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Kernelized Gram matrix W constructed from data points {xl-}?]: as W= ko(”x’;%”z) is widely used in
graph-based geometric data analysis and unsupervised learning. An important question is how to choose
the kernel bandwidth o, and a common practice called self-tuned kernel adaptively sets a o; at each
point x; by the k-nearest neighbor (kNN) distance. When x;s are sampled from a d-dimensional manifold
embedded in a possibly high-dimensional space, unlike with fixed-bandwidth kernels, theoretical results
of graph Laplacian convergence with self-tuned kernels have been incomplete. This paper proves the
convergence of graph Laplacian operatozr Ly to manifold (weighted-)Laplacian for a new family of kNN
self-tuned kernels Wl;.a) = ko(%
by kNN and the limiting operator is also parametrized by . When o = 1, the limiting operator is
the weighted manifold Laplacian Ap. Specifically, we prove the point-wise convergence of Lyf and

)/ P ()% p(xj)*, where § is the estimated bandwidth function

convergence of the graph Dirichlet form with rates. Our analysis is based on first establishing a o
consistency for ¢ which bounds the relative estimation error |6 — p|/p uniformly with high probability,
where p = p_l/ d and p is the data density function. Our theoretical results reveal the advantage of the
self-tuned kernel over the fixed-bandwidth kernel via smaller variance error in low-density regions. In
the algorithm, no prior knowledge of d or data density is needed. The theoretical results are supported by
numerical experiments on simulated data and hand-written digit image data.

Keywords: graph Laplacian; manifold learning; k-nearest neighbor density estimator.

1. Introduction

Kernelized Gram matrix computed from data vectors {)cl-}ﬁ\'= , in R? has been a pivotal tool in kernel
methods [39], graph-based manifold learning and geometric data analysis [1,2,11,12,46,52] and semi-
supervised learning [24,25,36,45], among others. Applications range broadly from model reduction of
chemical systems [13,38,43,47] to general data visualization [7,23,29,55]. The graph affinity matrix
W, which is real symmetric and has non-negative entries, can be viewed as weights on the edges of a
weighted undirected graph, denoted as G = (V,E), V = {1,--- ,N} and E = {(i,)), Wl-j > 0}. The
kernelized affinity matrix W takes the form of a kernelized Gram matrix, that is, Wl-j =K (xi,xj) for

some real symmetric kernel function K : R? x RP — R. In particular, a widely used setting is

llx; = x;112
W, = ko(% , (1.1)
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for some univariate kernel function k; and some ¢ > 0. For example, k,(r) = e~ gives the Gaussian
affinity W.

Given an affinity matrix W, the un-normalized and normalized (random-walk) graph Laplacian
matrices are usually constructed as (D — W) and I — D-lw, respectively, where D, called the degree
matrix, is the diagonal matrix with D;, = Z]N: i Wjj. The row-stochastic matrix D™'W gives the
transition law of a random walk on the graph G, which is a discrete diffusion process on the graph
[32]. The eigenvalues and eigenvectors of the graph Laplacian matrix provide a dimension-reduced
representation of the data samples and are used for downstream tasks like clustering and dimension-
reduced embedding. Variants of the basic form (1.1) include adaptive kernel bandwidth [37,58],
anisotropic kernel [6,10,43,47], adoption of landmark sets [4,28,41], kernel normalization schemes
[31,57] and neural network approaches [18,34,40]. The current paper focuses on the adaptive bandwidth
problem and the analysis of the kernelized graph Laplacian.

The convergence of the graph Laplacian to a certain limiting operator as the graph size (number of
data samples) N — oo is a classical theoretical problem. When x;’s are sampled from a low-dimensional
manifold M embedded in the ambient space R?, the convergence of the graph Laplacian to a differential
operator on the manifold M has been proved in several places, when N — 0o and € — 0 under a
joint limit [2,3,11,22,42,50], and more recently [9,15,51]. Of particular importance is when the limiting
operator recovers the manifold Laplace-Beltrami operator A , 4 or the weighted Laplace operator

Vp
A, = Ay —i—%-VM, (1.2)

where V ( denote the manifold derivative and p is the density of a positive measure (not necessarily
integrated to 1, i.e., a probability density). Both A, and A, are intrinsic operators associated with
different measures independent of the particular embedding of M in RP. The weighted Laplacian A p 18
the Fokker—Plank operator of the diffusion process on the manifold M, and its spectral decomposition
in (M, pdV) reveals key physics quantities of the stochastic process, e.g., the low-lying eigenfunctions
of Ap indicate the meta-stable states of the diffusion process [16,33]. Thus, when the discrete diffusion
process on the finite-sample graph has a continuous limit, the graph Laplacian that approximates the
limiting operator A, can be applied to data-driven analysis of dynamical systems and clustering analysis
of data clouds [35]. The asymptotic analysis of kernelized graph Laplacian thus lays the theoretical
foundation for applications of graph Laplacian methods in high-dimensional data analysis.

A problem in the affinity matrix construction (1.1) is the choice of the scalar parameter €, or
o := \/€, which is called the kernel bandwidth. In practice, especially when data vectors are in high-
dimensional space or the sampling density is not even, the choice of € can be challenging and the
performance of kernel Laplacian methods may also become sensitive to the choice, see, e.g., [37].
A common practice to overcome the issue of choosing € is called ‘self-tuning’, that is, setting a
personalized bandwidth for each point x; and then using these adaptive bandwidths to compute the
kernelized affinity. Specifically, the original self-tune spectral clustering method [58] considered the

affinity matrix as
llx; — %117
Wi=k| —==—)- (1.3)
R,-Rj

120z Jequisidag /z uo 1senb Aq 659%2£9/6 1L 0GBRIBIEWI/EE0L 0 L/I0P/S0ILE-80UBAPE/IEIRWI/WO0" dNO"oIWUSPEdE//:SARY WOl Popeojumod



KNN SELF-TUNED KERNEL 3

where f?i equals the distance from x; to its k-nearest neighbor (kNN) in the dataset X itself, where k
is a parameter chosen by the user. While several works in the literature have addressed such kernel
construction, to the knowledge of the authors, the same type of results of graph Laplacian convergence
as for the fixed-bandwidth kernel has only been partially established, particularly when the kernel
bandwidth is unknown and needs to be estimated from data. A more detailed review of related works is
given in Section 1.2.

In this paper, we introduce the following family of graph affinity matrices, defined for ¢ € R,
€ >0,

2
W(a) L k ”xi _xj” 1 (1 4)
ij — R ~ ~ ~ o A a’ .
e,o(xl-)p(xj) £(x;) P(xj)

where the kernel function & is non-negative and satisfies certain regularity and decay conditions (cf.
Assumption 3.1). We also split the dataset into X and Y, and the stand-alone Y is used to estimate 5 (x;)
for each x; in X, where f is a function mapping from R? to R, called the (estimated) bandwidth function.
Specifically, p is normalized from the kNN distance i?l- by 6(x;) = IAQI-(mLO 1%)_)_1/ 4k is the parameter
in kNN, Ny = |Y| and m;, > 0 is a constant with analytical expression. The normalization in p(x;) by

(ml0 %)‘Ud is to guarantee that p has an O(1) limit. In view of (1.4), (1.3) is a special case where & = 0
ande = (mio Niy)Z/d. The usage of a stand-alone Y to estimate p reduces dependence and in practice can
reduce variance error (cf. Section 4.3). Note that while the above definition of ¢ involves the manifold
dimensionality d, the practical algorithm (cf. Algorithm 1) does not require knowledge or estimation of
d. We summarize the algorithm in Section 1.1, where we introduce the construction of o and choice of
parameters in more detail.

The theoretical results of our work are twofold. To summarize, suppose N = N, and N, = O (N).

e We prove that when data are sampled according to a smooth density p on a smooth compact
d-dimensional manifold M, / uniformly converges to p = p~'/¢ on M, where the point-wise relative
error | — p|/p is uniformly bounded with high probability (w.h.p.) by (cf. Theorem 2.3)

e, = O((k/N)*'*,\/log N/k).

The choice of k that balances the two errors is k ~ N/0+4/4)  which leads to & p =OW —1/@+d/2)y (cf,
Remark 2.1). In particular, the constant in front of the second term (the ‘variance error’) is independent
from the sampling density p. This result augments previous analysis of kNN estimation in literature, and
the bound of the relative error (rather than absolute error) illustrates a different bias-variance error trade-
off between the kNN estimator p and the standard fixed-bandwidth kernel density estimation (KDE) (cf.
Remark 2.2). The relative error bound is useful for our analysis of the self-tuned kernel Laplacian.

e Conditioning on the good event of an accurate / estimation, we establish a series of convergence
results of kernelized graph Laplacians with self-tuned kernels. Specifically, we prove

- The convergence of the graph Dirichlet form (cf. Theorem 3.3), where the error is

Oe, ¢, N™12e=d/4y,
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TABLE | List of default notations

M d-dimensional manifold in R?

D data sampling density on M, uniformly bounded between p,,;, and p,,, .

Ay Laplace—Beltrami operator, also as A

4, weighted Laplace operator

V manifold gradient, also as V

\Y gradient in ambient space RP

0 p~1/4_ population bandwidth function, uniformly bounded between Pin ‘= p,;,%d

and Pmax *= Piin
estimated bandwidth function

error bound of sup \ [0 — pl/p

k-nearest neighbor in KNN

general kernelized affinity matrix

degree matrix, D; = >, W;

kernel bandwidth parameter used in theoretical analysis

kernel bandwidth parameter used in Algorithm 1

the power in p* used to normalized the self-tuned kernel

function R — IR, 4 used in kNN estimation, k, used to construct affinity kernel
dataset used for computing W

dataset used for estimating p

distance to k-nearest neighbor of x; in X

R(x) is the distance to k-nearest neighbor of x in ¥

number of samples in X

number of samples in Y

N, or N, depending on context

Zzzkz 73)3” ~ X??V‘ Q OQ m @ g »bm >
3‘

mg mylh] := [pa h(Jul?) du

m,y my[h] == 3 [ea lul?h(|ul?) du

K normalized self-tuned kernel function RP? x RP — R parametrized by «
w@ W computed using K parametrized by o

L@ limiting differential operator parametrized by o

Ly graph Laplacian operator of W

f function on M, also denote the vector {f(x;)}; € RNx
&, differential Dirichlet form of A,

E@® kernelized Dirichlet form of kernel K

Ey graph Dirichlet form of W

D estimated density

&y error bound of sup , [p — pl/p

the power in pf used to normalized the fixed-bandwidth kernel
general kernel bandwidth function

kernel integral operator with variable bandwidth p
perturbed bandwidth function from p

TIQ O™
"s

Asymptotic notations

S

f=0(2): |f| <Clglin the limit, C > 0, 019 () declaring the constant
dependence on a

Continued
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TABLE 1  Continued

o) f=0():forf,g>0,C g <f < Cygin the limit, C;, C, > 0, @9(.) declaring
the constant dependence on a

~ f~gsameasf = ©@(g)

o(-) f =o0(g): forg > 0, |f|/g — 0 in the limit, 0[*!(-) declaring the constant
dependence on a

£20) f=8(g):forf,g > 0,f/g — oo in the limit

When the superscript [ is [1] it declares that the constants are absolute ones. By definition, for finite
m, 0(gy) +---+ 0(g,,) = O(g;| + --- + 1g,1), which is also denoted as O(gy, ..., g,,)-

The choice of ¢ to balance bias and variance errors is € ~ N~-Y@+4/2)  which makes
O(e, N"1/2¢=4/%y = Oo(N—V/(2+d/D) same as the order of €, with the optimal scaling of k (cf.
Remark 3.1).

- The convergence of Ly (x) for the (re-normalized form of) random-walk and un-normalized graph
Laplacian operators Ly, respectively (cf. Theorems 3.5 and 3.6), where the error is

O(e, sp/e, N—1/2€—1/2—d/4)_
A weak convergence result in Theorem 3.7 shows that the error is O(e, ¢ 00 N=1/2¢=1/2y,

These results are compared with the counterparts for fixed bandwidth kernel, in terms of the Dirichlet
form convergence (cf. Theorem 3.4) and the point-wise operator convergence (cf. Theorem 3.8).

As for how N, should scale with N, if we set N, and N, independently, for the graph Dirichlet form
convergence result, the overall error is optimized when Ny ~ N, (cf. Remark 3.1). The other rates, e.g.,
the point-wise convergence rate, lead to different theoretical optimal choices of N, with respect to N,.
We empirically study the splitting of stand-alone Y in Section 4.3 with further discussion.

A key difference comparing the self-tuned kernel and the fixed-bandwidth kernel lies in the constant
dependence on density p in front of the variance term. For example, in Theorem 3.8, the fixed-bandwidth
kernel leads to a variance bound proportional to p~!/2, while the factor is p'/? in Theorem 3.6 for the
self-tuned kernel. The negative factor —1/2 suggests a large variance error at places where p(x) is
small, reflecting the difficulty of the fixed bandwidth kernel in such cases. The positive factor 1/d for
the self-tuned kernel suggests an improvement, which can be intuitively expected, from a theoretical
perspective.

Table 2 gives a roadmap of analysis to facilitate the reading of Sections 2 and 3. Our theoretical
results are supported by numerical experiments in Section 4. Besides model (1.4), we also propose
another affinity kernel using mixed normalization by /6 and a density estimator p that recovers the
Laplace—Beltrami operator and does not require knowledge of d, and we give empirical results in
Section 4.4. Apart from simulated manifold data, we apply the self-tuned diffusion kernels to the
MNIST dataset of hand-written digit images [49], where the self-tuned kernel shows a better stability
than the fixed-bandwidth kernel at data points sampled at low-density places, as is consistent with the
theory.

Notations. A list of default notations is provided in Table 1. We use superscripts in big-O notations
to declare dependence of the implied constants. In this work, we mainly track the dependence on the
data density function p, and we treat constants depending on M, h, k, including d, as absolute ones so
as to simplify presentation. For OMX1 () we may omit (M, k) in the superscript and write as O™1(-)
so as to track dependence on x only. Specific constant dependence can be recovered from proof.
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ALGORITHM 1. kNN Self-tuned kernel graph Laplacian (with stand-alone Y)

Input: datasets X and Y, and algorithm parameters k, 1 < k < Ny, oy > 0,0 eR.

Output: kNN values R, graph affinity matrix W, degree matrix D, the eigenpairs (¥, A).
External: subroutine EIG (EIG-GEN) that solves eigen-problem (generalized eigen-problem) for real
symmetric matrices.

1: function SELFTUNEDKERNEL(X, Y, k, 0y, o)

2: N, < size(X), N, < size(Y)

3: Compute kNN distances i?i < |lx — y®R|, where y*K) is the k-nearest neighbor of x in Y.
4: Compute the matrix W by
W, =k (||x,.—xj||2) : (1.5)
i =R\ 255 ) 7en :
odRR;, | ReR

>W can be constructed as a sparse matrix
5: Compute the degree matrix D, D;; <— > i Wi
6: Compute the eigenvalue/eigenvectors (¥, A) of either (1) L, by EIG(D — W) or (2) L,,,, by
EIG-GEN(D — W, DDIZAQ), where the diagonal matrix Dy = diag{ki }g\i‘ 1
7. returnR, W, D, (¥, A)

8: end function

1.1 Summary of algorithm

The algorithm to compute the self-tuned kernel graph Laplacian on dataset X with a stand-alone dataset
Y to estimate the kNN bandwidth function is summarized in Algorithm 1. It has the following parameters
to be specified by the user,

e k: the k in kNN bandwidth estimation. By Theorem 2.3, the choice of k that balances the bias
and variance errors is theoretically k ~ NV1 /),

e «: the kernel is normalized by f?"‘, where « is a real number. Different choice of « leads to a
family of different limiting operators depending on «, as is analyzed in Section 3. In particular,
choosing o = 1 recovers the weighted Laplacian A,,.

e 0,: the kernel bandwidth parameter. To compare with the notation in Section 3, aoki =

Jep(x,), and that is € = gg(m NLy)2/d.

Choosing oy, = ©(1) corresponds to € ~ (k/Ny)z/ 4 Under the optimal scaling of k which is

k ~ Nyl/ (+d/4) (cf. Remark 2.1), the above scaling of € is also the optimal one to balance errors of
estimating the Dirichlet form (cf. Theorem 3.3, Remark 3.1). The algorithm does not require any prior
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KNN SELF-TUNED KERNEL 7

knowledge of the intrinsic dimensionality d, which can be applied to general manifold data. We also
introduce a variant form of kernel matrix to recover A » in Section 4.4.

A common usage, as in the original self-tune kernel in [58], is to estimate IAQI» from the dataset X itself
rather than a stand-alone Y. The analysis of the former case will be more complicated, as estimating
kNN from X introduces more dependence across the kernel matrix entries, while a stand-alone Y allows
a two-step analysis: showing the uniform point-wise convergence of the kNN bandwidth function first
and then analyzing the kernel matrix W conditioning on a good event of Y, as we do in the current
paper. Empirically, we find that using a stand-alone Y gives a comparable result and can improve the
performance by reducing the variance error when N, is large (Section 4.3). This suggests the usage of
extra data samples in the bandwidth estimation when they are not used in the kernel matrix construction
due to memory or computational constraints.

1.2 Related works

kNN estimated kernel bandwidth was used in the original self-tune-based algorithm, particularly for the
spectral clustering purpose [58]. To fully understand the role of the kNN estimated kernel bandwidth,
an understanding of its relationship with the nearest-neighbor density estimator (NNDE), an approach
closely related to but different from the well-known KDE, is necessary. NNDE was studied in the
classical statistical literature dating back to 60s [19,27,30], and more general variable bandwidth KDE
was studied in 90s [20,48]. The uniform convergence with probability (w.p.) 1 was proved in [14]. Our
result bounds the relative error |6 — p|/0 uniformly w.h.p., which implies uniform convergence w.p. 1
and is under the manifold data density setting.

With this relationship in mind, to our knowledge, the first paper dealing with the asymptotical
behavior of self-tune-based algorithm in the manifold setup is [50]. The limiting operator of self-
tune kernel has been identified in following a general framework of kernel construction of the graph
Laplacian. In particular, the uniform convergence of NNDE in [14] was used to derive the limiting
operator of kNN constructed graph Laplacian. However, the proof is without error rate, and the impact
of NNDE has not been fully analyzed. A recent paper addressing this issue is [S], where the convergence
rate has been proved. However, the formulation in [5] assumes knowledge of the desired bandwidth
function to use, or that of the density function, and the impact of NNDE is not discussed. Also, the
algorithm in [5] needs to estimate the intrinsic dimension d if not given, which may be difficult in
practice.

Self-tune-based algorithms are natural generalizations of those with fixed bandwidths. When the
bandwidth is fixed, its asymptotical analysis has been widely discussed, particularly under the manifold
setup. For example, the point-wise convergence of the graph Laplacian to the Laplace—Beltrami operator,
or more general weighted Laplace—Beltrami operator, has been extensively discussed in [2,11,21,42].
The spectral convergence of the graph Laplacian to the (weighted-) Laplace—Beltrami operator is more
challenging and has attracted several attentions. See, for example, [3,17,44,51,54,56]. Recently, the
spectral convergence in the L? sense has been provided with rates in [9]; the spectral convergence in
the L™ sense, as well as the uniform heat kernel reconstruction, has been provided with rates in [15].
We establish a point-wise convergence of the graph Laplacian operator and convergence of the graph
Dirichlet form for the kNN self-tuned kernel graph Laplacian with rates.

Other approaches of adaptive kernel bandwidth choice include multiscale singular value decomposi-
tion (SVD) [13,26,38]. A bandwidth selection method based on preserving data geometric information
was proposed in [37]. These methods can be computationally more expensive than kNN self-tuned
bandwidth.

120z Jequisidag /z uo 1senb Aq 659%2£9/6 1L 0GBRIBIEWI/EE0L 0 L/I0P/S0ILE-80UBAPE/IEIRWI/WO0" dNO"oIWUSPEdE//:SARY WOl Popeojumod



8 X.CHENG AND H.T. WU

2. kNN estimation of kernel bandwidth

In this section, we prove the uniform convergence of the kNN constructed bandwidth function g, which
is computed from a stand-alone dataset Y, to 5 = p~ /¢ w.h.p. and in terms of relative error (cf.
Theorem 2.3). We simplify notation by setting N = N, in this section. All proofs are in Appendix.

Let M denote the low-dimensional manifold and dV the volume element of M. When M is
orientable, dV is the Riemann volume form; otherwise, dV is the measure associated with the local
volume form. In both cases, (M,dV) is a measure space. More differential geometry set-ups are
provided in Appendix A.2.

AssumPTION 2.1 (Assumption on manifold M and data density p). (A1) M is a d-dimensional C* and
compact manifold without boundary, isometrically embedded in R? via 1. When there is no danger of
confusion, we use the same notation x to denote x € M and ¢(x) € RP.

(A2) p € C°°(M) and is uniformly bounded both from below and above, that is, 3p,;., Pypar > 0
S.t.

0 < ppin S PX) < Py <00, VYxe M.

Smoothness of M and p suffices most application scenarios and theoretically can be relaxed by
standard functional approximation techniques. For simplicity, we consider smooth M and p only.
2.1 kNN construction of p

Given Y = {yj}jl\; | (recall that N = N here), the kNN-estimated bandwidth function p(x) is a scalar
field on x € M computed from Y, defined as

k
molh] N

—1/d N
p(x) = R(x)( ) . R@:=inf{r>0, st > (y—sl<r) Z K > 2.1)
Jj=1
where m is a functional defined for function i on [0,00) sufficiently decayed as mgylh] :=
fRd h(|u|?) du. We use m, to denote the scalar when not to emphasize the dependence on the function .
Note that for & = 1 ;), my[h] equals the volume of unit d-ball. The definition (2.1) is equivalent to that

R(x) = [lx — y*9||, where y* is the k-nearest neighbor of x in Y. The following lemma gives a direct
proof of the piecewise differentiability and Lipschitz continuity of the knn-constructed R. The Lipschitz
constant of R is important in our proof of the uniform convergence of p.

LEMMA 2.1 Suppose Y has distinct data points y; and 1 < k < N. Then R defined in (2.1) is Lipschitz
continuous on R? with Lippn (IAQ) < 1. Moreover, R is C*®° on R? \E, where E is a finite union of
(D-1)-hyperplanes (finitely many points when D = 1).

One may consider variants of kNN-estimator. Specifically, a generalization of (2.1) can be
~ .12
R(x) = inf, {r >0, s.t. ZJILI h (%) > k}, where one can introduce weights proportional to
the distance ||x — yj|| by considering a more general h. The definition (2.1) is equivalent to taking
h = 1jy,1)- One advantage of the classical kNN-estimator (2.1) is its efficient computation by the fast

kNN algorithm. We are not aware of any other widely used weighted version of kNN-estimator; thus,
we postpone the possible extension to larger class of & to future work.
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TABLE 2 Roadmap of analysis

Estimation of Convergence of graph Laplacian

bandwidth p
Parameters (k, Ny) (e,N,)

kNN self-tuned fixed-bandwidth
Dirichlet form Theorem 3.3 Theorem 3.4

Proposition 2.2 Point-wise L),,: Theorem 3.5 L,,: Theorem 3.8
Results + Lemma 2.1 L,,: Theorem 3.6

= Theorem 2.3 Weak form Theorem 3.7 -

Needed lemmas: Lemma 3.1 = Proposition 3.2 =
Theorem 3.3 & 3.7
Lemma 3.2 = Theorem 3.5 & 3.6

2.2 CY consistency of p

The concentration of p at p at a point x; is a result of the concentration of the independent sum in (2.1),
which we prove in the following proposition:

ProposiTION 2.2 Under Assumption 2.1, if as N — 00, k = o(N) and k = $2(log N), then, for any
s > 0, when N is sufficiently large, for any x € M, w.p. > 1 —2N~%,

6 = FWI (5)2/" 3 [slogh
o (N o (22)

where the constant in OP)(.) is determined by p, the threshold for large N depends on p and s and both
are uniform for all x.

Combined with the global Lipschitz continuity of p (Lemma 2.1) and a bound of the covering
number of M (Lemma A.4), we are ready to prove the main result of this section:

THEOREM 2.3 Under Assumption 2.1, p defined as in (2.1). Ifas N — 00, k = o(N) and k = 2 (log N),
then when N is sufficiently large, w.p. higher than 1 — N~10,

up 1P®) — PO zo[p]((k)z/d)+ 3V13 [logN

xeM p(x) ﬁ d k-’

and the right-hand side (r.h.s.) is olP!(1).

REMARK 2.1 In the error bound, the O((k/N)*?) term is the ‘bias’ error, and the O(,/Tog N/k) term
is the ‘variance’ error. To balance the two errors, k should be chosen according to k~1/2 ~ (k/N)?/4
(where we omit the /Tog N factor), and that is k ~ N1/(+4/9 1n this scaling, the constant in front
theoretically depends on p and generally is impractical to estimate.
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10 X.CHENG AND H.T. WU

REMARK 2.2 One can compare Theorem 2.3 to the estimation error bound of a fixed bandwidth KDE
estimator of p, e.g., for € > 0,

—d2 W llx — y;II2

€

) = ——— > b | —— ), (2.3)
0= i (™5

where hy,, : R, — R is usually a non-negative regular function. When #,,, > 0 and satisfies
Assumption A.3, by analyzing the bias and variance errors of the independent sum in (2.3) and using

Lemma A.5, one can verify that p(x) = p(x) + ol(e) + ot!l (p(x)l/ 2 }l\? fd]/\;). This gives that

[p(x) — p()| _ Al (1 —-1/2 [log N

Note that the variance error in (2.4) has a factor of p(x)~'/2, while for 5 by kNN the variance error
term is uniformly bounded for all x by O!'1(/log N/k) and the constant is independent of p(x). This
difference between kNN p and fixed-bandwidth KDE p is numerically verified in Section 4.1 (Fig. 1).
The comparison shows that the fixed-bandwidth KDE estimator p and the kNN estimator 6 conduct
a different trade-off between the bias and variance errors: at place where p(x) is small, intuitively, the
kNN estimator trades the bias error for a smaller variance error and may have an advantage. For both
estimators, the overall estimation error (bias 4 variance) depends on the choice of the parameters ¢ and
k, respectively. The specific comparison would involve a more explicit bias error analysis, where the
constant in O'P!(-) involves higher order derivatives of p and is not further pursued here.

2.3 C!divergence of p

As shown in the proof of Lemma 2.1, for any x € RP\E, WIA?(x)l = 1, where V denotes the gradient in
the ambient space RP. Thus,

—1/d

Fhel=( L~ vx € RO\E

pPX)| = e > X >
molhI N,

which is £2(1) as 1% — 0. This means that V » 4 0 (x) point-wise diverges almost everywhere and cannot
have point-wise coflsistency to V5 0(x), which is O(1).

While the /-th RP-derivative of p can be bounded to be 0((%)’1/ 4y (Lemma A.7), this C!
inconsistency of p by kNN estimation poses challenge to the graph Laplacian convergence because
the limiting operator (see Section 3.1) involves V 0 when p is a deterministic bandwidth function
[5]. On the other hand, the wide usage of self-tuned diffusion kernel in spectral clustering and spectral
embedding suggests that the kNN-estimated o can lead to a consistent estimator of certain limiting
manifold differential operators though the C° consistency of p alone may not be able to directly prove
that.

In Section 3, we will show theoretically that the point-wise consistency of the graph Laplacian
operator has a different and worse error rate than the consistency of the graph Dirichlet form, where
consistency in both cases is obtained but under different conditions on k, Ny related to the bandwidth
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relative error p Knn
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Fic. 1. kNN estimation of p = p_l/d and KDE estimation of p for x € S! embedded in R?, and 0 < ty < 1 is the intrinsic
coordinate (arclength). (Top) The left two plots show a typical realization of p by kNN defined in (2.1) compared with p, and the
right plot shows the relative error for varying values of ky, Ny, = 5000, averaged over 500 runs. (Bottom) Same plots for p defined
in (2.3) compared with p, and relative error for varying values of €.

Z(1:3) A, f
2 200 !

100 A

<
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/ 5

-100 \
v
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-0.05

0 0.5 1

FiG. 2. Data in R* lying on a 1D closed curve of length 1. (Left) First 3 coordinates of 2000 samples with color indicating the
density function p. (Middle) The density function p and a function f, and (Right) Apf, all plotted v.s. the intrinsic coordinate (the
arclength) on [0, 1].

parameter €. The distinction is also revealed in experiments in Section 4: while point-wisely Lyf (x)
can be oscillating and deviating from the L£f(x), where Ly is the graph Laplacian and £ is the limiting
differential operator, the Dirichlet form has much smaller error especially when € is small (Fig. 3 and
Fig. 4).

3. Analysis of graph Laplacian

In this section, we analyze the convergence of self-tuned graph Laplacian computed from dataset
X = {xl-}f.\é 1» X; ~ p, sampled on M, where p(x;) has been computed from a stand-alone dataset Y,
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12 X.CHENG AND H.T. WU

N, = 2000, Dirichlet Form N, = 2000, Ly f error 1-norm N, = 2000, Ly f error co-norm

relative error

logyy relative error
logy relative error

log € log,, € log, €

FI1G. 3. Relative error of (left) Dirichlet form computed using Ly, and (middle) the Erry error in (4.1) of Lyf computed by various
Ly plotted v.s. a range of values of €, N, = 4000, ky = 32, 256, averaged over 500 runs. (Right) Same plot for the Erreo error.

Ny = 10000, ky = 64, ky2 = 256 N, = 10000, ¢ = 7.9433¢ — 05 N, = 10000, € = 7.9433¢ — 05
5 : 300 300

200

100 100
3 i t

-100

-200

0 -300 -300 :
0 02 04 06 08 1 0 02 0.4 0.6 08 1 02 025 03 035 04 045 05

[p(a) — p(a)|/plx) N, = 10000, € = 3.1623¢ — 04 N, = 10000, e = 3.1623¢ — 04
300

200

100

0

-100

-200

-300
0.2

0.2 0.4 0.6 0.8 1 0.25 0.3 0.35 0.4 0.45 0.5

FIG. 4. Lyf by estimated p compared with true A,f, denoted as Lf (blue curve), with two values of ky. The data are as in Fig. 2.
(Left) KNN-estimated /6 and relative errors. (Right upper) Estimated Lyf where Ly equals Ly, and L,,,/, and using kKNN-estimated
p, compared with using population 5. The right plot is the zoom in of the left plot on interval [0.2, 0.5]. (Right bottom) Same plot
as the right upper panel at another value of €. See more explanation in Section 4.2.

and we assume that Theorem 2.3 holds. We first introduce the notations of limiting operators and the
Dirichlet forms in Section 3.1 and then prove

e The convergence of the kernelized Dirichlet form in Section 3.2, as a middle-step result;
e The convergence of the graph Dirichlet form in Section 3.3;

e The convergence of Lyf(x) for un-normalized and random-walk graph Laplacian operators Ly
in Section 3.4.

We simplify notation N = N, in the section. All proofs are in Appendix. The following regularity
and decay condition is needed for the function & in (1.4). The condition on k as in [11] is introduced
in Assumption A.3, and here we further assume non-negativity and C* regularity of kq for simplicity.
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KNN SELF-TUNED KERNEL 13

AssUMPTION 3.1 (Assumption on k). kj satisfies Assumption A.3 and, in addition,
(C1) Regularity. k; is continuous on [0, o) and C* on (0, 00).
(C2) Decay condition. 3a,a; > 0, s.t., ki (§)| < ae™% forall§ > 0,1=0,1,--- 4.
(C3) Non-negativity. k; = 0 on [0, 00).

We use my = mgylky] and m, = m,[k,] if the kernel function dependence is not clarified.

3.1 Notation of manifold Laplacian operators and Dirichlet forms

Recall the weighted Laplacian A, defined as in (1.2) on (M, pdV), where p is the density of a positive
measure on M. Below, we write A 4 as A, V4 as V, when there is no danger of confusion.

Take a positive C! function p on M. As will appear in the analysis, we introduce Eﬁf‘) as
\Y \Y
L9:=a+2 P v @-2a+2-L.v. 3.1
p P

1/d

When p = p = p~!/4, one can verify that £ := ng) satisfies

2 — 1D\ V
E(D‘)zA—i—(l—i—%)—p'V- (3.2)
p

We will show that the operators £®) and p 270 L@ are the limiting operators of the (modified) random-

walk and un-normalized graph Laplacians, respectively.
The differential Dirichlet form associated with 4, is defined as

) = —(f Af), = /Mp|Vf|2dv,

where (f,g) = fong for f,g € L>°(M), and {f, 8 = foquV for g a density of a positive
measure on M. In below, we may omit dV in the notation of integral over M, that is, [ S means
/ J dV. Given a graph affinity matrix W and a vectorf : V — R, f € RV, we consider the (normalized)
graph Dirichlet form defined as

2 1
En(f.f) = — —e 2 T(D—Ww 3.3
W) = e 0 - W (3.3)
_iii —d/2y (f_f)_Lii 2w (f — f)?
= o N2 2 il =0 = G wr 2a€ Ui =)
ij=1 ij=1

We will prove that the graph Dirichlet form converges to the differential Dirichlet form of a density
2(a—1) . . . o .
Dy = p't 77 on M. This is consistent with the above limiting operator, as one can verify that

2a—1)

—p 7 ‘C(O[)f)p =1 2 ) = Ep, -1
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14 X.CHENG AND H.T. WU

3.2 Convergence of the kernelized Dirichlet form
Consider W = W@ as in (1.4), and define

. _an ||x—y||2) 1
Kooy =e ko(eﬁ(x)ﬁ(y) PO M G4

Then, by definition, e~4/2 Wi(ja) =K (x;, xj). We use ‘hat’ to emphasize the dependence on the estimated
bandwidth p. When f; = f(x;) for f : M — R (here we use the notation f for both the function and the
vector), Ey (f,f) has the following population counterpart which is an integral form on M,

1 n
NG = /M /M(f(x) PR y)pIp() AV AV (). (3.5)

We call E@(f,f) the kernelized Dirichlet form. The following proposition proves the convergence of
E@(f,f) to the differential Dirichlet form &, (f,f):

PROPOSITION 3.2 Suppose p satisfies that sup,.. v, W&% < &, < 0.1. Then for any f € C*(M),

EDF.f) =&, (FHA+ 0 () + 0V e), p, =p' T2/,

In the proposition, we omit the dependence on « in the notation of the O?!(¢) term. Here and in
below, we omit the dependence on « and track that on p and f in the big-O notation, unless we want
to stress the former. The proposition leads to the convergence of EEy (f,f) and is used in proving the
convergence of Ey(f,f) (Theorem 3.3) and the weak convergence of Lyf (Theorem 3.7). An important
technical object used in the analysis of £ (f,f) and later analysis is the following integral operator

ép) defined for f € C°°(M) and any € > 0,

_ 2
GPf(x) = 2 / ko (u)f(y) dv(y), (3.6)
M ep(y)

which is well defined when p is positive and has some regularity so that the integral exists, e.g., C°
regularity and bounded from below. The following lemma is a reproduce of a similar step used in [5]
where we derive point-wise error bound (see remark A.1).

LEmMA 3.1 Under Assumption 2.1, suppose k satisfies Assumption 3.1, f and p are in Cc*(M), and
0 < pin < P < Pya Uniformly on M, then

d m d d
GLf = mof p? + e Hafp' 2 + A(PT2) +12,

3.7

4 4
sup 1 ()| < ¢, (1+ D IDYSll )0+ D IDYp7 | )e* = oV,
xeM 1=0 1=0
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where ¢ b > 0 is a constant depending on (M, k;,

the coefficients depend on (M, k)), DU is I-th manifold intrinsic derivatives, and w (x) depends on
local derivatives of the extrinsic manifold coordinates at x.

Pmax Pmin) (@ Tational function of (0,,,,» 0,nin) Where

However, we cannot directly apply the lemma to (3.5) because p does not have C* regularity. The
proof of Proposition 3.2 is via substituting p by o and control the error, and then applying Lemma 3.1
where p = p which is C*°. As a postponed discussion, modifying o to be C* is considered in
Appendix A.4 under another limiting setting.

3.3 Convergence of the graph Dirichlet form

We will show that when N — oo and € — 0 under a proper joint limit, Ey(f,f) converges to
Spa (f.f). This means that with the self-tuned kernel the graph Dirichlet form asymptotically recovers
the differential Dirichlet form of the weighted Laplacian A, on (M, p,dV). In particular,

e Whena =1, p; = p, and the graph Laplacian recovers A, on (M, pdV).

e Wheno = 0, py = p'72/4_ thus the original self-tune graph Laplacian recovers weighted
Laplacian with a modified density.

e Wheno =1— %, D, 1s a constant, then the graph Laplacian recovers A ,, and the Dirichlet
form with uniform density. We provide an approach to obtain A, when d is not known in
Section 4.4.

For the estimated p from Y, suppose Theorem 2.3 holds, we thus consider the randomness over X
conditioning on a realization of Y under the good event, which already guarantees the uniform smallness

of [p(x) — p(V)I/p(x).
THEOREM 3.3 Suppose p satisfies that sup,. 14 1@ —pl

Gol - < & < 0.1, and as N — oo,

e=o(l), €’N=Q(ogN), &,=o(l),

then for any f € C>® (M), when N is sufficiently large, w.p. > 1 —2N~10 and Py = plt2e=b/d

log N .
Ex(hf) =&, (1.1 + 09 ) + 0V 7€) 4 O (\/]% /M |Vf|4p‘+4(d”).

REMARK 3.1 By Remark 2.1, the optimal choice of k to minimize ¢, is when k ~ Ny1 U+ and this

P
Ny 1/(2+d/2)

leadsto e, ~ up to a log N factor. The possible log N factor is no longer declared in all the

scalings in this remark. To make € ~ ¢, it gives € ~ (ﬁ)z/d ~ N;l/(2+d/2). The scaling € ~ (%)z/d
A ) :

is the same one as in the original kNN self-tune kernel (1.3). Meanwhile, in the error bound in

Theorem 3.3, leaving the term due to ¢, aside, the other two terms of bias and variance errors are

balanced when € ~ Ny 1/@+d/2) 1@+ com.-
1/(2+d/2)

P
, and this gives the overall error of the two terms as N,
pared to &, ~ Ny at the optimal scaling of k with N, the overall error bound in Theorem 3.3
is balanced when N, = O(N,).
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16 X.CHENG AND H.T. WU

To see the effect of self-tuning kernel, we compare Theorem 3.3 with the following theorem for a
fixed-bandwidth kernel normalized by density estimators, defined for 8 < 1 as

2
® b — x5l I
W" = k A A ’ (3'8)
! 0( e ) h@)PpopP

assuming p(x;) > 0 for all i. Let Ey . (f.f) equals (3.3) with W = W and that gives

N
1 1 _
Eyo(f.f) = —— > e PwP (. — )2

ij=1

Below, in Theorems 3.4 and 3.8 about fixed-bandwidth kernel, we track the constant dependence on S
more carefully since for the special case where 8 = 0 no density estimation is needed.

THEOREM 3.4 Suppose as N — 00, € = o(1), €/2N = 2(log N), and if B0, the estimated density

p satisfies that sup, . 1 WX;(;XI;(X)' < ¢, < 0.1,and ¢, = o(1), then for any f € C>®(M), when N is

sufficiently large, w.p. > 1 — 2N~10 and cg = max{l.l’ﬂ’1,0.9’/3’1},

log N
Ey () = Ep-2s (f.)(1 + OM (Bege,)) + OV PP (e) + O ( % /M |Vf|4p2—4ﬂ).

In particular, when g = 0, Ey . (f.f) = 2 (f.f) + oV71 () + o] (\/ 11\;)€gd]/\2 I |Vf|4p2).

Note that A 25 = A + 2(1 — ,3)% -V, which is consistent with the limiting operator of the

original Diffusion Map paper [11], and in particular, 8 = % recovers A . Strictly speaking, the setting

12
is different because in [11], D;l-/ 2 is used to normalize the affinity matrix W, = ko (M), and

P
D; = Zj ko (u) While D;; can be viewed as a KDE, normalizing by D;; introduces dependence
and techniques to analyze normalized graph Lapalcian are needed, e.g., as in Theorem 3.5.

REMARK 3.2 The error bound in Theorem 3.4 has an 0(8p) term (when S70) which appears to be
the counterpart of the O(e ) term in the bound in Theorem 3.3. We have shown in Remark 2.2 that
the relative error of p by a fixed-bandwidth KDE (2.3) behaves differently from that of p. Specifically,
when variance error dominates, |p(x) — p(x)|/p(x) is proportional to p(x) /2, while the variance error
in [p(x) — p(x)|/p(x) can be made small uniformly for x € M independent of p(x). This means that,
when p is small at some places, to prevent the variance error in |p(x) — p(x)|/p(x) to be too large, the
choice of the fixed-bandwidth parameter € may be restricted by the smallness of p. In such cases, the
kNN self-tuned kernel can have better robustness due to that the kNN estimator p adopts a different
bias-variance error trade-off which uniformly controls the variance error term.

We postpone further discussion about fixed bandwidth kernel, since the current paper focuses on the
estimated variable bandwidth kernel.
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3.4 Convergence of Lyf

We consider two types of graph Laplacian operator Lyf, where, using kernel Ki“g as in (1.4), the un-

normalized graph Laplacian operator applied to f € C*°(M) is defined as

—d_q N TV ) —
o= 2 L LS I =51 \/0y) 1@ 59
my, px)*N P €p(x) P (x;) p(x)*
and the (modified) random-walk graph Laplacian operator is
N =1\ @)
Lk () e
Lf () = IR fw |- (3.10)

rw

€22 5(x)2 N ( llx—x;11? ) 1
2mo 2 =1k \Gmre ) e

In the matrix form, the operator differs from the usual random-walk Laplacian (I — D~'W) by
multiplying another diagonal matrix D;z (up to multiplying a constant and the sign); thus, we call it
‘modified’ and denote it by ‘rw-prime’.

The point-wise convergence of Lyf(x) at a fixed point x € M is a more traditional setting under
which the convergence to a limiting diffusion operator has been considered in several papers [5,11,42].
The closest one is the result in [5], and an extension of the method therein leads to a convergence to ng) f

under the asymptotic that e = o((k/Ny)4/ 4y (cf. Theorems A.5 and A.6 in Appendix A.4). However, this
convergence result does not imply consistency to ng) f = L©F, due to the lack of convergence of %ﬁ to
%, as discussed in Section 2.3. Meanwhile, note that the uniform C consistency of p to 5 does imply

the weak convergence of ng)f — Efaa)f when ¢ . — 0, a result of the same type as Theorem 3.7, while

-1/2 —d/4=1/2y

P
the latter shows an improved variance error (with € rather than €

Back to the point-wise convergence of Lyf(x). To be able to establish the consistency to LOF,
we instead consider another limiting regime of €, namely € = §2(e,), which is .Q((k/Ny)z/d) up to a
factor of \/logN under the optimal scaling of k as in Remark 2.1, and we take a different approach.
The following lemma shows that substituting o with 0 in Gép ) f(x) incurs an extra error of O(e p) point-
wisely.

LEMMA 3.2 Under the same condition of Lemma 3.1, in particular, f and p are in C*(M). Suppose a

positive integrable 5 : M — R satisfies that sup, 14 W < & < 0.1, then when the € in Gg) is
sufficiently small,
GOf = GPf +F,  sup [F(x)] < ¢, llfllge = O (e), (3.11)

xeM

/

where ¢ )

> 0 is a constant depending on (M, kg, 0,05 Pomin)-

With the lemma, the following two theorems prove the point-wise convergence to the limiting
operators of the two graph Laplacians operators, assuming that £ , = o(e).
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6@ —pe]

THEOREM 3.5 Suppose f satisfies that sup, . 4 0]

<eg, < 0.1, and as N — oo,

e=o0(1), €PN =g(ogN), &, =o(e),

then for any f € C*° (M), when N is sufficiently large and the threshold is determined by (M, f, p) and
uniform for all x, w.p. higher than 1 — 4N -10,

o o € log N
Linf @) = L9f (x) + 0! (e, f) +ol! (||Vf||oop<x>‘/"\/ ]ﬁ) (3.12)

where the constants in big-O are uniform for all x € M.
REMARK 3.3 As shown in the proof of Theorem 3.5, at x where Vf(x) # 0, the variance error can be

bounded by O} (|Vf(x) Ip(x)1/4 N‘:f,ﬁl ) with the same high probability and the threshold of large N

possibly depends on x. One can also verify O!!! ((| VFx)| + 0.1)px)1/,/ %) as the variance error

bound for large N with x-uniform threshold. The addition of 0.1 is to make the factor (|Vf(x)| + 0.1)
uniformly bounded from below and prevent the bound to vanish when Vf(x) = 0, and 0.1 can be any
other positive constant. If the behavior at a point x is of interest, theoretically the variance error can be
improved in rate at x where Vf(x) vanishes [42]. As we mainly track the influence of p(x) which may
be small at some x, we adopt the || Vf]|, factor in the theorem for simplicity. The same applies to the
point-wise convergence results in Theorems 3.6 and 3.8.

THEOREM 3.6 With notation and condition same as those in Theorem 3.5, when N is sufficiently large
and the threshold is determined by (M, f, p) and uniform for all x, w.p. higher than 1 — 2N —10

) e 2-1 | logN
LOfx) =p~ @ LDf(x) + OV (6’ ?”) ol (”Vf”oop(X) ‘ Ned/H]).

In Theorems 3.5 and 3.6, the error bound has an additional term of 0(8?") compared with that in
[5,42]. The technical reason is that we use Lemma 3.2 to substituting o with p, which gives O(e p) error
at the ‘O(1)’ level but not at the ‘O(¢)’ level. In the proof of Theorem 3.3, the O(e p) substituting error
takes place at the ‘O(e)’ level thanks to the quadratic form.

For the un-normalized graph Laplacian operator, the additional O(S?”) error can be removed if we
consider the weak convergence, which can be of interest in certain settings.

[P —p ()]

THEOREM 3.7 Suppose / satisfies that sup, . \4 0]

<eg, < 0.1, and as N — oo,

€ =o0(l), eN = £2(logN), epzo(l),
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2(@—=1

then for any ¢ € C*®(M), when N is large, w.p. > 1 —2N710 p = p!+7a—

logN
(@ LGSy = (0 Ay, )y, + OPF9) (e, s,,)+o“](||<p||oo||p“/duoo,/w / pa|Vf|2).

Note that the above weak convergence result is only possible for the un-normalized operator because
technically the D~!W normalization in the random-walk operator breaks the linearity.

At last, we compare with the graph Laplacian operator Ly, defined by fixed bandwidth kernel matrix
(3.8), namely

=117\ £Gx)
B) 1 Z 1Ko ( j )1!3()9!)'g
Leénd @ = =2
Zm z k i xj 1
0 j=1"0 p(x)P

—f)

The counterpart of Theorem 3.5 is the following:

THEOREM 3.8 Suppose as N — 00, € = o(1), €d24IN = £2(log N), and if 70, the estimated density

p satisfies that sup, \ Ip(x)(l)’(x)l < ¢, < 0.1,and &, = o(e). Then for any f € C>°(M), when N is
large and the threshold is determmed by (M.,f,p, B) and uniform for all x,

X & logN
LS @) = Apapf(x) + O P (e, ﬁf) +ol! (nwnoop(x)‘” g ]ﬁ) (3.13)

In particular, when 8 = 0, the bias error term is reduced to oV-rl(e).

The counterpart for un-normalized graph Laplacian can be derived similarly and omitted. The
limiting operator is the same as in Theorem 3.4 and consistent with the result in [11]. Compared with
Theorem 3.5, apart from the needed condition on the relative error of p (cf. Remarks 2.2 and 3.2), the
variance error term in (3.13) has a factor of p(x)~!/2, while for self-tuned kernel W® the factor is
p(x)l/ 4 a5 in (3.12). This can be expected because the self-tuned bandwidth is designed to overcome
the difficulty of low data density by enlarging the kernel bandwidth at those places, and our analysis
reveals the effect by the reduced variance error at x where p(x) is small. Such advantage is supported by
experiments on the hand-written digit image dataset in Section 4.5.

4. Numerical experiments

This section presents numerical experiments to verify the theory. Codes available at the public repository
https://github.com/xycheng/selftune-kNN. In this section, we denote the parameter k as k, when the kNN
estimation is conducted on the dataset Y. In Subsection 4.3, we use the notation k, when computing the
kNN estimation on X.

4.1 kNN estimator p of p = p~'/4

We numerically examine the KNN estimation of p, namely p as defined in (2.1), and compare it with the
fixed bandwidth KDE estimator p as in (2.3), where h;;,(r) := e™" /G/™)  The dataset is sampled from
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a circle of length 1 isometrically embedded in R? i.i.d. according to a density function p, which equals
0.05 at ry = 0.25, 0 < ty < 1 being the intrinsic coordinate (arclength), as shown in Fig. 1. The plots
on the right-hand side show the difference of the relative error at place where p is low. As k, decreases
(e increases), the variance error starts to dominate, and p gives the relative error uniformly small across
locations, as predicted by Theorem 2.3. In contrast, p gives a larger relative error near fy = 0.25. The
result empirically verifies Theorem 2.3 and Remark 2.2.

4.2 Estimation of Dirichlet form and Lyf (x)

On the simulated data lying on a one-dimensional smooth manifold embedded in R* with a non-uniform
density p (Fig. 2), we compute self-tuned graph Laplacians on N, = 2000 data samples using (1) L,
(3.9)and (2) L,,, asin (3.10), @ = 1, where p is estimated from a stand-alone dataset ¥ with Ny = 4000,
and ky = 32, 256, respectively. To evaluate the influence of p estimation, we also compute L, and L,,,,
where p is replaced to be the true p. The relative errors of

e The Dirichlet form {f, A pf ) o

e The point-wise error measure by

N
Err, = Zl Lnf () = Apf Ol Brr i= max [Lyf(y) = A/ @)l (D)
1=
are given in Fig. 3. The error of Lyf shows a scale of about e~ U412 = ¢=075 in Fig. 3 right two

plots, when the variance error dominates due to the small value of €. In comparison, the accuracy of
Dirichlet form is less sensitive to the small value of €, as shown in Fig. 3(left), which is consistent with
the theoretical result in Theorems 3.3 and 3.5.

Note that the relative 1-norm error shown in the plot divides Err; by ||{Apf (xi)}?il l{; thus, its
magnitude (about or greater than 1 in Fig. 3) depends on the choice of the test function f. Same with the
relative co-norm error. When N, is increased to be 10,000, with the same f, the smallest relative error
across € is about 0.5 (averaged over 20 runs).

Taking N, = 10, 000, Ny = 10, 000, with ky = 64, 256, respectively, we visualize in Fig. 4 snapshots
of single realizations of Lyf. With smaller value of ¢, the estimated Lyf has more oscillation around
the true value, and when € is larger, the oscillation is less but the function Lyf is significantly biased
at certain places on the manifold. Note that when &, is larger, the estimated 0 is smoother but has a
significant bias at places where p is small, and such bias is also reflected in the estimated Lyf. The two
Laplacians, L,, and L,,,,, give comparable results.

4.3  The influence of stand-alone Y

We compare with the results using X to estimate /. The dataset is the same as that in Fig. 2. N, = 2000
and k, = 32 are used to compute py. Take Ny = {2000, 4000, - - - , 32000} and ky = {37,64,---,338},

where ky is chosen to scale as N;t / 5, according to Theorem 2.3 (d = 1). The result for one realization
with the largest N, is in Fig. 5, where using a stand-alone Y of a much larger size than X reduces the
error in the estimated 6 as well as the oscillation in the estimated Lyf (plots for L,,,,f are similar and not
shown). The relative errors of Dirichlet form and Err_ of Lyf across € are shown in Fig. 6, where using
Py and py give comparable accuracy. Moreover, the result with py approaches Lyf computed from p as
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N, = 32000, k, = 338 relative error
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0
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F1G. 5. Same plots as Fig. 4 for self-tune Laplacian computed with py. (Left two) kNN-estimated 4 and relative errors computed
from X and Y. (Right two) Estimated L,;,f, with the zoom on the interval [0.2,0.5].

N, = 2000, Dirichlet Form

N, = 2000, Ly, f error co-norm

N, = 2000, L, f error co-norm

1 a
P
. > o1 &
8 2x <] <] i o
] —— py, N, max = = N &
o - (3] <
o Of| = py < :
= =05 =05
2 = =
E E el
-1 4 3 ’ = p
D > AP § ——px
S Ll < Of|——py, N, max < Ofl——py, N, max
o’ s py s Py
-2
-5 -4.5 -4 -85 -3 -5 -4.5 -4 -35 -3 5 -4.5 -4 -35 -3
log, € log,, € log,, €

FiG. 6. Relative error of (Left) Dirichlet form computed using Ly, and (Middle) the Errso error of L, computed using 5, py
and py over a range of € and different {Ny, ky} (blue squares), averaged over 500 runs. (Right) Same plot for L.

N, and k,, increase. This suggests that when significantly more data samples than N, are available, using
the rest as Y to estimate the bandwidth function 6 may improve the estimation of the self-tuned graph
Laplacian. With limited number of data samples, splitting stand-alone ¥ may worsen the performance
(due to decreasing N, ) than using the whole dataset as X and estimating the bandwidth on itself.

4.4 Recovery of the Laplace—Beltrami operator

. e . d .
According to the theory, the limiting operator is Ay, when « = 1 — 5. Here we examine two ways to
recover A y4:

(1) By the self-tuned kernel affinity W(l_%).
(2) By a normalization with a combination of p and o,

llxi =11 ) )
W — ko (eﬁ(x,»)f»(x,») _ Wi
YY) Bp YA (x) PP A(x)’

4.2)

because p~%/? = p!/2. The second approach does not need prior knowledge or estimation of the intrinsic

dimensionality d and thus can be applied in more general scenarios.

Consider the same one-dimensional manifold data used in Fig. 2. Take N, = 1000, ¢ = 1074,
and compute /6 from X. The embeddings by the first four (non-trivial) eigenvectors of various graph
Laplacians are shown in Fig. 7, where the last column shows the result produced by affinity matrix

" 12
W; = g4, where Ky is the fix-bandwidth kemel affinity K;; = ko("“) and d; = 3, K;, as in
[11]. Recall that the eigenfunctions of the Laplace—Beltrami operator are sine and cosine functions

with different frequencies. In this example, the random-walk graph Laplacian produces a visually better
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5 Ly, W02 5 Ly, W2 5 Lun, with jp 5 Ly, with j p , Diffusion map Ky;/dd,
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F1G. 7. Plots of the first 4 (non-trivial) eigenvectors of graph Laplacians which approximate eigenfunctions of Az of s!. From
d

left to right: Ly, L,,, using W(]_f); Lyn, L,y using (4.2); degree dl._ldj_lnormalized Diffusion Map [11]. Data as in Fig. 2,

Nx = 1000, the kNN self-tune bandwidth p computed from X with ky = 21, € = le — 4.

eigenfunction approximation compared with the unnormalized graph Laplacian. We postpone the study
of the random-walk graph Laplacian with self-tuned kernel to future investigation.

4.5 Embedding of hand-written digits data

We implement the spectral embedding on N, = 1000 samples from the MNIST dataset, containing five
classes (digits ‘0°, ‘1°, ..., ‘4’) with 200 images in each class. The hand-written images can be viewed
as lying near certain low-dimensional sub-manifolds in the R7®* ambient space (each sample is a 28 x28
gray-scale image). We use k, = 7, and compute IAQi as the L? distance between the i-th image to its k,-th

[ —Xj 2 o A .
nearest neighbor. Also compute /i; := ]l\/ jV: 1 P szek:j” ), where ellf = Median;{R;}. Here, /1 is the
e

(un-normalized) density estimator. Consider two self-tuned kernel affinities:

llx; — x;]|? 1 , llx; — x;]|? 1
ngjl) — &, lzké TR Wij =k, lzl}jé T “4.3)
Ol ) ol Ol ) oy RiR;\ [ 1Ll

We use L, = Dlgz(D_lw — I), where W = W or W, Dp)ii = UOIA?l-, and D is the degree

matrix of W. The parameter ag serves as the dimension-less bandwidth ‘e’. We also compare with the

fixed-bandwidth kernel affinity matrix, where €'/ 2 = aoMediani(IA?i), called the Diffusion Map (DM)
embedding. The embeddings by the first three (non-trivial) eigenvectors over a range of values of o, are
shown in Fig. 8.

We observe that the DM embedding is disconnected at small value of o, and consists of points
which are far away from the bulk (outlier points), due to sensitivity to data points which are relatively
farther away from its neighbor samples. As illustrated in Fig. 9, the outlier points in the DM embedding
are those whose values of Ri are large. In comparison, both the self-tuned kernels provide informative
embeddings of the dataset over the range of values of o;), showing improved stability at small values
of o, to data samples lying at places where the data density is low. The WO kernel affinity shows a
better stability than the W’ kernel at the small value of o, on this dataset, due to that the W’ kernel still
involves a fixed-bandwidth KDE /& in the normalization.

5. Discussion

Apart from what has been mentioned in the text, the following lists a few possible future directions. First,
we use a stand-alone Y to estimate the bandwidth function p for theoretical convenience. Extending the
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FiG. 8. Eigenvector embedding of Ny =1000 MNIST hand-written digit images of 5 classes, kx = 7, colored by digit class labels.
K..

(Top) By ﬁ with fixed-bandwidth kernel, (Middle) by self-tuned kernel w), (Bottom) by self-tuned kernel W/, as defined
idj

in (4.3).

DM, oy = 0.4667 distance to 7-th nearest neighbor

400 600 800 1000
index of sample

F1G. 9. Outliers in the fixed-bandwidth kernel embedding. (Left) One embedding in the top panel of Fig. 8 with a proper rotation
for visualization purpose, where the outlier samples are marked with red circles. (Right) Values of R;, i.e., the distance to the
seventh nearest neighbor, of the Ny =1000 samples. The outlier samples in the left plot are marked by red circles. The plot is
colored by digit class labels.

result to the case where p is computed from X itself can be of both theoretical and practical interest,
especially when the number of data samples is not large. Second, one can continue to derive the spectral
convergence, namely the convergence of eigenvalues and eigenvectors of the self-tuned graph Laplacian
matrix to the eigenvalues and eigenfunctions of the associated limiting operators, with rates. Our graph
Dirichlet form convergence rate is better than the operator point-wise convergence rate by a factor
of €~1/2, and since the Dirichlet form convergence largely implies the spectral convergence in the
L? norm [8], this suggests that the spectral convergence rate may also be better than the pointwise
convergence rate for the graph Laplacian operator in a proper sense. This theoretical speculation is
supported by our empirical results. A uniform spectral convergence would also be important for various
practical applications. At last, the random-walk graph Laplacian in our experiments sometimes shows a
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better performance compared with the unnormalized graph Laplacian, especially in terms of eigenvector
convergence. A theoretical justification then is needed, which is possibly similar to that in [54], and will
be based on the spectral convergence result if can be established.
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A. Appendix

A.1  Proofs
A.1.1  Proofs in Section 2
Proof of Lemma 2.1. Given Y and k > 1 fixed, define

Sy = {xeR2 503 £, =yl = =y} -

Since y;s are distinct points, Sy is a collection of finitely many hyperplanes in R” (finitely many points
when D = 1), and Sy N'Y = @. Whenever x lies outside Sy, the set {||x — yj||}j.V:1 consists of distinct

non-negative values. The set RP\S) is open and consists of a finite union of polygons (the polygons
can be unbounded), as illustrated in Fig. A.1.

We prove the lemma in three parts as below.

Part 1: to prove that Ris piece-wise C* on RP \Sy, and on each polygon p in RP \Sy, R(x) = llx—ypl
for a point yp €Y and outside p.

First, for each (open) polygon p and any x € p, the k-nearest neighbor (kNN) of x in Y is uniquely
defined due to the fact that the distance list {||x — yj||};.v= | has distinct values. Thus, the function R(x)
equals ||x — y &9 where y*¥ is the kNN of x in .

Second, we claim that the point y*- is the same y € Y for all x inside the polygon p because the
ordered list of nearest neighbors is fixed for all x within p. Indeed, for the ordered list to cross, the
distances of ||x — yj|| and ||x — Vi | need to be equal at some x, and this x lies on Sy. We call this point
Vps and then k(x) = ||x— yp|| for x € p.

Third, we claim that y, ¢ p. Note that each polygon p has at most one point y; inside it. Because

. .. . . . ji+yy .
otherwise, suppose y; 7 y; are both inside p, then so is the middle point Y ;’ due to that p is convex,

but 2 +2y_,~/ is in Sy and cannot intersect with p. Now if Yp € P, then by definition y, is the kNN of itself,
which means that k = 1. This contradicts with the condition that k > 1.

The above gives us that f?(x) = |lx— yp|| is C* and hence ||@IA?|| = 1 inside p, by the fact that
the mapping x — |x|| is C> on RP\{0}. These properties hold for all polygons p; thus, R(x) is C*° on
RP \Sy, and ||@IA€|| =1lat point of differentiability.

Part 2: to prove that LIPRD ®) <

We assume that R is continuous RD which will be proved in Part 3. By Part I, we have that Ris
Lipschitz 1 on each open polygon p, and combined with the continuity of R at points on the boundary
of p, we have that Lipl—, (k) < 1, where p is the closure of p, that is,

IR(z) — R < lz—7Il. Vz,7 €p. (A.1)

For two points x # x” in RP, we want to show that IR(x) — R(X')| < ||lx — ’||. Consider the segment
line / connecting the two points. If / is contained in some p, then the claim is proved. Otherwise, there
is a sub-segment [, connecting from x and z; € Sy such that [, is in some p. Continue the process gives
finitely many distinct points {z;,-- - ,z,,} C [ such that the sub-segment /; connecting from z; to z;, | is
contained in some p for i = 0 to M, where z; = x and z),, | = x". Note that this decomposition of / into
the union of /;s holds even when one or both of x and x’ are in Sy, as illustrated in Fig. A.1.
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e G=le-ul

dy <dp <dg <d

p

F1G. A.1. Illustration of the set Sy and example polygons in the proof of Lemma 2.1, D = 2, Y = {y{,--- ,y4}, k = 2. For each
polygon p, there is a point yp € Y such that R(x) = ||x — yp|| for x € p.

Now by construction, ||x —x'|| = Zi‘i o Iz; — z;41 |l Meanwhile, applying (A.1) to each [; gives that
|R(Zl‘) - R(Zi+1)| < ||Zi —Zip II. Thus,

M M
IR() — ROOI < D IRG) — Rz DI < D Mz — 2y Il = e = X1
i=0 i=0

Part 3: to prove that R is continuous on R?.
To finish the proof, it remains to prove the continuity of R on R”. For any x, € R?, let R(x) = r,.
Since Y has distinct points by assumption, at most one point y; coincides with x,. Since k > 1, ry > 0.

We prove that when x — x, fi(x) — 1y Define

N
Feor) =2 ez -
=1

Recall that
fi(x) =inf{r > 0, s.t. F(x,r) > k}.

Since F(x, r) is monotonically increasing as r increases, for any v’ := ry + & > ry, F(xy,7’) > k. This
means that |Y N B, (xy)| :== k' > k. Since B,.(x,) is an open ball, and there are k" many y;s lying inside
it, they also all lie inside B, (x;) where r, < r” < r. Thus, when ||x — xy|| < (' —r")/2 := ", these
k' points of y; also lie inside B/, (x), then F(x, ¥y > k' > k. This gives that IAQ(x) < ry + &, whenever
llx —xoll < .

Meanwhile, for any 0 < 7’ := ry — & < ry, by definition F(xy, " + 5) < k,i.e., [Y N Br’+§ (x| :=
k' < k. This means that for any y € Y\Br/+% (xp), the distance ||y — x|l > r'+ % Thus, when [|x —x, || <
% the smallest distance ||y — x|| for any y € Y\Br’+g(xo) is > v + 7, and then F(x,7") < k' < k. This
shows that R(x) > ry — &, whenever |x — xy|| < %. Putting together, this proves the continuity of R(x)
at x;. O
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mop(z)r? u, T)f
% .

* x M=,T)
x <
x
x x /
x
lc. ......................................... L‘ concentration
N concentration
* %/ *Y; AT
x x :
x /
* : :
_!Z i
0 T2 R_ T3 R(z) R, r

FiG. A.2. Given a dataset Y and a fixed x, plots of fi(x, r), w(x, r) and mq [h]p(x)rd as functions of r. The values of IA?(x), R(x) and
R+ are marked. These quantities are used in the proof of Proposition 2.2.

Proof of Proposition 2.2. Recall that p(x) = p(x)~ /4. Define

B _ 1 k 1/d
R(x) := p(x) (m B ]V) . (A.2)
0

R —1/d _ ~1/d
Then, since we have p(x) = R(x) (m 1%,) and p(x) = R(x) (m 1%) , the proposition can be
equivalently proved by controlling |k(x) — R(x)|/R(x). For the given s > 0, define

5 et k 2/d+t2 [slog N (A3)
R VY FA '

where 1| = erl1), Iy = ©U(1), both will be determined later. We will show that, when N exceeds a
threshold depending on (p, 5), for any x € M fixed, w.p. greater than 1 — 2N /4,

R(x)(1 -8 ) < R(x) < RX)(1+8 - (A4)

To prove (A.4), we introduce some notations. Denote
R_(x):=Rx)(1—-3,), and R,(x) =R +3,).

Let h = 1 ;, and define, for any x € Mandr > 0,

- llx =yl ||2 1 <
Alxr) = Zh =t D H),
j=1

then, by (2.1), R(x) = inf, {r >0, s.t.alx,r) > %} For fixed x and r, Hj are i.i.d. random variables,
and

- B llx — ylI*
j(x,r)_ hl —— ) p»)dV(y) =: u(x,r). (A.S5)
M r2

Below, to simplify notation, we omit the dependence on x in R, R and H; when there is no confusion.
The argument is for a fixed x, and we make sure that the constants #; and #, in §, as well as the large-N
threshold are uniform for all x.
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We first address the lower bound in (A.4). By definition, [i(x, r) is monotonically increasing on
(0, 00). We claim that

Pr{R(x) < R_] < Pr |:[L(x,R_) > ﬂ . (A.6)

Because R(x) = inf{r > 0,4(x,r) > 1%}, if R(x) < R_, there is some #, R(x) < ¥ < R_ such that
alx,r) > 1%’ and by monotonicity f(x,R_) > (x,r) = 1%

To bound the probability Pr [ﬁ,(x, R ) > 1%], we use that the expectation w(x, R_) would be smaller
than % under some conditions for §, defined in (A.3).

Note that by definition (A.2), R(x) = OP!((X)1/4) = olP)(1), and the implied constant is uniform
for all x by the uniform boundedness of p. Also, we have that §, = olP1(1) under the asymptotic
condition on k. As a result, we have that

R_ = 0VI(R(x)) = 6 ((]%)‘/d) = olPl(1). (A7)

Then, Lemma A.6 gives that when N is sufficiently large and then R_ is small,
w(x,R_) = my[hlp(x)RL + OPI(RIH?)
= mylhlp()R(1 — 8,)7 + OV (R'*?)

= my[hp(x)RY (1 — ds, + o2y + olr! (iez))
<f(1 0.9d8.) O[P](I_?d”)—'k 8., (by that my[h )R"—E) A.8)
< (1= 0.9d8,) + =t~ — 8. by that molAp(OR? = (A.

where the inequality in the last row is obtained by that §, = olP1(1), and the large-N threshold here
only depends on p. Note that the implied constant of O?!(R4*?), denoted as c,, is uniform for all x.
Meanwhile, by uniform boundedness of p from below, we have

_ ] 1k I Ve e\
R(x)ggel%p(x)(mo[h]ﬁ) :(m) (]T’) .

Denote ¢, | = (pmmmo[h])_l/d, and choose

¢ cd+2

1 )1 — (~ [P] ()
1 = — O ] N A.

which is uniform for all x, then #; - 0.9d (Iﬁ\,)]ﬂ/d > CPC;I"{Z (1%)1+2/d > cpl_?‘“‘z. Thus, when N is

sufficiently large and the threshold depends on p, we have

k kK\¥? t, [slogN .
s, =09d— |1t (- 2 /=" )+ oI (r¥*?
H- N(‘(N) TV T TR
k |slogN k\'/? slogN .
> 1, - 0.9N,/ =109 (ﬁ) =i 5 (A.10)
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To use the concentration of A(R_) at u(R_), we compute the boundedness and variance of Hj(R_).
Because 0 < h < 1,s01is Hj, and then |Hj| < Ly = 1. The variance

_ 2
hz(u)p@) dvV(y) = u(R_).

2 _
Var(Hj) < EHj _/ 2

M

because the kernel function # : R — R satisfies 42 = h. Thus, by that u(R_) = mo[h]p(x)R”i +
OlP)(RI+2) with (A.7), and that §, = olP)(1), when N is sufficiently large,

i, k
Var(H;) < 1Img[hlp()R? < 1.5my[hlp(x)R? = 1.5]V =: Uy,

and the two inequalities hold when N exceeds a threshold depending on p only. By the classical Bernstein
inequality, as long as SLy < 3vy, then

12 N

Pr{i(R_) —p(R_) >5] <e *" .

To verify that SLy; < 3vy: note that it is equivalent to that z, - 0.9 < 3 - 1'5(slong

have assumed k = §2(log N), if we have 1, = © (1), then it holds when N is sufficiently large where the
threshold depends on s. This is fulfilled by setting #, being an absolute constant such that

)1/ 2. and since we

1,0.9)?
®O9” _ 0<t,<3. (A.11)
4-1.5
Thus, together with (A.8) and (A.10), we have
k k.
H(R_) < IT/_S“‘ < N—s.

As aresult, (A.6) continues as

_1z

Pr{R(x) < R_] <Pr [ﬁc(R) > If\,] <Pr[AR) > p(R) +3] <

N
T — N—S

>

which proves that w.p. higher than 1 — N~%, the lower bound R(x) > R_ holds. We call the event

[R(x) > R_] the good event E|. All the large-N thresholds depend on (p, s) and are uniform for all x.
The upper bound is proved in a similar way. Specifically,

k k _
wRy) =51+ sr)? + OP (RE?) > ~ (1409480 + OP(RI+2)

k k k t, [slogN -
= — 409d— | 1;,(=)%¢ —2,/ —_— OPI(RI+2),
N + N( l(N) + p X + ( )

and the implied constant in OP1(R?*2), ¢ | is same as the above by Lemma A.6. Then, again by the
uniform upper bound of R(x) by Cp1 (Iﬁv)l/ d by setting #; to be that in (A.9), we have

k k\'? [slogN k _
,LL(R+)>N+I20.9 T N =]—V+s.
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Same as before, H;(R, ) is bounded by 1 and for a sufficiently large N,
k -
Var(H) =Ry < IV =Vy.

By letting 1, as in (A.11), we have

52

ST
==

Pr[R(x) > R.]1 < Pr [,z(R+) < ﬂ <Pr ARy < pRy) —3] <e =N%.

This proves that w.p. higher than 1 — N~¢, the upper bound R(x) < R, holds. We call the event
[IAe(x) < R, ] the good event Ej.
Putting the above together, under the event E; N E,, which happens w.p. greater than 1 — 2N ¥,

IR(x) — R()| <s CpCfﬁ2 k 2/d+2F [slog N
R(x) ST 708 \WN d r

which proves the claim of the proposition. U

Proof of Theorem 2.3.  We restrict to when Y has distinct points, which, under Assumption 2.1, holds
w.p. 1, and then Lemma 2.1 holds.

We cover M using r-Euclidean balls, where 7 > 0 is a constant of order (k/N)>/¢ with the implied
constant to be determined. Suppose N is large enough such that r < §, in Lemma A.3, then by Lemma
A4, we can find an r-net F' := {x,--- ,x,} whose cardinal number is n, n<V(M)r~4. We ask for the
bound in Proposition 2.2 to hold at each x;, where s > 0 will be chosen later as an ©Ul(1) constant.
Then, when N exceeds a threshold depending on p and uniform for all x;, by a union bound, under a
good event E;, ,, which happens w.p. higher than 1 — 2nN~*, we have

5(x. K\ 1, [slogN
R IO T RIS
P

where 1| = ePI(1) and , = e (1) are defined as in the proof of Proposition 2.2. Under the asymptotic
condition on k, & = o?1(1) as N — 0.

We now consider p/p on each I_S’r(xi) N M. Because p = p
Lp. Then, for each x;, by (A.55),

p.ne

~d is €% on M, sup,c pq IV p(0)] <

lo(x) — p(x)| < LdM(xx) 1.1Lp||x—xi||<l.1Lpr, Vxel_i’,(xi)ﬂ/\/l.

Meanwhile, Lemma 2.1 gives that

. A 1 -1yd R 1ok
Lipgo(0) = (mo[h]ﬁ) Lipgo (R) < (_mo[h] 17/) ,

so we have

1 k 1/d _
1A — px)] < (m——) r, Vxl €B(x)NM.
0
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Together, we have that Vx € I_S’r (x) N M,

P 1 p)
‘5(x) p(x) S50 — ) -5 )(p(x) ,O(xi))‘
1 1 k)"
P (m [h] ﬁ) + (1 +e) - LIL, r= 0 ((k/N)_”d)r. (A.13)
min 0

Thus, one can choose r > 0 to be @P1((k/N)3/?) so as to make (A.13) bounded by 1, (y k )2/4 when N is

p(x) pxi) 2/d
59— san| < n@¥.

sufficiently large, where the threshold of N depends on p only. This gives that ’
Meanwhile, we already have (A.12) under E

p.net>
W) p) b px) K\ )
)%‘* PRl ﬁ(x»_l‘@‘ (ﬁ) te weBEmnM

By that M C U;B B +(x;), the above bound holds for all x € M. Recall the definition of ¢ in (A.12), we

have that, under E A
A 2/d
500 [ oy (K4 2 [eToeN
p(x) N d k

p,net>
by that n < V(M)r,

and putting together,

xeM
Finally, to show the high probability of E

p.net>

, , K\,
2nN ™S < 2V(M)r IN~* < <, (ﬁ) N™* (constant ¢, depending on p)

< N3 (with large N, because k = £2(1)).

so by setting s = 13, we have that £ . happens w.p. higher than > 1 — N=3 =1 — N~10, O

p,net
A.1.2  Proof of Proposition 3.2

Proof of Proposition 3.2. To simplify the notation, when there is no danger of confusion, we omit the
dependence of my[A] on & and use the notation m,;, where [ = 0, 2.
Under the condition that

M < 0.1, (A.14)
xem  1PM] r
we have that
09p(x) < px) < 1.1p(x), Vxe M. (A.15)
Recall that
_7_1 x —y|? X
S / / (FO0) = fO) kg (!La (x)gﬂy)) ﬁf;)jg((yy))a AV dv(y) = ©,

and we consider the counterpart of (1) where p(x) is replaced with o(x), namely,

—doy 2
@= / / FO) —F0))k, (”f‘ J )_”(")’i(y) AV dv().
ep()p(y)) p(x)¥p(y)“
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With the operator G(p ) defined as in (3.6), writing the integration over dV(x) via G(p )

~d)2— @ Ip d/2— N4
O= ( / PP DG S IV =2 | h MG, 220 aVe)
+ / s> )G L) av(y) (A.16)
M A o
Recall that p = p~1/9 is in C>° (M) and uniformly bounded from below and above. By Lemma 3.1,
@ Ip —a 144 g 144 g 2.2)
b0 pa = mof*pit +6p—(wf pp T+ AR TN + 7
@0 e sda _(f 5150 L A(ppI i) + 52D
b0 ju = ofPp ep—=(wfpp pp oy,
5) P
ifa)<y>5—a = mopp +€p—(wppl+2 T AP + Y
where ||r12)||OO = O rl(e2), ||r(2)|| = 071 (2) and ||r(2)||c>o = 0P1(€2) and we omit the evaluation

of all functions at y in the notation. Then, (A.16) becomes
0= (/ (pp ") {mof2pit = + ep 2 (@f a1 4+ AGpp ) + 5P
—2/ (fp™*) {mofpﬁ%‘“ +ep—(wfppl+2 AR TI) + B (2)}
/ (F*pp?*) {mopp2 "‘ +€p—(wpp1+2 4 A(pp!TE) + P (2)})

=5 [ ppt agin e — o ags ) £ fapr )

2
1 2 2 2
+% Mppz a+2(r() 2fl"§)+f27'§ ))
=@+,

where again, we omit the evaluation of all functions at y and the integration over dV(y) in the notation,
and same in below.

We first consider (2);. Note that, by defining g := pp!T4/2=¢ the bracket inside the integrand
becomes

-} = A(f?g) — 2f A(fg) + f* Ag = 2g|Vf1* = 2pp' T3~ Vf|2.

We define () by substituting p with p in @;, namely,

1 1
@’1:=5/ ppt (), @1—@’1=5/ p(pI=H — pEO ().
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1

Inserting the expression of {- - - }, by the definition of 5 = p~'/ and Dy» We have

@) = / pr ot veP = / Pl VI =&, (1),
M M
and also
_ _ Ad_ _d_
eldot =/Mp2p‘+d/2 VPRI = gt

Since p and p are positive, we have

2 ~1+d/2— 2(ad—at1  -2_a41
|@1—@3|</Mp pIHAE VP prett — pametl,

Lety :=d/2—a+1 € R. By the mean value theorem and (A.15), for any y, there exists £ > 0 between
p(y) and 5(y), £V~ < max{1.17~1,0.9" "1} 5(y)” ! such that

16 = A0 | =y () — s < y max{1.17~1,0.9" 507 () — AW < ¢, 600 ¢,
(A.17)

where the last inequality comes from (A.14) and ¢, := y max{l 1771,0.91} is a constant determined
by o and d. Then

©) - G <cyep/ PR = e @),
M

which gives that
@) = @11+ 0(cy,) =&, (/1 + 0 (e,)), (A.18)
Next we bound (2),. By definition,
1 ad_ 2 2 2
@, < —/ pAT (P 20157 + PP
€nmy J M
Again, by (A.15), ﬁ(y)d/Z—aH—Z < max{l.ld/z_“'”, 0.9d/2—01+2},5(y)d/2—06+2 — C&ﬁ(y)d/z_a+2‘ Then
@] < OUPl(e) / &ppt et = 0o,
M

Together with (A.18), we have that

@ =&, (f.H(1+ 0 (e,)) + oV PI(e). (A.19)
It remains to bound |® — ()| to prove the same bound for (). Define
-4 2
€2 2, X =yl ) pOP()
= — k dV(x)dV(y).
= /M /M(f(x) TN (Eﬁ(X)ﬁ(y) e piye OO

Then,
! ()Y _vlI2
©-0="—[ [ ¢w-so? (%—1)1«0(”? il )_P(lei(y)adV(x)dV(y).
my JmJIMm o (x) epX)p)) px)*p(y)
(A.20)
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By (A.14) and (A.15), we have that
p( )* [e] px)

xeM | P(X)
Note that by definition, &) > 0. Therefore, by that k, > O and p, p, 6 > 0,

s — 1‘ =0",). (A.21)
xE./\/l

o-or<o, 107 (L) v
=0 )®.
Together with (A.19), this gives that
@ =00+ 0% ) =&, (f.HU+0"(&,)) + 0V (). (A22)
Meanwhile,
e 21 x—y|? x—y|? X

©-o==, (k‘)(e”mx)gl('y)) - k‘)(e”ﬁmgl(ly) )) Sregaye VYO
and

— 2 2 o2 -
ko( Ilx =l ) —ko( ke — I ) —K®) Ix =l (1 3 /i(x))7
€p(x)p(y) €pX)p(y) €p(x)p(y) P (x)

: [x—y? llx=y[1? llx=y[I
where £ is between Swp0) AN nd A0 By (A.15), & > TI0P0)° and then,

o ly?
k()] < aje™® < aye” @0

By (A.21), we have that
il llx — yII?
€p(x)p(y)

)
p(x)

p)p(y)

— < ~ ~
® -0l p)¥p ()

dV(x) dV(y)

/ / (@ — FO I ®)

¢! a o lx—y[2 p()p(y)
<0 20 e T es@it) — —~ —~ dV(x)dV
N2 / / 7 =0 PP PX)* ()™ DAV

,,,1 2
llx =yl pXp()
= 0(e,) / / () —O% (eﬁ(x)ﬁ(y)) e pgy OO

_ mz[kl]
= 0(8p)m2[k0]

where (3’ is defined by replacing k, to be k; in 3, where

NoR (A.23)

ky(r) == ayre” 71" and r > 0.

Since k; satisfies Assumption 3.1, our analysis of &) and (3 with k; so far applies. Thus, by (A.19) and
(A.22), we have

Q@' =&, (f.H(1+ 0 (e,)) + o),
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and then
1@ = @l = 0(,) (&, (F-H (1 + 0 (e,)) + 0V (€) = &, (£.)HO(e,) + OV (ee,).
Inserting (A.22) gives that
@ =@ +E,,(f.NO0e,) + OV es,) =&, (f.H)(1+ 0% (e,)) + 0V (e).

This finishes the proof since £@ (f,f) = @. (]

A.1.3  Proofs in Section 3.3 (Theorems 3.3 and 3.4)

Proof of Theorem 3.3.  Suppose f is not a constant function because otherwise Ey (f,f) = Epa #.fH=0
and the theorem holds. By definition,

d
e 21

w_ 1 <
(@) =Fo)P W =5 D0 Vy (A24)
i), =1

1 N
Ey(fh) =15 2.

m
ij=1 2

where
1 A
Vipi= () =) R i),
2

As (A.24) is a V-statistic, we study EEy (f,f) and its variation away from EEy (f, f), respectively.
o Calculation of EEy (f,f). By definition,

N —1
EEy(f.f) = ——EV), and BV, = EQ (. 1).
Applying Proposition 3.2 gives
EV,, =&, (f./) (1 + 0 (e,)) + OV P)e). (A.25)

e Bound the deviation of Ey(f,f) — EEy(f,f). We use the decoupling trick to bound the deviation
of a V-statistic by that of an independent sum over % terms. Specifically, define V;; = V;; — EV;. For
any t > 0, the Markov inequality gives us

1 N N

———— > V;>t|<eEexp s > (A.26)
NWN—=1) &~ U = NN—=1) &~ 'V ‘
i#j,ij=1 i#j.ij=1
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where s > 0 will be determined later. By a direct expansion, and denote by S, the permutation group,
we have

N

1 ~ 1
—st _ =St
e Eexp Sm' Z Vl:/ Eexp SN' Z N(N Z VU(I)U(I)
i), ij=1 oeSy I#le/ 1
N/2 1 N/2
e 'Eexp S— Z N/ZZ Q-1 [ S _”E— Z exp S_ZV0(2171),U(21)
O'GSN UESN I=

1 N/2
—eiStE €xXp Sm z V21—1,2l ,
=1

where we apply the Jensen’s inequality in the inequality. Then, as in the derivation of the classical
Bernstein’s inequality, one can bound the probability in (A.26) by

N2
o

Pr[---]1 < exp [— ] , Wwhere v:= ]E‘N/lz’z, |\~/1’2| < L. (A.27)

2v + %tL

Below, we control v and L. We first show that we can make L = @] (e_%). Recall that

e—%—lk ( I, — x, 2 ) () =S @)

Vi, = = - - =
2T, epxP(xy)) Pl px)®

By Assumption A.3(C2’) for the kernel k),

d o2

-4 [lxg —xo I
€ 2 _“(e/s(.lxl)ﬁz(xz)) (f(xq) _f(xz))z
aoe —_—

Vial < YRRV EYERVER
my Px)*0(xy)

By the assumption and (A.15), p(x) < 1.1p(x) < 1.1p,,,, for any x. Then when |lx; — x,|| > 8, :=
\/61.12 2 M]Ogl
E’

Pmax™a

lxp =xo I
—dad = =
p (ep(xl)ﬂ(xz)) < e—(5+d/2)1ogg — 5td)2

and then

aoe“ Qlfllo)?

Vial <
P my (0.90,,)%

= 0UPl(e"),  when |lx; — x,|| > 6,

Note that 8, is of order /€ log(e—!), since € = o(1), when € is small enough such that 3, < &y in
Lemma A.3,

@) =) < IVaflooL1xy = 5l =t Lyllxy —x,]l, forallx, € By (x) N M. (A28)
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Then, when ||x; — x,|| < 4.,

d _
-1 llxp —x |l 2
€ 2 —a( =~ = ) X1 — X ~ oy A _
aoe 6/3(’(1);0()52) L]% |,|\1 ,\2” (-x])l Ctp(xz)l o
my P (x)p(xy)
2
_aaols
L€
2

Vial <

dy |l max{0.9'7%, .17} 51712,
- d
where @) equals an absolute constant times 2. Combining both cases, |V, 2l = OVPl(e77), and we
denote
~ d
Vial S L=0Ure?).

We now compute the variance v, and show that v < e 4/2 Vf where Vf = (H)[f”’](l). By definition,

||x — y||2 Fex) — FO) - 6—d/2—1
malk2] 0

(A.29)

where

e~d/2-1 lx — y|I? ) Fe) —foN?
= dV(x)dV(y).
k] f B (G77) Farmopromoraven avey

Let 5. be as above, and we separate the integral within and outside {||lx — y| < §.} and make
® = @ + (@,. Specifically, we define

c—d/2-1 2 _ 4
/ / (lx=yll=8¢) o( byl )(f(X) f()))) pOp(y)dV(x)dV(y).

= my[k3] €b@PB)) H)**p(y)*
By a direct bound, we have
—d/2 1 _ IIx Il
<—> / / E”("”’“)lux 550 @) = FON*B ™ 5(0) 2 p(p() AV (x) AV ()
my kg
—d/2—1
SQ—- R / / (F)—f () max{0.97%% L1 5(x) 7> 5() 7 *p()p(y) dV(x) dV ()
my k5] MIM
ZOV’p](6%+9).
Define

_ <! =yl \ (@) — FOon
= mz[k / / {llx—yll <8¢} kg (Ep(x)p(y)) 5002 ()2 p)p(y)dV(x)dV(y).

To control (&, which involves an integration over the §. ball, note that for y € Bae (x) N M, by
Lemma A.3,

FO) =F@) + VFE) - (v — 0 + 0V(Ix — y|1?),
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and thus,

FO) =N = (V@) - (0 —2)* + OV (llx — yII°) < AVF@ Iy —xID* + OV (lx — yI1%) .
‘We then have

el Ix = YI* Y V@1 e = ylI* + OVI(lx — yI1°)
< Lpmyi<s k0 500295

mz[kO] €pX)P(y) p(x)2% p(y)2*
PPk dV(x) dV ()
¢4/ Ix = yI2 \ IVF@*x — yl*
= k] / / (x—yl<ed (ep(x)p(y)) Ao pypa POPOIAVEOAVE)

PP ) P> ()2

We establish a lemma, which can be proved similarly as in deriving the limit of (1) above, namely, by
replacing p(x) with o(x) first and then putting back. The proof is postponed to Appendix A.3.

LEMMA A.1 Under (A.14) and (A.15), suppose k, satisfies Assumption 3.1, f € C*°(M) and @ € R,
then

_d ¥ llx — yII? ) pp(y) / 242 ~d—2a .0l
dV(x)dV(y) = k, OVPl(e,e.).
2/ / f) (e,a(x),a(y) BP0 ) dV(y) = mplke] [ p7f70" " + (€.€,)

We bound (5) and (), respectively, where (5) will dominate. By a direct bound, we have

_ 2 _ 2 %
/ / (ef(x)i!y))(gg(x);l('y)) p()3 ()2 p()p(y) V() AV ().

Note that there is bg > 0, determined by a, and a, such that

m2 [k2

@< 0V (e3)

my[kg]

ko(r)zrs/2 < a%e_zarrs/z <bge™™, Vr>0.

5
T o2\ 2 x—yl2
k%(”fc J )(”f ! ) < bge ™,
ep@P) ) \ep(®)p ()

—d/2 a sl pPp(y)
@ < 0f(ed) € / / bee™ @@ _dV(x) dV(y).
my kg P03 p(y)2e3

Since the kernel kg(r) := bge™ " satisfies Assumption 3.1, applying Lemma A.1 with f replaced by 1
and « replaced by 2«0 — % gives that

(mo[kﬁ]/prd 2Qa—3 )+0[p](€,8p)) — O[f’p](e%).
my ko]

Write G(x) = |Vf(x)|?. Clearly, since f € C*°(M), G is in C>®(M). Define
ks(r) == k(2)(r)r2.

Thus,

and then

©®] = oV(e?)

—a’/2 1 —ui2 O[f] TR
/ / (lx—yll <8¢} 0( b=yl ) = (”xA | )P(X)P(Y) dV)dvV(y) = ® + ©®.
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Then, k5 satisfies Assumption 3.1 and mg[k5] = dmz[kg]. As a result,

E_d/2—1 55 ( ||X—y||2 ) ||x_y“4
) Gk 6(x)p 5 ~ dV(x)dv
mZ[k(%] //Vl /M 0% €pX) () p(x)zap(y)zap(x)P()’) (x)dV(y)

2 2\2
_ € _d/z/ / G zkz(llx—yll )(le—yll ) POPO) v dv
w2l I O G N \pmsm ) BamEzapm VO

_ € ap / / Gk ( —y||2) POPO)
mylk21 WK\ pmpm ) sme—2pre2 VWY

m() ks]/ 2G2 —d— 2(20{ 2)+O[fp](6 & ))

mz[k(%] (

—ed / PV Y202 4 OV P2 ee )

_ed/|Vf

where the third equality holds by applying Lemma A.1 with f replaced by G and « replaced by 2o — 2.
Putting together, we have that

+ O[f’p](ez,esp),

@<@+@+@2

<ed T O P(2 e )+ OV Pl(e3y 4 OUP)(3+9)

—ed/IVfl

Plugging the above bounds back to (A.29), this gives that

. 3
+ OV Pl(ex, €e,).

67d/2 1 4 1 4(a—1) 3
Var(Vy,) <EVi, < ——— (ed/|Vf| plt T oV Pl(er, eep))

mlkol” [kol2
my [k0

_ mylkgl —d/2( /
=tk IVfI"p

4(a—
Since f is not constant valued, f |Vf|4p1+ “ > 0, and by that €!/2
sufficiently large N,

+0[f” (62 e ))

g, = o(1), we have that with

4(a—1
v =Var(Vy,) < @[ll(é_d/z)/ VFpI T = e v,

4(a—1)

where

vy = oMl (/IVfI P
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Back to (A.27), by that v < e~/ 2Vf and then

exp{——2——} <exp{————=——5—1, (A.30)
Tt 1L P 2412V, + FiL

we now control the r.h.s. Let s = @ (1) to be determined, and we set

. 6_GI/ZstlogN .

Since L = @V’t”](e—d/z), and by the condition that el2N = 2(logN), % = o(1), and hence
t = olf'P1(1). With large N,

—d/2
L gun [ sloeNY
- o’ Pi(1).
€ d/QVf Vf N

Therefore, when N is sufficiently large, we have ﬁ < 3. Then (A.30) bounds the tail probability

in (A.27) to be less than exp{—#t/zzvf} = N7%/3 Let s = 80, and use the same argument to bound

‘_”). (A31)

Pr[m Zi#j Vij < —t]. We have that w.p. greater than 1 — 2N~ 1°

Z V < ,e—d/ZV 80logN _o logN
N(N— ) Y Ned/2
i, ij=1

Call the event set that (A.31) holds the event Ejy,,..
At last,

1 1
st = (1) s T

and with (A.25) we have shown that under good event Ep,,,.,

1 o : og N da)
mgvzj=5pa(f,f)(l+0[ ](8,,))+0[f”](6)+0(\/1v d/z/| VFp't )
i#j

which is OU#)(1), thus Ey(f. ) differs from it by OF)(%) = o1,/ 1), which is dominated by the
variance error. This finishes the proof of the theorem. 0

Proof of Theorem 3.4. The proof uses same techniques as that of Theorem 3.3 and is simplified
due to fixed bandwidth kernel. We track the influence of 8 and &, which differs from the proof of
Theorem 3.3. Inherit the notations in the proof of Theorem 3.3, the random variable Vij iS now

V= gt — et ()
0y O T\ T ) SRR
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Similarly as before, we define

._ _ ot (k=YY pePG)
© =5V = o [ [0 —ore b (H20) L avew ave,
and
2 1-8
® = / / o) —f)2e 2k0(||x Ey|| )p(x)( )5(y> AV AV ).

@i=— / / (F) f(y))26‘2k0(|| y”) PP p(3)' =P dV(x) AV ().
2

Define g := p'~# which is a non-negative power of p because 8 < 1, thus g € C°°(M). We then have

)
®= //(f(x) f(y))262k0(|| il )Q(X)Q(y)dV(x)dV(Y)

)
//(f(x)2 FOf()e _fko (u) g)q(y)dV(x) dV(y)

- ( / @G (g) — / (qf)Gg(fq)) |

m <
G€ (q) = moq -+ ef(wq + Aq) + O[q(<4)](€2),

By Lemma A5,

G, (fq) = mofg + e%(wfq + A(fg)) + 010"V (2),
and thus,
®= /qf(qu — A(fg)) + 0V (e) = — / Pf(Af + 2% V) + 09 ()

= (. A )y + OV (pp =47 =p> )
=&, (.1 + 0V, (A.32)

To bound |3 — @)|: because

O-@=—— / [o0—roret (u) @' )PP — p)P) AV AV,

by the positivity of p and k,

1 o2
©-@I< — / / () —FO))2e Tk, (u) P Epm) o) F = po) AV () dV(y).
2
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Note that for any y, by the mean value theorem and that [p(y) — p()|/p(y) < &, < 0.1, 3¢ between p(y)
and p(y) and thus £ A~ < max{1.17=1,0.97A~1}p(y)~#~!, and then we have
b0 —pm P = 1B1E7P O — pO)] < 18I max{L.17F710.97pm) P B — p(y)]
< cglBlp) Pe,, g i=max{1.17F71 09771, (A.33)
Thus,

lx—yl*

0-0I< Iﬂlcﬁsp—//(f(X) o0tk (
Combined with (A.32), we have that
@ = QU + 0N (Bege,) = (€, (f.1) + OV (€)1 + 0 (Bege,)

=&, (N + 0" (cgBe,)) + OV (e). (A34)
To bound |@) — @)|: by (A.33)

)p(x)l‘ﬂp@)l—ﬂ dV(x) dV(y) =|Blcge,®.

2 _d llx— y” A =B —B _nrn—P
@ - Ol < (Fx) —f(y)7e 2k0 PP P pX)Ip()~" —px)~ 7 dV(x) dV(y)

1 2 f _
< |Blegep— - / / (F0) —FO) e %k (” ey ” )p(y)p(y) Pp0)! =P dV(x) dV(y) = |Blege, @.
2
Then, together with (A.34), we have that
EV; =@ = @0 + 0 (Bege,) = (€, (F.N (1 + 0N (Bege,)) + 0V (€)1 + 0 (Bege,)
=&, (N + 0" (Bege,)) + 0V (), and 0V (e) = OUPF1(€) by definition.
In the special case where 8 = 0, we have ¢ = p, and ) = @) = (®. Then (A.32) gives that
EV, = @ = Ex(f.f) + OVPI(e).

The boundedness of |V follows by the same argument of truncation on the 5, ball as in the proof
of Theorem 3.3, which gives

[Vl <L =0VrPlEed/?)

The variance

a2 I~ 51
var(vy) <8V = [ [ . (f(x)—f(y))“k%( s )ﬁ(f; s AV AV )

and, similarly as in the proof of Theorem 3.3, we can show that
BV < 2y, v =0l [ vptp ).

Thus, by the V-statistics decoupling argument, w.p. higher than 1 — 2N~!0, the variance error is

logN
olll (\/Nfd/z/|vf|4pz_4ﬂ).
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The normalization 1% and m in the V-statistics incurs higher order error, and putting together bias
and variance error proves the theorem. ]

A.1.4 Proofs in Section 3.4 (Theorems 3.5, 3.6, 3.7 and 3.8)
Proof of Theorem 3.5. Define i := 5.2, and rewrite (3.10) as

1 L EN_ F.(x)
L) = — e ; A.35
e ) emp(x)? (ziv Zszl G;(x) f(x)) (A39)

where

2 2
F, = e, ”fc _ )ff” fc(xf) . G i= e, ”f _ )fj” o (A.36)
/ PP (x) | px)” / ep(0)p(x;) J px)*

Note that since X;~p iid., {Fj}jN:1 are i.i.d. rvs, so are {Gj}]]-\/:p while Fis and st are dependent. The

expectations are
Il — yII> ) fo
k dv(y),
O(Eﬁ(x)ﬁ(y) pye V)

EF(x) = ¢ 4/? /
M

EG() = e~/ / ko( e =11 ) L mave.
M ep@p() ) p(»*

Following the strategy in [5,42] to analyze the bias and variance errors respectively, we will show that
e The bias:

1 (EF(x)

— —fx >) L@Ff(x) + OVF] (e, 8—") (A37)
emp(x)2 \EG(x) €

e The variance:

1 ¥ j=1 Fi)  EF() ol W\/W
6}’71,6()6)2 (1% j=l G](x) EG(}C) ”Vf”oop(x) NGd/2+1- (A38)

Proof of (A.37): by the definition of G’ in (3.6),

EF(x) = p(x)d/zG“;}x)(’f” ().

yet g% is not C*. In order to apply Lemmas 3.1 and 3.2, we compare to replacing it with %:

LEMMA A.2 Suppose notation and condition are the same as those in Lemmas 3.1 and 3.2. When € is
sufficiently small, for some constant c;; determined by (M, ky, p,,

sup |G§f’><g—a>(x> G(P><f YD) < G flloee = OV (o).

xeM

ax? pmm)9
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The proof of Lemma A.2 is postponed to Appendix A.3. Applying Lemmas 3.1, 3.2 and A.2,
where p = p, p = p and °f” in the lemmas is replaced with fp, we have

EF(x) = p(x)? (Gi‘;)(x)(%)(x) +0V)e p)) (by Lemma A.2)
= p0)¥? (G(p) )+ 0P (e + OVl )) (by Lemma 3.2)
€p(x) poz P P

= P2 (mofpp? () + p S (@fpp 1 4+ Afpp ) () + POV + 01 (e ) ).

where the residual terms in big-O are bounded uniformly for all x € M. Below, we omit the variable x
in the notation when there is no confusion.

Because 0.90 < p < 1.1p for all x € M, for any power y € R, p¥ lies between 57 1.17 and p¥ 0.9
(the order depending on the sign of y), and then uniformly bounded between (0.9p,,,,,)” and (1.1p,,,.)7
both of which are @P!(1) constants. We can also bound |5? — p”| as in (A.17), and in summary we
have

sup |7 ()] = 0P (1), sup 57 (x) — 57 ()] < OP(e). (A.39)

xeM xeM

We proceed with these bounds. We have shown, omitting the evaluation of x in the notation, that
EF = 5" (mofpp?~* +ep 2 (@fpp 17 + App' 1) ) + OV (€. g,
and by (A.39) with y = $ and § + 1,
EF = 5" (mfpp?~ + ep 2 @fpp 17 + A@pp' 7)) + O e,) (Ad0)
Similarly, we have

EG() = p(0)26? (L)
€p(x) o

— _d_ _m 144 _1+4_
= p?? (mopp2 * 4+ 6;)72(601!7/9+2 *+ App'te o‘))) + 0V ¢ )), (A41)
and expanding EG to the O(¢) term only gives that
EG(x) = mgpp?™*(x) + rg(),  lrgle = 0PN, &,).

Because inf _ 4 mop,éd_“ (x) is a strictly positive constant depending on p, and € and ¢, are o(1), thus

P
when N is large and the threshold depends on (M, p, @), lI7gllo < inficpg mop,éd"" (x). Then for any

x € M, |rg(x)| < mypp?=%(x), and we have

o]

! ! rg® )l 1 .
- 5 - = - + O0"(e, &,). A42
EGx)  mopp=(x) g‘( moppd=e(x) ) moppd=e(x) (€. &) (A42)

Meanwhile,

EF() - fEG) = e 225" [Afpp*37) = fAQp! 17| + 0V ).
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Note that the quantity in the square brackets

d \% \Y
[--]=pp'tie (Af+27p SV + (2+d—2a)7p : Vf),
and then by the definition of E(pa) in (3.1), and that ng) = L@ we have

EF(x) — f()EG(x) = e%pﬁd"'z_“ﬁ(“)f +OUPIE, ¢ ). (A.43)

Putting together, we have

EF(x) ) = EF(x) — f(x)EG(x)
EG EG(x)
— (eﬂpﬁd-ﬂ—aﬁ(a)f_l_ O[f,ﬁ](GZ’ ‘9,0)) (Tl— + 0[[7](6, 80))
2 mop P (x)

= eﬂﬁzﬁ(o‘)f(x) + o (62, & ) + o) (62, €e )
2m 4 p

0
— emp L@f (x) + O P (62, e p) , (A.44)
and then
I (EF _ @ [f] ( 8_/’) _ olf]
s (EG(x) f(x)) = L9f () + 0 e, £ ) = oI,

Finally, by (A.39) with y = -2,

1 EF() e EF(x) e ol

cin (ﬁ(x)2 ﬁ(x)2) (EG(x) / (x))‘ =Gt [BGw Y (X)’ = O e 0T,

and, using triangle inequality, this together with (A.44) gives the following

1 (IEF(x)

_ _ ol (@) vl . Ee
s (Ba 1@ >)—0 (e,) + LOf () + 0 (e, 6),

where the constants in OY?1() are uniform for x € M. This proves (A.37).
Proof of (A.38): by definition, we have

z, B0 EFE 3 2o (FWEGW - GWEFW)  y 3, YW
v NG ~ EG() H«:G(x).l%,zj":l G;(x) 'IEG(x).IT,zj:l Gj(x)’

(A.45)

where Yj(x) = Fj(x)IEG(x) — Gj (x)EF (x). Below we omit x, which is fixed, in the notation. We consider

the concentration of 1%, Zszl Gjand le ;V:l Y;, respectively.
We have shown in (A.41) that

EG = mypp®™ + 0P)(e, £,) = @M (mopp™™*),
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and by the boundedness of k; and uniform boundedness of p, |Gj| <Lg= ePle=42), Using the same

argument to analyze the operator Gi’;)(x) as that in Lemmas 3.1, 3.2 and A.2, the variance

2 _ —apo (=¥ \ PO
V@) s BGy = /M < (eﬁ(x)ﬁ(y)) s

_ P
— 2 ()"”G(,,(x)[k%](ﬁza)(x)

k2
— ¢ —d/2 {m [kZ]p ~d—2u +6m2£ 0]151+%(wp151+%—20t +A(pl51+%—2a)) +0[P] (62, Sp)]
=42 {m K31pp?=2 + o) (e, sp)} (A.46)

N

() = O (e~ my[k31pp?=** (x)) with large N, since pp?=2%(x) > OPI(1) > 0 for all x.

By that ]% = o(1), when N is large, ,/401°ngG(x) < 3”G(x) for all x, and then w.p. higher

than > 1 — 2N—10,
1401 N [log N
ZG EG| < og = ol ogNV ,
Néd/2

which we define as the good event E,. The threshold of large N needed for Var(Gj) < Vg(x) and for
applying the sub-Gaussian tail in Bernstein inequality depends on (M, p, ). Under E,,

N
1 g logN —d—
N E G; = mypp*~* + 0P(e, &) + O (,/ N—ed/z) = O(mepp?™),

J=1

and then
1 N
EG - v Z G; = O((mepp*™*)%). (A.47)
j=1

To analyze the independent sum zlv first note that EY; = 0. For boundedness of ¥}, because

N
j=1 ]’
EG = 0P\(1), EF=0UP\(1), |G|<Ls=0V("), |F|<L,=0U "), (A48
we have that
1Yl < IFIEG]| +|G/EF| < Ly = ©UPI(e™4/?),

For the variance of Yj,

EY; = E(F,EG — GEF)* = EF*(EG)* + EG*(EF)* — 2E(FG)EFEG,
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and we have

_ 2 2
EF? =/ e—dké( bl )f(Ay) pz(y) dv(y)
M epx)p(y)) p(y)=«

p
,520[

=226 I )

€p(x

™ (k3]
2

2
BIFG] — dkz( IIic—XII )fgy)p(y) v
[FG] /MG "Nepp() ) s> »

—dj2 apnd)2B) 120, SP
= ¢ Pp GG k15

d d d
= z[mo[kélfzpﬁd_z‘“r P PR T A )+ O (& Sp)}’

) (x)

m (k3]

— 2 [mo[k(%]fpﬁd—&x n X

d d d
PR @R I 4 AT T) 4+ 0 (&2, ep)] :
Together with (A.46), (A.40) and (A.41), and defining mg, := m, [kg] and m)y 1= m, [k%], we have that
e my _ i, d yad_ ad_
]EYTIZ — 6—d/2 [mélfzppd 20 +672p1+2(wf2pp]+2 20 +A(prp]+2 20{)) +0[fsp] (62, gp)]
m 2
. {m()pﬁd_a +€72,6d/2+1((1)p,61+%_a + A(p/31+%_a)) + 0[17] (62, 8,0)}
an ) s -d-2 my _y4d _1+4-2 ~14+4-2 2
+e [mopp TS T2 (wpp' I+ App'TI72)) 4 OF) (e , e,,)]
“d-a | M2 —a/241 144 1+ ol (2 2
'{mofpp tesp (ofpp" 27 + A(fpp 727%)) + O (e ,e,,)}
m/ d d d
_e—d/2 lm/ofpﬁd_za +€72161+§(a)ﬁ2151+§—2a + A(fp151+§—2a)) + ol (62’ Sp)]
—d— my _ ad_ 4d_ »
: {mofp,od @ 4 D2 5424 (51 4 A(fpp ! TEY)) 4 OV (62, sp)}

2

—d— my _ 149 _14+4_
Amopp= + €225 @pp I + AR + 07 (.6, )

_ mymg 5 s, jpd_ S pd_
— d/2[6 220p2p2d 20t+1(A(prpl+2 20{))+€m2m6m0p2p2d 3a+1(sz(pp]+2 Dt))

Mymg 5 5 _Sq_ ppd sa_ ppd_
+6 22 0f2p2p2d 20[+1(A(pp1+2 2&))+6m2m6m0p2p2d 3a+1(fA(fpp1+2 O{))

mymg 5 g _ppd_ 34 pyd_
_26 22 Ofp2p2d 20(+1(A(fpp1+2 Za))_€m2m/0m0p2p2d 3a+1(fA(fpp1+2 0{))
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_Sg_ 1ed_
_€m2m6m0p2p2d 3atl (2 A (plTo—%)) 4 QU] (62’ Sp)}

_ mymg 5 s ppd ppd ppd_
—c (1/2[6 22 0,2 53d=2a+1 [A(fzpsz 2y 4 AP 2 A(fpp 2(1)]

+ olrl (62, sp)] .

Note that the quantity in the square brackets

[--]=2|VfPppl 2 (A.49)

Then, also by the assumption that €, 8?” = o(1), we have with large enough N,

&
EYl2 — 67d/2+1 [m m2p3p3d 40t+2|vf|2 + O[f,p] (6, ?p)] (ASO)

< Dy (x) ~ e 42 p3 3d=4at2 0 | vr |12,

where in obtaining the last row we assume that || Vf||,, > 0 (because otherwise the theorem holds
trivially) and use that p(x) > p,,;, for all x. Since by (x) > ¢;, €Y/t for ¢;,, > 0, the needed

threshold of large N for IEsz < Vy(x) is determined by (M, p,f, o). Meanwhile, under the condition
that logN o(e¥/>+1, with sufficiently large N and the threshold is determined by (M, p, f, @), we have

—d/2+1 _
4010%1\7 <% ’”’“zz < ()VLYZ(X), ie., ,/401°gN vy (x) < 3"Y(x) for any x € M. Then, by the classical

Y Y

Bernstein, w.p. higher than 1 — 2N~

N
1 4010gN 3. B logN
FPRAE Dy (1) = 0“](||Vf||oop3/2pzd 2+l (x)e d/4+1/2,/T),
j=1

and we call the event the good event E5.

Note that in (A.50), when |Vf(x)] > 0, one can bound the variance of Y; ;i at x by vy(x) ~
e~d4/2+1p3 53d=4a+42 ()| VF (x)|? and obtain the same large deviation bound where ||Vf llo, is replaced
with |Vf(x)|, allowing the large N threshold to depend on x (such that the QU] (e %) term in (A.50)

is dominated by @!!(1) multiplied the first term, and 4010gN %L)/?(X) ). An alternative way to obtain
Y

an x-uniform threshold of large N is by adding 0.12 to |[Vf(x)|? in setting vy (x), so that the x-dependent
constant in front of € ~4/2*1 is uniformly bounded from below. This leads to the same variance error
bound where || Vf||,, is replaced with [Vf(x)| 4 0.1. The above verifies Remark 3.3.

Back to (A.45), with (A.47), we have that under good events E, and E;,

o (1vrp2p d—2a+1€—d/4+1/2\/@
| |4 Z vl IV lloo S
eﬁz,a2 EG - 4 5 j:1 G €p2(myppd—2)2

1%/21\;11: EF
y>N.G EG

12 ——d_ | _gq/4_ log N
=0[1](||Vf||oop VepmaTlen iR = )

1
emp?
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where the location x is omitted in the notation. By that 5 = p~ /4, this proves (A.38). O
Proof of Theorem 3.6. By the definition of L,(f,ﬁ) f and that of F' s Gj in (A.36),

Lif(x) = Z T B )a(F<x) —f®G;(0) =: ZH

/ 1

We have computed EF —f (x)EG in (A.43), and (A.39) gives that sup,. v ¢ [0(X) ™% —p(x) ™| = ol (g,)-
Then,

1
EH; = =5 p0) " (BF (1) = f@EGX))
2

| S My _gio_
= i h 0 (eS2pp 2L + OV )
2

&
=pp" LS () + O PN(e, L)

By 5 = p~'/4, this proves that

un

]EL("‘)f(x) _ p% ﬁ(a)f(x) + 0PI, S_p), (A.51)
€

where the constant in OV"1(.) is uniform for all x € M.
To analyze the variance, first note the boundedness of |Hj| as

|Hj| < Ly = 0V,

which follows by the boundedness of Gj, F; in (A.48) and the uniform boundedness of p. For the
variance of H s We have

EH2—< A EF} +f()°EG] — 2o WEF,G),

and we have computed EF?, IEG2 and EFG in the proof of Theorem 3.5. Specifically, with notation the
same as therein, we have

mh .4 .d qad
EF? = ¢—4/2 [mof 2ppd= 4 e%p”ﬂwfzpplﬁ*za + A(fPpp'TIT2)) + O] (62, ap)] ,
m/
EG? = ¢—4/2 [m ppd—2a +€7251+g(wp/31+g_2a + A(pI51+‘21—2a)) 1 ol (62, 8,;)] ’
/
EFG =/ [m&fpﬁd—z“ 25 fppTE T+ App' ) + O (&, ep)] :
Also, by (A.49), where the square brackets denote the same quantity as before, we have
m/
EF? + f?EG* — 2fEFG = e*d/zefﬁ”%[- ]

—d/2 {Em IVf|2pptd—2e 4 olfe! (62’ Ep)}_
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Then, also by (A.39), we have

4 o B - &
]Elijz — Weflfd/zp 20[(x) [m/2|vf|2pp2+d 2a(x) + O[fsp] (6, ?P)]
2

4 & o .
= Ee‘l‘d/z |m’2|Vf 2pp* T4 (x) + OV (e, ?”)] (by that 572 (x) = 52 (x) + OP(e,)
2

<yl = @[1](6717‘1/2||Vf||gop% (x)), with large N, the threshold depending on (M, p,f, «).

In obtaining the last row, we assumed || Vf||, > 0 (when || Vf]|,, = 0, the theorem holds trivially), and
used that OV (e, %") =o(l), p = p_l/ 4 and that p is uniformly bounded from below. Then same
as in the proof of Theorem 3.5, the threshold of large N to achieve the sub-Gaussian tail in Bernstein
inequality is determined by (M, p,f, «). As a result, when N is large enough, we have that w.p. higher

than 1 — 2N—10,
401log N _ (1] 2a—1 log N
N = O IV lloep™ T 0y 57t |-

To replace || Vf|l,, with |Vf(x)| when strictly positive, or with +0.1, as in Remark 3.3, the same
argument by re-defining v, (x) similarly as in the proof of Theorem 3.5 applies. Combined with (A.51),
this finishes the proof. g

N

1 N
N 2 M~ B,
j=1

Proof of Theorem 3.7. Suppose ¢ # 0 and || Vf|l,, > 0, otherwise the theorem trivially holds. By
definition (3.9), we have that

N
1
j=1

where

2¢! A
Hy= = /Mm,x-)(f(xp—f(x))¢(x)p(x)dV<x>,

2

and K (x,y) is defined as in (3.4). We define
2¢! N
B(g.f) = E—/ / K@, »(f () —f))gp)p(y) dV(x) dV(y).
my JMJIM

By k(x, y) = k@, x), B(g,f) = B(f, g) i.e., B(g,f) is a symmetric bilinear form. Meanwhile,

B(f.f) = —EX(F. 1),
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where, by Proposition 3.2, 5("‘)(f,f) =—{f, Ap”f)pa + o] (e, Sp). Thus,
BH, = Bp.f) = 1By +/.9+/) ~ B ~f.0 ~)
= JED @+ L0+ +ED G~ fp— )

1
=3 (<<o 12 D @+, — 9 =2 Ay (9 =), + O (e, e,,))
— <¢’prf>pa + O[%ﬂl’](e, gp)'

To analyze the variance, we compute the boundedness and variance of H;. To avoid obtaining 8?’), we
cannot directly apply Lemma 3.1 and Lemma A.2 as in the proof of Theorem 3.6. By Cauchy—Schwartz
inequality and that K(x,y) > 0, we have

2¢! 172

1/2
H| < —— ( / K, x) (F () — f())*p(x) dV(x)) ( / K (x, x)9(x)*p(x) dV<x>)
my M M
We define () (y) and (y) as below and claim the following: for any y € M,

Q@) = /M K@ )p)p(x) dV () < ¢ llop )%, ¢ = o), (A.52)

@O) = /M K y)(FO) — £0)*px) dV(x) = OVPl(e). (A.53)
If true, then we have
|Hj|=e~1 0P (Je) = 0P ¥)(e™172),

and at the same time, using the upper bound (A.52), we have

, (47! aray2 (1 K - ?
EH < | — ) e llep™ 115 K@, y)(f0) —f())7p(x) dV(0)p() dV ()
; m, €Eny, JMJM

= e lop IRED D, ¢ = e,

Again, 5(“)(f,f) = —{(f, Ap”f)pa + O[f’p](e, 8p), where —(f, Ap”f)pa = fpa|Vf|2 > (0. We then have
that

Var(H,) < EH} < iy = O (e‘ llep™/ 113, / palvf|2> :

Thus, when N is large enough, w.p. higher than 1 — 2N~19, we have

N
1 40logN _ [ Jd logN 5
]T]];Hj_]EHJ <o = 0 el Ip e W/pawﬂ .

It remains to show (A.52) and (A.53) to finish the proof of the theorem.
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Proof of (A.52): by definition,

1 o2 2
OO) = = e,g/ ko( IIic f” )w(ic) p(x) Vo).
Py M \eEpXpy) ) p)*
where by that sup, .4 % < ¢, < 0.1, we have p(x)p(y) < 1.125(x)5(y), and then by

Assumption (3.1)(C2) we have

—y|1? lx—y|12 a__lx—y|? — 2
ko (—”f }:” ) < ape awm)p(y) < ape Tz €P<r>yﬂ<\> =k ( b — ¥l )
€p)PY) €p)PY)

where I_cl(r) = aoefﬁr and satisfies Assumption 3.1. We introduce GEP ) [~] when in the definition
(3.6) the kernel function k is replaced with some & that satisfies Assumption 3.1. That is, G(p ) =

GQ’ ) [ko], and the notation [k] is to declare the kernel function being used. To proceed, by that o (x) ™% <
max{0.9%, 1.1} p(x)™* := ¢, p(x) ™%, we have that for any x € M,

G e ||x—y||2)<p(x)2p(x) o o
OO < 5o 2/./\/( ‘(eﬁ(x)ﬁ(y) s 9= ‘( PO G R0

By Lemma 3.1,

Gi/:))(y) 1](—)()’) = mylk,] _d/z(fp_p)(y) + 5O,
and then

OO < Smylk 1P 9H) () + 0P 1 (e) = O (pp=2* o) ().

By that 5 = p!/4, we have shown that ®(y) < clp(y)2“/d<p(y)2, where ¢; = o(1), and this proves
(A.52).
Proof of (A.53): similarly, we have

S a2 X7 (O —f)?
k av
O < P()’)a /M ! (Eﬁ(x)ﬁ(y)) 2(x)® p)dV(x)

I\)

2
= _(y)ap(yfﬂc(i)@)[k 100), 8 = (FO) —f () <_ )(@).

Note that g € C*°(M) and g(y) = 0. By Lemma 3.1, we have
5 1 _mylky] i}
G k1)) = ep() == Ag0) + 5 ()* 0V 7).

and then
2

h '(y)a

mylky1 _ _ . .
= 3= Eep ()P Ag(y) + OV (%) = 0o,

A0 <

p()¥? (ep(y) molk ] A8 + A() 0[”’1@2))

which proves (A.53). O
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Proof of Theorem 3.8. The proof combines the approach in the proof of Theorem 3.5 and the
computation in that of Theorem 3.4. Define

F. = Eid/zk ”x XJ” f(xj) G efd/zk ||X )C]” 1 ,
/ '\ e Jhpp '\ ¢ )b’

then we have

EF = G.(20) = / f‘d/zko(” o )f(y)ﬁ(y)‘ﬁp(y)dV(y).
p M

By (A.33) and the constant cg defined as therein, again defining g = p'=P, we have

Jp 1-8 —ap, (Ix y”z B _ B
G(Aﬁ) G (fp ") < flloo | € Y7k PP —p»F1dV(y)

_ 2
< cglBle,lf o / ek, (u)pw—ﬁ Av(y) = OUP#1(Bs,),

where we apply Lemma A.5 to obtain that [ e~4/2k, (”x il ) g dV(») < lgqll,O(1), and absorb

the constants |lgll,,, Ifllo, and g in to the notation OV-7A1(.). In the rest of the proof, we omit the
dependence on $ in the superscript and write it as OYP1(8 &,), while we keep f in (-) to indicate that the
term vanishes when 8 = 0. Then, using Lemma A.5 to expand G, (ﬁnl_l3 ), we have that

m
EF =G (fp'™F) + 0" (Be,) = mofp'™F + e 2 (@fp' ™ + Ap'F)) + OVPN(e, Be,).
Taking f = 1 then gives
EG = mgp' P + €2 > (p P Ap'TP)) + 0PI, Be,) = mop' T + 0PN e, e,).

We can then compute and bound the bias error as

1 EF—f@EG 1 €Z(A@p'™) —fAp'™F) + U7, e,
€m EG T em mop' =P + OlPl(e, Be,,)

— Af + AL
p'=F

. &
Vf 4+ 0VPle, -2y,
€

which, similarly as in (A.42), holds when N exceeds a threshold depending on (M, p, 8). The variance
analysis follows a similar computation as before, specifically the computation of the quantities of EF?,
EG? and E(FG). First, observe that

EG? = e~ {mylikg1p' ~%F + OV)(e, Be,)),

and then, using that p' =% (x) > @-A1(1) > 0 for all x, one verifies that w.p. higher than 1 — 2N~10,

1 [log N
— = (] =2
¥ zj G =EG+0 ( Ned/Z)'
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Define Yj =F jIEG — Gj]EF , then EY = 0. Following the same method as before, one verifies that, with
mly = m, [k%],

&
EY? = EFX(EG)* + EG*(EF)? — 2E(FG)EFEG = ¢ 4/+! [m’zm%p3_4’3 IVFI1Z + OVPle, ,3:")] .

Similarly as in the proof of Theorem 3.5, this gives that (assuming ||Vf|l,, > 0 otherwise the theorem
holds trivially) when N exceeds a threshold determined by (M, p, f, B), w.p. higher than 1 — 2N~19,

1Y logN
N2 =0(nVf||oop3/2‘2ﬁ‘e‘d/4+”2,/—N )
j=1

One can also replace || Vf|l,, with |Vf(x)| when strictly positive, or with +0.1, as in Remark 3.3.
Putting together, we have that

L NN | N 0[1]( AV 3/2—2ﬂ€—d/4+1/z\/@)
1 |\n2=F EF 1 Iy 2Zm Yl _ IV lloop £

7| LN 5 1 5N = 1-82
em| g > Gj EG €EMEG - ! Gj e(myp'—P)
logN
1 —1/2 —d/4—1/2
=0! ](nwnoop B )
Combining the bias and variance error bounds proves the theorem. d

A.2  Technical lemmas of differential geometry

A.2.1 Local charting on M. The following lemma is about manifold local charting, where we have
metric and volume comparisons between the manifold and the ambient Euclidean space RP.

LemMmA A.3 ([11, Lemmas 6 and 7]). Suppose M is a d-dimensional c3, boundaryless (thus closed)
manifold that is isometrically embedded in RP. Then there exists some 8o(M) > 0 such that for any
8 < éyand any x € M,

(i) M N By (x) is isomorphic to a ball in R,

(ii) On the local chart at each x, let ¢, be the orthogonal projection to the tangent plane 7,.M
embedded as an affine subspace of R”, and call u(y) := ¢, (y) the tangent coordinate of y, then

det (@)
du

(iii) Let d 5 4 denote the manifold geodesic distance, then

0.9y — xllgp < () llga < L1y — xllgp. 0.9 < <11, Vye MNByx). (AS54)

lx = yllgp < dp () < L1Jlx = yllgp, Yy € Bg(x) N M. (A.55)

Proof. At every point x, (i) holds when § < 4§, for some §,; > 0, and then the local chart can
be defined where the normal coordinates s (exp,(s) = y) and the tangent coordinates u match up to
O([lu|l®) [11, Lemma 6], the squared metric of ||y — x|z, and [|«]|* match up to O(]|u[*), and the
Jacobian’s match via

d
det (d—z) ‘ =14+ bV w) 4 VW) + o(|lul*), (A.56)
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where b)(cv) (c)(cv)) is a homogeneous polynomial of degree 2 (3) of the variable u = (u,--- ,uy)
[11, Lemma 7]. Thus, (A.54) and (A.55) hold on M N B;(x) when § < 4, , for some 0 < §,, < &, .
The min, 8, , exists due to the smoothness and compactness of M, and the minimum can be used as

8o (MD). O

A.2.2 Covering number of M Introduce the definitions:

DErFINITION A.1 Let (X, d) be a metric space and Y C X. Let e > 0, then P C X is called a e-net of ¥
if Vx € Y, 3x, € P, s.t. d(x, x,) < €. The covering number of Y, denoted by N (Y,d,e), is defined to be
the smallest cardinality of an e-net of Y.

DErFINITION A.2 Let (X,d) be a metric space. Let € > 0, then P C X is said to be e-separated if
d(x,y) > € for all distinct points x,y € P. The packing number of ¥ C X denoted by P(Y,d,¢) is
defined to be the largest cardinality of an e-separated subset of Y.

The following lemma bounds the covering number of M using Euclidean balls in RP, which has
been established in literature. We reproduce under our setting for completeness.

LeEmMMA A4 For any r < &, where 8, is defined in Lemma A.3, N'(M, | - l|lgp, ) < V(M)r~?, where
V(M) equals an O,(1) constant times the Riemannian volume of M.

Proof of Lemma A.4. The proof uses Lemma A.3 and standard arguments as in [53, Section 4.2]. Let
dy; be the Euclidean distance in RP.

Let dj; denote the metric on M induced by the Euclidean metric in RP, that is, d () = lx=Yylgp,
where x,y € M. The packing number P(M, dg, r) always upper bounds the covering number (see e.g.,
[53, Lemma 4.2.6 and Lemma 4.2.8]); thus, it suffices to upper bound P (M, dg, r).

Denote by B, (x,d) the open ball on (M, dg) centered at x, and B, gm (x) the open Euclidean ball
of radius r centered at x in R”. Without declaring m, B,.(x) means B, rp (x). By definition, B,.(x,dp) =
B,.(x) N M. Suppose r < §; in Lemma A.3, we consider the manifold volume Vol of these Euclidean
balls, where for Y ¢ M, Vol(Y) := fM 1, dV when integrable. By Lemma A.3(ii), on 7,(M) which is
viewed as RY,

BO.9r,Rd (O) - ¢x(Br(x’ dE))s

and ’det(%) > 0.9 on B, (x, dy), then

det(g)

d
det(=2)| du
u u

Vol(B,.(x,dg)) :/

¢x(Br(x.dE))

du > /
{u, [lu]| <0.9r}

> 0.9 / du = 0.9v,4(0.9r)7,
{u, [|ul| <0.97}

where v, is the Euclidean volume of a unit d-sphere.
Now let P be a maximal r-separated subset of M (under df) such that Card(P)= n = P(M, dg, ),
and P = {x;,--- ,x,}. By definition of r-separateness, B% (x;, dg) are disjoint, thus

n
Vol(M) > " Vol(B (x;,dp)) > n - 0.9vd(0.9§)d,
i=1

120z Jequisidag /z uo 1senb Aq 659%2£9/6 1L 0GBRIBIEWI/EE0L 0 L/I0P/S0ILE-80UBAPE/IEIRWI/WO0" dNO"oIWUSPEdE//:SARY WOl Popeojumod



58 X. CHENG AND H.T. WU

that is, for V(M) which is an O4(1) constant times the Riemannian volume of M,

< V(M)

n <
ra'

This proves that N'(M, dg, r) < P(M,dg,r) < V(M) O

A.2.3 Fixed-bandwidth integral operator

AssumPTION A.3 (Assumption on k; in [11]). (C1’) Regularity. k, is continuous on [0, co), C? on
(0, 00).

(C2’) Decay condition. k, and up to its second derivatives are bounded on (0, co0) and have sub-
exponential tail, specifically, 3a,a; > 0, s.t., |k(()l) &) < ale_“g forall ¢ > 0,7/ =0, 1,2. To exclude the
case that ky = 0, suppose |kl o, > 0.

LEMMA A.5 ([11, Lemma 8]). Suppose 4 satisfies Assumption A.3. For any f € C*° (M), define

2
Gf () ;:/ h(” y” I (v) dV(y). (A.57)

Then there is €,(M, k) > 0 such that when 0 < € < ¢,

G [hlf = €* (’"o[h]f +e mzz[h] (@f + Apgf) + oV‘(@](eQ)) ,

where w (x) is determined by local derivatives of the extrinsic manifold coordinates at x, the residual term
denoted by big-O with superscript f(S* means that the constant involves up to the fourth derivative of
f on M. Specifically, if the residual term is denoted as rf.e(X), it satisfies sup, ¢ v lrre@)] < C(f)e?,

where C(f) = c¢(M, h)(1 + Z?:o DDl o)

For the sake of self-containedness and specifically quantifying the constant in the error term, we
provide a proof of this lemma below.

Proof of Lemma A.5. The original proof is in Appendix B of [11]. We made slightly more precise the
truncation argument of the integral, as well as under the formal statement of assumptions on k, as in
Assumption A.3.

The proof uses the exponential decay of A to truncate the integral of dV(y) on M N B;_(x), where

the Euclidean ball radius §, can be chosen to be /e log - 1 for some 0,(1) constant «. For example,

let ay = d-‘rl()

, where a is the sub-exponential decay constant of . in Assumption A.3(C2), then the
truncations of integrals used in the proof all incur an error of order O(e!?). For the truncation tail
bounds to hold, the radius 5, needs to be smaller than §,(M) in Lemma A.3. The requirement §, < §,
gives rise to the condition that € < ¢ in the lemma.

Restricting on a local ball, the integrals in the proof are computed via local projected coordinates
on T, M, and using the volume and metric comparison lemmas, [11, Lemmas 6 and 7], as detailed in
[11, Appendix B]. In particular, only the differentiability and sub-exponential decay of up to second
derivatives of / and the isometry of the kernel (% is a function of ||x — y||2) are used; thus, the lemma
holds for any # satisfying Assumption A.3. g
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The following lemma is the counterpart of Lemma A.5 when # is the indicator function (only to the
‘O(€)’ term, € = r2 here). It can be implied by [22, Lemma 4] (without proof) and was also given in a
different setting for uniform p in [50, Lemma 7]. We include a proof for completeness.

LEMMA A.6 Under Assumption 2.1, h = 1y, ), there is a constant §,(M) < §; in Lemma A.3 such
that when r < §;, for any x € M,

o2
yd /M n (w) PO V() = /M 1m0 AV = mollp() + O (2,

and the constant in big-O is uniform for all x.

Proof of Lemma A.6. The proof uses the same technique of that in Lemma A.5. Because r < § in
Lemma A.3, using the local chart, we have that
d
det (_y)
du

Iy — xII* = [ul* + O(lul*),

du, B :=¢.(B,(x) N M) C R

I, ;:/ 1{\|x,y”<r}l’()’) dV(y):/ p(y(w)
M B

By that

where the constant in big-O depends on local derivatives of manifold extrinsic coordinates at x and by
compactness of M is uniform for all x, there is §; = §; (M) and constant ¢, > 0 uniform for all x such
that when r < §,, for any x,

B, CB CB,;, Pt = r(l1 4+ cMrz), B, :={ue RY, lu| < r}.

We consider upper and lower bounds of /,, respectively. By that p > 0,

dy
det | —
) (du)
Similarly as in the proof of Lemma A.5,

pOW) = p(x) + Vo) - u+ 0P (Jul?),

du=:1,.

1< / pO()
B+

¥

and by (A.56), )det (%)
manifold extrinsic coordinates at x and by compactness of M is uniform for all x. This gives that

= 1 4+ O(Ju|?), where the constant in big-O depends on local derivatives of

I = / (P + Vaup ) -+ OV () (1 + O(uP))du = Vol(B,) (p(x) + OP112)),
B+

where the odd-order term of u does not contribute to integral because B, is a d-sphere, and Vol(B,+) =
vt (1 + ) = my[hlr* (1 + O(r)). Thus,

I < I = mo[hlr (1 + 0()) (p(x) + OV (2)) = my[hlr (p(x) + OV (r?)).

Similarly,

det(:—Z) du = Vol(B,-)(p(x) + O (%)) = mo[hlr (p(x) + OP)(+%)).

5> / ()
B _

r

Putting together upper and lower bounds proves the lemma. (]
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A.3  Other lemmas and proofs
A.3.1 Proofs of Lemmas 3.1 and 3.2

REMARK A.1 The expansion of Gép )f for differentiable p was derived in [S5, Appendix A.3], where
duality was to analyze the ‘right operator’ GQ) ) by its ‘left operator’ which were defined in [S5]. That
bounds the error in the weak sense but not in the strong sense. Here we give a direct proof of a more
precise bound of the error in the point-wise strong sense, which is important for analyzing the point-wise
convergence of Lyf(x).

Proof of Lemma 3.1. For a fixed x € M, define §,_(x,y) as the following:

Ix =yl Ix=yI*  lx—yI? (p(x) B 1) _ llx = yII>

= ) ,Y).
a0 o T om \Lho o) oY)

By that k is C* on (0, 00), Taylor expansion up to the fourth order at lx= ( x) gives

Ilx—yI*\ _, (lIx—yl? ,( Ix =yl L, (Ix—yl? )
ko( ep(y) )_kO( ep(x) )+k°( ep(x) )6’€(x’y)+5k°< ep(x) )5’6(”)

1 (Il =yl 1
+—k(3)( — )6,€<x,y)3+ﬁké“)(s(x,y>)8,€(x,y)4

60 \ e
: lx—y[? Jx=y12
where £ (x, y) is between 0) and ETIC . Thus,

—_vlI2 _vl2
Ggp)fze—dﬂ[/MkO(H vl )mdv(yH/ k,o(nx yll )Sre(x’y)f(y)dv(y)

€p(x) €p(x)
! K 4
+--+ 2 /oy €, y))8,, ()7 () dV(y)]
=O0+0+0+O®+®.

We first bound |®)|. Because p(x) < p,,,, uniformly on M,

[ e N Sl
ep() T ep(®) T €hpax

Thus,

) —at _ a2 - lx—y?
|k() (\’;:()C,y))| < a4e < a4e Pmax € — k4 _6 ,

where we define

- —_a
ky(r) := ase” mmax" > 0.

120z Jequisidag /z uo 1senb Aq 659%2£9/6 1L 0GBRIBIEWI/EE0L 0 L/I0P/S0ILE-80UBAPE/IEIRWI/WO0" dNO"oIWUSPEdE//:SARY WOl Popeojumod



KNN SELF-TUNED KERNEL 61

Note that k, satisfies Assumption A.3, and m [k,] are constant depending on Ppmaz- Then
- 4
24|@1 <™ /M ko (€ e MIFO)I8r () AV ()

—d)2 llx =yl 12 4
<e 87, (x, )" dV(y)
M €
4

2 2
< fd/z/ ,—C(nx—yn)(nx—yu Lo )dv |
N o W) YO

where we define 1~c(r) = ]_64(7')7‘4. By Lemma A5,

Cap [ {Ix=yIP) (1 1y _ <, 2
e/ k — dv(y) = 08~ 1(€?),
M € ey  pl

4
where we denote g(y) = (,OL(}) — ﬁ) , and then there is ¢§ = 5 (0, Ppuay)> SUCh that
Siollg?lle < €+ X, IDP o1 ,). This proves that

4
1®1 < EIlfllooch (1 + ||D<’>p—1||oo). (A.58)

=1

The other four terms involve fixed bandwidth €p(x) where x is fixed. Applying Lemma A.5 gives
the following. First,

® = P Gopf () = p (mof + o2 (@f + A1) + OV (e)p?)

L@+ O[f(<4>](€2)p%+2.

Define k; (r) := k{)(r)r and g;(y) := (52—3 — 1)f(y). We have g;(x) =0, and

2 2
_ k,(ux—yn )nx—yn (p(x)_l) W
©=c¢ /M ow ) aow by OV

= PGy lk;1(g)) ()

(<4
1](C()g] +Ag1) +0[g1 ](62)/)2)

&_

P2 (mo[k 18 +€,0

:pg< mylk 1](A )+0[gl ](éz)pz)

= @1 + O[g§<4)](€2),0%+2.
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Define k,(r) := k{j(r)r* and g,(y) := (/’j%; — D?f(y). We have that g,(x) = 0 and

_1 7d/2/ k,,(||x—y||2)(||x_y||2 PO )2 v
® 2€ v O\ ep) €p(x) (,00’) ) JOAVe)

1
= 30092 Gy ) (22) ()

d

p2 (m()[kz]gz + GP

(<4
](cog2 + Agy) + 0% ](ez)pz)
(e a + 047 e2002)
=, + O[g(2<4)](€2)p%+2.

Define ky(r) = k§ (r)r* and g5(y) = (25 — 1)3f(y). Then, we have g3(x) = 0, Ags(x) = 0, and

@=c k<3>(||x—y||2) (||x—y||2(p<x> _1))3f@)dv(y)
MmO\ e o) pQ)

= P02 Gy h31(g3) ()

(<4
P2 (mo[k3]83 +ep 3] (wg5 + Agy) + O'83 ](62)92)

Collecting the leading terms, we have

d k
®1+@1+@1=/ﬂl (mof+60—(wf+Af))+ €p [ ](Ag1)+ %(Agz))-

Note that

d+2

m[k]—l k() |u)*du = — my ko]
21—deo“”“— 21Kpls

d+4 d+4d+2
mlkl=—-—

1
mlk] =~ /]R Ko ()|l du = — m ko],

1 1 _ _ _
Ag, =pfA—+2pr-V; =2fp Vo> —fp ' Ap —2p"'Vf - Vp,

Ag, = 2fp* |Vp 1> =2fp"%|Vpl?,
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then we have

T2 AF g 220710 4 A A
AT An

m d+2 B _ B d+4d+2  _
ZTZ(Af—T(pr Vol —fo Ap =207 'f - Vp) + o= p Z'Vp'2)

d dd
- % (Af+ 5+ D(fp~" Ap +2p7'Vf - Vp) + SG+ 1)f,02|V/0|2)

msy _q1_
=72p IR A !t/

and this proves that O + @; + ®; equals the leading term in (3.7).
To prove the lemma, it remains to specify the constants in

< (<4 (<4 (<4
p#+2 (0 + ol 1(€2) + 087 (e2) + ol ) +10I. (A.59)

2) . ... . .
Obsher}\;e the bound of r{? in (3.7). By definition of g;, g,, g3, there is cjp(,omm, Pmar) > 0,7 =1,2,3,
such that

4 4 4
> IDPg < cf (1 +>° IID“)fIIOO)(l + > 1D p! ||oo), j=123,
=0 =0 1=0

and together with (A.58), the constant in front of €2 in (A.59) is bounded by

4 3 4 4
P 3D IDOf I + | Dl + (1+Z||D<”f||oo)(1+Z||D<’>p—1||oo)
=0 j=1 =0

=0

4 4
=c (1 +> ||D<”f||oo)(1 +>ID0 ™! ||oo),
=0 =0

where constant ¢” equals a finite summation of certain powers and ratios of p,,;, and p,,,.. Thus, the
bound in (3.7) holds. U

Proof of Lemma 3.2. Under the condition,
0.9p,;, <090(x) < p(x) < 1.1p(x) < 1.1p,,,,, Yxe M. (A.60)

By definition,

Bf(x) — GO (x) — e—d/2 IIX—yllz)_ (le—yllz))
GPr — GO = [ (ko( )~ (B2 ) smaven,

and

||x—y||2) (||x—y||2) , o lx=yl? (p@) )
k| ———— ) k| —— ) =k@&——— == —-1),
0( Ay O\ ep(y) " G
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where £ is between 12221 12 ang 12 . Then, by (A.60), & > 1= I and then by Assumption 3.1(C2),

Tep(y) Tep(y) - el.lp(y)’

a_lx—y|?

ko@&)| < aje™® < aje M @),

Thus, also by that

o0 0 e

() T 090(y) 09’
we have that
) » —d)2 llx — ylI? r
G f(x) = GPf(x)| < e Iko(S)l L FO1dV(y)
o) |0

& _ _a L lx —y)? &
< fllsoe ™2 / aje TG 2L qy(y) = —IlfllooGﬁp)[kl]l(x),
0.9 M Cep(y) 0.9

where we define
ky(r) :== ale_%rr, r=0,
and k, satisfies Assumption 3.1. Next, applying Lemma 3.1 gives that
d
GOk 11(x) = mylk,1p2 + OP1(e).

Thus, with sufficiently small €, uniformly for all x,

IGPf(x) — G f ()] < —Ilfll (molki10% + 071 (€)) < &) If g

where c;, is O(1) constant depending on k; multiplied by certain powers of p,,,. Or 0,,i,- O

A.3.2  Proofs of Lemmas A.1 and A.2
Proof of Lemma A.1. Define

_ 2
s / / £k, ( y” )f’ CPO)_ 1y av ),

PP ) p)*p(™
and
4 =P\ _rer»)
2 / / 0k, ( Y ) P Ofi(y —dV(x) dV(y).
PP /) PP ()
Then, same as in the analysis of (A.16), applying Lemma 3.1 only to the O(¢) term gives that

®= / @ﬁ%—“)@)G§§’0)<’2)@) dv(y)

Nd_ _d_
- / (pp =) (molkol?pps = + pr{") . 1l = 07 (e).
By (A.14) and (A.15),

Ad_ _d_ _d_
’/p(p2 ©— BT (mlkol?pp? )| < OV PN(e ),
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and then
‘/Pﬁz‘““ “)' < O[f’p](f)/Pﬁ%_a'Hmax{0.9%_°‘+l, 11270+ = oIl (e),
which gives that
© =myllg] [ PP+ 0, ).

To bound |@) — (D], introduce

J 2 y||2) POPOY) v qv
/ / ok (ep(x)p(y) poepiye VDAV

2 A o
Com et [ [ gy (Y o0 (50 iy,
o-0=* [ [ 1% (G550) samaor (o @

By non-negativity of kg, p, 0, 0 and fz, and @) > 0 and is O[f’p](l), similar as in (A.20), we have
I® - @I <0P(e,)® = 0U"e,).

This gives that @ = mylky] [ p*f*p?~>* + OUP)(e, ¢ ,) = OVP)(1). Meanwhile, ® > 0 by definition.
Finally, we have

o ) Ix—y||2) k(llx—yll2 )) POPY) v ay
O-w=¢ / /f()( (ep( ) cspm ) Bapee VOO

And same as in (A.23), by introducing k; (r) and using the non-negativity of f2, p and p, one can show
that

:.~

Then,

LY

1® - ®I <O (e,) - (@ with k) = OV P(e,).
Putting together, we have |@ — @] = OVPl(e p)» and this proves the lemma. (I
Proof of Lemma A.2. By definition,

2 o
o (;_L) I (”"fy” )f@) (’i(y) _1) Vo).
g )= /M o oo o )

To proceed, by that sup, . 4 fo))(;x/))(x)l < ¢ < 0.1 and (A.60), for some ¢, | and ¢/, , equaling certain
powers of 0, OF ,,;, multiplied by @1*I(1) constant, we have
px)* 1
— — c &, ——<c,, VxeM.
‘ p) ‘ ST pe T

Then,

s(f f _ llx — y|I?
o (- 5 ] e (42 o (o)

=c 18 CpalfllGP1(x).
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By Lemmas 3.1 and 3.2,
@) ¢ [o] /
|G 1(x) —myp2 (x)] < 07(e) + e,
this proves the lemma with c;; = (H)“](cp,lc p,z(mop;%i + O.IC;)) when € gets sufficiently small. O

A4 Point-wise convergence to ng)

In parallel to Theorems 3.5 and 3.6, we show the point-wise convergence of Lyf(x) to another limiting
operator involving ng), in Theorems A.5 and A.6. The analysis is by adopting the approach in [5]
after conditioning on a fixed p, yet the difficulty is to handle the a.s. differentiability of the kNN-
estimated p.

As pointed out by Section 2.3, p(x) at any point of differentiability equals @((k/Ny)_l/ 4y which
diverges to oo asymptotically. We first derive a lemma to bound the derivatives of p(x) by certain
inverse powers of IA?(x). The proof of Lemma 2.1 shows that, when Y has distinct points, the estimated
p from Y is piecewise C°° on RP, and it has the structure that on each of the finitely many polygon p,

p(x) = (mol[h] 1%)_1/ d)|x — ¥pll, for a some point y, outside p. We then can upper bound the derivatives

of R as below.

LEMMA A.7 Under the condition of Lemma 2.1, for any x € RP\E,
IDOR@)| < IHR®) ™, 1=0,1,--- .4,
where the /th derivative D(l)f?(x) is an [-way tensor, and for any /-way tensor T : RPx...xRP - R,

Tl= sup [T(v,---, V)|

veRP, vll2<1

The claim extends to higher-order derivatives / > 4, and we only need up to the fourth derivative in
the diffusion kernel analysis. The piecewise architecture of R also allows us to construct smooth uniform
approximators to p without enlarging the derivatives.

LeEmMMA A.8 Under the condition of Lemma 2.1, for any s > 0, 35, € C*°(M) s.t. sup, nq 10,(x) —
0(x)| < s, and

D A D) A
sup IDY A, ()1 < sup IDP AL 1=0,1,-- 4. (A61)
xeM xe M\E

Combined with Lemma A.7 and (A.14), we have the following:

ProPOSITION A.4 There is a constant C, > 0 depending on (M, p) such that when sup, . (10 —pl/p <
¢, < 0.1, forany s > 0, 3p, € C°(M) s.t.sup,c aq 10,(x) — p(x)| < s, and

—l/d
D o~ k

DL Alloomt < C, (17) . 1=0,---4. (A.62)
y

Because we can make s arbitrarily small, it is equivalent to prove the graph Laplacian convergence
with p;, which satisfies (A.62) by the proposition and also (A.14) by the uniform approximation
Theorem 2.3. Below, we write ﬁs as p. We then have the following:
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THEOREM A.5  Suppose Theorem 2.3 holds and as N, — oo and N, — oo,

k
e=o(l), €*IN,=Q(ogN,), €= o(<17>4/d) :
y

Then, for any f € C*°(M)), for sufficiently large N, and Ny, w.p. higher than 1 — 4N~ 10 _ 2Ny_ 10,

—4/d
o o k log N
Linf ) = LEf(x) + OV (Fy) €]+ oM (|Vf(x) |p(x)‘/d,/#).

y

THEOREM A.6 Under the same setting as in Theorem (A.5) and in the same sense of w.h.p,

—4/d
D o k a1 log N
L&) = pp™ )WL f () + 0V 7 (Fy) € +0[”(|Vf(x)lp(x) 7y N—:ﬁz+1)-

y

In both theorems, the error rates can be worse than those in Theorems 3.5 and 3.6. It also gives
different optimal scaling when choosing € and k so as to balance the bias and variance errors there. The
reason is due to that the bounds of magnitudes of derivatives of p are scaled with inverse powers of
(k/N)/4.

The proofs of Theorem A.5 and A.6 are basically the same as those of Theorems 3.5 and 3.6. The
difference is replacing the usage of Lemma 3.2 by a vanilla application of Lemma 3.1 with p being o
(which is p;), and details are omitted.

Proof of Lemma A.7. Note that for any x € RP\E, as shown in the proof of Lemma 2.1, x is in a
polygon p, and R(x) = ||x — yp|| for some Yp outside p. For [ = 0, the claim is identity. For [ = 1,
Vr(x) = 7% and |Vr(x)| = 1. When [ = 2,

flxll

DPr(x) = —||x||21d —
1113
Thus, for any v € R?, |lv|| = 1,
2 2 _ ,T 2 2 2
D@ r(x)(v. )| = VIl = — (vF )7 < i=lixl= 1

Ix[1® Ix[13 Ix[1”

and hence |D® r(x)| < 2. When [ = 3 and 4, one can verify by definition that

[l

6 6 x4
DPr@| < —, DPr@| < -—.
[lx] [lx]

: D I
This proves that [DOR(x)| < R forl=1,---,4. 0

1k
A A mo[h] Ny N
R, andlet p, = (mol[h] %)_l/dRs. By Lemma 2.1 and its proof, R is continuous on R? and C* on RP\E
which is a finite union of (possibly unbounded) polygons. We consider the restriction of R on M, and
because M is C*°, R is C* on M\E. Under the probability assumption on p in Assumption 2.1, the set
E intersects with M over finitely many hypersurfaces of dimensionality (d — 1) w.p. 1. Then, there is a

finite partition of M into pieces with piecewise C°*° boundaries. For s > 0, a function IA?S € C*°(M) can

Proof of Lemma A.8. Because p = ( Y1/ 4R, we consider the smooth approximation of R called
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be constructed to uniformly approximate R on M to within s, and in addition, D%{I}S x)forl=0,---.,4
is smoothly averaged from the values of Dﬁeli{(x) on a neighborhood of x. This means that atx € MNE,
D}&fi’s(x) is smoothly interpolating between the values of DS&IA? on each sides of the hypersurface
(at intersection of multiple hypersurfaces, i.e. ‘corners’, D%IA?S (x) is interpolating among the multiple
values). Then whether x is near M N E or not, we have that |D%IA?S(X)| < SUPce AM\E |D(/{LIA€()C)|. This
can be done, e.g., by convolving R on M using a Gaussian kernel in R? with small bandwidth and
under the manifold metric. The uniform approximation of |[R (x) — R(x)| is then guaranteed by that R is
Lipschitz-1 on R” and thus is globally Lipschitz-1 on M with respect to the manifold geodesic metric.
This proves (A.61). O

Proof of Proposition A.4. Under the good event in Theorem 2.3, (A.14) equivalently gives that

IR(x) — R(%)| -

2 <0.L A63
xeM  RM) P (A69

Meanwhile, 5 (x) = p(x)~"/¢ and is uniformly bounded from below and above by p,,.. and p, .. which

are constants depending on p. We write m[h] as my, in this proof.

AN A\ L\
R(x) = (—17) ﬁ(x) (S] cp,l (]v) 5 Cp’z (17) . (A64)
Mo Ny y y

Lemma A.7 gives that, for/=0,1,--- ,4, 1Y being the derivatives in RP,
DA I
DORX)| < =——, Vxe M\E.
R(x)lfl

The manifold derivatives are determined by ambient space derivatives via

l
DYR® =D A, D™ R),

m=0

where A, (x) are linear transforms determined by extrinsic manifold coordinates and their derivatives at
x, and are in C*°(M). Thus,

1 1
l A~ ~
IDR®| < D14, @IID™RM| < cpg D

m!

R(x)m=1 ’
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where c 4 is a constant depending on M. This gives that, Vx € M\E,

1 & —1/d 1 & —1/d
D A D
Dy o0l = — DRI < —— E
my Ny M my Ny M R(x)'" Riym—1

I
Z X)L (by (A.64), c/y4 depending on M)

w |

< dye 21121?(@"” (by (A.63))

m=0
—-m
< eyl 1Z(O9R(x)) < eyl 12(0% (—)‘/d) ,
m=0 m=0
which means that
—1/d
0 k
sup |Dyp()| < - ,
xe M\E Ny
where C,, is a constant depending on p, for [ up to 4. Finally, Lemma A.8 constructs P, satisfying (A.61),
and then (A.62) follows. [l
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