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Kernelized Gram matrix W constructed from data points {xi}N
i=1 as Wij = k0(

‖xi−xj‖2

σ 2 ) is widely used in
graph-based geometric data analysis and unsupervised learning. An important question is how to choose
the kernel bandwidth σ , and a common practice called self-tuned kernel adaptively sets a σi at each
point xi by the k-nearest neighbor (kNN) distance. When xis are sampled from a d-dimensional manifold
embedded in a possibly high-dimensional space, unlike with fixed-bandwidth kernels, theoretical results
of graph Laplacian convergence with self-tuned kernels have been incomplete. This paper proves the
convergence of graph Laplacian operator LN to manifold (weighted-)Laplacian for a new family of kNN

self-tuned kernels W(α)
ij = k0(

‖xi−xj‖2

ερ̂(xi)ρ̂(xj)
)/ρ̂(xi)

αρ̂(xj)
α , where ρ̂ is the estimated bandwidth function

by kNN and the limiting operator is also parametrized by α. When α = 1, the limiting operator is
the weighted manifold Laplacian Δp. Specifically, we prove the point-wise convergence of LNf and
convergence of the graph Dirichlet form with rates. Our analysis is based on first establishing a C0

consistency for ρ̂ which bounds the relative estimation error |ρ̂ − ρ̄|/ρ̄ uniformly with high probability,
where ρ̄ = p−1/d and p is the data density function. Our theoretical results reveal the advantage of the
self-tuned kernel over the fixed-bandwidth kernel via smaller variance error in low-density regions. In
the algorithm, no prior knowledge of d or data density is needed. The theoretical results are supported by
numerical experiments on simulated data and hand-written digit image data.

Keywords: graph Laplacian; manifold learning; k-nearest neighbor density estimator.

1. Introduction

Kernelized Gram matrix computed from data vectors {xi}N
i=1 in R

D has been a pivotal tool in kernel
methods [39], graph-based manifold learning and geometric data analysis [1,2,11,12,46,52] and semi-
supervised learning [24,25,36,45], among others. Applications range broadly from model reduction of
chemical systems [13,38,43,47] to general data visualization [7,23,29,55]. The graph affinity matrix
W, which is real symmetric and has non-negative entries, can be viewed as weights on the edges of a
weighted undirected graph, denoted as G = (V , E), V = {1, · · · , N} and E = {(i, j), Wij > 0}. The
kernelized affinity matrix W takes the form of a kernelized Gram matrix, that is, Wij = K(xi, xj) for

some real symmetric kernel function K : RD × R
D → R. In particular, a widely used setting is

Wij = k0

(‖xi − xj‖2

ε

)
, (1.1)
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2 X. CHENG AND H.T. WU

for some univariate kernel function k0 and some ε > 0. For example, k0(r) = e−r gives the Gaussian
affinity W.

Given an affinity matrix W, the un-normalized and normalized (random-walk) graph Laplacian
matrices are usually constructed as (D − W) and I − D−1W, respectively, where D, called the degree
matrix, is the diagonal matrix with Dii = ∑N

j=1 Wij. The row-stochastic matrix D−1W gives the
transition law of a random walk on the graph G, which is a discrete diffusion process on the graph
[32]. The eigenvalues and eigenvectors of the graph Laplacian matrix provide a dimension-reduced
representation of the data samples and are used for downstream tasks like clustering and dimension-
reduced embedding. Variants of the basic form (1.1) include adaptive kernel bandwidth [37,58],
anisotropic kernel [6,10,43,47], adoption of landmark sets [4,28,41], kernel normalization schemes
[31,57] and neural network approaches [18,34,40]. The current paper focuses on the adaptive bandwidth
problem and the analysis of the kernelized graph Laplacian.

The convergence of the graph Laplacian to a certain limiting operator as the graph size (number of
data samples) N → ∞ is a classical theoretical problem. When xi’s are sampled from a low-dimensional
manifold M embedded in the ambient space RD, the convergence of the graph Laplacian to a differential
operator on the manifold M has been proved in several places, when N → ∞ and ε → 0 under a
joint limit [2,3,11,22,42,50], and more recently [9,15,51]. Of particular importance is when the limiting
operator recovers the manifold Laplace–Beltrami operator ΔM or the weighted Laplace operator

Δp := ΔM + ∇Mp

p
· ∇M, (1.2)

where ∇M denote the manifold derivative and p is the density of a positive measure (not necessarily
integrated to 1, i.e., a probability density). Both ΔM and Δp are intrinsic operators associated with

different measures independent of the particular embedding of M in R
D. The weighted Laplacian Δp is

the Fokker–Plank operator of the diffusion process on the manifold M, and its spectral decomposition
in (M, pdV) reveals key physics quantities of the stochastic process, e.g., the low-lying eigenfunctions
of Δp indicate the meta-stable states of the diffusion process [16,33]. Thus, when the discrete diffusion
process on the finite-sample graph has a continuous limit, the graph Laplacian that approximates the
limiting operator Δp can be applied to data-driven analysis of dynamical systems and clustering analysis
of data clouds [35]. The asymptotic analysis of kernelized graph Laplacian thus lays the theoretical
foundation for applications of graph Laplacian methods in high-dimensional data analysis.

A problem in the affinity matrix construction (1.1) is the choice of the scalar parameter ε, or
σ := √

ε, which is called the kernel bandwidth. In practice, especially when data vectors are in high-
dimensional space or the sampling density is not even, the choice of ε can be challenging and the
performance of kernel Laplacian methods may also become sensitive to the choice, see, e.g., [37].
A common practice to overcome the issue of choosing ε is called ‘self-tuning’, that is, setting a
personalized bandwidth for each point xi and then using these adaptive bandwidths to compute the
kernelized affinity. Specifically, the original self-tune spectral clustering method [58] considered the
affinity matrix as

Wij = k0

(‖xi − xj‖2

R̂iR̂j

)
, (1.3)
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KNN SELF-TUNED KERNEL 3

where R̂i equals the distance from xi to its k-nearest neighbor (kNN) in the dataset X itself, where k
is a parameter chosen by the user. While several works in the literature have addressed such kernel
construction, to the knowledge of the authors, the same type of results of graph Laplacian convergence
as for the fixed-bandwidth kernel has only been partially established, particularly when the kernel
bandwidth is unknown and needs to be estimated from data. A more detailed review of related works is
given in Section 1.2.

In this paper, we introduce the following family of graph affinity matrices, defined for α ∈ R,
ε > 0,

W(α)
ij := k0

( ‖xi − xj‖2

ερ̂(xi)ρ̂(xj)

)
1

ρ̂(xi)
αρ̂(xj)

α
, (1.4)

where the kernel function k0 is non-negative and satisfies certain regularity and decay conditions (cf.
Assumption 3.1). We also split the dataset into X and Y , and the stand-alone Y is used to estimate ρ̂(xi)

for each xi in X, where ρ̂ is a function mapping from R
D to R, called the (estimated) bandwidth function.

Specifically, ρ̂ is normalized from the kNN distance R̂i by ρ̂(xi) = R̂i(
1

m0

k
Ny

)−1/d, k is the parameter

in kNN, Ny = |Y| and m0 > 0 is a constant with analytical expression. The normalization in ρ̂(xi) by

( 1
m0

k
Ny

)−1/d is to guarantee that ρ̂ has an O(1) limit. In view of (1.4), (1.3) is a special case where α = 0

and ε =
(

1
m0

k
Ny

)2/d
. The usage of a stand-alone Y to estimate ρ̂ reduces dependence and in practice can

reduce variance error (cf. Section 4.3). Note that while the above definition of ρ̂ involves the manifold
dimensionality d, the practical algorithm (cf. Algorithm 1) does not require knowledge or estimation of
d. We summarize the algorithm in Section 1.1, where we introduce the construction of ρ̂ and choice of
parameters in more detail.

The theoretical results of our work are twofold. To summarize, suppose N = Nx and Ny = Θ(N).
• We prove that when data are sampled according to a smooth density p on a smooth compact

d-dimensional manifold M, ρ̂ uniformly converges to ρ̄ = p−1/d on M, where the point-wise relative
error |ρ̂ − ρ̄|/ρ̄ is uniformly bounded with high probability (w.h.p.) by (cf. Theorem 2.3)

ερ = O((k/N)2/d,
√

log N/k).

The choice of k that balances the two errors is k ∼ N1/(1+d/4), which leads to ερ = O(N−1/(2+d/2)) (cf.
Remark 2.1). In particular, the constant in front of the second term (the ‘variance error’) is independent
from the sampling density p. This result augments previous analysis of kNN estimation in literature, and
the bound of the relative error (rather than absolute error) illustrates a different bias-variance error trade-
off between the kNN estimator ρ̂ and the standard fixed-bandwidth kernel density estimation (KDE) (cf.
Remark 2.2). The relative error bound is useful for our analysis of the self-tuned kernel Laplacian.

• Conditioning on the good event of an accurate ρ̂ estimation, we establish a series of convergence
results of kernelized graph Laplacians with self-tuned kernels. Specifically, we prove

- The convergence of the graph Dirichlet form (cf. Theorem 3.3), where the error is

O(ε, ερ , N−1/2ε−d/4).
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4 X. CHENG AND H.T. WU

Table 1 List of default notations

M d-dimensional manifold in R
D

p data sampling density on M, uniformly bounded between pmin and pmax
ΔM Laplace–Beltrami operator, also as Δ
Δp weighted Laplace operator
∇M manifold gradient, also as ∇
∇̄ gradient in ambient space R

D

ρ̄ p−1/d, population bandwidth function, uniformly bounded between ρmin := p−1/d
max

and ρmax := p−1/d
min

ρ̂ estimated bandwidth function
ερ error bound of supM |ρ̂ − ρ̄|/ρ̄
k k-nearest neighbor in kNN
W general kernelized affinity matrix
D degree matrix, Dii = ∑

j Wij
ε kernel bandwidth parameter used in theoretical analysis
σ0 kernel bandwidth parameter used in Algorithm 1
α the power in ρ̂α used to normalized the self-tuned kernel
k0, h function R → R, h used in kNN estimation, k0 used to construct affinity kernel
X dataset used for computing W
Y dataset used for estimating ρ̂

R̂i distance to k-nearest neighbor of xi in X
R̂ R̂(x) is the distance to k-nearest neighbor of x in Y
Nx number of samples in X
Ny number of samples in Y
N Nx or Ny depending on context
m0 m0[h] := ∫

Rd h(|u|2) du
m2 m2[h] := 1

d

∫
Rd |u|2h(|u|2) du

K̂ normalized self-tuned kernel function R
D × R

D → R parametrized by α

W(α) W computed using K̂ parametrized by α

L(α) limiting differential operator parametrized by α
LN graph Laplacian operator of W
f function on M, also denote the vector {f (xi)}i ∈ R

Nx

Ep differential Dirichlet form of Δp

E (α) kernelized Dirichlet form of kernel K̂
EN graph Dirichlet form of W
p̂ estimated density
εp error bound of supM |p̂ − p|/p
β the power in p̂β used to normalized the fixed-bandwidth kernel
ρ general kernel bandwidth function
G(ρ)

ε kernel integral operator with variable bandwidth ρ
ρ̃ perturbed bandwidth function from ρ

Asymptotic notations

O(·) f = O(g): |f | � C|g| in the limit, C > 0, O[a](·) declaring the constant
dependence on a

Continued
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Table 1 Continued

Θ(·) f = Θ(g): for f , g � 0, C1g � f � C2g in the limit, C1, C2 > 0, Θ [a](·) declaring
the constant dependence on a

∼ f ∼ g same as f = Θ(g)

o(·) f = o(g): for g > 0, |f |/g → 0 in the limit, o[a](·) declaring the constant
dependence on a

Ω(·) f = Ω(g): for f , g > 0, f /g → ∞ in the limit
When the superscript [a] is [1], it declares that the constants are absolute ones. By definition, for finite
m, O(g1) + · · · + O(gm) = O(|g1| + · · · + |gm|), which is also denoted as O(g1, ..., gm).

The choice of ε to balance bias and variance errors is ε ∼ N−1/(2+d/2), which makes
O(ε, N−1/2ε−d/4) = O(N−1/(2+d/2)), same as the order of ερ with the optimal scaling of k (cf.
Remark 3.1).

- The convergence of LNf (x) for the (re-normalized form of) random-walk and un-normalized graph
Laplacian operators LN , respectively (cf. Theorems 3.5 and 3.6), where the error is

O(ε, ερ/ε, N−1/2ε−1/2−d/4).

A weak convergence result in Theorem 3.7 shows that the error is O(ε, ερ , N−1/2ε−1/2).
These results are compared with the counterparts for fixed bandwidth kernel, in terms of the Dirichlet

form convergence (cf. Theorem 3.4) and the point-wise operator convergence (cf. Theorem 3.8).
As for how Ny should scale with Nx, if we set Nx and Ny independently, for the graph Dirichlet form

convergence result, the overall error is optimized when Ny ∼ Nx (cf. Remark 3.1). The other rates, e.g.,
the point-wise convergence rate, lead to different theoretical optimal choices of Ny with respect to Nx.
We empirically study the splitting of stand-alone Y in Section 4.3 with further discussion.

A key difference comparing the self-tuned kernel and the fixed-bandwidth kernel lies in the constant
dependence on density p in front of the variance term. For example, in Theorem 3.8, the fixed-bandwidth
kernel leads to a variance bound proportional to p−1/2, while the factor is p1/d in Theorem 3.6 for the
self-tuned kernel. The negative factor −1/2 suggests a large variance error at places where p(x) is
small, reflecting the difficulty of the fixed bandwidth kernel in such cases. The positive factor 1/d for
the self-tuned kernel suggests an improvement, which can be intuitively expected, from a theoretical
perspective.

Table 2 gives a roadmap of analysis to facilitate the reading of Sections 2 and 3. Our theoretical
results are supported by numerical experiments in Section 4. Besides model (1.4), we also propose
another affinity kernel using mixed normalization by ρ̂ and a density estimator p̂ that recovers the
Laplace–Beltrami operator and does not require knowledge of d, and we give empirical results in
Section 4.4. Apart from simulated manifold data, we apply the self-tuned diffusion kernels to the
MNIST dataset of hand-written digit images [49], where the self-tuned kernel shows a better stability
than the fixed-bandwidth kernel at data points sampled at low-density places, as is consistent with the
theory.

Notations. A list of default notations is provided in Table 1. We use superscripts in big-O notations
to declare dependence of the implied constants. In this work, we mainly track the dependence on the
data density function p, and we treat constants depending on M, h, k0, including d, as absolute ones so
as to simplify presentation. For O[M,h,x](·), we may omit (M, h) in the superscript and write as O[x](·)
so as to track dependence on x only. Specific constant dependence can be recovered from proof.
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6 X. CHENG AND H.T. WU

Algorithm 1. kNN Self-tuned kernel graph Laplacian (with stand-alone Y)

Input: datasets X and Y , and algorithm parameters k, 1 < k < Ny, σ0 > 0, α ∈ R.

Output: kNN values R̂, graph affinity matrix W, degree matrix D, the eigenpairs (Ψ , Λ).
External: subroutine eig (eig-gen) that solves eigen-problem (generalized eigen-problem) for real
symmetric matrices.

1: function SelftunedKernel(X, Y , k, σ0, α)

2: Nx ← size(X), Ny ← size(Y)

3: Compute kNN distances R̂i ← ‖x − y(x,k)‖, where y(x,k) is the k-nearest neighbor of x in Y .

4: Compute the matrix W by

Wij = k0

(‖xi − xj‖2

σ 2
0 R̂iR̂j

)
1

R̂α
i R̂α

j

(1.5)

�W can be constructed as a sparse matrix

5: Compute the degree matrix D, Dii ← ∑
j Wij

6: Compute the eigenvalue/eigenvectors (Ψ , Λ) of either (1) Lun by eig(D − W) or (2) Lrw′ by
eig-gen(D − W, DD2

R̂
), where the diagonal matrix DR̂ = diag{R̂i}Nx

i=1

7: return R̂, W, D, (Ψ , Λ)

8: end function

1.1 Summary of algorithm

The algorithm to compute the self-tuned kernel graph Laplacian on dataset X with a stand-alone dataset
Y to estimate the kNN bandwidth function is summarized in Algorithm 1. It has the following parameters
to be specified by the user,

• k: the k in kNN bandwidth estimation. By Theorem 2.3, the choice of k that balances the bias
and variance errors is theoretically k ∼ N1/(1+d/4)

y .

• α: the kernel is normalized by R̂α , where α is a real number. Different choice of α leads to a
family of different limiting operators depending on α, as is analyzed in Section 3. In particular,
choosing α = 1 recovers the weighted Laplacian Δp.

• σ0: the kernel bandwidth parameter. To compare with the notation in Section 3, σ0R̂i =√
ερ̂(xi), and that is ε = σ 2

0 ( 1
m0[hknn]

k
Ny

)2/d.

Choosing σ0 = Θ(1) corresponds to ε ∼ (k/Ny)
2/d. Under the optimal scaling of k which is

k ∼ N1/(1+d/4)
y (cf. Remark 2.1), the above scaling of ε is also the optimal one to balance errors of

estimating the Dirichlet form (cf. Theorem 3.3, Remark 3.1). The algorithm does not require any prior

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaab019/6374659 by guest on 27 Septem

ber 2021



KNN SELF-TUNED KERNEL 7

knowledge of the intrinsic dimensionality d, which can be applied to general manifold data. We also
introduce a variant form of kernel matrix to recover ΔM in Section 4.4.

A common usage, as in the original self-tune kernel in [58], is to estimate R̂i from the dataset X itself
rather than a stand-alone Y . The analysis of the former case will be more complicated, as estimating
kNN from X introduces more dependence across the kernel matrix entries, while a stand-alone Y allows
a two-step analysis: showing the uniform point-wise convergence of the kNN bandwidth function first
and then analyzing the kernel matrix W conditioning on a good event of Y , as we do in the current
paper. Empirically, we find that using a stand-alone Y gives a comparable result and can improve the
performance by reducing the variance error when Ny is large (Section 4.3). This suggests the usage of
extra data samples in the bandwidth estimation when they are not used in the kernel matrix construction
due to memory or computational constraints.

1.2 Related works

kNN estimated kernel bandwidth was used in the original self-tune-based algorithm, particularly for the
spectral clustering purpose [58]. To fully understand the role of the kNN estimated kernel bandwidth,
an understanding of its relationship with the nearest-neighbor density estimator (NNDE), an approach
closely related to but different from the well-known KDE, is necessary. NNDE was studied in the
classical statistical literature dating back to 60s [19,27,30], and more general variable bandwidth KDE
was studied in 90s [20,48]. The uniform convergence with probability (w.p.) 1 was proved in [14]. Our
result bounds the relative error |ρ̂ − ρ̄|/ρ̄ uniformly w.h.p., which implies uniform convergence w.p. 1
and is under the manifold data density setting.

With this relationship in mind, to our knowledge, the first paper dealing with the asymptotical
behavior of self-tune-based algorithm in the manifold setup is [50]. The limiting operator of self-
tune kernel has been identified in following a general framework of kernel construction of the graph
Laplacian. In particular, the uniform convergence of NNDE in [14] was used to derive the limiting
operator of kNN constructed graph Laplacian. However, the proof is without error rate, and the impact
of NNDE has not been fully analyzed. A recent paper addressing this issue is [5], where the convergence
rate has been proved. However, the formulation in [5] assumes knowledge of the desired bandwidth
function to use, or that of the density function, and the impact of NNDE is not discussed. Also, the
algorithm in [5] needs to estimate the intrinsic dimension d if not given, which may be difficult in
practice.

Self-tune-based algorithms are natural generalizations of those with fixed bandwidths. When the
bandwidth is fixed, its asymptotical analysis has been widely discussed, particularly under the manifold
setup. For example, the point-wise convergence of the graph Laplacian to the Laplace–Beltrami operator,
or more general weighted Laplace–Beltrami operator, has been extensively discussed in [2,11,21,42].
The spectral convergence of the graph Laplacian to the (weighted-) Laplace–Beltrami operator is more
challenging and has attracted several attentions. See, for example, [3,17,44,51,54,56]. Recently, the
spectral convergence in the L2 sense has been provided with rates in [9]; the spectral convergence in
the L∞ sense, as well as the uniform heat kernel reconstruction, has been provided with rates in [15].
We establish a point-wise convergence of the graph Laplacian operator and convergence of the graph
Dirichlet form for the kNN self-tuned kernel graph Laplacian with rates.

Other approaches of adaptive kernel bandwidth choice include multiscale singular value decomposi-
tion (SVD) [13,26,38]. A bandwidth selection method based on preserving data geometric information
was proposed in [37]. These methods can be computationally more expensive than kNN self-tuned
bandwidth.
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2. kNN estimation of kernel bandwidth

In this section, we prove the uniform convergence of the kNN constructed bandwidth function ρ̂, which
is computed from a stand-alone dataset Y , to ρ̄ = p−1/d w.h.p. and in terms of relative error (cf.
Theorem 2.3). We simplify notation by setting N = Ny in this section. All proofs are in Appendix.

Let M denote the low-dimensional manifold and dV the volume element of M. When M is
orientable, dV is the Riemann volume form; otherwise, dV is the measure associated with the local
volume form. In both cases, (M, dV) is a measure space. More differential geometry set-ups are
provided in Appendix A.2.

Assumption 2.1 (Assumption on manifold M and data density p). (A1) M is a d-dimensional C∞ and
compact manifold without boundary, isometrically embedded in R

D via ι. When there is no danger of
confusion, we use the same notation x to denote x ∈ M and ι(x) ∈ R

D.
(A2) p ∈ C∞(M) and is uniformly bounded both from below and above, that is, ∃pmin, pmax > 0

s.t.

0 < pmin � p(x) � pmax < ∞, ∀x ∈ M.

Smoothness of M and p suffices most application scenarios and theoretically can be relaxed by
standard functional approximation techniques. For simplicity, we consider smooth M and p only.

2.1 kNN construction of ρ̂

Given Y = {yj}N
j=1 (recall that N = Ny here), the kNN-estimated bandwidth function ρ̂(x) is a scalar

field on x ∈ M computed from Y , defined as

ρ̂(x) := R̂(x)

(
1

m0[h]

k

N

)−1/d

, R̂(x) := inf
r

⎧⎨
⎩r > 0, s.t.

N∑
j=1

1 {‖yj−x‖<r} � k

⎫⎬
⎭ , (2.1)

where m0 is a functional defined for function h on [0, ∞) sufficiently decayed as m0[h] :=∫
Rd h(|u|2) du. We use m0 to denote the scalar when not to emphasize the dependence on the function h.

Note that for h = 1[0,1), m0[h] equals the volume of unit d-ball. The definition (2.1) is equivalent to that

R̂(x) = ‖x − y(k,x)‖, where y(k,x) is the k-nearest neighbor of x in Y . The following lemma gives a direct
proof of the piecewise differentiability and Lipschitz continuity of the knn-constructed R̂. The Lipschitz
constant of R̂ is important in our proof of the uniform convergence of ρ̂.

Lemma 2.1 Suppose Y has distinct data points yj and 1 < k < N. Then R̂ defined in (2.1) is Lipschitz

continuous on R
D with Lip

RD(R̂) � 1. Moreover, R̂ is C∞ on R
D\E, where E is a finite union of

(D-1)-hyperplanes (finitely many points when D = 1).

One may consider variants of kNN-estimator. Specifically, a generalization of (2.1) can be

R̂(x) = infr

{
r > 0, s.t.

∑N
j=1 h

( ‖x−yj‖2

r2

)
� k

}
, where one can introduce weights proportional to

the distance ‖x − yj‖ by considering a more general h. The definition (2.1) is equivalent to taking
h = 1[0,1). One advantage of the classical kNN-estimator (2.1) is its efficient computation by the fast
kNN algorithm. We are not aware of any other widely used weighted version of kNN-estimator; thus,
we postpone the possible extension to larger class of h to future work.
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Table 2 Roadmap of analysis

Estimation of
bandwidth ρ̂

Convergence of graph Laplacian

Parameters (k, Ny) (ε, Nx)

Results
Proposition 2.2
+ Lemma 2.1
⇒ Theorem 2.3

kNN self-tuned fixed-bandwidth

Dirichlet form Theorem 3.3 Theorem 3.4

Point-wise L′
rw: Theorem 3.5 Lrw: Theorem 3.8

Lun: Theorem 3.6

Weak form Theorem 3.7 -

Needed lemmas: Lemma 3.1 ⇒ Proposition 3.2 ⇒
Theorem 3.3 & 3.7

Lemma 3.2 ⇒ Theorem 3.5 & 3.6

2.2 C0 consistency of ρ̂

The concentration of ρ̂ at ρ̄ at a point x0 is a result of the concentration of the independent sum in (2.1),
which we prove in the following proposition:

Proposition 2.2 Under Assumption 2.1, if as N → ∞, k = o(N) and k = Ω(log N), then, for any
s > 0, when N is sufficiently large, for any x ∈ M, w.p. > 1 − 2N−s,

|ρ̂(x) − ρ̄(x)|
ρ̄(x)

= O[p]

((
k

N

)2/d
)

+ 3

d

√
s log N

k
, (2.2)

where the constant in O[p](·) is determined by p, the threshold for large N depends on p and s and both
are uniform for all x.

Combined with the global Lipschitz continuity of ρ̂ (Lemma 2.1) and a bound of the covering
number of M (Lemma A.4), we are ready to prove the main result of this section:

Theorem 2.3 Under Assumption 2.1, ρ̂ defined as in (2.1). If as N → ∞, k = o(N) and k = Ω(log N),
then when N is sufficiently large, w.p. higher than 1 − N−10,

sup
x∈M

|ρ̂(x) − ρ̄(x)|
ρ̄(x)

= O[p]

((
k

N

)2/d
)

+ 3
√

13

d

√
log N

k
,

and the right-hand side (r.h.s.) is o[p](1).

Remark 2.1 In the error bound, the O((k/N)2/d) term is the ‘bias’ error, and the O(
√

log N/k) term
is the ‘variance’ error. To balance the two errors, k should be chosen according to k−1/2 ∼ (k/N)2/d

(where we omit the
√

log N factor), and that is k ∼ N1/(1+d/4). In this scaling, the constant in front
theoretically depends on p and generally is impractical to estimate.
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10 X. CHENG AND H.T. WU

Remark 2.2 One can compare Theorem 2.3 to the estimation error bound of a fixed bandwidth KDE
estimator of p, e.g., for ε > 0,

p̂(x) := ε−d/2

m0[hkde]

1

Ny

Ny∑
j=1

hkde

(‖x − yj‖2

ε

)
, (2.3)

where hkde : R+ → R is usually a non-negative regular function. When hkde � 0 and satisfies
Assumption A.3, by analyzing the bias and variance errors of the independent sum in (2.3) and using

Lemma A.5, one can verify that p̂(x) = p(x) + O[p](ε) + O[1]
(

p(x)1/2
√

log N
Nεd/2

)
. This gives that

|p̂(x) − p(x)|
p(x)

= O[p](ε) + O[1]

(
p(x)−1/2

√
log N

Nεd/2

)
. (2.4)

Note that the variance error in (2.4) has a factor of p(x)−1/2, while for ρ̂ by kNN the variance error
term is uniformly bounded for all x by O[1](

√
log N/k) and the constant is independent of p(x). This

difference between kNN ρ̂ and fixed-bandwidth KDE p̂ is numerically verified in Section 4.1 (Fig. 1).
The comparison shows that the fixed-bandwidth KDE estimator p̂ and the kNN estimator ρ̂ conduct
a different trade-off between the bias and variance errors: at place where p(x) is small, intuitively, the
kNN estimator trades the bias error for a smaller variance error and may have an advantage. For both
estimators, the overall estimation error (bias + variance) depends on the choice of the parameters ε and
k, respectively. The specific comparison would involve a more explicit bias error analysis, where the
constant in O[p](·) involves higher order derivatives of p and is not further pursued here.

2.3 C1 divergence of ρ̂

As shown in the proof of Lemma 2.1, for any x ∈ R
D\E, |∇̄R̂(x)| = 1, where ∇̄ denotes the gradient in

the ambient space R
D. Thus,

|∇̄ρ̂(x)| =
(

1

m0[h]

k

Ny

)−1/d

, ∀x ∈ R
D\E,

which is Ω(1) as k
Ny

→ 0. This means that ∇Mρ̂(x) point-wise diverges almost everywhere and cannot
have point-wise consistency to ∇Mρ̄(x), which is O(1).

While the l-th R
D-derivative of ρ̂ can be bounded to be O(( k

N )−l/d) (Lemma A.7), this C1

inconsistency of ρ̂ by kNN estimation poses challenge to the graph Laplacian convergence because
the limiting operator (see Section 3.1) involves ∇Mρ when ρ is a deterministic bandwidth function
[5]. On the other hand, the wide usage of self-tuned diffusion kernel in spectral clustering and spectral
embedding suggests that the kNN-estimated ρ̂ can lead to a consistent estimator of certain limiting
manifold differential operators though the C0 consistency of ρ̂ alone may not be able to directly prove
that.

In Section 3, we will show theoretically that the point-wise consistency of the graph Laplacian
operator has a different and worse error rate than the consistency of the graph Dirichlet form, where
consistency in both cases is obtained but under different conditions on k, Ny related to the bandwidth
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KNN SELF-TUNED KERNEL 11

Fig. 1. kNN estimation of ρ̄ = p−1/d and KDE estimation of p for x ∈ S1 embedded in R
2, and 0 � tX � 1 is the intrinsic

coordinate (arclength). (Top) The left two plots show a typical realization of ρ̂ by kNN defined in (2.1) compared with ρ̄, and the
right plot shows the relative error for varying values of ky, Ny = 5000, averaged over 500 runs. (Bottom) Same plots for p̂ defined
in (2.3) compared with p, and relative error for varying values of ε.

Fig. 2. Data in R
4 lying on a 1D closed curve of length 1. (Left) First 3 coordinates of 2000 samples with color indicating the

density function p. (Middle) The density function p and a function f , and (Right) Δpf , all plotted v.s. the intrinsic coordinate (the
arclength) on [0, 1].

parameter ε. The distinction is also revealed in experiments in Section 4: while point-wisely LNf (x)
can be oscillating and deviating from the Lf (x), where LN is the graph Laplacian and L is the limiting
differential operator, the Dirichlet form has much smaller error especially when ε is small (Fig. 3 and
Fig. 4).

3. Analysis of graph Laplacian

In this section, we analyze the convergence of self-tuned graph Laplacian computed from dataset
X = {xi}Nx

i=1, xi ∼ p, sampled on M, where ρ̂(xi) has been computed from a stand-alone dataset Y ,
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12 X. CHENG AND H.T. WU

Fig. 3. Relative error of (left) Dirichlet form computed using Lun, and (middle) the Err1 error in (4.1) of LNf computed by various
LN plotted v.s. a range of values of ε, Ny = 4000, ky = 32, 256, averaged over 500 runs. (Right) Same plot for the Err∞ error.

Fig. 4. LNf by estimated ρ̂ compared with true Δpf , denoted as Lf (blue curve), with two values of ky. The data are as in Fig. 2.
(Left) kNN-estimated ρ̂ and relative errors. (Right upper) Estimated LNf where LN equals Lun and Lrw′ , and using kNN-estimated
ρ̂, compared with using population ρ̄. The right plot is the zoom in of the left plot on interval [0.2, 0.5]. (Right bottom) Same plot
as the right upper panel at another value of ε. See more explanation in Section 4.2.

and we assume that Theorem 2.3 holds. We first introduce the notations of limiting operators and the
Dirichlet forms in Section 3.1 and then prove

• The convergence of the kernelized Dirichlet form in Section 3.2, as a middle-step result;

• The convergence of the graph Dirichlet form in Section 3.3;

• The convergence of LNf (x) for un-normalized and random-walk graph Laplacian operators LN
in Section 3.4.

We simplify notation N = Nx in the section. All proofs are in Appendix. The following regularity
and decay condition is needed for the function k0 in (1.4). The condition on k0 as in [11] is introduced
in Assumption A.3, and here we further assume non-negativity and C4 regularity of k0 for simplicity.
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KNN SELF-TUNED KERNEL 13

Assumption 3.1 (Assumption on k0). k0 satisfies Assumption A.3 and, in addition,
(C1) Regularity. k0 is continuous on [0, ∞) and C4 on (0, ∞).

(C2) Decay condition. ∃a, al > 0, s.t., |k(l)
0 (ξ)| ≤ ale

−aξ for all ξ > 0, l = 0, 1, · · · , 4.
(C3) Non-negativity. k0 � 0 on [0, ∞).

We use m0 = m0[k0] and m2 = m2[k0] if the kernel function dependence is not clarified.

3.1 Notation of manifold Laplacian operators and Dirichlet forms

Recall the weighted Laplacian Δp defined as in (1.2) on (M, pdV), where p is the density of a positive
measure on M. Below, we write ΔM as Δ, ∇M as ∇, when there is no danger of confusion.

Take a positive C1 function ρ on M. As will appear in the analysis, we introduce L(α)
ρ as

L(α)
ρ := Δ + 2

∇p

p
· ∇ + (d − 2α + 2)

∇ρ

ρ
· ∇ . (3.1)

When ρ = ρ̄ = p−1/d, one can verify that L(α) := L(α)
ρ̄ satisfies

L(α) = Δ +
(

1 + 2(α − 1)

d

) ∇p

p
· ∇ . (3.2)

We will show that the operators L(α) and p
2(α−1)

d L(α) are the limiting operators of the (modified) random-
walk and un-normalized graph Laplacians, respectively.

The differential Dirichlet form associated with Δp is defined as

Ep(f , f ) := −〈f , Δpf 〉p =
∫
M

p|∇f |2 dV ,

where 〈f , g〉 := ∫
M fgdV for f , g ∈ L∞(M), and 〈f , g〉q = ∫

M fgqdV for q a density of a positive
measure on M. In below, we may omit dV in the notation of integral over M, that is,

∫
M f means∫

M f dV . Given a graph affinity matrix W and a vector f : V → R, f ∈ R
N , we consider the (normalized)

graph Dirichlet form defined as

EN(f , f ) := 2

εm2

1

N2
ε−d/2f T(D − W)f (3.3)

= 2

εm2

1

N2

N∑
i,j=1

ε−d/2Wijfi(fi − fj) = 1

εm2

1

N2

N∑
i,j=1

ε−d/2Wij(fi − fj)
2.

We will prove that the graph Dirichlet form converges to the differential Dirichlet form of a density

pα := p1+ 2(α−1)
d on M. This is consistent with the above limiting operator, as one can verify that

− 〈f , p
2(α−1)

d L(α)f 〉p = −〈f , Δpα
f 〉pα

= Epα
(f , f ).
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14 X. CHENG AND H.T. WU

3.2 Convergence of the kernelized Dirichlet form

Consider W = W(α) as in (1.4), and define

K̂(x, y) := ε−d/2k0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

)
1

ρ̂(x)αρ̂(y)α
. (3.4)

Then, by definition, ε−d/2W(α)
ij = K̂(xi, xj). We use ‘hat’ to emphasize the dependence on the estimated

bandwidth ρ̂. When fi = f (xi) for f : M → R (here we use the notation f for both the function and the
vector), EN(f , f ) has the following population counterpart which is an integral form on M,

E (α)(f , f ) := 1

εm2

∫
M

∫
M

(f (x) − f (y))2K̂(x, y)p(x)p(y) dV(x) dV(y). (3.5)

We call E (α)(f , f ) the kernelized Dirichlet form. The following proposition proves the convergence of
E (α)(f , f ) to the differential Dirichlet form Epα

(f , f ):

Proposition 3.2 Suppose ρ̂ satisfies that supx∈M
|ρ̂(x)−ρ̄(x)|

|ρ̄(x)| < ερ < 0.1. Then for any f ∈ C∞(M),

E (α)(f , f ) = Epα
(f , f )(1 + O[α](ερ)) + O[f ,p](ε), pα = p1+2(α−1)/d.

In the proposition, we omit the dependence on α in the notation of the O[f ,p](ε) term. Here and in
below, we omit the dependence on α and track that on p and f in the big-O notation, unless we want
to stress the former. The proposition leads to the convergence of EEN(f , f ) and is used in proving the
convergence of EN(f , f ) (Theorem 3.3) and the weak convergence of LNf (Theorem 3.7). An important
technical object used in the analysis of E (α)(f , f ) and later analysis is the following integral operator
G(ρ)

ε defined for f ∈ C∞(M) and any ε > 0,

G(ρ)
ε f (x) := ε−d/2

∫
M

k0

(‖x − y‖2

ερ(y)

)
f (y) dV(y), (3.6)

which is well defined when ρ is positive and has some regularity so that the integral exists, e.g., C0

regularity and bounded from below. The following lemma is a reproduce of a similar step used in [5]
where we derive point-wise error bound (see remark A.1).

Lemma 3.1 Under Assumption 2.1, suppose k0 satisfies Assumption 3.1, f and ρ are in C4(M), and
0 < ρmin < ρ < ρmax uniformly on M, then

G(ρ)
ε f = m0f ρ

d
2 + ε

m2

2
(ωf ρ1+ d

2 + Δ(f ρ1+ d
2 )) + r(2)

ε ,

sup
x∈M

|r(2)
ε (x)| � cρ(1 +

4∑
l=0

‖D(l)f ‖∞)(1 +
4∑

l=0

‖D(l)ρ−1‖∞)ε2 = O[f ,ρ](ε2),
(3.7)
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KNN SELF-TUNED KERNEL 15

where cρ > 0 is a constant depending on (M, k0, ρmax, ρmin) (a rational function of (ρmax, ρmin) where

the coefficients depend on (M, k0)), D(l) is l-th manifold intrinsic derivatives, and ω(x) depends on
local derivatives of the extrinsic manifold coordinates at x.

However, we cannot directly apply the lemma to (3.5) because ρ̂ does not have C4 regularity. The
proof of Proposition 3.2 is via substituting ρ̂ by ρ̄ and control the error, and then applying Lemma 3.1
where ρ = ρ̄ which is C∞. As a postponed discussion, modifying ρ̂ to be C∞ is considered in
Appendix A.4 under another limiting setting.

3.3 Convergence of the graph Dirichlet form

We will show that when N → ∞ and ε → 0 under a proper joint limit, EN(f , f ) converges to
Epα

(f , f ). This means that with the self-tuned kernel the graph Dirichlet form asymptotically recovers
the differential Dirichlet form of the weighted Laplacian Δpα

on (M, pαdV). In particular,

• When α = 1, p1 = p, and the graph Laplacian recovers Δp on (M, pdV).

• When α = 0, p0 = p1−2/d, thus the original self-tune graph Laplacian recovers weighted
Laplacian with a modified density.

• When α = 1 − d
2 , pα is a constant, then the graph Laplacian recovers ΔM and the Dirichlet

form with uniform density. We provide an approach to obtain ΔM when d is not known in
Section 4.4.

For the estimated ρ̂ from Y , suppose Theorem 2.3 holds, we thus consider the randomness over X
conditioning on a realization of Y under the good event, which already guarantees the uniform smallness
of |ρ̂(x) − ρ̄(x)|/ρ̄(x).

Theorem 3.3 Suppose ρ̂ satisfies that supx∈M
|ρ̂(x)−ρ̄(x)|

|ρ̄(x)| < ερ < 0.1, and as N → ∞,

ε = o(1), εd/2N = Ω(log N), ερ = o(1),

then for any f ∈ C∞(M), when N is sufficiently large, w.p. > 1 − 2N−10, and pα = p1+2(α−1)/d,

EN(f , f ) = Epα
(f , f )(1 + O[α](ερ)) + O[f ,p](ε) + O[1]

(√
log N

Nεd/2

∫
M

|∇f |4p1+ 4(α−1)
d

)
.

Remark 3.1 By Remark 2.1, the optimal choice of k to minimize ερ is when k ∼ N1/(1+d/4)
y and this

leads to ερ ∼ N−1/(2+d/2)
y up to a log N factor. The possible log N factor is no longer declared in all the

scalings in this remark. To make ε ∼ ερ , it gives ε ∼ ( k
Ny

)2/d ∼ N−1/(2+d/2)
y . The scaling ε ∼ ( k

Ny
)2/d

is the same one as in the original kNN self-tune kernel (1.3). Meanwhile, in the error bound in
Theorem 3.3, leaving the term due to ερ aside, the other two terms of bias and variance errors are

balanced when ε ∼ N−1/(2+d/2)
x , and this gives the overall error of the two terms as N−1/(2+d/2)

x . Com-
pared to ερ ∼ N−1/(2+d/2)

y at the optimal scaling of k with Ny, the overall error bound in Theorem 3.3
is balanced when Ny = Θ(Nx).
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16 X. CHENG AND H.T. WU

To see the effect of self-tuning kernel, we compare Theorem 3.3 with the following theorem for a
fixed-bandwidth kernel normalized by density estimators, defined for β � 1 as

W(β)
ij = k0

(‖xi − xj‖2

ε

)
1

p̂(xi)
β p̂(xj)

β
, (3.8)

assuming p̂(xi) > 0 for all i. Let EN,ε(f , f ) equals (3.3) with W = W(β), and that gives

EN,ε(f , f ) := 1

εm2

1

N2

N∑
i,j=1

ε−d/2W(β)
ij (fi − fj)

2 .

Below, in Theorems 3.4 and 3.8 about fixed-bandwidth kernel, we track the constant dependence on β

more carefully since for the special case where β = 0 no density estimation is needed.

Theorem 3.4 Suppose as N → ∞, ε = o(1), εd/2N = Ω(log N), and if β �=0, the estimated density
p̂ satisfies that supx∈M

|p̂(x)−p(x)|
p(x) < εp < 0.1, and εp = o(1), then for any f ∈ C∞(M), when N is

sufficiently large, w.p. > 1 − 2N−10, and cβ = max{1.1−β−1, 0.9−β−1},

EN,ε(f , f ) = Ep2−2β (f , f )(1 + O[1](βcβεp)) + O[f ,p,β] (ε) + O[1]

(√
log N

Nεd/2

∫
M

|∇f |4p2−4β

)
.

In particular, when β = 0, EN,ε(f , f ) = Ep2(f , f ) + O[f ,p] (ε) + O[1]
(√

log N
Nεd/2

∫
M |∇f |4p2

)
.

Note that Δp2−2β = Δ + 2(1 − β)
∇p
p · ∇, which is consistent with the limiting operator of the

original Diffusion Map paper [11], and in particular, β = 1
2 recovers Δp. Strictly speaking, the setting

is different because in [11], D1/2
ii is used to normalize the affinity matrix Wij = k0

( ‖xi−xj‖2

ε

)
, and

Dii = ∑
j k0

( ‖xi−xj‖2

ε

)
. While Dii can be viewed as a KDE, normalizing by Dii introduces dependence

and techniques to analyze normalized graph Lapalcian are needed, e.g., as in Theorem 3.5.

Remark 3.2 The error bound in Theorem 3.4 has an O(εp) term (when β �=0) which appears to be
the counterpart of the O(ερ) term in the bound in Theorem 3.3. We have shown in Remark 2.2 that
the relative error of p̂ by a fixed-bandwidth KDE (2.3) behaves differently from that of ρ̂. Specifically,
when variance error dominates, |p̂(x) − p(x)|/p(x) is proportional to p(x)−1/2, while the variance error
in |ρ̂(x) − ρ̄(x)|/ρ̄(x) can be made small uniformly for x ∈ M independent of p(x). This means that,
when p is small at some places, to prevent the variance error in |p̂(x) − p(x)|/p(x) to be too large, the
choice of the fixed-bandwidth parameter ε may be restricted by the smallness of p. In such cases, the
kNN self-tuned kernel can have better robustness due to that the kNN estimator ρ̂ adopts a different
bias-variance error trade-off which uniformly controls the variance error term.

We postpone further discussion about fixed bandwidth kernel, since the current paper focuses on the
estimated variable bandwidth kernel.
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KNN SELF-TUNED KERNEL 17

3.4 Convergence of LNf

We consider two types of graph Laplacian operator LNf , where, using kernel K(α)

ε,ρ̂ as in (1.4), the un-
normalized graph Laplacian operator applied to f ∈ C∞(M) is defined as

L(α)
un f (x) = 2ε− d

2 −1

m2

1

ρ̂(x)α
1

N

N∑
j=1

k0

( ‖x − xj‖2

ερ̂(x)ρ̂(xj)

)
f (xj) − f (x)

ρ̂(xj)
α

, (3.9)

and the (modified) random-walk graph Laplacian operator is

L(α)

rw′ f (x) = 1

ε m2
2m0

ρ̂(x)2

⎛
⎜⎝
∑N

j=1 k0

( ‖x−xj‖2

ερ̂(x)ρ̂(xj)

)
f (xj)

ρ̂(xj)
α∑N

j=1 k0

( ‖x−xj‖2

ερ̂(x)ρ̂(xj)

)
1

ρ̂(xj)
α

− f (x)

⎞
⎟⎠ . (3.10)

In the matrix form, the operator differs from the usual random-walk Laplacian (I − D−1W) by
multiplying another diagonal matrix D−2

ρ̂
(up to multiplying a constant and the sign); thus, we call it

‘modified’ and denote it by ‘rw-prime’.
The point-wise convergence of LNf (x) at a fixed point x ∈ M is a more traditional setting under

which the convergence to a limiting diffusion operator has been considered in several papers [5,11,42].
The closest one is the result in [5], and an extension of the method therein leads to a convergence to L(α)

ρ̂
f

under the asymptotic that ε = o((k/Ny)
4/d) (cf. Theorems A.5 and A.6 in Appendix A.4). However, this

convergence result does not imply consistency to L(α)
ρ̄ f = L(α)f , due to the lack of convergence of ∇ρ̂

ρ̂
to

∇ρ̄
ρ̄

, as discussed in Section 2.3. Meanwhile, note that the uniform C0 consistency of ρ̂ to ρ̄ does imply

the weak convergence of L(α)

ρ̂
f → L(α)

ρ̄ f when ερ → 0, a result of the same type as Theorem 3.7, while

the latter shows an improved variance error (with ε−1/2 rather than ε−d/4−1/2).
Back to the point-wise convergence of LNf (x). To be able to establish the consistency to L(α)f ,

we instead consider another limiting regime of ε, namely ε = Ω(ερ), which is Ω((k/Ny)
2/d) up to a

factor of
√

log N under the optimal scaling of k as in Remark 2.1, and we take a different approach.
The following lemma shows that substituting ρ̄ with ρ̂ in G(ρ)

ε f (x) incurs an extra error of O(ερ) point-
wisely.

Lemma 3.2 Under the same condition of Lemma 3.1, in particular, f and ρ are in C4(M). Suppose a
positive integrable ρ̃ : M → R

+ satisfies that supx∈M
|ρ̃(x)−ρ(x)|

ρ(x) < ε < 0.1, then when the ε in G(·)
ε is

sufficiently small,

G(ρ̃)
ε f = G(ρ)

ε f + r̃, sup
x∈M

|r̃(x)| � c′
ρ‖f ‖∞ε = O[f ,ρ](ε), (3.11)

where c′
ρ > 0 is a constant depending on (M, k0, ρmax, ρmin).

With the lemma, the following two theorems prove the point-wise convergence to the limiting
operators of the two graph Laplacians operators, assuming that ερ = o(ε).
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18 X. CHENG AND H.T. WU

Theorem 3.5 Suppose ρ̂ satisfies that supx∈M
|ρ̂(x)−ρ̄(x)|

|ρ̄(x)| < ερ < 0.1, and as N → ∞,

ε = o(1), εd/2+1N = Ω(log N), ερ = o(ε),

then for any f ∈ C∞(M), when N is sufficiently large and the threshold is determined by (M, f , p) and
uniform for all x, w.p. higher than 1 − 4N−10,

L(α)

rw′ f (x) = L(α)f (x) + O[f ,p]
(

ε,
ερ

ε

)
+ O[1]

(
‖∇f ‖∞p(x)1/d

√
log N

Nεd/2+1

)
, (3.12)

where the constants in big-O are uniform for all x ∈ M.

Remark 3.3 As shown in the proof of Theorem 3.5, at x where ∇f (x) �= 0, the variance error can be

bounded by O[1]
(

|∇f (x)|p(x)1/d
√

log N
Nεd/2+1

)
with the same high probability and the threshold of large N

possibly depends on x. One can also verify O[1]
(

(|∇f (x)| + 0.1)p(x)1/d
√

log N
Nεd/2+1

)
as the variance error

bound for large N with x-uniform threshold. The addition of 0.1 is to make the factor (|∇f (x)| + 0.1)

uniformly bounded from below and prevent the bound to vanish when ∇f (x) = 0, and 0.1 can be any
other positive constant. If the behavior at a point x is of interest, theoretically the variance error can be
improved in rate at x where ∇f (x) vanishes [42]. As we mainly track the influence of p(x) which may
be small at some x, we adopt the ‖∇f ‖∞ factor in the theorem for simplicity. The same applies to the
point-wise convergence results in Theorems 3.6 and 3.8.

Theorem 3.6 With notation and condition same as those in Theorem 3.5, when N is sufficiently large
and the threshold is determined by (M, f , p) and uniform for all x, w.p. higher than 1 − 2N−10,

L(α)
un f (x) = p

2(α−1)
d L(α)f (x) + O[f ,p]

(
ε,

ερ

ε

)
+ O[1]

(
‖∇f ‖∞p(x)

2α−1
d

√
log N

Nεd/2+1

)
.

In Theorems 3.5 and 3.6, the error bound has an additional term of O(
ερ

ε
) compared with that in

[5,42]. The technical reason is that we use Lemma 3.2 to substituting ρ̂ with ρ̄, which gives O(ερ) error
at the ‘O(1)’ level but not at the ‘O(ε)’ level. In the proof of Theorem 3.3, the O(ερ) substituting error
takes place at the ‘O(ε)’ level thanks to the quadratic form.

For the un-normalized graph Laplacian operator, the additional O(
ερ

ε
) error can be removed if we

consider the weak convergence, which can be of interest in certain settings.

Theorem 3.7 Suppose ρ̂ satisfies that supx∈M
|ρ̂(x)−ρ̄(x)|

|ρ̄(x)| < ερ < 0.1, and as N → ∞,

ε = o(1), εN = Ω(log N), ερ = o(1),
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then for any ϕ ∈ C∞(M), when N is large, w.p. > 1 − 2N−10, pα := p1+ 2(α−1)
d ,

〈ϕ, L(α)
un f 〉p = 〈ϕ, Δpα

f 〉pα
+ O[p,f ,ϕ]

(
ε, ερ

)
+ O[1]

(
‖ϕ‖∞‖pα/d‖∞

√
log N

Nε

∫
pα|∇f |2

)
.

Note that the above weak convergence result is only possible for the un-normalized operator because
technically the D−1W normalization in the random-walk operator breaks the linearity.

At last, we compare with the graph Laplacian operator LN defined by fixed bandwidth kernel matrix
(3.8), namely

L(β)
ε,rwf (x) = 1

ε m2
2m0

⎛
⎜⎝
∑N

j=1 k0

( ‖x−xj‖2

ε

)
f (xj)

p̂(xj)
β∑N

j=1 k0

( ‖x−xj‖2

ε

)
1

p̂(xj)
β

− f (x)

⎞
⎟⎠ .

The counterpart of Theorem 3.5 is the following:

Theorem 3.8 Suppose as N → ∞, ε = o(1), εd/2+1N = Ω(log N), and if β �=0, the estimated density
p̂ satisfies that supx∈M

|p̂(x)−p(x)|
p(x) < εp < 0.1, and εp = o(ε). Then for any f ∈ C∞(M), when N is

large and the threshold is determined by (M, f , p, β) and uniform for all x,

L(β)
ε,rwf (x) = Δp2−2β f (x) + O[f ,p,β]

(
ε, β

εp

ε

)
+ O[1]

(
‖∇f ‖∞p(x)−1/2

√
log N

Nεd/2+1

)
. (3.13)

In particular, when β = 0, the bias error term is reduced to O[f ,p](ε).

The counterpart for un-normalized graph Laplacian can be derived similarly and omitted. The
limiting operator is the same as in Theorem 3.4 and consistent with the result in [11]. Compared with
Theorem 3.5, apart from the needed condition on the relative error of p̂ (cf. Remarks 2.2 and 3.2), the
variance error term in (3.13) has a factor of p(x)−1/2, while for self-tuned kernel W(α) the factor is
p(x)1/d as in (3.12). This can be expected because the self-tuned bandwidth is designed to overcome
the difficulty of low data density by enlarging the kernel bandwidth at those places, and our analysis
reveals the effect by the reduced variance error at x where p(x) is small. Such advantage is supported by
experiments on the hand-written digit image dataset in Section 4.5.

4. Numerical experiments

This section presents numerical experiments to verify the theory. Codes available at the public repository
https://github.com/xycheng/selftune-kNN. In this section, we denote the parameter k as ky when the kNN
estimation is conducted on the dataset Y . In Subsection 4.3, we use the notation kx when computing the
kNN estimation on X.

4.1 kNN estimator ρ̂ of ρ̄ = p−1/d

We numerically examine the kNN estimation of ρ̄, namely ρ̂ as defined in (2.1), and compare it with the
fixed bandwidth KDE estimator p̂ as in (2.3), where hkde(r) := e−r/(4/π). The dataset is sampled from
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a circle of length 1 isometrically embedded in R
2 i.i.d. according to a density function p, which equals

0.05 at tX = 0.25, 0 � tX � 1 being the intrinsic coordinate (arclength), as shown in Fig. 1. The plots
on the right-hand side show the difference of the relative error at place where p is low. As ky decreases
(ε increases), the variance error starts to dominate, and ρ̂ gives the relative error uniformly small across
locations, as predicted by Theorem 2.3. In contrast, p̂ gives a larger relative error near tX = 0.25. The
result empirically verifies Theorem 2.3 and Remark 2.2.

4.2 Estimation of Dirichlet form and LNf (x)

On the simulated data lying on a one-dimensional smooth manifold embedded in R
4 with a non-uniform

density p (Fig. 2), we compute self-tuned graph Laplacians on Nx = 2000 data samples using (1) Lun
(3.9) and (2) Lrw′ as in (3.10), α = 1, where ρ̂ is estimated from a stand-alone dataset Y with Ny = 4000,
and ky = 32, 256, respectively. To evaluate the influence of ρ̄ estimation, we also compute Lun and Lrw′
where ρ̂ is replaced to be the true ρ̄. The relative errors of

• The Dirichlet form 〈f , Δpf 〉p,

• The point-wise error measure by

Err1 :=
Nx∑
i=1

|LNf (xi) − Δpf (xi)|, Err∞ := max
1�i�Nx

|LNf (xi) − Δpf (xi)|, (4.1)

are given in Fig. 3. The error of LNf shows a scale of about ε−d/4−1/2 = ε−0.75 in Fig. 3 right two
plots, when the variance error dominates due to the small value of ε. In comparison, the accuracy of
Dirichlet form is less sensitive to the small value of ε, as shown in Fig. 3(left), which is consistent with
the theoretical result in Theorems 3.3 and 3.5.

Note that the relative 1-norm error shown in the plot divides Err1 by ‖{Δpf (xi)}Nx
i=1‖1; thus, its

magnitude (about or greater than 1 in Fig. 3) depends on the choice of the test function f . Same with the
relative ∞-norm error. When Nx is increased to be 10,000, with the same f , the smallest relative error
across ε is about 0.5 (averaged over 20 runs).

Taking Nx = 10, 000, Ny = 10, 000, with ky = 64, 256, respectively, we visualize in Fig. 4 snapshots
of single realizations of LNf . With smaller value of ε, the estimated LNf has more oscillation around
the true value, and when ε is larger, the oscillation is less but the function LNf is significantly biased
at certain places on the manifold. Note that when ky is larger, the estimated ρ̂ is smoother but has a
significant bias at places where p is small, and such bias is also reflected in the estimated LNf . The two
Laplacians, Lun and Lrw′ , give comparable results.

4.3 The influence of stand-alone Y

We compare with the results using X to estimate ρ̂. The dataset is the same as that in Fig. 2. Nx = 2000
and kx = 32 are used to compute ρ̂X . Take Ny = {2000, 4000, · · · , 32000} and ky = {37, 64, · · · , 338},
where ky is chosen to scale as N4/5

y , according to Theorem 2.3 (d = 1). The result for one realization
with the largest Ny is in Fig. 5, where using a stand-alone Y of a much larger size than X reduces the
error in the estimated ρ̂ as well as the oscillation in the estimated LNf (plots for Lrw′ f are similar and not
shown). The relative errors of Dirichlet form and Err∞ of LNf across ε are shown in Fig. 6, where using
ρ̂X and ρ̂Y give comparable accuracy. Moreover, the result with ρ̂Y approaches LNf computed from ρ̄ as
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Fig. 5. Same plots as Fig. 4 for self-tune Laplacian computed with ρ̂X . (Left two) kNN-estimated ρ̂ and relative errors computed
from X and Y . (Right two) Estimated Lunf , with the zoom on the interval [0.2, 0.5].

Fig. 6. Relative error of (Left) Dirichlet form computed using Lun, and (Middle) the Err∞ error of Lun computed using ρ̄, ρ̂X
and ρ̂Y over a range of ε and different {Ny, ky} (blue squares), averaged over 500 runs. (Right) Same plot for Lrw′ .

Ny and ky increase. This suggests that when significantly more data samples than Nx are available, using
the rest as Y to estimate the bandwidth function ρ̂ may improve the estimation of the self-tuned graph
Laplacian. With limited number of data samples, splitting stand-alone Y may worsen the performance
(due to decreasing Nx) than using the whole dataset as X and estimating the bandwidth on itself.

4.4 Recovery of the Laplace–Beltrami operator

According to the theory, the limiting operator is ΔM when α = 1 − d
2 . Here we examine two ways to

recover ΔM:

(1) By the self-tuned kernel affinity W(1− d
2 ).

(2) By a normalization with a combination of p̂ and ρ̂,

Wij =
k0

( ‖xi−xj‖2

ερ̂(xi)ρ̂(xj)

)
(ρ̂p̂1/2)(xi)(ρ̂p̂1/2)(xj)

= W(1)
ij

p̂1/2(xi)p̂
1/2(xj)

, (4.2)

because ρ̄−d/2 = p1/2. The second approach does not need prior knowledge or estimation of the intrinsic
dimensionality d and thus can be applied in more general scenarios.

Consider the same one-dimensional manifold data used in Fig. 2. Take Nx = 1000, ε = 10−4,
and compute ρ̂ from X. The embeddings by the first four (non-trivial) eigenvectors of various graph
Laplacians are shown in Fig. 7, where the last column shows the result produced by affinity matrix

Wij = Kij
didj

, where Kij is the fix-bandwidth kernel affinity Kij = k0(
‖xi−xj‖2

ε
) and di = ∑

j Kij, as in
[11]. Recall that the eigenfunctions of the Laplace–Beltrami operator are sine and cosine functions
with different frequencies. In this example, the random-walk graph Laplacian produces a visually better
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Fig. 7. Plots of the first 4 (non-trivial) eigenvectors of graph Laplacians which approximate eigenfunctions of ΔM of S1. From

left to right: Lun, Lrw′ using W(1− d
2 ); Lun, Lrw′ using (4.2); degree d−1

i d−1
j normalized Diffusion Map [11]. Data as in Fig. 2,

Nx = 1000, the kNN self-tune bandwidth ρ̂ computed from X with kx = 21, ε = 1e − 4.

eigenfunction approximation compared with the unnormalized graph Laplacian. We postpone the study
of the random-walk graph Laplacian with self-tuned kernel to future investigation.

4.5 Embedding of hand-written digits data

We implement the spectral embedding on Nx = 1000 samples from the MNIST dataset, containing five
classes (digits ‘0’, ‘1’, . . . , ‘4’) with 200 images in each class. The hand-written images can be viewed
as lying near certain low-dimensional sub-manifolds in the R784 ambient space (each sample is a 28×28
gray-scale image). We use kx = 7, and compute R̂i as the L2 distance between the i-th image to its kx-th

nearest neighbor. Also compute μ̂i := 1
N

∑N
j=1 hkde(

‖xi−xj‖2

εkde
), where ε

1/2
kde = Mediani{R̂i}. Here, μ̂ is the

(un-normalized) density estimator. Consider two self-tuned kernel affinities:

W(1)
ij = k0

(‖xi − xj‖2

σ 2
0 R̂iR̂j

)
1

σ 2
0 R̂iR̂j

, W
′
ij = k0

(‖xi − xj‖2

σ 2
0 R̂iR̂j

)
1

σ 2
0 R̂iR̂j

√
μ̂iμ̂j

. (4.3)

We use Lrw′ = D−2
R̂

(D−1W − I), where W = W(1) or W
′
, (DR̂)ii = σ0R̂i, and D is the degree

matrix of W. The parameter σ 2
0 serves as the dimension-less bandwidth ‘ε’. We also compare with the

fixed-bandwidth kernel affinity matrix, where ε1/2 = σ0Mediani(R̂i), called the Diffusion Map (DM)
embedding. The embeddings by the first three (non-trivial) eigenvectors over a range of values of σ0 are
shown in Fig. 8.

We observe that the DM embedding is disconnected at small value of σ0 and consists of points
which are far away from the bulk (outlier points), due to sensitivity to data points which are relatively
farther away from its neighbor samples. As illustrated in Fig. 9, the outlier points in the DM embedding
are those whose values of R̂i are large. In comparison, both the self-tuned kernels provide informative
embeddings of the dataset over the range of values of σ0, showing improved stability at small values
of σ0 to data samples lying at places where the data density is low. The W(1) kernel affinity shows a
better stability than the W ′ kernel at the small value of σ0 on this dataset, due to that the W ′ kernel still
involves a fixed-bandwidth KDE μ̂ in the normalization.

5. Discussion

Apart from what has been mentioned in the text, the following lists a few possible future directions. First,
we use a stand-alone Y to estimate the bandwidth function ρ̂ for theoretical convenience. Extending the
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Fig. 8. Eigenvector embedding of Nx =1000 MNIST hand-written digit images of 5 classes, kx = 7, colored by digit class labels.

(Top) By
Kij
didj

with fixed-bandwidth kernel, (Middle) by self-tuned kernel W(1), (Bottom) by self-tuned kernel W
′
, as defined

in (4.3).

Fig. 9. Outliers in the fixed-bandwidth kernel embedding. (Left) One embedding in the top panel of Fig. 8 with a proper rotation
for visualization purpose, where the outlier samples are marked with red circles. (Right) Values of R̂i, i.e., the distance to the
seventh nearest neighbor, of the Nx =1000 samples. The outlier samples in the left plot are marked by red circles. The plot is
colored by digit class labels.

result to the case where ρ̂ is computed from X itself can be of both theoretical and practical interest,
especially when the number of data samples is not large. Second, one can continue to derive the spectral
convergence, namely the convergence of eigenvalues and eigenvectors of the self-tuned graph Laplacian
matrix to the eigenvalues and eigenfunctions of the associated limiting operators, with rates. Our graph
Dirichlet form convergence rate is better than the operator point-wise convergence rate by a factor
of ε−1/2, and since the Dirichlet form convergence largely implies the spectral convergence in the
L2 norm [8], this suggests that the spectral convergence rate may also be better than the pointwise
convergence rate for the graph Laplacian operator in a proper sense. This theoretical speculation is
supported by our empirical results. A uniform spectral convergence would also be important for various
practical applications. At last, the random-walk graph Laplacian in our experiments sometimes shows a
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better performance compared with the unnormalized graph Laplacian, especially in terms of eigenvector
convergence. A theoretical justification then is needed, which is possibly similar to that in [54], and will
be based on the spectral convergence result if can be established.
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A. Appendix

A.1 Proofs

A.1.1 Proofs in Section 2

Proof of Lemma 2.1. Given Y and k > 1 fixed, define

SY :=
{

x ∈ R
D, s.t. ∃j �= j′, ‖x − yj‖ = ‖x − yj′ ‖

}
.

Since yjs are distinct points, SY is a collection of finitely many hyperplanes in R
D (finitely many points

when D = 1), and SY ∩ Y = ∅. Whenever x lies outside SY , the set {‖x − yj‖}N
j=1 consists of distinct

non-negative values. The set RD\SY is open and consists of a finite union of polygons (the polygons
can be unbounded), as illustrated in Fig. A.1.

We prove the lemma in three parts as below.
Part 1: to prove that R̂ is piece-wise C∞ on R

D\SY , and on each polygon p in R
D\SY , R̂(x) = ‖x − yp‖

for a point yp ∈ Y and outside p.
First, for each (open) polygon p and any x ∈ p, the k-nearest neighbor (kNN) of x in Y is uniquely

defined due to the fact that the distance list {‖x − yj‖}N
j=1 has distinct values. Thus, the function R̂(x)

equals ‖x − y(k,x)‖, where y(k,x) is the kNN of x in Y .
Second, we claim that the point y(k,x) is the same y ∈ Y for all x inside the polygon p because the

ordered list of nearest neighbors is fixed for all x within p. Indeed, for the ordered list to cross, the
distances of ‖x − yj‖ and ‖x − yj′ ‖ need to be equal at some x, and this x lies on SY . We call this point

yp, and then R̂(x) = ‖x − yp‖ for x ∈ p.
Third, we claim that yp /∈ p. Note that each polygon p has at most one point yj inside it. Because

otherwise, suppose yj �= yj′ are both inside p, then so is the middle point
yj+yj′

2 due to that p is convex,

but
yj+yj′

2 is in SY and cannot intersect with p. Now if yp ∈ p, then by definition yp is the kNN of itself,
which means that k = 1. This contradicts with the condition that k > 1.

The above gives us that R̂(x) = ‖x − yp‖ is C∞ and hence ‖∇̄R̂‖ = 1 inside p, by the fact that

the mapping x �→ ‖x‖ is C∞ on R
D\{0}. These properties hold for all polygons p; thus, R̂(x) is C∞ on

R
D\SY , and ‖∇̄R̂‖ = 1 at point of differentiability.

Part 2: to prove that Lip
RD(R̂) � 1.

We assume that R̂ is continuous R
D, which will be proved in Part 3. By Part 1, we have that R̂ is

Lipschitz 1 on each open polygon p, and combined with the continuity of R̂ at points on the boundary
of p, we have that Lipp̄(R̂) � 1, where p̄ is the closure of p, that is,

|R̂(z) − R̂(z′)| � ‖z − z′‖, ∀z, z′ ∈ p̄. (A.1)

For two points x �= x′ in R
D, we want to show that |R̂(x) − R̂(x′)| � ‖x − x′‖. Consider the segment

line l connecting the two points. If l is contained in some p̄, then the claim is proved. Otherwise, there
is a sub-segment l0 connecting from x and z1 ∈ SY such that l0 is in some p̄. Continue the process gives
finitely many distinct points {z1, · · · , zM} ⊂ l such that the sub-segment li connecting from zi to zi+1 is
contained in some p̄ for i = 0 to M, where z0 = x and zM+1 = x′. Note that this decomposition of l into
the union of lis holds even when one or both of x and x′ are in SY , as illustrated in Fig. A.1.
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28 X. CHENG AND H.T. WU

Fig. A.1. Illustration of the set SY and example polygons in the proof of Lemma 2.1, D = 2, Y = {y1, · · · , y4}, k = 2. For each
polygon p, there is a point yp ∈ Y such that R̂(x) = ‖x − yp‖ for x ∈ p.

Now by construction, ‖x − x′‖ = ∑M
i=0 ‖zi − zi+1‖. Meanwhile, applying (A.1) to each li gives that

|R̂(zi) − R̂(zi+1)| � ‖zi − zi+1‖. Thus,

|R̂(x) − R̂(x′)| �
M∑

i=0

|R̂(zi) − R̂(zi+1)| �
M∑

i=0

‖zi − zi+1‖ = ‖x − x′‖.

Part 3: to prove that R̂ is continuous on R
D.

To finish the proof, it remains to prove the continuity of R̂ on R
D. For any x0 ∈ R

D, let R̂(x0) = r0.
Since Y has distinct points by assumption, at most one point yj coincides with x0. Since k > 1, r0 > 0.

We prove that when x → x0, R̂(x) → r0. Define

F(x, r) :=
N∑

j=1

1{‖x−yj‖<r} .

Recall that

R̂(x) = inf{r > 0, s.t. F(x, r) � k} .

Since F(x0, r) is monotonically increasing as r increases, for any r′ := r0 + ε > r0, F(x0, r′) � k. This
means that |Y ∩ Br′(x0)| := k′ � k. Since Br′(x0) is an open ball, and there are k′ many yjs lying inside
it, they also all lie inside Br′′(x0) where r0 < r′′ < r′. Thus, when ‖x − x0‖ < (r′ − r′′)/2 := r′′′, these
k′ points of yj also lie inside Br′(x), then F(x, r′) � k′ � k. This gives that R̂(x) � r0 + ε, whenever
‖x − x0‖ < r′′′.

Meanwhile, for any 0 < r′ := r0 − ε < r0, by definition F(x0, r′ + ε
2 ) < k, i.e., |Y ∩ Br′+ ε

2
(x0)| :=

k′ < k. This means that for any y ∈ Y\Br′+ ε
2
(x0), the distance ‖y−x0‖ � r′ + ε

2 . Thus, when ‖x−x0‖ <
ε
4 , the smallest distance ‖y − x‖ for any y ∈ Y\Br′+ ε

2
(x0) is � r′ + ε

4 , and then F(x, r′) � k′ < k. This

shows that R̂(x) � r0 − ε, whenever ‖x − x0‖ < ε
4 . Putting together, this proves the continuity of R̂(x)

at x0. �
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Fig. A.2. Given a dataset Y and a fixed x, plots of μ̂(x, r), μ(x, r) and m0[h]p(x)rd as functions of r. The values of R̂(x), R̄(x) and
R± are marked. These quantities are used in the proof of Proposition 2.2.

Proof of Proposition 2.2. Recall that ρ̄(x) = p(x)−1/d. Define

R̄(x) := ρ̄(x)

(
1

m0[h]

k

N

)1/d

. (A.2)

Then, since we have ρ̂(x) = R̂(x)
(

1
m0[h]

k
N

)−1/d
and ρ̄(x) = R̄(x)

(
1

m0[h]
k
N

)−1/d
, the proposition can be

equivalently proved by controlling |R̂(x) − R̄(x)|/R̄(x). For the given s > 0, define

δr := t1

(
k

N

)2/d

+ t2
d

√
s log N

k
, (A.3)

where t1 = Θ [p](1), t2 = Θ [1](1), both will be determined later. We will show that, when N exceeds a
threshold depending on (p, s), for any x ∈ M fixed, w.p. greater than 1 − 2N−s/4,

R̄(x)(1 − δr) � R̂(x) � R̄(x)(1 + δr). (A.4)

To prove (A.4), we introduce some notations. Denote

R−(x) := R̄(x)(1 − δr), and R+(x) = R̄(x)(1 + δr) .

Let h = 1[0,1), and define, for any x ∈ M and r > 0,

μ̂(x, r) := 1

N

N∑
j=1

h

(‖x − yj‖2

r2

)
=:

1

N

N∑
j=1

Hj(x, r) ,

then, by (2.1), R̂(x) = infr

{
r > 0, s.t. μ̂(x, r) � k

N

}
. For fixed x and r, Hj are i.i.d. random variables,

and

EHj(x, r) =
∫
M

h

(‖x − y‖2

r2

)
p(y) dV(y) =: μ(x, r). (A.5)

Below, to simplify notation, we omit the dependence on x in R̄, R± and Hj when there is no confusion.
The argument is for a fixed x, and we make sure that the constants t1 and t2 in δr as well as the large-N
threshold are uniform for all x.
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We first address the lower bound in (A.4). By definition, μ̂(x, r) is monotonically increasing on
(0, ∞). We claim that

Pr[R̂(x) < R−] � Pr

[
μ̂(x, R−) � k

N

]
. (A.6)

Because R̂(x) = inf{r > 0, μ̂(x, r) � k
N }, if R̂(x) < R−, there is some r′, R̂(x) < r′ < R− such that

μ̂(x, r′) � k
N , and by monotonicity μ̂(x, R−) � μ̂(x, r′) � k

N .
To bound the probability Pr

[
μ̂(x, R−) � k

N

]
, we use that the expectation μ(x, R−) would be smaller

than k
N under some conditions for δr defined in (A.3).

Note that by definition (A.2), R̄(x) = Θ [p](( k
N )1/d) = o[p](1), and the implied constant is uniform

for all x by the uniform boundedness of ρ̄. Also, we have that δr = o[p](1) under the asymptotic
condition on k. As a result, we have that

R− = Θ [p](R̄(x)) = Θ [p]
(

(
k

N
)1/d

)
= o[p](1). (A.7)

Then, Lemma A.6 gives that when N is sufficiently large and then R− is small,

μ(x, R−) = m0[h]p(x)Rd− + O[p](Rd+2− )

= m0[h]p(x)R̄d(1 − δr)
d + O[p](R̄d+2)

= m0[h]p(x)R̄d
(

1 − dδr + O[1](δ2
r ) + O[p](R̄2)

)

� k

N
(1 − 0.9dδr) + O[p](R̄d+2) =:

k

N
− δμ− , (by that m0[h]p(x)R̄d = k

N
) (A.8)

where the inequality in the last row is obtained by that δr = o[p](1), and the large-N threshold here
only depends on p. Note that the implied constant of O[p](R̄d+2), denoted as cp, is uniform for all x.
Meanwhile, by uniform boundedness of p from below, we have

R̄(x) � max
x∈M

ρ̄(x)

(
1

m0[h]

k

N

)1/d

=
(

1

pminm0[h]

)1/d ( k

N

)1/d

.

Denote cp,1 := (
pminm0[h]

)−1/d, and choose

t1 := cpcd+2
p,1

0.8d
= Θ [p](1), (A.9)

which is uniform for all x, then t1 · 0.9d
( k

N

)1+2/d
> cpcd+2

p,1

( k
N

)1+2/d � cpR̄d+2. Thus, when N is
sufficiently large and the threshold depends on p, we have

δμ− = 0.9d
k

N

(
t1

(
k

N

)2/d

+ t2
d

√
s log N

k

)
+ O[p](R̄d+2)

> t2 · 0.9
k

N

√
s log N

k
= t2 · 0.9

(
k

N

)1/2
√

s log N

N
=: s̃. (A.10)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaab019/6374659 by guest on 27 Septem

ber 2021



KNN SELF-TUNED KERNEL 31

To use the concentration of μ̂(R−) at μ(R−), we compute the boundedness and variance of Hj(R−).
Because 0 � h � 1, so is Hj, and then |Hj| � LH = 1. The variance

Var(Hj) � EH2
j =

∫
M

h2

(
‖x − y‖2

R2−

)
p(y) dV(y) = μ(R−),

because the kernel function h : R → R satisfies h2 = h. Thus, by that μ(R−) = m0[h]p(x)Rd− +
O[p](Rd+2− ) with (A.7), and that δr = o[p](1), when N is sufficiently large,

Var(Hj) � 1.1m0[h]p(x)Rd− � 1.5m0[h]p(x)R̄d = 1.5
k

N
=: ν̄H ,

and the two inequalities hold when N exceeds a threshold depending on p only. By the classical Bernstein
inequality, as long as s̃LH < 3ν̄H , then

Pr[μ̂(R−) − μ(R−) > s̃] < e
− 1

4 s̃2 N
ν̄H .

To verify that s̃LH < 3ν̄H : note that it is equivalent to that t2 · 0.9 < 3 · 1.5( k
s log N )1/2, and since we

have assumed k = Ω(log N), if we have t2 = Θ(1), then it holds when N is sufficiently large where the
threshold depends on s. This is fulfilled by setting t2 being an absolute constant such that

(t20.9)2

4 · 1.5
= 1, 0 < t2 < 3. (A.11)

Thus, together with (A.8) and (A.10), we have

μ(R−) � k

N
− δμ− <

k

N
− s̃ .

As a result, (A.6) continues as

Pr[R̂(x) < R−] � Pr

[
μ̂(R−) � k

N

]
� Pr

[
μ̂(R−) > μ(R−) + s̃

]
< e

− 1
4 s̃2 N

ν̄H = N−s,

which proves that w.p. higher than 1 − N−s, the lower bound R̂(x) � R− holds. We call the event
[R̂(x) � R−] the good event E1. All the large-N thresholds depend on (p, s) and are uniform for all x.

The upper bound is proved in a similar way. Specifically,

μ(R+) = k

N
(1 + δr)d + O[p](Rd+2+ ) � k

N
(1 + 0.9dδr) + O[p](R̄d+2)

= k

N
+ 0.9d

k

N

(
t1(

k

N
)2/d + t2

d

√
s log N

k

)
+ O[p](R̄d+2),

and the implied constant in O[p](R̄d+2), cp, is same as the above by Lemma A.6. Then, again by the

uniform upper bound of R̄(x) by cp,1(
k
N )1/d, by setting t1 to be that in (A.9), we have

μ(R+) >
k

N
+ t20.9

(
k

N

)1/2
√

s log N

N
= k

N
+ s̃.
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Same as before, Hj(R+) is bounded by 1 and for a sufficiently large N,

Var(Hj) � EH2
j = μ(R+) � 1.5

k

N
= ν̄H .

By letting t2 as in (A.11), we have

Pr[R̂(x) > R+] � Pr

[
μ̂(R+) <

k

N

]
� Pr

[
μ̂(R+) < μ(R+) − s̃

]
< e

− 1
4 s̃2 N

ν̄H = N−s.

This proves that w.p. higher than 1 − N−s, the upper bound R̂(x) � R+ holds. We call the event
[R̂(x) � R+] the good event E2.

Putting the above together, under the event E1 ∩ E2, which happens w.p. greater than 1 − 2N−s,

|R̂(x) − R̄(x)|
R̄(x)

� δr = cpcd+2
p,1

0.8d

(
k

N

)2/d

+
2
√

1.5
0.9

d

√
s log N

k
,

which proves the claim of the proposition. �
Proof of Theorem 2.3. We restrict to when Y has distinct points, which, under Assumption 2.1, holds
w.p. 1, and then Lemma 2.1 holds.

We cover M using r-Euclidean balls, where r > 0 is a constant of order (k/N)3/d with the implied
constant to be determined. Suppose N is large enough such that r < δ0 in Lemma A.3, then by Lemma
A.4, we can find an r-net F := {x1, · · · , xn} whose cardinal number is n, n�V(M)r−d. We ask for the
bound in Proposition 2.2 to hold at each xi, where s > 0 will be chosen later as an Θ [1](1) constant.
Then, when N exceeds a threshold depending on p and uniform for all xi, by a union bound, under a
good event Eρ̂,net which happens w.p. higher than 1 − 2nN−s, we have

∣∣∣∣ ρ̂(xi)

ρ̄(xi)
− 1

∣∣∣∣ � t1

(
k

N

)2/d

+ t2
d

√
s log N

k
:= ε, for all i = 1, · · · , n, (A.12)

where t1 = Θ [p](1) and t2 = Θ [1](1) are defined as in the proof of Proposition 2.2. Under the asymptotic
condition on k, ε = o[p](1) as N → ∞.

We now consider ρ̂/ρ̄ on each B̄r(xi) ∩M. Because ρ̄ = p−1/d is C∞ on M, supx∈M |∇Mρ̄(x)| �
Lp. Then, for each xi, by (A.55),

|ρ̄(x) − ρ̄(xi)| � LpdM(x, xi) � 1.1Lp‖x − xi‖ � 1.1Lpr, ∀x ∈ B̄r(xi) ∩ M.

Meanwhile, Lemma 2.1 gives that

Lip
RD(ρ̂) =

(
1

m0[h]

k

N

)−1/d

Lip
RD(R̂) �

(
1

m0[h]

k

N

)−1/d

,

so we have

|ρ̂(x) − ρ̂(xi)| �
(

1

m0[h]

k

N

)−1/d

r, ∀ x] ∈ B̄r(xi) ∩ M.
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Together, we have that ∀x ∈ B̄r(xi) ∩ M,∣∣∣∣ ρ̂(x)

ρ̄(x)
− ρ̂(xi)

ρ̄(xi)

∣∣∣∣ � 1

ρ̄(x)

∣∣∣∣(ρ̂(x)) − ρ̂(xi)) − ρ̂(xi)

ρ̄(xi)
(ρ̄(x) − ρ̄(xi))

∣∣∣∣
� 1

ρmin

∣∣∣∣∣
(

1

m0[h]

k

N

)−1/d

+ (1 + ε) · 1.1Lp

∣∣∣∣∣ r = Θ [p]
(
(k/N)−1/d

)
r . (A.13)

Thus, one can choose r > 0 to be Θ [p]((k/N)3/d) so as to make (A.13) bounded by t1(
k
N )2/d when N is

sufficiently large, where the threshold of N depends on p only. This gives that
∣∣∣ ρ̂(x)
ρ̄(x) − ρ̂(xi)

ρ̄(xi)

∣∣∣ � t1(
k
N )2/d.

Meanwhile, we already have (A.12) under Eρ̂,net, and putting together,∣∣∣∣ ρ̂(x)

ρ̄(x)
− 1

∣∣∣∣ �
∣∣∣∣ ρ̂(x)

ρ̄(x)
− ρ̂(xi)

ρ̄(xi)

∣∣∣∣ +
∣∣∣∣ ρ̂(xi)

ρ̄(xi)
− 1

∣∣∣∣ � t1

(
k

N

)2/d

+ ε, ∀x ∈ B̄r(xi) ∩ M.

By that M ⊂ ∪iB̄r(xi), the above bound holds for all x ∈ M. Recall the definition of ε in (A.12), we
have that, under Eρ̂,net,

sup
x∈M

∣∣∣∣ ρ̂(x)

ρ̄(x)
− 1

∣∣∣∣ � 2t1

(
k

N

)2/d

+ t2
d

√
s log N

k
.

Finally, to show the high probability of Eρ̂,net, by that n � V(M)r−d,

2nN−s � 2V(M)r−dN−s � cp

(
k

N

)−3

N−s (constant cp depending on p)

� N−s+3 (with large N, because k = Ω(1)).

so by setting s = 13, we have that Eρ̂,net happens w.p. higher than > 1 − N−s+3 = 1 − N−10. �

A.1.2 Proof of Proposition 3.2

Proof of Proposition 3.2. To simplify the notation, when there is no danger of confusion, we omit the
dependence of ml[h] on h and use the notation ml, where l = 0, 2.

Under the condition that

sup
x∈M

|ρ̂(x) − ρ̄(x)|
|ρ̄(x)| < ερ < 0.1, (A.14)

we have that

0.9ρ̄(x) < ρ̂(x) < 1.1ρ̄(x), ∀x ∈ M. (A.15)

Recall that

E (α)(f , f ) = ε− d
2 −1

m2

∫
M

∫
M

(f (x) − f (y))2k0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

)
p(x)p(y)

ρ̂(x)αρ̂(y)α
dV(x) dV(y) =: 1©,

and we consider the counterpart of 1© where ρ̂(x) is replaced with ρ̄(x), namely,

2© := ε− d
2 −1

m2

∫
M

∫
M

(f (x) − f (y))2k0

( ‖x − y‖2

ερ̄(x)ρ̂(y)

)
p(x)p(y)

ρ̄(x)αρ̂(y)α
dV(x) dV(y).
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With the operator G(ρ)
ε defined as in (3.6), writing the integration over dV(x) via G(ρ̄)

ε ,

2© = 1

εm2

(∫
M

(pρ̂d/2−α)(y)G(ρ̄)

ερ̂(y)

f 2p

ρ̄α
(y) dV(y) − 2

∫
M

(fpρ̂d/2−α)(y)G(ρ̄)

ερ̂(y)

fp

ρ̄α
(y) dV(y)

+
∫
M

(f 2pρ̂d/2−α)(y)G(ρ̄)

ερ̂(y)

p

ρ̄α
(y) dV(y)

)
. (A.16)

Recall that ρ̄ = p−1/d is in C∞(M) and uniformly bounded from below and above. By Lemma 3.1,

G(ρ̄)

ερ̂(y)

f 2p

ρ̄α
= m0f 2pρ̄

d
2 −α + ερ̂

m2

2
(ωf 2pρ̄1+ d

2 −α + Δ(f 2pρ̄1+ d
2 −α)) + ρ̂2r(2)

1 ,

G(ρ̄)

ερ̂(y)

fp

ρ̄α
= m0fpρ̄

d
2 −α + ερ̂

m2

2
(ωfpρ̄1+ d

2 −α + Δ(fpρ̄1+ d
2 −α)) + ρ̂2r(2)

2 ,

G(ρ̄)

ερ̂(y)

p

ρ̄α
= m0pρ̄

d
2 −α + ερ̂

m2

2
(ωpρ̄1+ d

2 −α + Δ(pρ̄1+ d
2 −α)) + ρ̂2r(2)

3 ,

where ‖r(2)
1 ‖∞ = O[f ,p](ε2), ‖r(2)

2 ‖∞ = O[f ,p](ε2) and ‖r(2)
3 ‖∞ = O[p](ε2) and we omit the evaluation

of all functions at y in the notation. Then, (A.16) becomes

2© = 1

εm2

(∫
M

(pρ̂d/2−α)
{

m0f 2pρ̄
d
2 −α + ερ̂

m2

2
(ωf 2pρ̄1+ d

2 −α + Δ(f 2pρ̄1+ d
2 −α)) + ρ̂2r(2)

1

}

− 2
∫
M

(fpρ̂d/2−α)
{

m0fpρ̄
d
2 −α + ερ̂

m2

2
(ωfpρ̄1+ d

2 −α + Δ(fpρ̄1+ d
2 −α)) + ρ̂2r(2)

2

}

+
∫
M

(f 2pρ̂d/2−α)
{

m0pρ̄
d
2 −α + ερ̂

m2

2
(ωpρ̄1+ d

2 −α + Δ(pρ̄1+ d
2 −α)) + ρ̂2r(2)

3

})

= 1

2

∫
M

pρ̂
d
2 −α+1

{
Δ(f 2pρ̄1+ d

2 −α) − 2f Δ(fpρ̄1+ d
2 −α) + f 2Δ(pρ̄1+ d

2 −α)
}

+ 1

εm2

∫
M

pρ̂
d
2 −α+2(r(2)

1 − 2fr(2)
2 + f 2r(2)

3 )

=: 2©1 + 2©2 ,

where again, we omit the evaluation of all functions at y and the integration over dV(y) in the notation,
and same in below.

We first consider 2©1. Note that, by defining g := pρ̄1+d/2−α , the bracket inside the integrand
becomes

{· · · } = Δ(f 2g) − 2f Δ(fg) + f 2Δg = 2g|∇f |2 = 2pρ̄1+d/2−α|∇f |2 .

We define 2©′
1 by substituting ρ̂ with ρ̄ in 2©1, namely,

2©′
1 := 1

2

∫
M

pρ̄
d
2 −α+1 {· · · } , 2©1 − 2©′

1 = 1

2

∫
M

p(ρ̂
d
2 −α+1 − ρ̄

d
2 −α+1) {· · · } .
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Inserting the expression of {· · · }, by the definition of ρ̄ = p−1/d and pα , we have

2©′
1 =

∫
M

p2ρ̄2+d−2α|∇f |2 =
∫
M

pα|∇f |2 = Epα
(f , f ),

and also

2©1 − 2©′
1 =

∫
M

p2ρ̄1+d/2−α|∇f |2(ρ̂ d
2 −α+1 − ρ̄

d
2 −α+1).

Since p and ρ̄ are positive, we have

| 2©1 − 2©′
1| �

∫
M

p2ρ̄1+d/2−α|∇f |2|ρ̂ d
2 −α+1 − ρ̄

d
2 −α+1|.

Let γ := d/2−α+1 ∈ R. By the mean value theorem and (A.15), for any y, there exists ξ > 0 between
ρ̂(y) and ρ̄(y), ξγ−1 � max{1.1γ−1, 0.9γ−1}ρ̄(y)γ−1 such that

|ρ̂(y)γ − ρ̄(y)γ | = γ ξγ−1|ρ̂(y) − ρ̄(y)| � γ max{1.1γ−1, 0.9γ−1}ρ̄(y)γ−1|ρ̂(y) − ρ̄(y)| � cγ ρ̄(y)γ ερ ,
(A.17)

where the last inequality comes from (A.14) and cγ := γ max{1.1γ−1, 0.9γ−1} is a constant determined
by α and d. Then

| 2©1 − 2©′
1| � cγ ερ

∫
M

p2ρ̄1+d/2−α|∇f |2ρ̄γ = cγ ερ · 2©′
1,

which gives that

2©1 = 2©′
1(1 + O(cγ ερ)) = Epα

(f , f )(1 + O[α](ερ)) , (A.18)

Next we bound 2©2. By definition,

| 2©2| � 1

εm2

∫
M

pρ̂
d
2 −α+2(|r(2)

1 | + 2|f ||r(2)
2 | + |f |2|r(2)

3 |) .

Again, by (A.15), ρ̂(y)d/2−α+2 � max{1.1d/2−α+2, 0.9d/2−α+2}ρ̄(y)d/2−α+2 := c′
αρ̄(y)d/2−α+2. Then

| 2©2| � O[f ,p](ε)

∫
M

c′
αpρ̄

d
2 −α+2 = O[f ,p](ε).

Together with (A.18), we have that

2© = Epα
(f , f )(1 + O[α](ερ)) + O[f ,p](ε). (A.19)

It remains to bound | 2© − 1©| to prove the same bound for 1©. Define

3© := ε− d
2 −1

m2

∫
M

∫
M

(f (x) − f (y))2k0

( ‖x − y‖2

ερ̄(x)ρ̂(y)

)
p(x)p(y)

ρ̂(x)αρ̂(y)α
dV(x) dV(y) .

Then,

3© − 2© = ε− d
2 −1

m2

∫
M

∫
M

(f (x) − f (y))2
(

ρ̄(x)α

ρ̂(x)α
− 1

)
k0

( ‖x − y‖2

ερ̄(x)ρ̂(y)

)
p(x)p(y)

ρ̄(x)αρ̂(y)α
dV(x) dV(y).

(A.20)
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By (A.14) and (A.15), we have that

sup
x∈M

∣∣∣∣ ρ̄(x)α

ρ̂(x)α
− 1

∣∣∣∣ = O[α](ερ), sup
x∈M

∣∣∣∣ ρ̄(x)

ρ̂(x)
− 1

∣∣∣∣ = O[1](ερ) . (A.21)

Note that by definition, 2© � 0. Therefore, by that k0 � 0 and p, ρ̄, ρ̂ > 0,

| 3© − 2©| � O[α](ερ) · ε− d
2 −1

m2

∫
M

∫
M

(f (x) − f (y))2k0

( ‖x − y‖2

ερ̄(x)ρ̂(y)

)
p(x)p(y)

ρ̄(x)αρ̂(y)α
dV(x) dV(y)

= O[α](ερ) 2©.

Together with (A.19), this gives that

3© = 2©(1 + O[α](ερ)) = Epα
(f , f )(1 + O[α](ερ)) + O[f ,p](ε). (A.22)

Meanwhile,

3© − 1©= ε− d
2 −1

m2

∫
M

∫
M

(f (x)−f (y))2
(

k0

( ‖x − y‖2

ερ̄(x)ρ̂(y)

)
− k0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

))
p(x)p(y)

ρ̂(x)αρ̂(y)α
dV(x) dV(y),

and

k0

( ‖x − y‖2

ερ̄(x)ρ̂(y)

)
− k0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

)
= k′

0(ξ)
‖x − y‖2

ερ̄(x)ρ̂(y)

(
1 − ρ̄(x)

ρ̂(x)

)
,

where ξ is between ‖x−y‖2

ερ̄(x)ρ̂(y) and ‖x−y‖2

ερ̂(x)ρ̂(y) . By (A.15), ξ � ‖x−y‖2

ε1.1ρ̄(x)ρ̂(y) , and then,

|k′
0(ξ)| � a1e−aξ � a1e−a ‖x−y‖2

ε1.1ρ̄(x)ρ̂(y) .

By (A.21), we have that

| 3© − 1©| � ε− d
2 −1

m2

∫
M

∫
M

(f (x) − f (y))2|k′
0(ξ)| ‖x − y‖2

ερ̄(x)ρ̂(y)

∣∣∣∣1 − ρ̄(x)

ρ̂(x)

∣∣∣∣ p(x)p(y)

ρ̂(x)αρ̂(y)α
dV(x) dV(y)

� O(ερ)
ε− d

2 −1

m2

∫
M

∫
M

(f (x) − f (y))2a1e− a
1.1

‖x−y‖2

ερ̄(x)ρ̂(y)
‖x − y‖2

ερ̄(x)ρ̂(y)

p(x)p(y)

ρ̂(x)αρ̂(y)α
dV(x) dV(y)

= O(ερ)
ε− d

2 −1

m2

∫
M

∫
M

(f (x) − f (y))2k1

( ‖x − y‖2

ερ̄(x)ρ̂(y)

)
p(x)p(y)

ρ̂(x)αρ̂(y)α
dV(x) dV(y)

= O(ερ)
m2[k1]

m2[k0]
· 3©′ , (A.23)

where 3©′ is defined by replacing k0 to be k1 in 3©, where

k1(r) := a1re− a
1.1 r and r � 0.

Since k1 satisfies Assumption 3.1, our analysis of 2© and 3© with k1 so far applies. Thus, by (A.19) and
(A.22), we have

3©′ = Epα
(f , f )(1 + O[α](ερ)) + O[f ,p](ε),
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and then

| 3© − 1©| = O(ερ)(Epα
(f , f )(1 + O[α](ερ)) + O[f ,p](ε)) = Epα

(f , f )O[α](ερ) + O[f ,p](εερ).

Inserting (A.22) gives that

1© = 3© + Epα
(f , f )O[α](ερ) + O[f ,p](εερ) = Epα

(f , f )(1 + O[α](ερ)) + O[f ,p](ε).

This finishes the proof since E (α)(f , f ) = 1©. �

A.1.3 Proofs in Section 3.3 (Theorems 3.3 and 3.4)

Proof of Theorem 3.3. Suppose f is not a constant function because otherwise EN(f , f ) = Epα
(f , f ) = 0

and the theorem holds. By definition,

EN(f , f ) = 1

N2

N∑
i,j=1

ε− d
2 −1

m2
(f (xi) − f (xj))

2W(α)
ij = 1

N2

N∑
i �=j, i,j=1

Vij, (A.24)

where

Vij := 1

εm2
(f (xi) − f (xj))

2K̂(xi, xj).

As (A.24) is a V-statistic, we study EEN(f , f ) and its variation away from EEN(f , f ), respectively.
• Calculation of EEN(f , f ). By definition,

EEN(f , f ) = N − 1

N
EV1,2 and EV1,2 = E (α)(f , f ).

Applying Proposition 3.2 gives

EV1,2 = Epα
(f , f )(1 + O[α](ερ)) + O[f ,p](ε). (A.25)

• Bound the deviation of EN(f , f ) − EEN(f , f ). We use the decoupling trick to bound the deviation
of a V-statistic by that of an independent sum over N

2 terms. Specifically, define Ṽij = Vij − EVij. For
any t > 0, the Markov inequality gives us

Pr

⎡
⎣ 1

N(N − 1)

N∑
i �=j,i,j=1

Ṽij > t

⎤
⎦ � e−st

E exp

⎧⎨
⎩s

1

N(N − 1)

N∑
i �=j,i,j=1

Ṽij

⎫⎬
⎭ (A.26)
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38 X. CHENG AND H.T. WU

where s > 0 will be determined later. By a direct expansion, and denote by SN the permutation group,
we have

e−st
E exp

⎧⎨
⎩s

1

N(N − 1)

N∑
i �=j,i,j=1

Ṽij

⎫⎬
⎭ = e−st

E exp

⎧⎨
⎩s

1

N!

∑
σ∈SN

1

N(N − 1)

N∑
i �=j,i,j=1

Ṽσ(i),σ(j)

⎫⎬
⎭

=e−st
E exp

⎧⎨
⎩s

1

N!

∑
σ∈SN

1

N/2

N/2∑
l=1

Ṽσ(2l−1),σ(2l)

⎫⎬
⎭ � e−st

E
1

N!

∑
σ∈SN

exp

⎧⎨
⎩s

1

N/2

N/2∑
l=1

Ṽσ(2l−1),σ(2l)

⎫⎬
⎭

=e−st
E exp

⎧⎨
⎩s

1

N/2

N/2∑
l=1

Ṽ2l−1,2l

⎫⎬
⎭ ,

where we apply the Jensen’s inequality in the inequality. Then, as in the derivation of the classical
Bernstein’s inequality, one can bound the probability in (A.26) by

Pr[· · · ] � exp

{
−

N
2 t2

2ν + 2
3 tL

}
, where ν := EṼ2

1,2, |Ṽ1,2| � L. (A.27)

Below, we control ν and L. We first show that we can make L = Θ [f ,p](ε− d
2 ). Recall that

V1,2 = ε− d
2 −1

m2
k0

( ‖x1 − x2‖2

ερ̂(x1)ρ̂(x2)

)
(f (x1) − f (x2))

2

ρ̂(x1)
αρ̂(x2)

α
.

By Assumption A.3(C2’) for the kernel k0,

|V1,2| � ε− d
2 −1

m2
a0e

−a

(
‖x1−x2‖2

ερ̂(x1)ρ̂(x2)

)
(f (x1) − f (x2))

2

ρ̂(x1)
αρ̂(x2)

α
.

By the assumption and (A.15), ρ̂(x) � 1.1ρ̄(x) < 1.1ρmax for any x. Then when ‖x1 − x2‖ � δε :=√
ε1.12ρ2

max
5+d/2

a log 1
ε
,

e
−a

(
‖x1−x2‖2

ερ̂(x1)ρ̂(x2)

)
� e−(5+d/2) log 1

ε = ε5+d/2

and then

|V1,2| � a0ε
4

m2

(2‖f ‖∞)2

(0.9ρmin)
2α

= O[f ,p](ε4), when ‖x1 − x2‖ � δε .

Note that δε is of order
√

ε log(ε−1), since ε = o(1), when ε is small enough such that δε < δ0 in
Lemma A.3,

|f (x1) − f (x2)| � ‖∇Mf ‖∞1.1‖x1 − x2‖ =: Lf ‖x1 − x2‖, for all x2 ∈ Bδε
(x1) ∩ M. (A.28)
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Then, when ‖x1 − x2‖ < δε ,

|V1,2| � ε− d
2 −1

m2
a0e

−a

(
‖x1−x2‖2

ερ̂(x1)ρ̂(x2)

)
L2

f
‖x1 − x2‖2

ρ̂(x1)ρ̂(x2)
ρ̂(x1)

1−αρ̂(x2)
1−α

� ε− d
2

a0L2
f

m2
a′

1‖ max{0.91−α , 1.11−α}ρ̄1−α‖2∞,

where a′
1 equals an absolute constant times a0

a . Combining both cases, |V1,2| = O[f ,p](ε− d
2 ), and we

denote

|Ṽ1,2| � L = Θ [f ,p](ε− d
2 ).

We now compute the variance ν, and show that ν � ε−d/2Vf where Vf = Θ [f ,p](1). By definition,

EV2
1,2 =

∫
M

∫
M

ε−d−2

m2[k0]2 k2
0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

)
(f (x) − f (y))4

ρ̂(x)2αρ̂(y)2α
p(x)p(y) dV(x) dV(y) = ε−d/2−1

m2[k0]2

m2[k2
0]

· 4© ,

(A.29)

where

4© := ε−d/2−1

m2[k2
0]

∫
M

∫
M

k2
0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

)
(f (x) − f (y))4

ρ̂(x)2αρ̂(y)2α
p(x)p(y) dV(x) dV(y).

Let δε be as above, and we separate the integral within and outside {‖x − y‖ < δε} and make
4© = 4©1 + 4©2. Specifically, we define

4©2 := ε−d/2−1

m2[k2
0]

∫
M

∫
M

1{‖x−y‖�δε}k
2
0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

)
(f (x) − f (y))4

ρ̂(x)2αρ̂(y)2α
p(x)p(y) dV(x) dV(y) .

By a direct bound, we have

4©2 � ε−d/2−1

m2[k2
0]

∫
M

∫
M

a2
0e

−2a

(
‖x−y‖2

ερ̂(x)ρ̂(y)

)
1{‖x−y‖�δε}(f (x) − f (y))4ρ̂(x)−2αρ̂(y)−2αp(x)p(y) dV(x) dV(y)

� ε−d/2−1

m2[k2
0]

a2
0ε

10+d
∫
M

∫
M

(f (x)−f (y))4 max{0.9−2α, 1.1−2α}2ρ̄(x)−2αρ̄(y)−2αp(x)p(y) dV(x) dV(y)

=O[f ,p](ε
d
2 +9).

Define

4©1 := ε−d/2−1

m2[k2
0]

∫
M

∫
M

1{‖x−y‖<δε}k
2
0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

)
(f (x) − f (y))4

ρ̂(x)2αρ̂(y)2α
p(x)p(y) dV(x) dV(y) .

To control 4©1, which involves an integration over the δε ball, note that for y ∈ Bδε
(x) ∩ M, by

Lemma A.3,

f (y) = f (x) + ∇f (x) · (y − x) + O[f ](‖x − y‖2),
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and thus,

(f (y) − f (x))4 = (∇f (x) · (y − x))4 + O[f ](‖x − y‖5) � (|∇f (x)|‖y − x‖)4 + O[f ](‖x − y‖5) .

We then have

4©1 � ε−d/2−1

m2[k2
0]

∫
M

∫
M

1{‖x−y‖<δε}k
2
0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

) |∇f (x)|4‖x − y‖4 + O[f ](‖x − y‖5)

ρ̂(x)2αρ̂(y)2α

p(x)p(y) dV(x) dV(y)

= ε−d/2−1

m2[k2
0]

∫
M

∫
M

1{‖x−y‖<δε}k
2
0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

) |∇f (x)|4‖x − y‖4

ρ̂(x)2αρ̂(y)2α
p(x)p(y) dV(x) dV(y)

+ ε−d/2−1

m2[k2
0]

∫
M

∫
M

1{‖x−y‖<δε}k
2
0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

)
O[f ](‖x − y‖5)

ρ̂(x)2αρ̂(y)2α
p(x)p(y) dV(x) dV(y) =: 5© + 6©.

We establish a lemma, which can be proved similarly as in deriving the limit of 1© above, namely, by
replacing ρ̂(x) with ρ̄(x) first and then putting back. The proof is postponed to Appendix A.3.

Lemma A.1 Under (A.14) and (A.15), suppose k0 satisfies Assumption 3.1, f ∈ C∞(M) and α ∈ R,
then

ε− d
2

∫
M

∫
M

f (x)2k0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

)
p(x)p(y)

ρ̂(x)αρ̂(y)α
dV(x) dV(y) = m0[k0]

∫
p2f 2ρ̄d−2α + O[f ,p](ε, ερ).

We bound 5© and 6©, respectively, where 5© will dominate. By a direct bound, we have

| 6©|�O[f ](ε
3
2 )

ε−d/2

m2[k2
0]

∫
M

∫
M

k2
0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

)( ‖x − y‖2

ερ̂(x)ρ̂(y)

) 5
2

ρ̂(x)
5
2 −2αρ̂(y)

5
2 −2αp(x)p(y) dV(x) dV(y).

Note that there is b6 > 0, determined by a0 and a, such that

k0(r)
2r5/2 � a2

0e−2arr5/2 � b6e−ar, ∀r > 0.

Thus,

k2
0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

)( ‖x − y‖2

ερ̂(x)ρ̂(y)

) 5
2

� b6e−a ‖x−y‖2

ερ̂(x)ρ̂(y) ,

and then

| 6©| � O[f ](ε
3
2 )

ε−d/2

m2[k2
0]

∫
M

∫
M

b6e
−a ‖x−y‖2

ερ̂(x)ρ̂(y)
p(x)p(y)

ρ̂(x)2α− 5
2 ρ̂(y)2α− 5

2

dV(x) dV(y).

Since the kernel k6(r) := b6e−ar satisfies Assumption 3.1, applying Lemma A.1 with f replaced by 1
and α replaced by 2α − 5

2 gives that

| 6©| = O[f ](ε
3
2 )

1

m2[k2
0]

(
m0[k6]

∫
p2ρ̄d−2(2α− 5

2 )+O[p](ε, ερ)

)
= O[f ,p](ε

3
2 ).

Write G(x) = |∇f (x)|2. Clearly, since f ∈ C∞(M), G is in C∞(M). Define

k5(r) := k2
0(r)r

2 .
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Then, k5 satisfies Assumption 3.1 and m0[k5] = dm2[k2
0]. As a result,

5© � ε−d/2−1

m2[k2
0]

∫
M

∫
M

G(x)2k2
0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

) ‖x − y‖4

ρ̂(x)2αρ̂(y)2α
p(x)p(y) dV(x) dV(y)

= ε

m2[k2
0]

ε−d/2
∫
M

∫
M

G(x)2k2
0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

)( ‖x − y‖2

ερ̂(x)ρ̂(y)

)2
p(x)p(y)

ρ̂(x)2α−2ρ̂(y)2α−2 dV(x) dV(y)

= ε

m2[k2
0]

ε−d/2
∫
M

∫
M

G(x)2k5

( ‖x − y‖2

ερ̂(x)ρ̂(y)

)
p(x)p(y)

ρ̂(x)2α−2ρ̂(y)2α−2 dV(x) dV(y)

= ε

m2[k2
0]

·
(

m0[k5]
∫

p2G2ρ̄d−2(2α−2) + O[f ,p](ε, ερ)

)

= εd
∫

p2|∇f |4ρ̄d−2(2α−2) + O[f ,p](ε2, εερ)

= εd
∫

|∇f |4p1+ 4(α−1)
d + O[f ,p](ε2, εερ) ,

where the third equality holds by applying Lemma A.1 with f replaced by G and α replaced by 2α − 2.
Putting together, we have that

4© � 5© + 6© + 4©2

� εd
∫

|∇f |4p1+ 4(α−1)
d +O[f ,p](ε2, εερ) + O[f ,p](ε

3
2 ) + O[f ,p](ε

d
2 +9)

= εd
∫

|∇f |4p1+ 4(α−1)
d + O[f ,p](ε

3
2 , εερ) .

Plugging the above bounds back to (A.29), this gives that

Var(V1,2) � EV2
1,2 � ε−d/2−1

m2[k0]2

m2[k2
0]

(
εd

∫
|∇f |4p1+ 4(α−1)

d + O[f ,p](ε
3
2 , εερ)

)

= m2[k2
0]

m2[k0]2 ε−d/2
(

d
∫

|∇f |4p1+ 4(α−1)
d + O[f ,p](ε

1
2 , ερ)

)
.

Since f is not constant valued,
∫ |∇f |4p1+ 4(α−1)

d > 0, and by that ε1/2, ερ = o(1), we have that with
sufficiently large N,

ν = Var(V1,2) � Θ [1](ε−d/2)

∫
|∇f |4p1+ 4(α−1)

d = ε−d/2Vf ,

where

Vf := Θ [1]
(∫

|∇f |4p1+ 4(α−1)
d

)
.
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Back to (A.27), by that ν � ε−d/2Vf and then

exp{−
N
2 t2

2ν + 2
3 tL

} � exp{−
N
2 t2

2ε−d/2Vf + 2
3 tL

}, (A.30)

we now control the r.h.s. Let s = Θ(1) to be determined, and we set

t =
√

ε−d/2Vf
s log N

N
.

Since L = Θ [f ,p](ε−d/2), and by the condition that εd/2N = Ω(log N), log N
Nεd/2 = o(1), and hence

t = o[f ,p](1). With large N,

tL

ε−d/2Vf
= Θ [f ,p]

(√
ε−d/2

Vf

s log N

N

)
= o[f ,p](1) .

Therefore, when N is sufficiently large, we have tL
ε−d/2Vf

< 3. Then (A.30) bounds the tail probability

in (A.27) to be less than exp{− Nt2

8ε−d/2Vf
} = N−s/8. Let s = 80, and use the same argument to bound

Pr[ 1
N(N−1)

∑
i �=j Ṽij < −t]. We have that w.p. greater than 1 − 2N−10

∣∣∣∣∣∣
1

N(N − 1)

N∑
i �=j,i,j=1

Ṽij

∣∣∣∣∣∣ �
√

ε−d/2Vf
80 log N

N
= O

(√
log N

Nεd/2

∫
|∇f |4p1+ 4(α−1)

d

)
. (A.31)

Call the event set that (A.31) holds the event EDir.
At last,

EN(f , f ) =
(

1 − 1

N

)
· 1

N(N − 1)

∑
i �=j

Vij,

and with (A.25) we have shown that under good event EDir,

1

N(N − 1)

∑
i �=j

Vij = Epα
(f , f )(1 + O[α](ερ)) + O[f ,p](ε) + O

(√
log N

Nεd/2

∫
|∇f |4p1+ 4(α−1)

d

)
,

which is O[f ,p](1), thus EN(f , f ) differs from it by O[f ,p]( 1
N ) = o[f ,p](

√
1
N ), which is dominated by the

variance error. This finishes the proof of the theorem. �
Proof of Theorem 3.4. The proof uses same techniques as that of Theorem 3.3 and is simplified
due to fixed bandwidth kernel. We track the influence of β and εp which differs from the proof of
Theorem 3.3. Inherit the notations in the proof of Theorem 3.3, the random variable Vij is now

Vij := ε− d
2

εm2
(f (xi) − f (xj))

2k0

(‖xi − xj‖2

ε

)
1

p̂(xi)
β p̂(xj)

β
.
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Similarly as before, we define

1© := EVij = 1

εm2

∫ ∫
(f (x) − f (y))2ε− d

2 k0

(‖x − y‖2

ε

)
p(x)p(y)

p̂(x)β p̂(y)β
dV(x) dV(y),

and

2© := 1

εm2

∫ ∫
(f (x) − f (y))2ε− d

2 k0

(‖x − y‖2

ε

)
p(x)1−βp(y)

p̂(y)β
dV(x) dV(y),

3© := 1

εm2

∫ ∫
(f (x) − f (y))2ε− d

2 k0

(‖x − y‖2

ε

)
p(x)1−βp(y)1−β dV(x) dV(y).

Define q := p1−β which is a non-negative power of p because β � 1, thus q ∈ C∞(M). We then have

3© = 1

εm2

∫ ∫
(f (x) − f (y))2ε− d

2 k0

(‖x − y‖2

ε

)
q(x)q(y) dV(x) dV(y)

= 2

εm2

∫ ∫
(f (x)2 − f (x)f (y))ε− d

2 k0

(‖x − y‖2

ε

)
q(x)q(y) dV(x) dV(y)

= 2

εm2

(∫
(qf 2)Gε(q) −

∫
(qf )Gε(fq)

)
.

By Lemma A.5,

Gε(q) = m0q + ε
m2

2
(wq + Δq) + O[q(�4)](ε2),

Gε(fq) = m0fq + ε
m2

2
(wfq + Δ(fq)) + O[(fq)(�4)](ε2),

and thus,

3© =
∫

qf (f Δq − Δ(fq)) + O[f ,q](ε) = −
∫

q2f (Δf + 2
∇q

q
· ∇f ) + O[f ,q](ε)

= −〈f , Δpβ
f 〉pβ

+ O[f ,q](ε) (pβ := q2 = p2−2β )

= Epβ
(f , f ) + O[f ,q](ε). (A.32)

To bound | 3© − 2©|: because

3© − 2© = 1

εm2

∫ ∫
(f (x) − f (y))2ε− d

2 k0

(‖x − y‖2

ε

)
p(x)1−βp(y)(p(y)−β − p̂(y)−β) dV(x) dV(y),

by the positivity of p and k0,

| 3© − 2©| � 1

εm2

∫ ∫
(f (x) − f (y))2ε− d

2 k0

(‖x − y‖2

ε

)
p(x)1−βp(y)|p(y)−β − p̂(y)−β | dV(x) dV(y).
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Note that for any y, by the mean value theorem and that |p̂(y)− p(y)|/p(y) < εp < 0.1, ∃ξ between p̂(y)

and p(y) and thus ξ−β−1 � max{1.1−β−1, 0.9−β−1}p(y)−β−1, and then we have

|p̂(y)−β − p(y)−β | = |β|ξ−β−1|p̂(y) − p(y)| � |β| max{1.1−β−1, 0.9−β−1}p(y)−β−1|p̂(y) − p(y)|
� cβ |β|p(y)−βεp, cβ := max{1.1−β−1, 0.9−β−1}. (A.33)

Thus,

| 3©− 2©|� |β|cβεp
1

εm2

∫ ∫
(f (x)−f (y))2ε− d

2 k0

(‖x−y‖2

ε

)
p(x)1−βp(y)1−β dV(x) dV(y)=|β|cβεp 3©.

Combined with (A.32), we have that

2© = 3©(1 + O[1](βcβεp)) = (Epβ
(f , f ) + O[f ,q](ε))(1 + O[1](βcβεp))

= Epβ
(f , f )(1 + O[1](cββεp)) + O[f ,q](ε). (A.34)

To bound | 2© − 2©|: by (A.33)

| 2© − 1©| � 1

εm2

∫ ∫
(f (x) − f (y))2ε− d

2 k0

(‖x−y‖2

ε

)
p(y)p̂(y)−βp(x)|p(x)−β −p̂(x)−β | dV(x) dV(y)

� |β|cβεp
1

εm2

∫ ∫
(f (x) − f (y))2ε− d

2 k0

(‖x − y‖2

ε

)
p(y)p̂(y)−βp(x)1−β dV(x) dV(y) = |β|cβεp 2©.

Then, together with (A.34), we have that

EVij = 1© = 2©(1 + O[1](βcβεp)) = (Epβ
(f , f )(1 + O[1](βcβεp)) + O[f ,q](ε))(1 + O[1](βcβεp))

= Epβ
(f , f )(1 + O[1](βcβεp)) + O[f ,q](ε), and O[f ,q](ε) = O[f ,p,β](ε) by definition.

In the special case where β = 0, we have q = p, and 1© = 2© = 3©. Then (A.32) gives that

EVij = 1© = Ep2(f , f ) + O[f ,p](ε).

The boundedness of |Vij| follows by the same argument of truncation on the δε ball as in the proof
of Theorem 3.3, which gives

|Vij| � L = Θ [f ,p,β](ε−d/2).

The variance

Var(Vij) � EV2
ij =

∫ ∫
ε−d−2

m2
2

(f (x) − f (y))4k2
0

(‖xi − xj‖2

ε

)
p(x)p(y)

p̂(x)2β p̂(y)2β
dV(x) dV(y),

and, similarly as in the proof of Theorem 3.3, we can show that

EV2
ij � ε−d/2Vf , Vf = Θ [1](

∫
|∇f |4p2−4β).

Thus, by the V-statistics decoupling argument, w.p. higher than 1 − 2N−10, the variance error is

O[1]

(√
log N

Nεd/2

∫
|∇f |4p2−4β

)
.
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The normalization 1
N2 and 1

N(N−1)
in the V-statistics incurs higher order error, and putting together bias

and variance error proves the theorem. �

A.1.4 Proofs in Section 3.4 (Theorems 3.5, 3.6, 3.7 and 3.8)

Proof of Theorem 3.5. Define m̃ := m2
2m0

, and rewrite (3.10) as

L(α)

rw′ f (x) = 1

εm̃ρ̂(x)2

(
1
N

∑N
j=1 Fj(x)

1
N

∑N
j=1 Gj(x)

− f (x)

)
, (A.35)

where

Fj := ε−d/2k0

( ‖x − xj‖2

ερ̂(x)ρ̂(xj)

)
f (xj)

ρ̂(xj)
α

, Gj := ε−d/2k0

( ‖x − xj‖2

ερ̂(x)ρ̂(xj)

)
1

ρ̂(xj)
α

. (A.36)

Note that since xj ∼ p i.i.d., {Fj}N
j=1 are i.i.d. rvs, so are {Gj}N

j=1, while Fjs and Gjs are dependent. The
expectations are

EF(x) = ε−d/2
∫
M

k0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

)
f (y)

ρ̂(y)α
p(y) dV(y),

EG(x) = ε−d/2
∫
M

k0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

)
1

ρ̂(y)α
p(y) dV(y).

Following the strategy in [5,42] to analyze the bias and variance errors respectively, we will show that

• The bias:

1

εm̃ρ̂(x)2

(
EF(x)

EG(x)
− f (x)

)
?= L(α)f (x) + O[f ,p]

(
ε,

ερ

ε

)
(A.37)

• The variance:

1

εm̃ρ̂(x)2

(
1
N

∑N
j=1 Fj(x)

1
N

∑N
j=1 Gj(x)

− EF(x)

EG(x)

)
?= O[1]

(
‖∇f ‖∞p(x)1/d

√
log N

Nεd/2+1

)
(A.38)

Proof of (A.37): by the definition of G(ρ)
ε in (3.6),

EF(x) = ρ̂(x)d/2G(ρ̂)

ερ̂(x)(
fp

ρ̂α
)(x),

yet fp
ρ̂α is not C4. In order to apply Lemmas 3.1 and 3.2, we compare to replacing it with fp

ρ̄α :

Lemma A.2 Suppose notation and condition are the same as those in Lemmas 3.1 and 3.2. When ε is
sufficiently small, for some constant c′′

ρ determined by (M, k0, ρmax, ρmin),

sup
x∈M

|G(ρ̃)
ε (

f

ρ̃α
)(x) − G(ρ̃)

ε (
f

ρα
)(x)| � c′′

ρ‖f ‖∞ε = O[f ,ρ](ε).
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The proof of Lemma A.2 is postponed to Appendix A.3. Applying Lemmas 3.1, 3.2 and A.2,
where ρ = ρ̄, ρ̃ = ρ̂ and ‘f ’ in the lemmas is replaced with fp, we have

EF(x) = ρ̂(x)d/2
(

G(ρ̂)

ερ̂(x)(
fp

ρ̄α
)(x) + O[f ,p](ερ)

)
(by Lemma A.2)

= ρ̂(x)d/2
(

G(ρ̄)

ερ̂(x)(
fp

ρ̄α
)(x) + O[f ,p](ερ) + O[f ,p](ερ)

)
(by Lemma 3.2)

= ρ̂(x)d/2
(

m0fpρ̄
d
2 −α(x) + ερ̂

m2

2
(ωfpρ̄1+ d

2 −α + Δ(fpρ̄1+ d
2 −α))(x) + ρ̂2(x)O[f ,p](ε2) + O[f ,p](ερ)

)
,

where the residual terms in big-O are bounded uniformly for all x ∈ M. Below, we omit the variable x
in the notation when there is no confusion.

Because 0.9ρ̄ � ρ̂ � 1.1ρ̄ for all x ∈ M, for any power γ ∈ R, ρ̂γ lies between ρ̄γ 1.1γ and ρ̄γ 0.9γ

(the order depending on the sign of γ ), and then uniformly bounded between (0.9ρmin)
γ and (1.1ρmax)

γ ,
both of which are Θ [p](1) constants. We can also bound |ρ̂γ − ρ̄γ | as in (A.17), and in summary we
have

sup
x∈M

|ρ̂γ (x)| = O[p](1), sup
x∈M

|ρ̂γ (x) − ρ̄γ (x)| � O[p](ερ). (A.39)

We proceed with these bounds. We have shown, omitting the evaluation of x in the notation, that

EF = ρ̂d/2
(

m0fpρ̄
d
2 −α + ερ̂

m2

2
(ωfpρ̄1+ d

2 −α + Δ(fpρ̄1+ d
2 −α))

)
+ O[f ,p](ε2, ερ),

and by (A.39) with γ = d
2 and d

2 + 1,

EF = ρ̄d/2
(

m0fpρ̄
d
2 −α + ερ̄

m2

2
(ωfpρ̄1+ d

2 −α + Δ(fpρ̄1+ d
2 −α))

)
+ O[f ,p](ε2, ερ). (A.40)

Similarly, we have

EG(x) = ρ̂(x)d/2G(ρ̂)

ερ̂(x)(
p

ρ̂α
)(x)

= ρ̄d/2
(

m0pρ̄
d
2 −α + ερ̄

m2

2
(ωpρ̄1+ d

2 −α + Δ(pρ̄1+ d
2 −α))

)
+ O[p](ε2, ερ), (A.41)

and expanding EG to the O(ε) term only gives that

EG(x) = m0pρ̄d−α(x) + rG(x), ‖rG‖∞ = O[p](ε, ερ).

Because infx∈M m0pρ̄d−α(x) is a strictly positive constant depending on p, and ε and ερ are o(1), thus
when N is large and the threshold depends on (M, p, α), ‖rG‖∞ < infx∈M m0pρ̄d−α(x). Then for any
x ∈ M, |rG(x)| < m0pρ̄d−α(x), and we have

1

EG(x)
= 1

m0pρ̄d−α(x)

∞∑
l=0

(
− rG(x)

m0pρ̄d−α(x)

)l

= 1

m0pρ̄d−α(x)
+ O[p](ε, ερ). (A.42)

Meanwhile,

EF(x) − f (x)EG(x) = ε
m2

2
ρ̄d/2+1

[
Δ(fpρ̄1+ d

2 −α) − f Δ(pρ̄1+ d
2 −α)

]
+ O[f ,p](ε2, ερ).
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Note that the quantity in the square brackets

[· · · ] = pρ̄1+ d
2 −α

(
Δf + 2

∇p

p
· ∇f + (2 + d − 2α)

∇ρ̄

ρ̄
· ∇f

)
,

and then by the definition of L(α)
ρ in (3.1), and that L(α)

ρ̄ = L(α), we have

EF(x) − f (x)EG(x) = ε
m2

2
pρ̄d+2−αL(α)f + O[f ,p](ε2, ερ). (A.43)

Putting together, we have

EF(x)

EG(x)
− f (x) = EF(x) − f (x)EG(x)

EG(x)

=
(
ε

m2

2
pρ̄d+2−αL(α)f + O[f ,p](ε2, ερ)

)( 1

m0pρ̄d−α(x)
+ O[p](ε, ερ)

)

= ε
m2

2m0
ρ̄2L(α)f (x) + O[f ,p]

(
ε2, ερ

)
+ O[f ,p]

(
ε2, εερ

)

= εm̃ρ̄2L(α)f (x) + O[f ,p]
(
ε2, ερ

)
, (A.44)

and then

1

εm̃ρ̄2

(
EF(x)

EG(x)
− f (x)

)
= L(α)f (x) + O[f ,p]

(
ε,

ερ

ε

)
= O[f ,p](1).

Finally, by (A.39) with γ = −2,∣∣∣∣ 1

εm̃

(
1

ρ̂(x)2 − 1

ρ̄(x)2

)(
EF(x)

EG(x)
− f (x)

)∣∣∣∣ = O[p](ερ)
1

εm̃ρ̄2

∣∣∣∣EF(x)

EG(x)
− f (x)

∣∣∣∣ = O[p](ερ)O[f ,p](1),

and, using triangle inequality, this together with (A.44) gives the following

1

εm̃ρ̂2(x)

(
EF(x)

EG(x)
− f (x)

)
= O[f ,p](ερ) + L(α)f (x) + O[f ,p]

(
ε,

ερ

ε

)
,

where the constants in O[f ,p](·) are uniform for x ∈ M. This proves (A.37).
Proof of (A.38): by definition, we have

1
N

∑N
j=1 Fj(x)

1
N

∑N
j=1 Gj(x)

− EF(x)

EG(x)
=

1
N

∑N
j=1(Fj(x)EG(x) − Gj(x)EF(x))

EG(x) · 1
N

∑N
j=1 Gj(x)

=:
1
N

∑N
j=1 Yj(x)

EG(x) · 1
N

∑N
j=1 Gj(x)

, (A.45)

where Yj(x) = Fj(x)EG(x)−Gj(x)EF(x). Below we omit x, which is fixed, in the notation. We consider

the concentration of 1
N

∑N
j=1 Gj and 1

N

∑N
j=1 Yj, respectively.

We have shown in (A.41) that

EG = m0pρ̄d−α + O[p](ε, ερ) = Θ [1](m0pρ̄d−α),
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and by the boundedness of k0 and uniform boundedness of ρ̂, |Gj| � LG = Θ [p](ε−d/2). Using the same

argument to analyze the operator G(ρ̂)

ερ̂(x) as that in Lemmas 3.1, 3.2 and A.2, the variance

Var(Gj) � EG2
j =

∫
M

ε−dk2
0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

)
p(y)

ρ̂(y)2α
dV(y)

= ε−d/2ρ̂(x)d/2G(ρ̂)

ερ̂(x)[k
2
0](

p

ρ̂2α
)(x)

= ε−d/2

{
m0[k2

0]pρ̄d−2α + ε
m2[k2

0]

2
ρ̄1+ d

2 (ωpρ̄1+ d
2 −2α + Δ(pρ̄1+ d

2 −2α)) + O[p]
(
ε2, ερ

)}

= ε−d/2
{

m0[k2
0]pρ̄d−2α + O[p]

(
ε, ερ

)}
(A.46)

� ν̄G(x) = Θ(ε−d/2m0[k2
0]pρ̄d−2α(x)) with large N, since pρ̄d−2α(x) � Θ [p](1) > 0 for all x.

By that log N
Nεd/2 = o(1), when N is large,

√
40 log N

N ν̄G(x) <
3ν̄G(x)

LG
for all x, and then w.p. higher

than > 1 − 2N−10, ∣∣∣∣∣∣
1

N

N∑
j=1

Gj − EG

∣∣∣∣∣∣ �
√

40 log N

N
ν̄G = O[p]

(√
log N

Nεd/2

)
,

which we define as the good event E2. The threshold of large N needed for Var(Gj) � ν̄G(x) and for
applying the sub-Gaussian tail in Bernstein inequality depends on (M, p, α). Under E2,

1

N

N∑
j=1

Gj = m0pρ̄d−α + O[p](ε, ερ) + O[p]

(√
log N

Nεd/2

)
= Θ(m0pρ̄d−α) ,

and then

EG · 1

N

N∑
j=1

Gj = Θ((m0pρ̄d−α)2) . (A.47)

To analyze the independent sum 1
N

∑N
j=1 Yj, first note that EYj = 0. For boundedness of Yj, because

EG = O[p](1), EF = O[f ,p](1), |Gj| � LG = Θ [p](ε−d/2), |Fj| � LF = Θ [f ,p](ε−d/2), (A.48)

we have that

|Yj| � |Fj||EG| + |Gj||EF| � LY = Θ [f ,p](ε−d/2).

For the variance of Yj,

EY2
j = E(FjEG − GjEF)2 = EF2(EG)2 + EG2(EF)2 − 2E(FG)EFEG,
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and we have

EF2 =
∫
M

ε−dk2
0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

)
f (y)2p(y)

ρ̂(y)2α
dV(y)

= ε−d/2ρ̂(x)d/2G(ρ̂)

ερ̂(x)[k
2
0](

f 2p

ρ̂2α
)(x)

= ε−d/2

{
m0[k2

0]f 2pρ̄d−2α+ε
m2[k2

0]

2
ρ̄1+ d

2 (ωf 2pρ̄1+ d
2 −2α+Δ(f 2pρ̄1+ d

2 −2α))+O[f ,p]
(
ε2, ερ

)}
,

E[FG] =
∫
M

ε−dk2
0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

)
f (y)p(y)

ρ̂(y)2α
dV(y)

= ε−d/2ρ̂(x)d/2G(ρ̂)

ερ̂(x)[k
2
0](

fp

ρ̂2α
)(x)

= ε−d/2

{
m0[k2

0]fpρ̄d−2α + ε
m2[k2

0]

2
ρ̄1+ d

2 (ωfpρ̄1+ d
2 −2α + Δ(fpρ̄1+ d

2 −2α)) + O[f ,p]
(
ε2, ερ

)}
.

Together with (A.46), (A.40) and (A.41), and defining m′
0 := m0[k2

0] and m′
2 := m2[k2

0], we have that

EY2
j = ε−d/2

{
m′

0f 2pρ̄d−2α + ε
m′

2

2
ρ̄1+ d

2 (ωf 2pρ̄1+ d
2 −2α + Δ(f 2pρ̄1+ d

2 −2α)) + O[f ,p]
(
ε2, ερ

)}

·
{

m0pρ̄d−α + ε
m2

2
ρ̄d/2+1(ωpρ̄1+ d

2 −α + Δ(pρ̄1+ d
2 −α)) + O[p]

(
ε2, ερ

)}2

+ ε−d/2
{

m′
0pρ̄d−2α + ε

m′
2

2
ρ̄1+ d

2 (ωpρ̄1+ d
2 −2α + Δ(pρ̄1+ d

2 −2α)) + O[p]
(
ε2, ερ

)}

·
{

m0fpρ̄d−α + ε
m2

2
ρ̄d/2+1(ωfpρ̄1+ d

2 −α + Δ(fpρ̄1+ d
2 −α)) + O[f ,p]

(
ε2, ερ

)}2

− 2ε−d/2
{

m′
0fpρ̄d−2α + ε

m′
2

2
ρ̄1+ d

2 (ωfpρ̄1+ d
2 −2α + Δ(fpρ̄1+ d

2 −2α)) + O[f ,p]
(
ε2, ερ

)}

·
{

m0fpρ̄d−α + ε
m2

2
ρ̄d/2+1(ωfpρ̄1+ d

2 −α + Δ(fpρ̄1+ d
2 −α)) + O[f ,p]

(
ε2, ερ

)}
·
{

m0pρ̄d−α + ε
m2

2
ρ̄d/2+1(ωpρ̄1+ d

2 −α + Δ(pρ̄1+ d
2 −α)) + O[p]

(
ε2, ερ

)}

= ε−d/2

{
ε

m′
2m2

0

2
p2ρ̄

5
2 d−2α+1(Δ(f 2pρ̄1+ d

2 −2α)) + εm2m′
0m0p2ρ̄

5
2 d−3α+1(f 2Δ(pρ̄1+ d

2 −α))

+ ε
m′

2m2
0

2
f 2p2ρ̄

5
2 d−2α+1(Δ(pρ̄1+ d

2 −2α)) + εm2m′
0m0p2ρ̄

5
2 d−3α+1(f Δ(fpρ̄1+ d

2 −α))

− 2ε
m′

2m2
0

2
fp2ρ̄

5
2 d−2α+1(Δ(fpρ̄1+ d

2 −2α)) − εm2m′
0m0p2ρ̄

5
2 d−3α+1(f Δ(fpρ̄1+ d

2 −α))
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−εm2m′
0m0p2ρ̄

5
2 d−3α+1(f 2Δ(pρ̄1+ d

2 −α)) + O[f ,p]
(
ε2, ερ

)}

= ε−d/2

{
ε

m′
2m2

0

2
p2ρ̄

5
2 d−2α+1

[
Δ(f 2pρ̄1+ d

2 −2α) + f 2Δ(pρ̄1+ d
2 −2α) − 2f Δ(fpρ̄1+ d

2 −2α)
]

+ O[f ,p]
(
ε2, ερ

)}
.

Note that the quantity in the square brackets

[· · · ] = 2|∇f |2pρ̄1+ d
2 −2α . (A.49)

Then, also by the assumption that ε, ερ

ε
= o(1), we have with large enough N,

EY2
j = ε−d/2+1

{
m′

2m2
0p3ρ̄3d−4α+2|∇f |2 + O[f ,p]

(
ε,

ερ

ε

)}
(A.50)

� ν̄Y(x) ∼ ε−d/2+1p3ρ̄3d−4α+2(x)‖∇f ‖2∞,

where in obtaining the last row we assume that ‖∇f ‖∞ > 0 (because otherwise the theorem holds
trivially) and use that p(x) > pmin for all x. Since ν̄Y(x) � cf ,p,αε−d/2+1 for cf ,p,α > 0, the needed

threshold of large N for EY2
j � ν̄Y(x) is determined by (M, p, f , α). Meanwhile, under the condition

that log N
N = o(εd/2+1), with sufficiently large N and the threshold is determined by (M, p, f , α), we have

40 log N
N <

9cf ,p,αε−d/2+1

L2
Y

� 9ν̄Y (x)
L2

Y
, i.e.,

√
40 log N

N ν̄Y(x) <
3ν̄Y (x)

LY
for any x ∈ M. Then, by the classical

Bernstein, w.p. higher than 1 − 2N−10,

| 1

N

N∑
j=1

Yj| �
√

40 log N

N
ν̄Y(x) = O[1]

(
‖∇f ‖∞p3/2ρ̄

3
2 d−2α+1(x)ε−d/4+1/2

√
log N

N

)
,

and we call the event the good event E3.
Note that in (A.50), when |∇f (x)| > 0, one can bound the variance of Yj at x by ν̄Y(x) ∼

ε−d/2+1p3ρ̄3d−4α+2(x)|∇f (x)|2 and obtain the same large deviation bound where ‖∇f ‖∞ is replaced
with |∇f (x)|, allowing the large N threshold to depend on x (such that the O[f ,p]

(
ε, ερ

ε

)
term in (A.50)

is dominated by Θ [1](1) multiplied the first term, and 40 log N
N <

9ν̄Y (x)
L2

Y
). An alternative way to obtain

an x-uniform threshold of large N is by adding 0.12 to |∇f (x)|2 in setting ν̄Y(x), so that the x-dependent
constant in front of ε−d/2+1 is uniformly bounded from below. This leads to the same variance error
bound where ‖∇f ‖∞ is replaced with |∇f (x)| + 0.1. The above verifies Remark 3.3.

Back to (A.45), with (A.47), we have that under good events E2 and E3,

1

εm̃ρ̂2

∣∣∣∣∣
1
N

∑N
j=1 Fj

1
N

∑N
j=1 Gj

− EF

EG

∣∣∣∣∣ = 1

εm̃ρ̂2

| 1
N

∑N
j=1 Yj|

EG · 1
N

∑N
j=1 Gj

=
O[1]

(
‖∇f ‖∞p3/2ρ̄

3
2 d−2α+1ε−d/4+1/2

√
log N

N

)
ερ̄2(m0pρ̄d−α)2

= O[1]

(
‖∇f ‖∞p−1/2ρ̄− d

2 −1ε−d/4−1/2

√
log N

N

)
,
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where the location x is omitted in the notation. By that ρ̄ = p−1/d, this proves (A.38). �
Proof of Theorem 3.6. By the definition of L(α)

un f and that of Fj, Gj in (A.36),

L(α)
un f (x) = 1

N

N∑
j=1

1

ε m2
2

1

ρ̂(x)α
(Fj(x) − f (x)Gj(x)) =:

1

N

N∑
j=1

Hj.

We have computed EF−f (x)EG in (A.43), and (A.39) gives that supx∈M |ρ̂(x)−α−ρ̂(x)−α| = O[p](ερ).
Then,

EHj = 1

ε m2
2

ρ̂(x)−α(EF(x) − f (x)EG(x))

= 1

ε m2
2

ρ̂(x)−α
(
ε

m2

2
pρ̄d+2−αL(α)f + O[f ,p](ε2, ερ)

)

= pρ̄d+2−2αL(α)f (x) + O[f ,p](ε,
ερ

ε
).

By ρ̄ = p−1/d, this proves that

EL(α)
un f (x) = p

2α−2
d L(α)f (x) + O[f ,p](ε,

ερ

ε
), (A.51)

where the constant in O[f ,p](·) is uniform for all x ∈ M.
To analyze the variance, first note the boundedness of |Hj| as

|Hj| � LH = Θ [f ,p](ε−d/2−1),

which follows by the boundedness of Gj, Fj in (A.48) and the uniform boundedness of ρ̂. For the
variance of Hj, we have

EH2
j = (

1

ε m2
2

ρ̂(x)−α)2(EF2
j + f (x)2

EG2
j − 2f (x)EFjGj),

and we have computed EF2, EG2 and EFG in the proof of Theorem 3.5. Specifically, with notation the
same as therein, we have

EF2 = ε−d/2
{

m′
0f 2pρ̄d−2α + ε

m′
2

2
ρ̄1+ d

2 (ωf 2pρ̄1+ d
2 −2α + Δ(f 2pρ̄1+ d

2 −2α)) + O[f ,p]
(
ε2, ερ

)}
,

EG2 = ε−d/2
{

m′
0pρ̄d−2α + ε

m′
2

2
ρ̄1+ d

2 (ωpρ̄1+ d
2 −2α + Δ(pρ̄1+ d

2 −2α)) + O[p]
(
ε2, ερ

)}
,

EFG = ε−d/2
{

m′
0fpρ̄d−2α + ε

m′
2

2
ρ̄1+ d

2 (ωfpρ̄1+ d
2 −2α + Δ(fpρ̄1+ d

2 −2α)) + O[f ,p]
(
ε2, ερ

)}
.

Also, by (A.49), where the square brackets denote the same quantity as before, we have

EF2 + f 2
EG2 − 2fEFG = ε−d/2ε

m′
2

2
ρ̄1+ d

2 [· · · ]

= ε−d/2
{
εm′

2|∇f |2pρ̄2+d−2α + O[f ,p]
(
ε2, ερ

)}
.
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Then, also by (A.39), we have

EH2
j = 4

m2
2

ε−1−d/2ρ̂−2α(x)

{
m′

2|∇f |2pρ̄2+d−2α(x) + O[f ,p]
(

ε,
ερ

ε

)}

= 4

m2
2

ε−1−d/2
{

m′
2|∇f |2pρ̄2+d−4α(x) + O[f ,p]

(
ε,

ερ

ε

)}
(by that ρ̂−2α(x) = ρ̄−2α(x) + O[p](ερ))

� ν̄H(x) = Θ [1](ε−1−d/2‖∇f ‖2∞p
4α−2

d (x)), with large N, the threshold depending on (M, p, f , α).

In obtaining the last row, we assumed ‖∇f ‖∞ > 0 (when ‖∇f ‖∞ = 0, the theorem holds trivially), and
used that O[f ,p]

(
ε, ερ

ε

) = o(1), ρ̄ = p−1/d, and that p is uniformly bounded from below. Then same
as in the proof of Theorem 3.5, the threshold of large N to achieve the sub-Gaussian tail in Bernstein
inequality is determined by (M, p, f , α). As a result, when N is large enough, we have that w.p. higher
than 1 − 2N−10,

∣∣∣∣∣∣
1

N

N∑
j=1

Hj − EHj

∣∣∣∣∣∣ �
√

40 log N

N
ν̄H(x) = O[1]

(
‖∇f ‖∞p

2α−1
d (x)

√
log N

Nεd/2+1

)
.

To replace ‖∇f ‖∞ with |∇f (x)| when strictly positive, or with +0.1, as in Remark 3.3, the same
argument by re-defining ν̄H(x) similarly as in the proof of Theorem 3.5 applies. Combined with (A.51),
this finishes the proof. �
Proof of Theorem 3.7. Suppose ϕ �= 0 and ‖∇f ‖∞ > 0, otherwise the theorem trivially holds. By
definition (3.9), we have that

〈ϕ, L(α)
un f 〉p = 1

N

N∑
j=1

Hj,

where

Hj := 2ε−1

m2

∫
M

K̂(x, xj)(f (xj) − f (x))ϕ(x)p(x) dV(x),

and K̂(x, y) is defined as in (3.4). We define

B(g, f ) := 2ε−1

m2

∫
M

∫
M

K̂(x, y)(f (y) − f (x))g(x)p(x)p(y) dV(x) dV(y).

By K̂(x, y) = K̂(y, x), B(g, f ) = B(f , g) i.e., B(g, f ) is a symmetric bilinear form. Meanwhile,

B(f , f ) = −E (α)(f , f ),
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where, by Proposition 3.2, E (α)(f , f ) = −〈f , Δpα
f 〉pα

+ O[f ,p](ε, ερ). Thus,

EHj = B(ϕ, f ) = 1

4
(B(ϕ + f , ϕ + f ) − B(ϕ − f , ϕ − f ))

= 1

4
(−E (α)(ϕ + f , ϕ + f ) + E (α)(ϕ − f , ϕ − f ))

= 1

4

(
〈ϕ + f , Δpα

(ϕ + f )〉pα
− 〈ϕ − f , Δpα

(ϕ − f )〉pα
+ O[ϕ,f ,p](ε, ερ)

)
= 〈ϕ, Δpα

f 〉pα
+ O[ϕ,f ,p](ε, ερ).

To analyze the variance, we compute the boundedness and variance of Hj. To avoid obtaining ερ

ε
, we

cannot directly apply Lemma 3.1 and Lemma A.2 as in the proof of Theorem 3.6. By Cauchy–Schwartz
inequality and that K̂(x, y) � 0, we have

|Hj| � 2ε−1

m2

(∫
M

K(x, xj)(f (xj) − f (x))2p(x) dV(x)

)1/2 (∫
M

K(x, xj)ϕ(x)2p(x) dV(x)

)1/2

.

We define 1©(y) and 2©(y) as below and claim the following: for any y ∈ M,

1©(y) :=
∫
M

K̂(x, y)ϕ(x)2p(x) dV(x) � c1‖ϕpα/d‖2∞, c1 = Θ [1](1), (A.52)

2©(y) :=
∫
M

K̂(x, y)(f (y) − f (x))2p(x) dV(x) = O[f ,p](ε). (A.53)

If true, then we have

|Hj|=ε−1Op,f ,ϕ(
√

ε) = O[p,f ,ϕ](ε−1/2),

and at the same time, using the upper bound (A.52), we have

EH2
j �

(
4ε−1

m2

)
c1‖ϕpα/d‖2∞

(
1

εm2

∫
M

∫
M

K̂(x, y)(f (y) − f (x))2p(x) dV(x)p(y) dV(y)

)

= ε−1c′
1‖ϕpα/d‖2∞E (α)(f , f ), c′

1 = Θ [1](1).

Again, E (α)(f , f ) = −〈f , Δpα
f 〉pα

+ O[f ,p](ε, ερ), where −〈f , Δpα
f 〉pα

= ∫
pα|∇f |2 > 0. We then have

that

Var(Hj) � EH2
j � ν̄H = Θ [1]

(
ε−1‖ϕpα/d‖2∞

∫
pα|∇f |2

)
.

Thus, when N is large enough, w.p. higher than 1 − 2N−10, we have∣∣∣∣∣∣
1

N

N∑
j=1

Hj − EHj

∣∣∣∣∣∣ �
√

40 log N

N
ν̄H = O[1]

(
‖ϕ‖∞‖pα/d‖∞

√
log N

Nε

∫
pα|∇f |2

)
.

It remains to show (A.52) and (A.53) to finish the proof of the theorem.
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Proof of (A.52): by definition,

1©(y) = 1

ρ̂(y)α
ε− d

2

∫
M

k0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

)
ϕ(x)2p(x)

ρ̂(x)α
dV(x),

where by that supx∈M
|ρ̂(x)−ρ̄(x)|

|ρ̄(x)| < ερ < 0.1, we have ρ̂(x)ρ̂(y) � 1.12ρ̄(x)ρ̄(y), and then by
Assumption (3.1)(C2) we have

k0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

)
� a0e−a ‖x−y‖2

ερ̂(x)ρ̂(y) � a0e
− a

1.12
‖x−y‖2

ερ̄(x)ρ̄(y) = k̄1

( ‖x − y‖2

ερ̄(x)ρ̄(y)

)
,

where k̄1(r) := a0e
− a

1.12 r
and satisfies Assumption 3.1. We introduce G(ρ)

ε [h] when in the definition

(3.6) the kernel function k0 is replaced with some h that satisfies Assumption 3.1. That is, G(ρ)
ε =

G(ρ)
ε [k0], and the notation [k0] is to declare the kernel function being used. To proceed, by that ρ̂(x)−α �

max{0.9α , 1.1α}ρ̄(x)−α := c2ρ̄(x)−α , we have that for any x ∈ M,

1©(y) �
c2

2

ρ̄(y)α
ε− d

2

∫
M

k̄1

( ‖x − y‖2

ερ̄(x)ρ̄(y)

)
ϕ(x)2p(x)

ρ̄(x)α
dV(x) = c2

2

ρ̄(y)α
ρ̄(y)d/2G(ρ̄)

ερ̄(y)[k̄1](
ϕ2p

ρ̄α
)(y).

By Lemma 3.1,

G(ρ̄)

ερ̄(y)[k̄1](
ϕ2p

ρ̄α
)(y) = m0[k̄1]ρ̄d/2(

ϕ2p

ρ̄α
)(y) + ρ̄(y)O[p,f ,ϕ](ε),

and then

1©(y) � c2
2m0[k̄1](pρ̄d−2αϕ2)(y) + O[p,f ,ϕ](ε) = Θ [1]((pρ̄d−2αϕ2)(y)).

By that ρ̄ = p1/d, we have shown that 1©(y) � c1p(y)2α/dϕ(y)2, where c1 = Θ [1](1), and this proves
(A.52).

Proof of (A.53): similarly, we have

2©(y) �
c2

2

ρ̄(y)α
ε− d

2

∫
M

k̄1

( ‖x − y‖2

ερ̄(x)ρ̄(y)

)
(f (y) − f (x))2

ρ̄(x)α
p(x) dV(x)

= c2
2

ρ̄(y)α
ρ̄(y)d/2G(ρ̄)

ερ̄(y)[k̄1](g)(y), g(x) := (f (y) − f (x))2(
p

ρ̄α
)(x) .

Note that g ∈ C∞(M) and g(y) = 0. By Lemma 3.1, we have

G(ρ̄)

ερ̄(y)[k̄1](g)(y) = ερ̄(y)
m2[k̄1]

2
Δg(y) + ρ̄(y)2O[f ,p](ε2),

and then

2©(y) �
c2

2

ρ̄(y)α
ρ̄(y)d/2

(
ερ̄(y)

m2[k̄1]

2
Δg(y) + ρ̄(y)2O[f ,p](ε2)

)

= c2
2

m2[k̄1]

2
ερ̄(y)d/2−α+1Δg(y) + O[f ,p](ε2) = O[f ,p](ε),

which proves (A.53). �
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Proof of Theorem 3.8. The proof combines the approach in the proof of Theorem 3.5 and the
computation in that of Theorem 3.4. Define

Fj := ε−d/2k0

(‖x − xj‖2

ε

)
f (xj)

p̂(xj)
β

, Gj := ε−d/2k0

(‖x − xj‖2

ε

)
1

p̂(xj)
β

,

then we have

EF = Gε(
fp

p̂β
) =

∫
M

ε−d/2k0

(‖x − y‖2

ε

)
f (y)p̂(y)−βp(y) dV(y).

By (A.33) and the constant cβ defined as therein, again defining q = p1−β , we have∣∣∣∣Gε(
fp

p̂β
) − Gε(fp

1−β)

∣∣∣∣ � ‖f ‖∞
∫

ε−d/2k0

(‖x − y‖2

ε

)
p(y)|p̂(y)−β − p(y)−β | dV(y)

� cβ |β|εp‖f ‖∞
∫

ε−d/2k0

(‖x − y‖2

ε

)
p(y)1−β dV(y) = O[f ,p,β](βεp),

where we apply Lemma A.5 to obtain that
∫

ε−d/2k0

( ‖x−y‖2

ε

)
q(y) dV(y) � ‖q‖∞O(1), and absorb

the constants ‖q‖∞, ‖f ‖∞ and cβ in to the notation O[f ,p,β](·). In the rest of the proof, we omit the

dependence on β in the superscript and write it as O[f ,p](βεp), while we keep β in (·) to indicate that the

term vanishes when β = 0. Then, using Lemma A.5 to expand Gε(fp
1−β), we have that

EF = Gε(fp
1−β) + O[f ,p](βεp) = m0fp1−β + ε

m2

2
(ωfp1−β + Δ(fp1−β)) + O[f ,p](ε2, βεp).

Taking f = 1 then gives

EG = m0p1−β + ε
m2

2
(ωp1−β + Δ(p1−β)) + O[p](ε2, βεp) = m0p1−β + O[p](ε, βεp).

We can then compute and bound the bias error as

1

εm̃

EF − f (x)EG

EG
= 1

εm̃

ε m2
2 (Δ(fp1−β) − f Δ(p1−β)) + O[f ,p](ε2, βεp)

m0p1−β + O[p](ε, βεp)

= Δf + 2
∇p1−β

p1−β
· ∇f + O[f ,p](ε, β

εp

ε
),

which, similarly as in (A.42), holds when N exceeds a threshold depending on (M, p, β). The variance
analysis follows a similar computation as before, specifically the computation of the quantities of EF2,
EG2 and E(FG). First, observe that

EG2 = ε−d/2{m0[k2
0]p1−2β + O[p](ε, βεp)},

and then, using that p1−2β(x) � Θ [p,β](1) > 0 for all x, one verifies that w.p. higher than 1 − 2N−10,

1

N

∑
j

Gj = EG + O[p]

(√
log N

Nεd/2

)
.
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Define Yj := FjEG − GjEF, then EY = 0. Following the same method as before, one verifies that, with

m′
2 := m2[k2

0],

EY2 = EF2(EG)2 + EG2(EF)2 − 2E(FG)EFEG = ε−d/2+1
{

m′
2m2

0p3−4β |∇f |2 + O[f ,p](ε, β
εp

ε
)

}
.

Similarly as in the proof of Theorem 3.5, this gives that (assuming ‖∇f ‖∞ > 0 otherwise the theorem
holds trivially) when N exceeds a threshold determined by (M, p, f , β), w.p. higher than 1 − 2N−10,∣∣∣∣∣∣

1

N

N∑
j=1

Yj

∣∣∣∣∣∣ = O

(
‖∇f ‖∞p3/2−2βε−d/4+1/2

√
log N

N

)
.

One can also replace ‖∇f ‖∞ with |∇f (x)| when strictly positive, or with +0.1, as in Remark 3.3.
Putting together, we have that

1

εm̃

∣∣∣∣∣
1
N

∑N
j=1 Fj

1
N

∑N
j=1 Gj

− EF

EG

∣∣∣∣∣ = 1

εm̃

| 1
N

∑N
j=1 Yj|

EG · 1
N

∑N
j=1 Gj

�
O[1]

(
‖∇f ‖∞p3/2−2βε−d/4+1/2

√
log N

N

)
ε(m0p1−β)2

= O[1]

(
‖∇f ‖∞p−1/2ε−d/4−1/2

√
log N

N

)
.

Combining the bias and variance error bounds proves the theorem. �

A.2 Technical lemmas of differential geometry

A.2.1 Local charting on M. The following lemma is about manifold local charting, where we have
metric and volume comparisons between the manifold and the ambient Euclidean space R

D.

Lemma A.3 ([11, Lemmas 6 and 7]). Suppose M is a d-dimensional C3, boundaryless (thus closed)
manifold that is isometrically embedded in R

D. Then there exists some δ0(M) > 0 such that for any
δ < δ0 and any x ∈ M,

(i) M ∩ Bδ(x) is isomorphic to a ball in R
d.

(ii) On the local chart at each x, let φx be the orthogonal projection to the tangent plane TxM
embedded as an affine subspace of RD, and call u(y) := φx(y) the tangent coordinate of y, then

0.9‖y − x‖
RD < ‖u(y)‖

Rd < 1.1‖y − x‖
RD , 0.9 <

∣∣∣∣det

(
dy

du

)∣∣∣∣ < 1.1, ∀y ∈ M ∩ Bδ(x). (A.54)

(iii) Let dM denote the manifold geodesic distance, then

‖x − y‖
RD � dM(x, y) � 1.1‖x − y‖

RD , ∀y ∈ Bδ(x) ∩ M. (A.55)

Proof. At every point x, (i) holds when δ < δx,1 for some δx,1 > 0, and then the local chart can
be defined where the normal coordinates s (expx(s) = y) and the tangent coordinates u match up to
O(‖u‖3) [11, Lemma 6], the squared metric of ‖y − x‖2

RD and ‖u‖2 match up to O(‖u‖4), and the
Jacobian’s match via ∣∣∣∣det

(
dy

du

)∣∣∣∣ = 1 + b(v)
x (u) + c(v)

x (u) + O(‖u‖4), (A.56)
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where b(v)
x (c(v)

x ) is a homogeneous polynomial of degree 2 (3) of the variable u = (u1, · · · , ud)

[11, Lemma 7]. Thus, (A.54) and (A.55) hold on M ∩ Bδ(x) when δ < δx,2 for some 0 < δx,2 � δx,1.
The minx∈M δx,2 exists due to the smoothness and compactness of M, and the minimum can be used as
δ0(M). �

A.2.2 Covering number of M Introduce the definitions:

Definition A.1 Let (X, d) be a metric space and Y ⊂ X. Let ε > 0, then P ⊂ X is called a ε-net of Y
if ∀x ∈ Y , ∃x0 ∈ P, s.t. d(x, x0) � ε. The covering number of Y , denoted by N (Y , d, ε), is defined to be
the smallest cardinality of an ε-net of Y .

Definition A.2 Let (X, d) be a metric space. Let ε > 0, then P ⊂ X is said to be ε-separated if
d(x, y) > ε for all distinct points x, y ∈ P. The packing number of Y ⊂ X denoted by P(Y , d, ε) is
defined to be the largest cardinality of an ε-separated subset of Y .

The following lemma bounds the covering number of M using Euclidean balls in R
D, which has

been established in literature. We reproduce under our setting for completeness.

Lemma A.4 For any r < δ0, where δ0 is defined in Lemma A.3, N (M, ‖ · ‖
RD , r) � V(M)r−d, where

V(M) equals an Od(1) constant times the Riemannian volume of M.

Proof of Lemma A.4. The proof uses Lemma A.3 and standard arguments as in [53, Section 4.2]. Let
dE be the Euclidean distance in R

D.
Let dE denote the metric on M induced by the Euclidean metric in R

D, that is, dE(x, y) = ‖x−y‖
RD ,

where x, y ∈ M. The packing number P(M, dE, r) always upper bounds the covering number (see e.g.,
[53, Lemma 4.2.6 and Lemma 4.2.8]); thus, it suffices to upper bound P(M, dE, r).

Denote by Br(x, dE) the open ball on (M, dE) centered at x, and Br,Rm(x) the open Euclidean ball
of radius r centered at x in R

m. Without declaring m, Br(x) means Br,RD(x). By definition, Br(x, dE) =
Br(x) ∩ M. Suppose r < δ0 in Lemma A.3, we consider the manifold volume Vol of these Euclidean
balls, where for Y ⊂ M, Vol(Y) := ∫

M 1Y dV when integrable. By Lemma A.3(ii), on Tx(M) which is
viewed as Rd,

B0.9r,Rd (0) ⊂ φx(Br(x, dE)),

and
∣∣∣det( dy

du )

∣∣∣ > 0.9 on Br(x, dE), then

Vol(Br(x, dE)) =
∫

φx(Br(x,dE))

∣∣∣∣det(
dy

du
)

∣∣∣∣ du �
∫

{u, ‖u‖<0.9r}

∣∣∣∣det(
dy

du
)

∣∣∣∣ du

� 0.9
∫

{u, ‖u‖<0.9r}
du = 0.9vd(0.9r)d,

where vd is the Euclidean volume of a unit d-sphere.
Now let P be a maximal r-separated subset of M (under dE) such that Card(P)= n = P(M, dE, r),

and P = {x1, · · · , xn}. By definition of r-separateness, B r
2
(xi, dE) are disjoint, thus

Vol(M) �
n∑

i=1

Vol(B r
2
(xi, dE)) � n · 0.9vd(0.9

r

2
)d,
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that is, for V(M) which is an Od(1) constant times the Riemannian volume of M,

n � V(M)

rd
.

This proves that N (M, dE, r) � P(M, dE, r) � V(M)

rd . �

A.2.3 Fixed-bandwidth integral operator

Assumption A.3 (Assumption on k0 in [11]). (C1’) Regularity. k0 is continuous on [0, ∞), C2 on
(0, ∞).

(C2’) Decay condition. k0 and up to its second derivatives are bounded on (0, ∞) and have sub-

exponential tail, specifically, ∃a, al > 0, s.t., |k(l)
0 (ξ)| ≤ ale

−aξ for all ξ > 0, l = 0, 1, 2. To exclude the
case that k0 ≡ 0, suppose ‖k0‖∞ > 0.

Lemma A.5 ([11, Lemma 8]). Suppose h satisfies Assumption A.3. For any f ∈ C∞(M), define

Gε f (x) :=
∫
M

h(
‖x − y‖2

ε
)f (y) dV(y). (A.57)

Then there is ε0(M, h) > 0 such that when 0 < ε < ε0,

Gε[h]f = ε
d
2

(
m0[h]f + ε

m2[h]

2
(ωf + ΔMf ) + O[f (�4)](ε2)

)
,

where ω(x) is determined by local derivatives of the extrinsic manifold coordinates at x, the residual term
denoted by big-O with superscript f (�4) means that the constant involves up to the fourth derivative of
f on M. Specifically, if the residual term is denoted as rf ,ε(x), it satisfies supx∈M |rf ,ε(x)| � C(f )ε2,

where C(f ) = c(M, h)(1 + ∑4
l=0 ‖D(l)f ‖∞).

For the sake of self-containedness and specifically quantifying the constant in the error term, we
provide a proof of this lemma below.

Proof of Lemma A.5. The original proof is in Appendix B of [11]. We made slightly more precise the
truncation argument of the integral, as well as under the formal statement of assumptions on k0 as in
Assumption A.3.

The proof uses the exponential decay of h to truncate the integral of dV(y) on M ∩ Bδε
(x), where

the Euclidean ball radius δε can be chosen to be
√

α0ε log 1
ε

for some Od(1) constant α0. For example,

let α0 = d+10
a , where a is the sub-exponential decay constant of h in Assumption A.3(C2), then the

truncations of integrals used in the proof all incur an error of order O(ε10). For the truncation tail
bounds to hold, the radius δε needs to be smaller than δ0(M) in Lemma A.3. The requirement δε < δ0
gives rise to the condition that ε < ε0 in the lemma.

Restricting on a local ball, the integrals in the proof are computed via local projected coordinates
on TxM, and using the volume and metric comparison lemmas, [11, Lemmas 6 and 7], as detailed in
[11, Appendix B]. In particular, only the differentiability and sub-exponential decay of up to second
derivatives of h and the isometry of the kernel (h is a function of ‖x − y‖2) are used; thus, the lemma
holds for any h satisfying Assumption A.3. �
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The following lemma is the counterpart of Lemma A.5 when h is the indicator function (only to the
‘O(ε)’ term, ε = r2 here). It can be implied by [22, Lemma 4] (without proof) and was also given in a
different setting for uniform p in [50, Lemma 7]. We include a proof for completeness.

Lemma A.6 Under Assumption 2.1, h = 1[0,1), there is a constant δ1(M) < δ0 in Lemma A.3 such
that when r < δ1, for any x ∈ M,

r−d
∫
M

h

(‖x − y‖2

r2

)
p(y) dV(y) = r−d

∫
M

1{‖x−y‖<r}p(y) dV(y) = m0[h]p(x) + O[p](r2),

and the constant in big-O is uniform for all x.

Proof of Lemma A.6. The proof uses the same technique of that in Lemma A.5. Because r < δ0 in
Lemma A.3, using the local chart, we have that

Ir :=
∫
M

1{‖x−y‖<r}p(y) dV(y) =
∫

B′
p(y(u))

∣∣∣∣det

(
dy

du

)∣∣∣∣ du, B′ := φx(Br(x) ∩ M) ⊂ R
d.

By that

‖y − x‖2 = |u|2 + O(|u|4),
where the constant in big-O depends on local derivatives of manifold extrinsic coordinates at x and by
compactness of M is uniform for all x, there is δ1 = δ1(M) and constant cM > 0 uniform for all x such
that when r < δ1, for any x,

Br− ⊂ B′ ⊂ Br+ , r± = r(1 ± cMr2), Br := {u ∈ R
d, |u| < r}.

We consider upper and lower bounds of Ir, respectively. By that p > 0,

Ir �
∫

Br+
p(y(u))

∣∣∣∣det

(
dy

du

)∣∣∣∣ du =: I+.

Similarly as in the proof of Lemma A.5,

p(y(u)) = p(x) + ∇Mp(x) · u + O[p](|u|2),
and by (A.56),

∣∣∣det
(

dy
du

)∣∣∣ = 1 + O(|u|2), where the constant in big-O depends on local derivatives of

manifold extrinsic coordinates at x and by compactness of M is uniform for all x. This gives that

I+ =
∫

Br+

(
p(x) + ∇Mp(x) · u + O[p](|u|2)

)
(1 + O(|u|2))du = Vol(Br+)(p(x) + O[p](r2)),

where the odd-order term of u does not contribute to integral because Br+ is a d-sphere, and Vol(Br+) =
vdrd(1 + cMr2)d = m0[h]rd(1 + O(r2)). Thus,

Ir � I+ = m0[h]rd(1 + O(r2))(p(x) + O[p](r2)) = m0[h]rd(p(x) + O[p](r2)).

Similarly,

Ir �
∫

Br−
p(y(u))

∣∣∣∣det(
dy

du
)

∣∣∣∣ du = Vol(Br−)(p(x) + O[p](r2)) = m0[h]rd(p(x) + O[p](r2)).

Putting together upper and lower bounds proves the lemma. �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaab019/6374659 by guest on 27 Septem

ber 2021



60 X. CHENG AND H.T. WU

A.3 Other lemmas and proofs

A.3.1 Proofs of Lemmas 3.1 and 3.2

Remark A.1 The expansion of G(ρ)
ε f for differentiable ρ was derived in [5, Appendix A.3], where

duality was to analyze the ‘right operator’ G(ρ)
ε by its ‘left operator’ which were defined in [5]. That

bounds the error in the weak sense but not in the strong sense. Here we give a direct proof of a more
precise bound of the error in the point-wise strong sense, which is important for analyzing the point-wise
convergence of LNf (x).

Proof of Lemma 3.1. For a fixed x ∈ M, define δrε (x, y) as the following:

‖x − y‖2

ερ(y)
= ‖x − y‖2

ερ(x)
+ ‖x − y‖2

ερ(x)

(
ρ(x)

ρ(y)
− 1

)
=:

‖x − y‖2

ερ(x)
+ δrε (x, y).

By that k0 is C4 on (0, ∞), Taylor expansion up to the fourth order at ‖x−y‖2

ερ(x) gives

k0

(‖x − y‖2

ερ(y)

)
= k0

(‖x − y‖2

ερ(x)

)
+ k′

0

(‖x − y‖2

ερ(x)

)
δrε (x, y) + 1

2
k′′

0

(‖x − y‖2

ερ(x)

)
δrε (x, y)2

+ 1

6
k(3)

0

(‖x − y‖2

ερ(x)

)
δrε (x, y)3 + 1

24
k(4)

0 (ξ(x, y))δrε (x, y)4

where ξ(x, y) is between ‖x−y‖2

ερ(y) and ‖x−y‖2

ερ(x) . Thus,

G(ρ)
ε f = ε−d/2

{∫
M

k0

(‖x − y‖2

ερ(x)

)
f (y) dV(y) +

∫
M

k′
0

(‖x − y‖2

ερ(x)

)
δrε (x, y)f (y) dV(y)

+ · · · + 1

24

∫
M

k(4)
0 (ξ(x, y))δrε (x, y)4f (y) dV(y)

}

:= 1© + 2© + 3© + 4© + 5©.

We first bound | 5©|. Because ρ(x) < ρmax uniformly on M,

‖x − y‖2

ερ(y)
,

‖x − y‖2

ερ(x)
� ‖x − y‖2

ερmax
.

Thus,

|k(4)
0 (ξ(x, y))| � a4e−aξ � a4e− a

ρmax
‖x−y‖2

ε = k̄4

(‖x − y‖2

ε

)
,

where we define

k̄4(r) := a4e− a
ρmax

r � 0.
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Note that k̄4 satisfies Assumption A.3, and m0[k̄4] are constant depending on ρmax. Then

24| 5©| � ε−d/2
∫
M

|k(4)
0 (ξ(x, y))||f (y)|δrε(x, y)4 dV(y)

� ε−d/2
∫
M

k̄4

(‖x − y‖2

ε

)
|f (y)|δrε(x, y)4 dV(y)

� ‖f ‖∞ε−d/2
∫
M

k̄4

(‖x − y‖2

ε

)(‖x − y‖2

ε
(

1

ρ(y)
− 1

ρ(x)
)

)4

dV(y),

where we define k̃(r) := k̄4(r)r
4. By Lemma A.5,

ε−d/2
∫
M

k̃

(‖x − y‖2

ε

)(
1

ρ(y)
− 1

ρ(x)

)4

dV(y) = O[g(�4)](ε2),

where we denote g(y) =
(

1
ρ(y) − 1

ρ(x)

)4
, and then there is cρ

5 = cρ
5 (ρmin, ρmax), such that∑4

l=0 ‖g(l)‖∞ � cρ
5 (1 + ∑4

l=1 ‖D(l)ρ−1‖∞). This proves that

| 5©| � ε2‖f ‖∞cρ
5

(
1 +

4∑
l=1

‖D(l)ρ−1‖∞

)
. (A.58)

The other four terms involve fixed bandwidth ερ(x) where x is fixed. Applying Lemma A.5 gives
the following. First,

1© = ρ(x)
d
2 Gερ(x)f (x) = ρ

d
2

(
m0f + ερ

m2

2
(ωf + Δf ) + O[f (�4)](ε2)ρ2

)
=: 1©1 + O[f (�4)](ε2)ρ

d
2 +2.

Define k1(r) := k′
0(r)r and g1(y) := (

ρ(x)
ρ(y) − 1)f (y). We have g1(x) = 0, and

2© = ε−d/2
∫
M

k′
0

(‖x − y‖2

ερ(x)

) ‖x − y‖2

ερ(x)

(
ρ(x)

ρ(y)
− 1

)
f (y) dV(y)

= ρ(x)
d
2 Gερ(x)[k1](g1)(x)

= ρ
d
2

(
m0[k1]g1 + ερ

m2[k1]

2
(ωg1 + Δg1) + O[g(�4)

1 ](ε2)ρ2
)

= ρ
d
2

(
ερ

m2[k1]

2
(Δg1) + O[g(�4)

1 ](ε2)ρ2
)

=: 2©1 + O[g(�4)
1 ](ε2)ρ

d
2 +2.
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Define k2(r) := k′′
0(r)r2 and g2(y) := (

ρ(x)
ρ(y) − 1)2f (y). We have that g2(x) = 0 and

3© = 1

2
ε−d/2

∫
M

k′′
0

(‖x − y‖2

ερ(x)

)(‖x − y‖2

ερ(x)
(
ρ(x)

ρ(y)
− 1)

)2

f (y) dV(y)

= 1

2
ρ(x)

d
2 Gερ(x)[k2](g2)(x)

= 1

2
ρ

d
2

(
m0[k2]g2 + ερ

m2[k2]

2
(ωg2 + Δg2) + O[g(�4)

2 ](ε2)ρ2
)

= 1

2
ρ

d
2

(
ερ

m2[k2]

2
(Δg2) + O[g(�4)

2 ](ε2)ρ2
)

=: 3©1 + O[g(�4)
2 ](ε2)ρ

d
2 +2.

Define k3(r) = k(3)
0 (r)r3 and g3(y) = (

ρ(x)
ρ(y) − 1)3f (y). Then, we have g3(x) = 0, Δg3(x) = 0, and

4© = ε−d/2
∫
M

k(3)
0

(‖x − y‖2

ερ(x)

)(‖x − y‖2

ερ(x)
(
ρ(x)

ρ(y)
− 1)

)3

f (y) dV(y)

= ρ(x)
d
2 Gερ(x)[k3](g3)(x)

= ρ
d
2

(
m0[k3]g3 + ερ

m2[k3]

2
(ωg3 + Δg3) + O[g(�4)

3 ](ε2)ρ2
)

= O[g(�4)
3 ](ε2)ρ

d
2 +2.

Collecting the leading terms, we have

1©1 + 2©1 + 3©1 = ρ
d
2

(
m0f + ερ

m2

2
(ωf + Δf )) + ερ

m2[k1]

2
(Δg1) + 1

2
ερ

m2[k2]

2
(Δg2)

)
.

Note that

m2[k1] = 1

d

∫
Rd

k′
0(|u|2)|u|4du = −d + 2

2
m2[k0],

m2[k2] = 1

d

∫
Rd

k′′
0(|u|2)|u|6du = −d + 4

2
m2[k1] = d + 4

2

d + 2

2
m2[k0],

Δg1 = ρf Δ
1

ρ
+ 2ρ∇f · ∇ 1

ρ
= 2f ρ−2|∇ρ|2 − f ρ−1Δρ − 2ρ−1∇f · ∇ρ,

Δg2 = 2f ρ2|∇ 1

ρ
|2 = 2f ρ−2|∇ρ|2,
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then we have

m2

2
Δf + m2[k1]

2
Δg1 + 1

2

m2[k2]

2
Δg2

= m2

2

(
Δf − d + 2

2
(2f ρ−2|∇ρ|2 − f ρ−1Δρ − 2ρ−1∇f · ∇ρ) + d + 4

2

d + 2

2
f ρ−2|∇ρ|2

)

= m2

2

(
Δf + (

d

2
+ 1)(f ρ−1Δρ + 2ρ−1∇f · ∇ρ) + d

2
(
d

2
+ 1)f ρ−2|∇ρ|2

)

= m2

2
ρ−1−d/2Δ(f ρ1+d/2),

and this proves that 1©1 + 2©1 + 3©1 equals the leading term in (3.7).
To prove the lemma, it remains to specify the constants in

ρ
d
2 +2

(
O[f (�4)](ε2) + O[g(�4)

1 ](ε2) + O[g(�4)
2 ](ε2) + O[g(�4)

3 ](ε2)
)

+ | 5©| . (A.59)

Observe the bound of r(2)
ε in (3.7). By definition of g1, g2, g3, there is cρ

j (ρmin, ρmax) > 0, j = 1, 2, 3,
such that

4∑
l=0

‖D(l)gs‖∞ � cρ
j

(
1 +

4∑
l=0

‖D(l)f ‖∞

)(
1 +

4∑
l=0

‖D(l)ρ−1‖∞

)
, j = 1, 2, 3,

and together with (A.58), the constant in front of ε2 in (A.59) is bounded by

ρd/2+2
max

⎧⎨
⎩

4∑
l=0

‖D(l)f ‖∞ +
⎛
⎝ 3∑

j=1

cρ
j + cρ

5

⎞
⎠(

1 +
4∑

l=0

‖D(l)f ‖∞

)(
1 +

4∑
l=0

‖D(l)ρ−1‖∞

)⎫⎬
⎭

= cρ

(
1 +

4∑
l=0

‖D(l)f ‖∞

)(
1 +

4∑
l=0

‖D(l)ρ−1‖∞

)
,

where constant cρ equals a finite summation of certain powers and ratios of ρmin and ρmax. Thus, the
bound in (3.7) holds. �
Proof of Lemma 3.2. Under the condition,

0.9ρmin < 0.9ρ(x) < ρ̃(x) < 1.1ρ(x) < 1.1ρmax, ∀x ∈ M. (A.60)

By definition,

G(ρ̃)
ε f (x) − G(ρ)

ε f (x) = ε−d/2
∫
M

(
k0

(‖x − y‖2

ερ̃(y)

)
− k0

(‖x − y‖2

ερ(y)

))
f (y) dV(y),

and

k0

(‖x − y‖2

ερ̃(y)

)
− k0

(‖x − y‖2

ερ(y)

)
= k′

0(ξ)
‖x − y‖2

ερ(y)

(
ρ(y)

ρ̃(y)
− 1

)
,
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where ξ is between ‖x−y‖2

ερ̃(y) and ‖x−y‖2

ερ(y) . Then, by (A.60), ξ � ‖x−y‖2

ε1.1ρ(y) , and then by Assumption 3.1(C2),

|k′
0(ξ)| � a1e−aξ � a1e− a

1.1
‖x−y‖2

ερ(y) .

Thus, also by that ∣∣∣∣ρ(y)

ρ̃(y)
− 1

∣∣∣∣ � ερ(y)

0.9ρ(y)
= ε

0.9
,

we have that

|G(ρ̃)
ε f (x) − G(ρ)

ε f (x)| � ε−d/2
∫
M

|k′
0(ξ)| ‖x − y‖2

ερ(y)

∣∣∣∣ρ(y)

ρ̃(y)
− 1

∣∣∣∣ |f (y)| dV(y)

� ε

0.9
‖f ‖∞ε−d/2

∫
M

a1e− a
1.1

‖x−y‖2

ερ(y)
‖x − y‖2

ερ(y)
dV(y) = ε

0.9
‖f ‖∞G(ρ)

ε [k1]1(x),

where we define

k1(r) := a1e− a
1.1 rr, r � 0,

and k1 satisfies Assumption 3.1. Next, applying Lemma 3.1 gives that

G(ρ)
ε [k1]1(x) = m0[k1]ρ

d
2 + O[ρ](ε).

Thus, with sufficiently small ε, uniformly for all x,

|G(ρ̃)
ε f (x) − G(ρ)

ε f (x)| � ε

0.9
‖f ‖∞(m0[k1]ρ

d
2 + O[ρ](ε)) � c′

ρ‖f ‖∞ε,

where c′
ρ is O(1) constant depending on k1 multiplied by certain powers of ρmax or ρmin. �

A.3.2 Proofs of Lemmas A.1 and A.2

Proof of Lemma A.1. Define

1© := ε− d
2

∫
M

∫
M

f (x)2k0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

)
p(x)p(y)

ρ̂(x)αρ̂(y)α
dV(x) dV(y),

and

2© := ε− d
2

∫
M

∫
M

f (x)2k0

( ‖x − y‖2

ερ̄(x)ρ̂(y)

)
p(x)p(y)

ρ̄(x)αρ̂(y)α
dV(x) dV(y).

Then, same as in the analysis of (A.16), applying Lemma 3.1 only to the O(ε) term gives that

2© =
∫

(pρ̂
d
2 −α)(y)G(ρ̄)

ερ̂(y)(
f 2p

ρ̄α
)(y) dV(y)

=
∫

(pρ̂
d
2 −α)

(
m0[k0]f 2pρ̄

d
2 −α + ρ̂r(1)

1

)
, ‖r(1)

1 ‖∞ = O[f ,p](ε).

By (A.14) and (A.15), ∣∣∣∣
∫

p(ρ̂
d
2 −α − ρ̄

d
2 −α)(m0[k0]f 2pρ̄

d
2 −α)

∣∣∣∣ � O[f ,p](ερ),
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and then ∣∣∣∣
∫

pρ̂
d
2 −α+1r(1)

1

∣∣∣∣ � O[f ,p](ε)

∫
pρ̄

d
2 −α+1 max{0.9

d
2 −α+1, 1.1

d
2 −α+1} = O[f ,p](ε),

which gives that

2© = m0[k0]
∫

p2f 2ρ̄d−2α + O[f ,p](ε, ερ).

To bound | 2© − 1©|, introduce

3© := ε− d
2

∫
M

∫
M

f (x)2k0

( ‖x − y‖2

ερ̄(x)ρ̂(y)

)
p(x)p(y)

ρ̂(x)αρ̂(y)α
dV(x) dV(y) .

Then,

3© − 2© = ε− d
2

∫
M

∫
M

f (x)2k0

( ‖x − y‖2

ερ̄(x)ρ̂(y)

)
p(x)p(y)

ρ̄(x)αρ̂(y)α

(
ρ̄(x)α

ρ̂(x)α
− 1

)
dV(x) dV(y).

By non-negativity of k0, p, ρ̄, ρ̂ and f 2, and 2© � 0 and is O[f ,p](1), similar as in (A.20), we have

| 3© − 2©| � O[p](ερ) 2© = O[f ,p](ερ).

This gives that 3© = m0[k0]
∫

p2f 2ρ̄d−2α + O[f ,p](ε, ερ) = O[f ,p](1). Meanwhile, 3© � 0 by definition.
Finally, we have

3© − 1© = ε− d
2

∫
M

∫
M

f (x)2
(

k0

( ‖x − y‖2

ερ̄(x)ρ̂(y)

)
− k0

( ‖x − y‖2

ερ̂(x)ρ̂(y)

))
p(x)p(y)

ρ̂(x)αρ̂(y)α
dV(x) dV(y) .

And same as in (A.23), by introducing k1(r) and using the non-negativity of f 2, p and ρ̂, one can show
that

| 3© − 1©| � O[p](ερ) · ( 3© with k1) = O[f ,p](ερ).

Putting together, we have | 2© − 1©| = O[f ,p](ερ), and this proves the lemma. �
Proof of Lemma A.2. By definition,

G(ρ̃)
ε

(
f

ρ̃α
− f

ρα

)
(x) = ε−d/2

∫
M

k0

(‖x − y‖2

ερ̃(y)

)
f (y)

ρ(y)α

(
ρ(y)α

ρ̃(y)α
− 1

)
dV(y).

To proceed, by that supx∈M
|ρ̃(x)−ρ(x)|

ρ(x) < ε < 0.1 and (A.60), for some cρ,1 and cρ,2 equaling certain

powers of ρmax or ρmin multiplied by Θ [α](1) constant, we have∣∣∣∣ρ(x)α

ρ̃(x)α
− 1

∣∣∣∣ � cρ,1ε,
1

ρ(x)α
� cρ,2, ∀x ∈ M.

Then, ∣∣∣∣G(ρ̃)
ε

(
f

ρ̃α
− f

ρα

)
(x)

∣∣∣∣ � cρ,1ε · cρ,2‖f ‖∞
(

ε−d/2
∫
M

k0

(‖x − y‖2

ερ̃(y)

)
dV(y)

)

= cρ,1ε · cρ,2‖f ‖∞G(ρ̃)
ε 1(x).
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By Lemmas 3.1 and 3.2,

|G(ρ̃)
ε 1(x) − m0ρ

d
2 (x)| � O[ρ](ε) + c′

ρε,

this proves the lemma with c′′
ρ = Θ [1](cρ,1cρ,2(m0ρ

d/2
max + 0.1c′

ρ)) when ε gets sufficiently small. �

A.4 Point-wise convergence to L(α)

ρ̂

In parallel to Theorems 3.5 and 3.6, we show the point-wise convergence of LNf (x) to another limiting

operator involving L(α)

ρ̂
, in Theorems A.5 and A.6. The analysis is by adopting the approach in [5]

after conditioning on a fixed ρ̂, yet the difficulty is to handle the a.s. differentiability of the kNN-
estimated ρ̂.

As pointed out by Section 2.3, ρ̂(x) at any point of differentiability equals Θ((k/Ny)
−1/d) which

diverges to ∞ asymptotically. We first derive a lemma to bound the derivatives of ρ̂(x) by certain
inverse powers of R̂(x). The proof of Lemma 2.1 shows that, when Y has distinct points, the estimated
ρ̂ from Y is piecewise C∞ on R

D, and it has the structure that on each of the finitely many polygon p,
ρ̂(x) = ( 1

m0[h]
k

Ny
)−1/d‖x − yp‖, for a some point yp outside p. We then can upper bound the derivatives

of R̂ as below.

Lemma A.7 Under the condition of Lemma 2.1, for any x ∈ R
D\E,

|D(l)R̂(x)| � (l! )R̂(x)−l+1, l = 0, 1, · · · , 4,

where the lth derivative D(l)R̂(x) is an l-way tensor, and for any l-way tensor T : RD × · · · × R
D → R,

|T| = sup
v∈RD, ‖v‖2�1

|T(v, · · · , v)|.

The claim extends to higher-order derivatives l > 4, and we only need up to the fourth derivative in
the diffusion kernel analysis. The piecewise architecture of R̂ also allows us to construct smooth uniform
approximators to ρ̂ without enlarging the derivatives.

Lemma A.8 Under the condition of Lemma 2.1, for any s > 0, ∃ρ̂s ∈ C∞(M) s.t. supx∈M |ρ̂s(x) −
ρ̂(x)| < s, and

sup
x∈M

|D(l)
Mρ̂s(x)| � sup

x∈M\E
|D(l)

Mρ̂(x)|, l = 0, 1, · · · , 4. (A.61)

Combined with Lemma A.7 and (A.14), we have the following:

Proposition A.4 There is a constant Cp > 0 depending on (M, p) such that when supx∈M |ρ̂−ρ̄|/ρ̄ <

ερ < 0.1, for any s > 0, ∃ρ̂s ∈ C∞(M) s.t. supx∈M |ρ̂s(x) − ρ̂(x)| < s, and

‖D(l)
Mρ̂s‖∞,M � Cp

⎛
⎝( k

Ny

)−l/d
⎞
⎠ , l = 0, · · · 4. (A.62)

Because we can make s arbitrarily small, it is equivalent to prove the graph Laplacian convergence
with ρ̂s, which satisfies (A.62) by the proposition and also (A.14) by the uniform approximation
Theorem 2.3. Below, we write ρ̂s as ρ̂. We then have the following:
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Theorem A.5 Suppose Theorem 2.3 holds and as Ny → ∞ and Nx → ∞,

ε = o(1), εd/2+1Nx = Ω(log Nx), ε = o

(
(

k

Ny
)4/d

)
.

Then, for any f ∈ C∞(M), for sufficiently large Nx and Ny, w.p. higher than 1 − 4N−10
x − 2N−10

y ,

L(α)

rw′ f (x) = L(α)

ρ̂
f (x) + O[f ,p]

⎛
⎝( ky

Ny

)−4/d

ε

⎞
⎠ + O[1]

(
|∇f (x)|p(x)1/d

√
log N

Nεd/2+1

)
.

Theorem A.6 Under the same setting as in Theorem (A.5) and in the same sense of w.h.p,

L(α)
un f (x) = (pρ̂d+2−2α)(x)L(α)

ρ̂
f (x) + O[f ,p]

⎛
⎝( ky

Ny

)−4/d

ε

⎞
⎠ + O[1]

(
|∇f (x)|p(x)

α−1
d

√
log N

Nεd/2+1

)
.

In both theorems, the error rates can be worse than those in Theorems 3.5 and 3.6. It also gives
different optimal scaling when choosing ε and k so as to balance the bias and variance errors there. The
reason is due to that the bounds of magnitudes of derivatives of ρ̂ are scaled with inverse powers of
(k/N)1/d.

The proofs of Theorem A.5 and A.6 are basically the same as those of Theorems 3.5 and 3.6. The
difference is replacing the usage of Lemma 3.2 by a vanilla application of Lemma 3.1 with ρ being ρ̂

(which is ρ̂s), and details are omitted.

Proof of Lemma A.7. Note that for any x ∈ R
D\E, as shown in the proof of Lemma 2.1, x is in a

polygon p, and R̂(x) = ‖x − yp‖ for some yp outside p. For l = 0, the claim is identity. For l = 1,
∇r(x) = x

‖x‖ and |∇r(x)| = 1. When l = 2,

D(2)r(x) = ‖x‖2Id − xxT

‖x‖3 .

Thus, for any v ∈ R
D, ‖v‖ = 1,

|D(2)r(x)(v, v)| = |‖v‖2‖x‖2 − (vTx)2|
‖x‖3 � ‖v‖2‖x‖2

‖x‖3 = 1

‖x‖ ,

and hence |D(2)r(x)| � 2
‖x‖ . When l = 3 and 4, one can verify by definition that

|D(3)r(x)| <
6

‖x‖2 , |D(4)r(x)| <
6 × 4

‖x‖3 .

This proves that |D(l)R̂(x)| � l!
R̂(x)l−1 , for l = 1, · · · , 4. �

Proof of Lemma A.8. Because ρ̂ = ( 1
m0[h]

k
Ny

)−1/dR̂, we consider the smooth approximation of R̂ called

R̂s, and let ρ̂s = ( 1
m0[h]

k
Ny

)−1/dR̂s. By Lemma 2.1 and its proof, R̂ is continuous on R
D and C∞ on R

D\E

which is a finite union of (possibly unbounded) polygons. We consider the restriction of R̂ on M, and
because M is C∞, R̂ is C∞ on M\E. Under the probability assumption on p in Assumption 2.1, the set
E intersects with M over finitely many hypersurfaces of dimensionality (d − 1) w.p. 1. Then, there is a
finite partition of M into pieces with piecewise C∞ boundaries. For s > 0, a function R̂s ∈ C∞(M) can
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be constructed to uniformly approximate R̂ on M to within s, and in addition, D(l)
MR̂s(x) for l = 0, · · · , 4

is smoothly averaged from the values of D(l)
MR̂(x) on a neighborhood of x. This means that at x ∈ M∩E,

D(l)
MR̂s(x) is smoothly interpolating between the values of D(l)

MR̂ on each sides of the hypersurface

(at intersection of multiple hypersurfaces, i.e. ‘corners’, D(l)
MR̂s(x) is interpolating among the multiple

values). Then whether x is near M ∩ E or not, we have that |D(l)
MR̂s(x)| � supx∈M\E |D(l)

MR̂(x)|. This

can be done, e.g., by convolving R̂ on M using a Gaussian kernel in R
d with small bandwidth and

under the manifold metric. The uniform approximation of |R̂s(x) − R̂(x)| is then guaranteed by that R̂ is
Lipschitz-1 on R

D and thus is globally Lipschitz-1 on M with respect to the manifold geodesic metric.
This proves (A.61). �
Proof of Proposition A.4. Under the good event in Theorem 2.3, (A.14) equivalently gives that

sup
x∈M

|R̂(x) − R̄(x)|
R̄(x)

< ερ < 0.1. (A.63)

Meanwhile, ρ̄(x) = p(x)−1/d and is uniformly bounded from below and above by ρmin and ρmax which
are constants depending on p. We write m0[h] as m0 in this proof.

R̄(x) =
(

1

m0

k

Ny

)1/d

ρ̄(x) ∈
⎡
⎣cp,1

(
k

Ny

)1/d

, cp,2

(
k

Ny

)1/d
⎤
⎦ . (A.64)

Lemma A.7 gives that, for l = 0, 1, · · · , 4, D(l) being the derivatives in R
D,

|D(l)R̂(x)| � l!

R̂(x)l−1
, ∀x ∈ M\E.

The manifold derivatives are determined by ambient space derivatives via

D(l)
MR̂(x) =

l∑
m=0

Am(x)(D(m)R̂(x)),

where Am(x) are linear transforms determined by extrinsic manifold coordinates and their derivatives at
x, and are in C∞(M). Thus,

|D(l)
MR̂(x)| �

l∑
m=0

|Am(x)||D(m)R̂(x)| � cM

l∑
m=0

m!

R̂(x)m−1
,
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where cM is a constant depending on M. This gives that, ∀x ∈ M\E,

|D(l)
Mρ̂(x)| =

(
1

m0

k

Ny

)−1/d

|D(l)
MR̂| �

(
1

m0

k

Ny

)−1/d

cM

l∑
m=0

m!

R̂(x)m−1

� c′
M

cp,2

R̄(x)

l∑
m=0

R̂(x)−m+1 (by (A.64), c′
M depending on M)

< c′
Mcp,21.1

l∑
m=0

R̂(x)−m (by (A.63))

� c′
Mcp,21.1

l∑
m=0

(0.9R̄(x))−m � c′
Mcp,21.1

l∑
m=0

(
0.9cp,1(

k

Ny
)1/d

)−m

,

which means that

sup
x∈M\E

|D(l)
Mρ̂(x)| � Cp

(
k

Ny

)−l/d

,

where Cp is a constant depending on p, for l up to 4. Finally, Lemma A.8 constructs ρ̂s satisfying (A.61),
and then (A.62) follows. �
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