(prev)|FH
. Add the new computation

30: z(sum)|FH
← z(sum)|FH

− c · (z(prev)|FH
− y|FH

)

31: z(prev)|FH
← (L

(H)
FH ,FH

)−1z(prev)|FH

32: z(sum)|FH
← (L

(H)
FH ,FH

)−1z(sum)|FH

33: end for
34: end for
35: end procedure

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited143

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

(Algorithm 8) that simultaneously maintains the approximate slack s and the edge weights w from the IPM. A
single IPM step calls the procedures Reweight, Move, Approximate in this order once.

Theorem 2.7. (Slack Maintenance) Given a modified planar graph G with m edges, there exists a randomized
data structure that implicitly maintains the flow solution s undergoing IPM changes, and explicitly maintains its
approximation s as well as the edge weights w, and supports the following procedures with high probability in m
against an adaptive adversary:

• Initialize(G, s ∈ R
m,w ∈ R

m
>0, εP > 0, ε > 0): Given a graph G, initial vector s, initial weight w, target

step accuracy εP and target output accuracy ε, preprocess in Õ(m) time.

• Reweight(w ∈ R
m
>0, given implicitly as a set of changed weights): Set the current weight to w in

Õ(ε−2
P

√
mK) time where K is the number of coordinates changed in w (compared to the last input to

Reweight).

• Move(α ∈ R,v ∈ R
m given implicitly as a set of changed coordinates): Set s← s+αW−1/2

P̃wv for some

matrix P̃w with ‖P̃w −Pw‖op ≤ εP and Range(P̃w) = Range(Pw). The time is Õ(ε−2
P

√
mK) where K is

the number of coordinates changed in v, compared to the last input to Move.

• Approximate() → R
m: Update the vector s such that ‖W1/2(s − s)‖∞ ≤ ε for the current weight w and

the current vector s.

• Exact()→ R
m: Output the current vector s in Õ(m) time.

Suppose we have T steps and in each step we call Reweight, Move and Approximate in order. If α‖v‖2 ≤ β
for all calls to Move, then

• at the k-th Approximate, O(Nk
def
= 22`k(βε)

2 log2m) coordinates in s are changed, where `k is the largest

integer ` with k = 0 mod 2`. The time for the k-th Approximate is Õ(ε−2
P

√
m(K +Nk)) where K is the

number of coordinates changed in v and w, compared to the last input to Approximate (or to the initial
state if k = 1).

To implement this data structure, we use the definition of P̃w from Eq. (2.10). Since this is the original Pw

with the Schur complement terms replaced by approximations, we have P̃w ≈ Pw using spectral approximations.
Also, Range(P̃w) = Range(W1/2

B) = Range(Pw) by definition.
Theorem 2.6 shows how to maintain the intermediate vector z defined as

z = Γ̃Π
(η−1) · · ·Π(0)

B
>
W

1/2v.

This is a useful partial computation, as we observe that the full slack update is

s← s+ αW−1/2
P̃wv = s+ αW−1/2

W
1/2

BΠ
(0)> · · ·Π(η−1)>z.

The remaining expression BΠ
(0)> · · ·Π(η−1)>z can in fact be written as a forest operator applied to z. The

forest operator M operates on the forest T = {TH : H ∈ T }, where TH is the subtree of T rooted at H with an
additional child node DN for each leaf node N . Recall that

Π
(i)> = I−

(
L
(i)
Fi,Fi

)−1

L
(i)
Fi,Ci

.

We decompose based on nodes H at level i, as a key step to reformulating Π
(0)> · · ·Π(η−1)> as a forest operator.

For every level i of T , let {C̄(H) : H at level i in T } be an arbitrary partition of Ci satisfying C̄(H) ⊆ ∂H
for each H. Let IC̄(H) be the diagonal matrix with 1 on the diagonal entries indexed by C̄(H), and 0 otherwise.

For a non-leaf node H ∈ T with parent P , for all trees T ∈ T containing the upward edge (H,P), we define,
as part of the forest operator,

(2.11) MH,P
def
= IC̄(H) −

(
L
(H)
FH ,FH

)−1

L
(H)
FH ,∂H .

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited144

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Algorithm 8 Slack Maintenance, Main Algorithm

1: Private: member
2: Sketch maintenance data structure for forest operator slackSketch (Theorem 2.4, Algorithm 3)
3: Intermediate vector z maintenance data structure maintainZ (Theorem 2.6)
4: Forest operator M = B

>
Π

(0)> · · ·Π(η−1)>

5: Forest coefficient c which refer to c maintained by maintainZ

6: Forest vectors z1, z2 which refer to z(sum) and z(prev) maintained by maintainZ respectively
7: Slack vector s̃0, s1
8:

9: procedure Initialize(G, s ∈ R
m,w ∈ R

m
>0, εP > 0, ε > 0)

10: Compute M by Eqs. (2.11) and (2.12)
11: ĉ← 0
12: s̃0 ← 0, s1 ← s

13: W← diag(w)
14: slackSketch.Initialize(M, z1, z2, c1, c2, n

−5, εP, β)
15: maintainZ.Initialize(G,v,w, εP) . maintainZ.Initialize initializes z1, z2 and c2
16: end procedure
17:

18: procedure Reweight(w(new) ∈ R
m)

19: Compute the new forest operator M
(new)

using the new weights w(new)

20: s̃0 ← s̃0 − (M
(new) −M)(z1 + c1z2)

21: M←M
(new)

22: W← diag(w(new))
23: maintainZ.Reweight(w(new)) . maintainZ.Reweight updates z1, z2 and c2
24: end procedure
25:

26: procedure Move(α,v(new) ∈ R
m)

27: maintainZ.Move(α,v(new)) . maintainZ.Move updates z1, z2 and c2
28: end procedure
29:

30: procedure Approximate()
31: s1 ← slackSketch.Approximate(M, z1, z2, c1, c2,W)
32: return s1 + s̃0
33: end procedure
34:

35: procedure Exact()
36: s̃1 ← slackSketch.Exact()
37: return s̃1 + s̃0
38: end procedure

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited145

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

For a leaf node H ∈ T , for all trees T ∈ T containing H, we define

(2.12) MNH ,H
def
= B[H].

With this forest operator, we may then directly invoke Theorem 2.4 to maintain an approximation of s.

2.4.3 Maintaining Flow Now, we discuss how to maintain the flow solution under the update f ←
f + hW1/2

P̃
⊥
wv as needed in Algorithm 1, Line 23. This is accomplished by a flow maintenance data structure

that simultaneously maintains the approximate slack f and the edge weights w from the IPM. A single IPM step
calls the procedures Reweight, Move, Approximate in this order once.

Theorem 2.8. (Flow Maintenance) Given a modified planar graph G with m edges, there exists a randomized
data structure (Algorithm 9) that implicitly maintains the flow solution f undergoing IPM changes, and explicitly
maintains its approximation f as well as the edge weights w, and supports the following procedures with high
probability in m against an adaptive adversary:

• Initialize(G,f ∈ R
m,w ∈ R

m
>0, εP > 0, ε > 0): Given a graph G, initial vector f , initial weight w, target

step accuracy εP and target output accuracy ε, preprocess in Õ(mε−2
P

) time.

• Reweight(w ∈ R
m
>0 given implicitly as a set of changed weights): Set the current weight to w in

Õ(ε−2
P

√
mK) time, where K is the number of coordinates changed in w compared to the last input to

Reweight.

• Move(α ∈ R,v ∈ R
m given implicitly as a set of changed coordinates): Set f ← f + αW1/2

P̃
⊥
wv for some

matrix P̃
⊥
w with ‖P̃⊥

w − (I−Pw)‖op ≤ εP and B
>
W

1/2
P̃

⊥
w = 0. The time is Õ(ε−2

P

√
mK), where K is the

number of coordinates changed in v, compared to the last input to Move.

• Approximate() → R
m: Update the vector f such that ‖W−1/2(f − f)‖∞ ≤ ε for the current weight w

and the current vector f .

• Exact()→ R
m: Output the current vector f in Õ(mε−2

P
) time.

Suppose we have T steps and in each step we call Reweight, Move and Approximate in order. If α‖v‖2 ≤ β
for all calls to Move, then

• at the k-th Approximate, O(Nk
def
= 22`k(βε)

2 log2m) coordinates in f are changed, where `k is the largest

integer ` with k = 0 mod 2`. The time for the k-th Approximate is Õ(ε−2
P

√
m(K +Nk)) where K is the

number of coordinates changed in v and w, compared to the last input to Approximate (or to the initial
state if k = 1).

To implement Move(α,v), we must define P̃
⊥
w such that P̃

⊥
w ≈ I − Pw and B

>
W

1/2
P̃

⊥
w = 0. Rather

than writing P̃
⊥
w in some closed form, observe that it suffices to find some weighted flow f̃ ≈ Pwv satisfying

B
>
W

1/2f̃ = B
>
W

1/2v. (It is a weighted flow as it is obtained by multiplying the weights W to some flow.)

Indeed, with such an f̃ , we can define P̃
⊥
wv

def
= v − f̃ , and check that it satisfies P̃

⊥
wv = v − f̃ ≈ (I − Pw)v, as

well as B
>
W

1/2
P̃

⊥
wv = 0. Hence, we maintain f = f̂ − f̃ . For each IPM step, we update them as follows:

f̂ ← f̂ + αW1/2v and f̃ ← f̃ + αW1/2
P̃wv,

where P̃w satisfies
∥∥∥P̃w −Pw

∥∥∥
op
≤ εP, and B

>
W

1/2
P̃wv = B

>
W

1/2v. Maintaining the term f̂ is

straightforward; as such, we turn our focus to f̃ .

Let us define demands on vertices by d
def
= B

>
W

1/2v. Unwrapping the definition of Pw, we see that the
first condition is f̃ ≈ Pwv = W

1/2
BL

−1d. Combinatorially, this says we want some weighted flow close to the
weighted electrical flow routing demand d. Suppose we had f̃ = W

1/2
BL

−1d, then we see immediately that
B

>
W

1/2f̃ = B
>
WBL

−1d = d, so that the second condition is also satisfied. To realize the approximation, we
make use of Eq. (2.7) and approximate Schur complements to implicitly produce some L̃

−1 ≈ L
−1. Hence, one

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited146

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Algorithm 9 Flow Maintenance, Main Algorithm

1: Private: member
2: Sketch Maintenance Data Structure flowSketch (Theorem 2.4, Algorithm 3)
3: Intermediate Vector z Maintenance Data Structure maintainZ (Theorem 2.6)
4: Forest Operator M

5: Forest coefficient c1 which is always 1
6: Forest coefficient c2 which refer to c maintained by maintainZ

7: Forest vectors z1, z2 which refer to z(sum) and z(prev) maintained by maintainZ respectively
8: Flow vector f̃0,f1

9: Flow coefficient ĉ
10: Flow vector f̂0, f̂1

11:

12: procedure Initialize(G,f ∈ R
m,w ∈ R

m
>0, εP > 0, ε > 0)

13: Compute M by Eqs. (2.13) and (2.14)
14: ĉ← 0
15: f̂0 ← f , f̃0 ← 0,f1 ← 0

16: W← diag(w)
17: flowSketch.Initialize(M, z1, z2, c1, c2, n

−5, εP, β)
18: maintainZ.Initialize(G,v,w, εP) . maintainZ.Initialize initializes z1, z2 and c2
19: f̂1 ←W

1/2v

20: end procedure
21:

22: procedure Reweight(w(new) ∈ R
m)

23: Compute the new forest operator M
(new)

using the new weights w(new)

24: maintainZ.Reweight(w(new))

25: f̃0 ← f̃0 − (M
(new) −M)(z1 + c1z2) . maintainZ.Reweight updates z1, z2 and c2

26: M←M
(new)

27: W← diag(w(new))

28: f̂
(new)
1 ←W

1/2v

29: f̂0 ← f̂0 + ĉ · (f̂1 − f̂
(new)
1)

30: f̂1 ← f̂
(new)
1

31: end procedure
32:

33: procedure Move(α,v(new) ∈ R
m)

34: maintainZ.Move(α,v(new)) . maintainZ.Move updates z1, z2 and c2
35: f̂

(new)
1 ←W

1/2v

36: f̂0 ← f̂0 + ĉ · (f̂1 − f̂
(new)
1)

37: f̂1 ← f̂
(new)
1

38: ĉ← ĉ+ α
39: end procedure
40:

41: procedure Approximate()
42: f1 ← flowSketch.Approximate(M, z1, z2, c1, c2,W).

43: return (f̂0 + ĉ · f̂1)− (f1 + f̃0)
44: end procedure
45:

46: procedure Exact()
47: f̃1 ← flowSketch.Exact()

48: return (f̂0 + ĉ · f̂1)− (f̃1 + f̃0)
49: end procedure

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited147

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

important fact about our construction is that when the Schur complements are exact, our flow f̃ agrees with the
true electrical flow of the demand.

To construct f̃ meeting the demand d, we also make use of the intermediate z from Theorem 2.6. The first
step of our algorithm is decomposing d using the separator tree, such that we have a demand term d(H) for each
region H from the separator tree, and furthermore, d(H) = L

(H) · z|FH
, for some Laplacian L

(H) supported on
the region H, and z|FH

is the sub-vector of z indexed by vertices eliminated at H. This construction allows us
to route each demand d(H) by electric flows using only the corresponding region H, rather than the entire graph.
The recursive nature of the decomposition allows us to bound the overall run-time. To show that the resulting
flow f̃ indeed is close to the electric flow, one key insight is that the decomposed demands we construct are almost

orthogonal when S̃c ≈ Sc. Hence, routing them separately by electrical flows gives a good approximation to the
true electrical flow of the whole demand.

Let us illustrate this partially using the two-layer nested dissection scheme from Section 2.2: Suppose we have
a demand term d that is non-zero only on vertices of C. Then, observe that

z =

[
L
−1
FF 0

0 S̃c(L, C)−1

] [
I 0

−LCFL
−1
FF I

]
d

Looking at the subvector indexed by C on both sides, we have that

S̃c(L, C) · z = d

where we abuse the notation to extend S̃c(L, C) from C × C to [n] × [n] by padding zeros. Using Eq. (2.6), we
have (

S̃c(L[H1], C) + S̃c(L[H2], C)
)
· z = d

This gives a decomposition of the demand d into demand terms S̃c(L[Hi], C)z. Crucially, each demand

S̃c(L[Hi], C)z is supported on the vertices of the region Hi, hence we choose to route the flow accordingly.

That is, we have that f̃i is the electric flow on the subgraph Hi that satisfies the demand S̃c(L[Hi], C)z; more

concretely, f̃i = W
1/2

B[Hi]L[Hi]
−1

S̃c(L[Hi], C)z. Finally, we will let the output be f̃ =
∑

f̃i. By construction,
this f satisfies B

>
W

1/2f = d = B
>
W

1/2v.
In order to use the data structure for the sketch maintenance given in Theorem 2.4 to maintain f , we need to

define the forest operator. The separator tree and the decomposition of flows naturally give rise to construction
of the forest operator M: It consists of the forest T = {TH : H ∈ T }, where TH is the subtree of T rooted at H
with an additional child node DN for each leaf node N .

Recall from the definition of L(H), for a node H ∈ T with children D1, D2, we have

L
(H) = S̃c(L(D1), ∂D1) + S̃c(L(D2), ∂D2).

For a non-leaf node H ∈ T with child D, for all trees T ∈ T containing the upward edge (D,H), we define, as
part of the forest operator,

(2.13) MD,H
def
= (L(D))−1

S̃c(L(D), ∂D).

For a leaf node H ∈ T , for all trees T ∈ T containing H, we define

(2.14) MDH ,H
def
= W

1/2
B[H],

which correspond to the operation of routing the flow on H.
With this forest operator, we may then directly invoke Theorem 2.4 to maintain an approximation of f .

2.5 Main Proof We are now ready to prove our main result. Algorithm 10 presents the implementation of
RIPM Algorithm 1 using our data structures.

We first prove a lemma about how many coordinates change in w and v in each step. This is useful for
bounding the complexity of each iteration.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited148

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Algorithm 10 Implementation of Robust Interior Point Method

1: procedure CenteringImpl(B, φ,f , s, tstart, tend)
2: Let G be the graph on n vertices and m edges with incidence matrix B

3: Let F and S be the data structure for flow and slack maintenance (Theorem 2.8, Theorem 2.7)
4: Let α = 1

220λ and λ = 64 log(256m2)

5: Let t← tstart, f ← f , s← s,f ← f , s← s, t← t, W← ∇2φ(f)−1

6: F .Initalize(G,f ,w, α, α2)
7: S.Initalize(G, s,w, α, α2)

8: . Define Pw
def
= W

1/2
B(B>

WB)−1
B

>
W

1/2

9: while t ≥ tend do
10: Set t← max{(1− α√

m
)t, tend}

11: Update h = −α/‖ cosh(λγt(f , s))‖2 where γ defined in Eq. (2.2)
12: Update the diagonal weight matrix W = ∇2φ(f)−1

13: F .Reweight(w) . Update the implicit representation of f with new weights
14: S.Reweight(w) . Update the implicit representation of s with new weights

15: Update the direction v, where vi = sinh(λγt(f , s)i)
16: F .Move(h,v) . Update f ← f + hW1/2v⊥ with v⊥ ≈ (I−Pw)v
17: S.Move(th,v) . Update s← s+ thW−1/2v‖ with v‖ ≈ Pwv

18: f ← F .Approximate() . Maintain f such that ‖W−1/2(f − f)‖∞ ≤ α
19: s← S.Approximate() . Maintain s such that ‖W1/2(s− s)‖∞ ≤ α
20: Update t← t if |t− t| ≥ αt
21: If t changed, S.Initalize(G,S.Exact(),w, α, α

8dlogme)
22: end while
23: Return (F .Exact(),S.Exact())
24: end procedure

Lemma 2.5. In the k-th iteration of the CenteringImpl algorithm, there are O(22`k log2m) coordinates in w

and v changed, where `k is the largest integer ` with k = 0 mod 2`.

Proof. Since both w and v are an entry-wise function of f , s and t, it suffices to bound the number of changes of
these variables.

Note that t changes every
√
m/(C logm) iterations for some constant C. By choosing the constant in the

algorithm, we can assume
√
m/(C logm) = 2` for some integer. When t changes, every coordinates of w and v

change. This is allowed because O(22` log2m) = Õ(m).
Now, we bound the changes of f . At the end of the (k−1)-th iteration, we have ‖W−1/2(f−f)‖2 ≤ 2h‖v‖2 =

O(1
logm) by Theorem 2.1. Then, f satisfies the assumption in Theorem 2.8 with β = O(1

logm) and ε = Θ(1
logm).

Hence, Theorem 2.8 guarantees that there are O(22`k log2m) coordinates in f that changes at the k-th iteration.
The proof for s is similar.

Theorem 2.9. (Main Result) We are given a directed planar graph G = (V,E) with n vertices. Assume that
the demands d, edge capacities u and costs c are all integers and bounded by M in absolute value. Then we can
compute a minimum cost flow satisfying demand d in O(n logO(1) n logM) expected time.

Proof. The proof is structured as follows. We first write the minimum cost flow problem as a linear program of the
form Eq. (2.1). We prove the linear program has an interior point and is bounded, so to satisfy the assumptions
in Theorem 2.1. Then, we implement the IPM algorithm using the data structures from Section 2.4. Finally, we
bound the cost of each operations of the data structures.

To write down the min-cost flow problem as a linear program of the form Eq. (2.1), we add extra vertices s
and t. For every vertex v with dv ≤ 0, we add a directed edge from s to v with capacity −dv and cost 0. For
every vertex v with dv ≥ 0, we add a directed edge from v to t with capacity dv and cost 0. Then, we add a
directed edge from t to s with capacity 2nM and cost −2nM .

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited149

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

The cost and capacity on the t→ s edge is chosen such that the minimum cost flow problem on the original
graph is equivalent to the minimum cost circulation on this new graph. Namely, if the minimum cost circulation
in this new graph satisfies all the demand dv, then this circulation (ignoring the flow on the new edges) is the
minimum cost flow in the original graph.

Since Theorem 2.1 requires an “interior” point in the polytope, we first remove all directed edges e through
which no flow from s to t can pass. To do this, we simply check, for every directed edge e = (v1, v2), if s can
reach v1 and if v2 can reach t. This can be done in O(m) time by a BFS from s and a reverse BFS from t. With
this preprocessing, we write the minimum cost circulation problem as the following linear program

min
B>f=0, lnew≤f≤unew

(cnew)>f

where B is the signed incidence matrix of the new graph, cnew is the new cost vector (with cost on extra edges), and

lnew,unew are the new capacity constraints. If an edge e has only one direction, we set lnewe = 0 and u
(new)
e = ue,

otherwise, we orient the edge arbitrarily and set −lnewe = unew
e = ue.

Now, we bound the parameters L,R, r in Theorem 2.1. Clearly, L = ‖cnew‖2 = O(Mm) and R =
‖unew − lnew‖2 = O(Mm). To bound r, we prove that there is an “interior” flow f in the polytope F . We
construct this f by f =

∑
e∈E f (e), where f (e) is a circulation passing through edges e and (t, s) with flow value

1/(4m). All such circulations exist because of the removal preprocessing. This f satisfies the capacity constraints
because all capacities are at least 1. This shows r ≥ 1

4m .

The requirements of Theorem 2.1 for f and s are satisfied by the guarantees of Theorem 2.8 and Theorem 2.7.
Hence, Theorem 2.1 shows that we can find a circulation f such that (cnew)>f ≤ OPT− 1

2 by setting ε = 1
CM2m2

for some large constant C. Note that f , when restricted to the original graph, is almost a flow routing the required
demand with flow value off by at most 1

2nM . This is because sending extra k units of fractional flow from s to t
gives extra negative cost ≤ −knM . Now we can round f to an integral flow f int with same or better flow value
using no more than Õ(m) time [31]. Since f int is integral with flow value at least the total demand minus 1

2 ,
f int routes the demand completely. Again, since f int is integral with cost at most OPT− 1

2 , f int must have the
minimum cost.

Finally, we bound the run-time of Theorem 2.1. At each step of Centering, we maintain the implicit
update step of f and s using Move in Section 2.4; we update W in the data structures using Reweight; and
we construct the explicit f and s using Approximate. We return the true (f , s) by Exact. The total cost of
Centering is dominated by Move, Reweight, and Approximate.

Since we call Move, Reweight and Approximate in order in each step and the runtime for Move,
Reweight are both dominated by the runtime for Approximate, we bound the runtime for Approximate
only. Theorem 2.1 guarantees that there are T = O(

√
m log n log(nM)) total calls. Lemma 2.5 shows that at the

k-th call, the number of coordinates changed in W,v is bounded by O(22`k log2m). This number is bound by
O(Nk). Using this, we apply Theorem 2.8 and Theorem 2.7 to show that the time of the k-step is

Õ

(
ε−2
P

√
m ·

√
min(22`k log2m,m)

)
= Õ

(
min(

√
m2`k ,m)

)

where we use εP = 1/C logm as required in Theorem 2.1. Hence, the total time for Move and Reweight over
T calls is

Õ

(
T∑

k=1

min(
√
m · 2`k ,m)

)
.

Note that
∑T

k=1 2
`k = O(T log T): We bound the sum by splitting it into segments of length 2` = Θ(

√
m). In

each segment, we bound the sum by O(m logm). Since there are T/2` = O(log n log(nM)) segments, the total

time for Move and Reweight is Õ (m log(nM)).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited150

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

References

[1] Deeksha Adil, Brian Bullins, Rasmus Kyng, and Sushant Sachdeva. Almost-Linear-Time Weighted `p-norm Solvers
in Slightly Dense Graphs via Sparsification. In 48th International Colloquium on Automata, Languages, and
Programming (ICALP 2021), volume 198 of LIPIcs, pages 9:1–9:15, 2021.

[2] Deeksha Adil and Sushant Sachdeva. Faster p-norm minimizing flows, via smoothed q-norm problems. In Proceedings
of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 892–910. SIAM, 2020.

[3] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows. 1988.
[4] Mudabir Kabir Asathulla, Sanjeev Khanna, Nathaniel Lahn, and Sharath Raghvendra. A faster algorithm for

minimum-cost bipartite perfect matching in planar graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, pages 457–476. SIAM, 2018.

[5] Kyriakos Axiotis, Aleksander Mądry, and Adrian Vladu. Circulation control for faster minimum cost flow in unit-
capacity graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 93–104.
IEEE Computer Society, 2020.

[6] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deterministic decremental sssp and
approximate min-cost flow in almost-linear time. arXiv preprint arXiv:2101.07149, 2021. To appear in 2021 IEEE
61st Annual Symposium on Foundations of Computer Science (FOCS).

[7] Glencora Borradaile. Exploiting planarity for network flow and connectivity problems. Brown University, 2008.
[8] Glencora Borradaile and Philip N. Klein. An O(n log n) algorithm for maximum st-flow in a directed planar graph.

J. ACM, 56(2):9:1–9:30, 2009.
[9] Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum, and Christian Wulff-Nilsen. Multiple-source

multiple-sink maximum flow in directed planar graphs in near-linear time. SIAM J. Comput., 46(4):1280–1303, 2017.
[10] Erin W. Chambers, Jeff Erickson, and Amir Nayyeri. Homology flows, cohomology cuts. SIAM J. Comput.,

41(6):1605–1634, 2012.
[11] Paul Christiano, Jonathan A Kelner, Aleksander Madry, Daniel A Spielman, and Shang-Hua Teng. Electrical flows,

laplacian systems, and faster approximation of maximum flow in undirected graphs. In Proceedings of the forty-third
annual ACM symposium on Theory of computing, pages 273–282, 2011.

[12] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix multiplication time.
Journal of the ACM (JACM), 68(1):1–39, 2021.

[13] Michael B Cohen, Aleksander Mądry, Piotr Sankowski, and Adrian Vladu. Negative-weight shortest paths and

unit capacity minimum cost flow in Õ(m10/7 logw) time. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 752–771. SIAM, 2017.

[14] Samuel I Daitch and Daniel A Spielman. Faster approximate lossy generalized flow via interior point algorithms. In
Proceedings of the 40th annual ACM symposium on Theory of computing, pages 451–460, 2008.

[15] Sally Dong, Yin Tat Lee, and Guanghao Ye. A nearly-linear time algorithm for linear programs with small treewidth:
A multiscale representation of robust central path. arXiv preprint arXiv:2011.05365v2, 2020.

[16] Sally Dong, Yin Tat Lee, and Guanghao Ye. A nearly-linear time algorithm for linear programs with small treewidth:
A multiscale representation of robust central path. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2021, pages 1784–1797. Association for Computing Machinery, 2021.

[17] David Durfee, Rasmus Kyng, John Peebles, Anup B. Rao, and Sushant Sachdeva. Sampling random spanning trees
faster than matrix multiplication. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23,
2017, pages 730–742. ACM, 2017.

[18] Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight edges, shortest paths, and near linear time.
Journal of Computer and System Sciences, 72(5):868–889, 2006.

[19] Lester Randolph Ford and Delbert R Fulkerson. Maximal flow through a network. Canadian journal of Mathematics,
8:399–404, 1956.

[20] Yu Gao, Yang P. Liu, and Richard Peng. Fully dynamic electrical flows: Sparse maxflow faster than goldberg-
rao. arXiv preprint arXiv:2101.07233, 2021. To appear in 2021 IEEE 61st Annual Symposium on Foundations of
Computer Science (FOCS).

[21] J. R. Gilbert and R. E. Tarjan. The analysis of a nested dissection algorithm. Numer. Math., 50(4):377–404, February
1987.

[22] Gramoz Goranci, Monika Henzinger, and Pan Peng. Dynamic effective resistances and approximate schur complement
on separable graphs. In 26th Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki,
Finland, volume 112 of LIPIcs, pages 40:1–40:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[23] Keith D Gremban. Combinatorial preconditioners for sparse, symmetric, diagonally dominant linear systems. PhD
thesis, Carnegie Mellon University, 1996.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited151

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

[24] Refael Hassin and Donald B Johnson. An O(n log2 n) algorithm for maximum flow in undirected planar networks.
SIAM Journal on Computing, 14(3):612–624, 1985.

[25] Monika R Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian. Faster shortest-path algorithms for planar
graphs. journal of computer and system sciences, 55(1):3–23, 1997.

[26] Baihe Huang, Shunhua Jiang, Zhao Song, and Runzhou Tao. Solving tall dense sdps in the current matrix
multiplication time. arXiv preprint arXiv:2101.08208, 2021.

[27] Hiroshi Imai and Kazuo Iwano. Efficient sequential and parallel algorithms for planar minimum cost flow. In
Algorithms, International Symposium SIGAL ’90, Tokyo, Japan, August 16-18, 1990, Proceedings, volume 450 of
Lecture Notes in Computer Science, pages 21–30. Springer, 1990.

[28] Alon Itai and Yossi Shiloach. Maximum flow in planar networks. SIAM Journal on Computing, 8(2):135–150, 1979.
[29] Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. Improved algorithms for min

cut and max flow in undirected planar graphs. In Proceedings of the 43rd ACM Symposium on Theory of Computing,
STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 313–322. ACM, 2011.

[30] Arun Jambulapati and Aaron Sidford. Ultrasparse ultrasparsifiers and faster laplacian system solvers. In Dániel Marx,
editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference,
January 10 - 13, 2021, pages 540–559. SIAM, 2021.

[31] Donggu Kang and James Payor. Flow rounding. arXiv preprint arXiv:1507.08139, 2015.
[32] Haim Kaplan and Yahav Nussbaum. Min-cost flow duality in planar networks. arXiv preprint arXiv:1306.6728, 2013.
[33] Adam Karczmarz and Piotr Sankowski. Min-cost flow in unit-capacity planar graphs. In 27th Annual European

Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs,
pages 66:1–66:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[34] Tarun Kathuria, Yang P. Liu, and Aaron Sidford. Unit capacity maxflow in almost o(m4/3) time. In 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020,
pages 119–130, 2020.

[35] Jonathan A Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-time algorithm for
approximate max flow in undirected graphs, and its multicommodity generalizations. In Proceedings of the twenty-fifth
annual ACM-SIAM symposium on discrete algorithms, pages 217–226. SIAM, 2014.

[36] Samir Khuller, Joseph Naor, and Philip Klein. The lattice structure of flow in planar graphs. SIAM Journal on
Discrete Mathematics, 6(3):477–490, 1993.

[37] Valerie King, Satish Rao, and Rorbert Tarjan. A faster deterministic maximum flow algorithm. Journal of Algorithms,
17(3):447–474, 1994.

[38] Rasmus Kyng. Approximate Gaussian Elimination. PhD thesis, Yale University, 2017. Available at:
http://rasmuskyng.com/rjkyng-dissertation.pdf.

[39] Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A. Spielman. Sparsified cholesky and
multigrid solvers for connection laplacians. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 842–850. ACM, 2016.

[40] Rasmus Kyng, Richard Peng, Sushant Sachdeva, and Di Wang. Flows in almost linear time via adaptive
preconditioning. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages
902–913, 2019.

[41] Rasmus Kyng and Sushant Sachdeva. Approximate gaussian elimination for laplacians-fast, sparse, and simple. In
2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages 573–582. IEEE, 2016.

[42] Nathaniel Lahn and Sharath Raghvendra. A faster algorithm for minimum-cost bipartite matching in minor-free
graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, pages 569–588. SIAM, 2019.

[43] Richard J Lipton, Donald J Rose, and Robert Endre Tarjan. Generalized nested dissection. SIAM journal on
numerical analysis, 16(2):346–358, 1979.

[44] RJ Lipton and ROBERT ENDRE Tarjan. A planar separator theorem. SIAM Journal of Applied Mathematics,
36(2):177–189, 1979.

[45] Aleksander Madry. Navigating central path with electrical flows: From flows to matchings, and back. In 2013 IEEE
54th Annual Symposium on Foundations of Computer Science, pages 253–262. IEEE, 2013.

[46] Aleksander Madry. Computing maximum flow with augmenting electrical flows. In 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS), pages 593–602. IEEE, 2016.

[47] Gary L. Miller and Joseph Naor. Flow in planar graphs with multiple sources and sinks. SIAM J. Comput.,
24(5):1002–1017, 1995.

[48] Gary L. Miller and Richard Peng. Approximate maximum flow on separable undirected graphs. In Proceedings of
the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana,
USA, January 6-8, 2013, pages 1151–1170. SIAM, 2013.

[49] James Orlin. A faster strongly polynomial minimum cost flow algorithm. In Proceedings of the Twentieth annual

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited152

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

ACM symposium on Theory of Computing, pages 377–387, 1988.
[50] John H Reif. Minimum s-t cut of a planar undirected network in O(n log2 n) time. SIAM Journal on Computing,

12(1):71–81, 1983.
[51] Jonah Sherman. Nearly maximum flows in nearly linear time. In 2013 IEEE 54th Annual Symposium on Foundations

of Computer Science, pages 263–269. IEEE, 2013.
[52] Jonah Sherman. Area-convexity, linf regularization, and undirected multicommodity flow. In Proceedings of the 49th

Annual ACM SIGACT Symposium on Theory of Computing, pages 452–460, 2017.
[53] Aaron Sidford and Kevin Tian. Coordinate methods for accelerating linf regression and faster approximate maximum

flow. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 922–933. IEEE,
2018.

[54] Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification,
and solving linear systems. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages
81–90, 2004.

[55] Robert E Tarjan. An efficient planarity algorithm. Technical report, STANFORD UNIV CALIF DEPT OF
COMPUTER SCIENCE, 1971.

[56] Balachandran Vaidyanathan and Ravindra K Ahuja. Fast algorithms for specially structured minimum cost flow
problems with applications. Operations research, 58(6):1681–1696, 2010.

[57] Jan van den Brand. A deterministic linear program solver in current matrix multiplication time. In Proceedings of
the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 259–278. SIAM, 2020.

[58] Jan van den Brand. Unifying matrix data structures: Simplifying and speeding up iterative algorithms. In Symposium
on Simplicity in Algorithms (SOSA), pages 1–13. SIAM, 2021.

[59] Jan van den Brand, Yin Tat Lee, Yang P Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao Song, and Di Wang.
Minimum cost flows, MDPs, and l1-regression in nearly linear time for dense instances. In Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing, pages 859–869, 2021.

[60] Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense linear programs in nearly linear
time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 775–788, 2020.

[61] Karsten Weihe. Maximum (s, t)-flows in planar networks in O(|v| log |v|) time. Journal of Computer and System
Sciences, 55(3):454–475, 1997.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited153

D
o

w
n
lo

ad
ed

 0
6
/2

5
/2

2
 t

o
 2

0
9
.1

4
1
.1

8
8
.1

2
1
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

	Introduction
	Previous Work
	Challenges
	Our Approaches

	Main Theorems and Proof Outline
	Robust Interior Point Method
	Nested Dissection and Approximate Schur Complements
	Maintaining Vector Approximation
	Maintaining Flow and Slack
	Maintaining the Intermediate Vector TEXT
	Maintaining Slack
	Maintaining Flow

	Main Proof

