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ARTICLE INFO ABSTRACT

Keywords: Previous studies have shown that the max pressure control is a throughput-optimal policy that
Traffic Signal Control can stabilize the store-and-forward traffic network when the demand is within the network ca-
Max Pressure Control pacity. However, most of the existing studies do not consider the loss of capacity associated
Traffic Networks with phase switching, which will undermine the stability of the network. This work proposes
Switching Loss a novel framework that utilizes reinforcement learning algorithms to optimize a max pressure
Reinforcement Learning controller considering the phase switching loss. We first modify the max pressure control by
Policy Optimization introducing a switching curve and prove that the proposed control method is throughput-optimal

in a store-and-forward network. Then the theoretical control policy is extended by using a dis-
tributed approximation and position-weighted pressure so that the policy-gradient reinforcement
learning algorithms can be utilize to optimize the parameters in the policy network including the
switching curve and the weight curve. Simulation results show that the proposed control method
greatly outperforms both the conventional max pressure control and vehicle-actuated control.
The proposed framework combines the strengths of the data-driven method and the theoreti-
cal control model by utilizing reinforcement learning algorithm to optimize the max pressure
controller, which is of great significance for real-world implementations because the proposed
control policy can be generated in a distributed fashion based on local observations.

1. Introduction

Traffic signal control and optimization methods have been an active research topic for the past decades and recent
literature can be roughly divided into three different categories: 1) optimization or optimal control methods based on
different traffic models and formulations, 2) artificial intelligence algorithms such as the reinforcement learning, and
3) max pressure control for a general signalized network. Most optimization or optimal control methods are based on a
receding-horizon optimization established on traffic flow models such as the cell transmission model or the variational
formulation (Lo, 2001; Aboudolas et al., 2009; Wada et al., 2017). However, such receding-horizon optimization
methods usually suffer from heavy computational cost especially when dealing with large-scale networks as well as
long planning horizon; hence it is usually challenging to deploy these methods in the real world.

Reinforcement learning (RL) algorithms have also been extensively used for traffic signal control optimization
during the past decade (Arel et al., 2010; Khamis and Gomaa, 2014; Yau et al., 2017; Chu et al., 2019; Wei et al.,
2019b). By training offline, RL can directly learn an end-to-end control policy from the observation by interacting
with the simulation environment. Most of the existing literature using RL for traffic signal control focused on the
design of the input state space and reward (Wei et al., 2019b), while utilizing different RL techniques such as the
multi-agent algorithms (Chu et al., 2019). However, the control policy obtained by RL is usually expressed by a neural
network. Due to the issue of the generalization ability of the neural networks, it would not be preferable to directly
apply RL policy learned offline in a simulation environment to the real world without additional adjustments.

The max pressure control, which is also known as the back pressure or max weight control, is originally studied in
the communication network domain with respect to routing and scheduling (Tassiulas and Ephremides, 1990; Neely,
2010; Srikant and Ying, 2013). It was firstly introduced to traffic network signal control by Varaiya (2013), and followed
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by various extensions and evaluations (Le et al., 2015; Xiao et al., 2014; Zaidi et al., 2016; Sun and Yin, 2018; Li and
Jabari, 2019; Chen et al., 2020). The max pressure control for urban traffic networks has drawn tremendous attention
in recent years since it can provide appealing theoretical guarantee of stabilizing the store-and-forward network as long
as the demand is within the network capacity. Besides, it is a decentralized control policy in which each intersection
makes its own decision based on the upstream and downstream queue lengths.

However, the max pressure control introduced in most literature (Varaiya, 2013; Le et al., 2015; Xiao et al., 2014;
Zaidi et al., 2016) is derived based on a store-and-forward network model, which contains some strong assumptions
such as infinite link capacity, no link travel time, and no switching loss. In particular, it is well known that, due to the
phase switching loss, the phase switching frequency should decrease with the increase of the traffic demand so that
the network queue lengths can be stabilized under higher traffic volume without suffering much phase switching loss.
Nonetheless, the conventional max pressure control fails to adjust its phase switching frequency dynamically according
to the varying traffic demand; and hence it is no longer throughput-optimal over a network model with phase switching
loss (Celik et al., 2016).

In this work, we propose to utilize the policy-gradient reinforcement learning methods to learn a max pressure
control policy that considers the phase switching loss. We first propose an extended max pressure control policy
named SCMP, short for Switching-Curve-based Max Pressure control. It can be proved that, under the network model
with the phase switching loss, SCMP is throughput-optimal, meaning that it can stabilize the network queue lengths as
long as the traffic demand is (strictly) within the network capacity. SCMP extends the original max pressure control by
introducing a switching curve that could help the controller dynamically adjust the phase switching frequency according
to the current traffic loads. To adapt to the real-world traffic which is much more complicated than the store-and-forward
point-queue model, we further modify SCMP by using a distributed approximation and the position-weighted pressure
scheme. This modified max pressure control, which will be referred as ESCMP (Extended-SCMP), is a more practical
and general version of SCMP with the variant weight curves and the switching curves. While the switching curve
determines the switching behavior of the controller, the weight curve enables the controller to consider the vehicles at
different locations differently, so that it could implicitly improve the coordination among intersections.

Furthermore, we utilize the policy-gradient RL algorithms to optimize the two parametric curves in ESCMP includ-
ing the switching curve and the weight curve. ESCMP where the parametric curves are optimized by policy-gradient
RL algorithms is named as LESCMP (Learned-ESCMP). Compared with other RL-based methods utilizing neural
networks to represent the actor, LESCMP uses the max pressure control policy network, which is interpretable and de-
rived based on a control policy that has certain theoretical guarantee over a simplified network model. One seemingly
similar method to LESCMP that combines the RL and max pressure control comes from Wei et al. (2019a), which in-
tegrated the “pressure” into the reward function. However, the difference is quite obvious: we directly utilize the max
pressure controller as the actor instead of setting the pressure as the reward. As a distributed control policy in which
each intersection makes its own decision solely based on its upstream and downstream observation, LESCMP would
be also of great significance for the real-world implementation, especially in dealing with large-scale traffic networks.

The rest of this paper is organized as follows. Section 2 describes the network model used in this paper that adds
the phase switching loss to the original store-and-forward model. Sections 3 introduces the proposed max pressure
controllers, from SCMP, ESCMP, to LESCMP. Section 4 proves that the proposed SCMP is throughput-optimal under
the network model with switching loss. Section 5 shows the simulation results while Section 6 concludes this paper.

2. Network model with switching loss

In the theoretical analysis of the proposed max pressure control methods, we extend the store-and-forward model
used by prior studies (Aboudolas et al., 2009; Varaiya, 2013) to further capture the phase switching loss. Figure | is an
illustration of the store-and-forward network model. Let G = (N, £) be a general traffic network where A is the set of
the nodes (intersections) and L represents all the links. Usually, a link contains three movements: through, left-turn,
and right-turn. It is assumed that different movements of the same link are separate and do not block each other. A
movement can be defined as a tuple composed of the origin link and the destination link M = £ X £. We further
divide the movements into two categories: ordinary movements M° and exit movements M°. The exit movements will
not be considered in the analysis since the vehicle of the exit movements can be freely discharged without additional
downstream constraints. For each movement ij € M, let x; j(t) be the queue lengths at time slot ¢ and ¢; ; be the
saturation flow rate, which is treated as a constant.

For the traffic demand and signal constraints, let a; ] () be the exogenous demand of movement ij € M, which is
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Figure 1: Store-and-forward model, reproduced from Varaiya (2013)

assumed to be i.i.d. with the expectation Ea;;(r) = g;; and the maximum value a,,,, (0 < a;; < ap,y). Let r;;(f) be the
turning ratio from link 7 to link j, which is also 1.1.d. with the expectation Er;;(r) = r;;. For the traffic signal timing
plan, we define s;;(7) € {0, 1} as the traffic signal state for the movement ij where 0 corresponds to the red light and
1 represents the green light. Generally, the signal constraints can be formulated as a linear constraint:

s)e{s|K-s<h}=S, 9]

where s is the column vector that represents the traffic signal state for each movement. K is a matrix and h is a
column vector with proper dimensions. For example, if there is only an isolated intersection with two conflict through
movements, then the signal constraint can be written as s; + s, < 1, which can be expressed by Equation (1) with
s =[sy,5,]7, K =[1,1],and h = 1. It is easy to verify that the set S is a polyhedron with integer-valued vertices.
Figure 2 shows the flowchart of modeling the switching loss. Let 4;;(¢) € {0, 1} be the indicator; 4;;(f) = 1 means
that the movement ij is in the discharge mode at time # while 4;;(r) = 0 corresponds to the switching mode. Let y;;(?)

be the count down timer that stores the remaining duration of the switching mode and we have

_ I x®0=0

Let M? be the set of ordinary movements that enter the node n; whenever the signalized node n switches to the
switching mode from the discharge mode, we have:

2,0 =T" VG,j)e M, 3

which means that all the movements entering the node i will switch to the switching mode. T" is the total number of
time slots for the switching loss. For each time slot, the count down timer y;;(f + 1) is updated as:

o ox@®-1 ;=0
i+ 1= { j)(ij(t) /11';(1) =1 @

Combining the switching loss model given by Equations (2-4) and the store-and-forward model (Aboudolas et al.,
2009; Varaiya, 2013) yields the following dynamics of the queue lengths:

x4 1) = X0+ a0+ Y 1y () min{x (1), ¢y} - A0
k ®)
— min{x;;(t), ¢;;5;;()} - A;(t) v(i,j) e M°

which is equivalent to the matrix form:

x(t+ 1) =x()+al)— T - R(@) - A@) - min{x(t), Cs(¥)}, 6)
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Figure 2: Flowchart of network dynamics considering the switching cost.

where x(¢) is the queue lengths of all the ordinary movements. min{-, -} is the entry-wise minimization of the two
vectors. C is a diagonal matrix with C,,,, = c,,, Vm = (i, j) € M°. R(¢) is the matrix containing all the turning ratio;
I is the identical matrix; A(¢) is a diagonal matrix with {A(#)},,,, = Am®),Ym = (i, j) € M. Compared with the
dynamics in Varaiya (2013), Equations (5-6) have an extra A or A term so that the vehicle will only be allowed to pass
the intersection in the discharge mode.

When there is no switching loss, the whole system is a Markov chain with the state representation x;. The system
is more complicated with the switching loss; the timer vector y(¢) as well as the signal state s, needs to be augmented
to the state to maintain the Markovian property. The change of the Markovian property will influence the proof of the
stability in Section 4: instead of considering the Lyapunov drift step by step, the Lyapunov drift between switching
times will be considered to prove the stability.

3. Proposed max pressure control methods

3.1. Switching-Curve-based Max Pressure control (SCMP)

Based on the modified store-and-forward model with extra consideration of the phase switching loss, SCMP is
similar to the switching-curve-based (SCB) method introduced in Celik et al. (2016) but will be extended in the two
following aspects: 1) from one intersection (single-hop) to a general network (multi-hop); 2) the weight/pressure will
be a more general function of queue lengths. SCMP includes two parts: 1) how to switch, and 2) when to switch. For
the first aspect, whenever the switching is activated, the new signal timing plan is chosen as:

* T
s* =arg Isnea;( pr (x,, s) = arg rsnea;( w (x,) CI - R)s (7a)
= argIsneaéi Z 2 SijCij <wij(xij) - Z rjkwjk(xjk)> (7b)
neN \ijeM; jkem

where pr(x, s) represents the network pressure function under the state x and control policy s. w(-) is to apply function
w;(+) to each entry of the column vector within it. The w;(¢) is a weight function that satisfies the following conditions:

1. Function w;(x) is increasing and continuous for x > 0, and w;(0) = 0;
2. w(x) - oo when x — oo;
3. With bounded constant 0 < By < B; < co:

w;(x) + ByAx < w;(x + Ax) < w;(x) + B;Ax 8)
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Figure 3: Flowchart of network dynamics considering the switching cost.

For example, w;(x) can be any sublinear or piece-wise linear functions that monotonically increase with the queue
lengths. The max pressure policy given by Equation (7b) is similar to the max pressure control given by Varaiya
(2013). The only difference is that we generalize the queue lengths in the pressure to a more general function. Noted
that Equation (7a) is essentially a linear program (LP) that will reach the global optimum at an integer-valued vertex.
This naturally leads to a discrete signal control policy for each time slot, which suits the case in practice. Another
discussion in terms of Equation (7) is that it is a distributed algorithm since both the network pressure function and
the signal constraints (s € S) are separable among intersections. Therefore, finding the control policy of the network
according to Equation (7) is equivalent to find the max pressure control policy for each intersection:

s, = arg max Z 8i;Cij <wij(xij) - Z rjkwjk(xjk)> vne N ©)]
S,ES, .. .
T jeMS jkem
where each intersection » can determine its control policy s, solely based on its upstream observation {x;, | Vi, in €
M} and downstream observation {x,; | Vj,nj € M}. Therefore, the max pressure control policy given by Equation
(7) or Equation (9) has two major strengths: 1) it is a distributed control policy among intersections; ii) it is an end-to-
end control policy that directly generates the control policy given the upstream and downstream observation.
For the switching condition, we refer to Celik et al. (2016) and define the switching function as:

w() = I}lea;,( pr (xt’ s) —pr (xn st—l) - F (”xt”)

T (10)
= rsnea;(w (x,) CUI-R) (s - s,_l) - F (||x,||) ,

where ||-|| is 1-norm of the column vector that equals the summation of all the queue lengths. F(-), which is defined
as the switching curve in this paper, is a sublinear function satisfying:

lim F(x) = o0 lim F(x) =

X—00 X—00 X

0. (11)
Based on this switching curve function, the switching is only activated when w(¢) > 0, that is,

_ N ~1 ll/(t) < O
= { Sy 20 (12)

To sum up, Figure 3 shows the flowchart of the overall SCMP controller given by Equation (7-12). For each
time slot, the controller first observes the current system state x, and then finds the timing plan s* that maximizes
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the pressure function. Instead of switching to the new timing plan s* immediately, it is only activated whenever the
maximized pressure pr(x,, s*) exceeds the pressure of the original signal timing plan pr(x;, s,_;) by a certain value
F(||x,||), which is a sublinear function of the total queue lengths.

We will prove later in Section 4 that SCMP is throughput-optimal as long as the weight function and the switching
curve satisfy the corresponding conditions. This means that SCMP actually refers to a family of max pressure con-
trollers with variant weight functions and switching curves. Although all the controllers of this family can stabilize
the network queue lengths when the demand is within the network capacity; they might lead to different system delay
performance. Therefore, in the following subsections, we propose to utilize the RL algorithms to further improve
SCMP by optimizing the parameters.

3.2. Practical implementation: ESCMP

Before we go to the control policy optimization using the RL algorithms, we will first modify SCMP to a more
practical and general version called Extended-SCMP (ESCMP). Although SCMP is proved to be throughput-optimal
over a store-and-forward model with phase switching loss, it might not suit the real-world traffic very well since the
store-and-forward model is essentially a simplified point-queue model with some strong assumptions. However, it is
usually intractable and much more difficult to provide the theoretical analysis such as the stability based on a more
realistic traffic flow model. Therefore, in this paper, we restrict the theoretical analysis to SCMP while modifying
SCMP to ESCMP without the proof of the stability. ESCMP modifies and extends SCMP in two aspects: 1) from a
centralized switching to an approximated distributed switching; 2) from the weight or pressure defined by the function
of the queue lengths to a more general position weighted pressure.

Distributed switching For SCMP, although the selection of s* given by Equation (7) is distributed among inter-
sections, the switching rule given by Equation (11-12) requires the switching time to be determined in a centralized
fashion. The main reason for choosing a centralized switching rule is to simplify the proof of the global stability. If
each intersection decides its own switching time, it would be difficult to analyze the Lyapunov drift of intersections
with different switching times. In Hsieh et al. (2017), a superframe is pre-determined by collecting the queue lengths
of all the intersections and then individual intersections are allowed to switch more frequently within the superframe.
However, it would be better if the switching rule is decentralized which means that each intersection can decide to
switch or not only using the local information, making it easier for the real-world implementation. Besides, although
the centralized switching is proved to be a stable policy, it has the effect of forcing the intersections with lower traffic
volumes to switch less frequently to be synchronized with those congested intersections. This might increase the delay
of the low volume intersections.

Therefore, ESCMP uses an approximated distributed switching to replace the centralized switching rule; each
signalized node decides to switch whenever the function y"(-) defined below is greater than zero:

w(t) = glea;(" pr (x:',s”) —pr (x:’, s:’_l) - F (||x;’||) Vne N, (13)

where the superscript n refers to the corresponding value of the node n. Specifically, x” and s” represent the queue
lengths column vector and traffic signal states of all the movements that enter or exit the node n accordingly.

Position weighted pressure Similar to other max pressure controllers proposed before (Varaiya, 2013; Le et al.,
2015; Zaidi et al., 2016), SCMP is derived based on a store-and-forward point-queue network model. One of the major
limitations of the store-and-forward model is that it does not consider the vehicle distribution along the link, nor the
spatial propagation. To address this problem, Li and Jabari (2019) proposed a position weighted back pressure (PWBP)
control, which used a position weighted method (a linear weight) to calculate the pressure for each movement. We
will use the similar idea to get the pressure for each movement. Figure 4 illustrates the position-weighted pressure as
well as different weight curves. The moving vehicle and stopped vehicle might be considered separately, the red lines
are weight curves for the stopped vehicle while the blue lines correspond to the moving vehicle. The key idea of the
position weighted pressure proposed by Li and Jabari (2019) is that vehicles at different locations of the movement
might contribute differently to the movement pressure. Let {/;; ,,Vp} be the set of the locations (represented by the
traveled distance from the start of the movement) where there is a vehicle p along the movement ij and w;;(-) be the
position-based weight function. For the position weighted pressure, the w(x;;) in Equation (9) is calculated as:

wix;) = Y whdy; ) (14)
p
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Figure 4: Position-weighted curve to calculate the pressure. Original MP: original max pressure proposed by Varaiya
(2013), PWBP: position-weighted back pressure proposed by Li and Jabari (2019). As shown by the dashed lines, this
paper regards the position-weighted curves as the parameters to be optimized.

Under this position weighted pressure scheme, Li and Jabari (2019) used a linear curve to calculate the movement
pressure as shown in Figure 4, which means that the closer a vehicle to the intersection, the more it contributes to the
movement pressure. As a comparison, the original max pressure control proposed by Varaiya (2013) directly used the
queue lengths as the pressure for each movement. Under the store-and-forward model, the queue length is essentially
the number of vehicles within the movement. Therefore, the vehicles of the same movement exert equal pressure to
the whole movement as shown in the horizontal lines in Figure 4. Both the original MP and PWBP do not distinguish
the moving vehicle and the stopped vehicle; and hence the blue line and the red line are overlapped. In this paper,
as shown by the dashed line, we will treat the weight curve as the parameter to be optimized and split the vehicles
to moving vehicles and stopped vehicles. Intuitively, an increasing function would be preferable for moving vehicles.
On the contrary, a decreasing function might be better for the stopped vehicles since it can penalize the long queues.
Although we will not provide the theoretical analysis of the stability of this position weighted pressure scheme based
on a first-order traffic flow model like Li and Jabari (2019), we do use a weight function of the queue lengths to get the
pressure under the store-and-forward model, trying to mimic the similar effect.

With these two adaptations, Figure 5 is an illustration to the overall ESCMP controller. As a distributed controller,
each intersection has a controller of the same structure as shown in the figure but they would have different parameters
due to the different geometry and demand patterns. The road segment is discretized into cells with equal length so
that the observation is the number of vehicles within each cell. The weight curve is represented by a vector that has
the same dimension as the observation. Then the movement (corresponds to a controlled lane) pressure is obtained by
performing an inner product over the observation and the weight curve. A phase is defined as the set of movements
that are allowed to pass at the same time, corresponding to a feasible control policy vector s” € S” of the node n.
Then the phase pressure is the summation of the pressure of the movements that are allowed to pass during this phase.
Before getting the phase weight layer, the phase pressure should add another switching cost layer, which determines
the switching frequency of the controller. At last, the phase with the maximum weight will be chosen as the action of
the current time slot.

3.3. Parameter optimization using policy-gradient methods: LESCMP

With the policy network of ESCMP given by Figure 5, we are able to leverage the policy-gradient methods to
optimize the parameters including the weight curve and the switching curve. Unlike most the literature that used the
neural networks as the actor in the RL algorithms (Chu et al., 2019; Yau et al., 2017; Khamis and Gomaa, 2014; Arel
et al., 2010), we use RL to optimize a policy network that has a pre-determined max pressure structure. In this paper,
ESCMP controller that is further optimized by RL is named as Learned-ESCMP (LESCMP) in this paper.

RL algorithms can further improve ESCMP in two aspects. Firstly, RL can implicitly take other factors not included
in the store-and-forward model into consideration, such as the spill-over and coordination among intersections. Both
the spill-over and coordination will influence the system total delay, which relates to the reward of the RL. RL can
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Figure 5: The max pressure control policy network (ESCMP).

take account these factors by adjusting the weight curve and the switching curve when trying to maximize the system
total reward. Secondly, the theoretical analysis with regard to the max pressure controller only concerns the stability of
the system, which means that the total queue lengths are bounded or the traffic demand can be served in the long run.
According to Little’s law (Little and Graves, 2008), the bounded total queue lengths guarantee a bounded total delay
but not the optimal total delay. Therefore, RL algorithms can be utilize to further optimize the delay performance of
the system, which turns out to be hard to deal with in the theoretical analysis.

With the switching loss, the system is still a Markov chain by augmenting the traffic signal state and the count-down
timer to the traffic state representation. Let .S, be the augmented system state at time slot . The weight curves and
switching curve in Figure 5 can be parameterized by # € ©. Since RL requires a stochastic control policy to perform the
exploration, the deterministic max pressure control policy can be easily converted to a stochastic version by changing
the maximization operator to a softmax (logit model) when selecting the final action as shown in Figure 5. Let 7y (- | S,)
be the probability distribution of the action a;, ~ z,(- | S;) that will be taken given state .S;. Let 7 = [Sy, ag, S, ay, ...]
be a realization or a trajectory of the Markov process. To further minimize the delay performance of the system, we
can choose the parameter 6 as:

T
k 3 - —
0" = arg ggg [Er~n9 g{llxtll = arg meax [Er~7r€ R(z) = arg mglx J(6), (15)

where R(7) is defined as the reward of the trajectory z:

R(x) == Y[, (16)
t

and J(0) is the expected reward by taking the expectation with regard to the trajectory z:

J(0) = E,py R(T) = —E, .y D lI,]I. (17)

t

To optimize the parametric control policy in a MDP (Markov Decision Process, aka, controlled Markov chain),
in this paper, we adopt the policy-gradient methods (Sutton and Barto, 2018) that update the parameter by using its
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gradient:
9k+l =9k+aV9J(0) |9=0k (18)

where a is the learning rate while the gradient is given by:

VoJ(0) =E,., lz mg(a, | SI)R(T)] , (19)
t

which means that the gradient of the policy can be estimated using the Monte Carlo method. Based on Equation (18-
19), there have been different extensions proposed for the policy-gradient methods. For example, trust region policy
optimization (TRPO) (Schulman et al., 2015) updates the policy by taking the largest step satisfying a special constraint
on the distance between the new and old policies quantified by the KL divergence. To simplify the TRPO which solves
a constrained optimization problem for each iteration, the proximal policy optimization (PPO) (Schulman et al., 2017)
solves a proximal unconstrained optimization problem for each update. This paper will use the PPO to optimize the
parameters in the max pressure policy network shown by Figure 5.

4. Network stability

4.1. Basic concepts for queue lengths strong stability

This section will prove that SCMP given by Equation (7-12) is throughput-optimal under the store-and-forward
model with the phase switching loss described in Section 2. Before that, we will introduce some preliminary concepts
of the network queue length stability. The strong stability of the global network queue lengths is given by the following
definition:

Definition 1. The network queue lengths are strongly stable if:

T
. 1
Th_r)r;o sup ?[E ,;HX(I)” < 00 (20)

By definition, the strong stability means that average total queue lengths are bounded in the infinite horizon, which
indicates that all the demand will be served in the long run. According to Little’ law (Little and Graves, 2008), bounded
total queue lengths indicate a bounded system total delay. Therefore, the strong stability can guarantee a bounded total
delay but not the optimum. This is one of the reasons that the reinforcement learning is used to optimize the network
delay performance as aforementioned in Section 3.3.

In Section 2, we have defined the signal constraints given by Equation (1). The feasible polyhedron of the signal
state S determines the admissible demand region defined below:

Definition 2. The admissible demand region D is defined as:
D={(aR)|a<({I-R)Cs,3s € S}. 2n

The admissible demand region defines the feasible average exogenous demand and turning ratio pair (a, R) that
can be served by the network. Based on this definition of the admissible demand region, a control policy is called
throughput-optimal if it can stabilize the network queue lengths as long as the demand belongs to the interior of the
admissible demand region (a, R) € intD. The following theorem shows that only if the demand is within the admissible
demand region, the network queue lengths can be stabilized.

Theorem 1. The network queue lengths can only be stabilized when (a, R) € D. With the switching loss, the new
admissible demand region has to be in the interior of the original admissible demand region (a, R) € intD.

The proof of Theorem 1 can be seen in Appendix A. This theorem indicates that the throughput-optimal control
policy can stabilize the network queue length as long as there exists a control policy that can stabilize it.
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4.2. Sufficient condition for the queue lengths stability with switching loss

Before we show the stability of SCMP, we will first provide a sufficient condition for the network queue length
stability considering switching loss. This sufficient condition is modified from Celik et al. (2016), which is extended
in two aspects: 1) from a single-hop to a multi-hop network; 2) from the quadratic Lyapunov function to a more
generalized Lyapunov function (Srikant and Ying, 2013). Under the generalized weight function w(-), the Lyapunov
function of a given network queue length state x, is defined as:

x;(1)
Lx(t) =, / w;(£)dE, (22)
i J&=0
which becomes the quadratic Lyapunov function used in Varaiya (2013) when the weight function w;(¢) = ¢.

Let 7, be the time step when the kth switching is activated and s* be the signal timing plan chosen after kth
switching. A; is defined as the Lyapunov drift from the kth switching to (k + 1)th switching:

A, =E (L(x(‘rk+1)

ka) — L(x(z,). (23)

where ka = (k, 7y, x(7y), s%) is the augmented state including the index of the switching k, the switching time of
the kth switching ,, the network queue lengths state x(z,), and the traffic signal state s¥. It is easy to verify that
the dynamic system is a Markov chain under such augmented state representation. The following theorem provides a
sufficient condition for the network queue length stability under the switching loss.

Theorem 2. Under the network model with switching loss described by Section 2. Let k denote the index of the
switching. For each k, T,’c is a random stopping time. Given a compact set C, a sublinear function F(-), and a non-
negative function §'(-) with lim, _, . 6'(x) = 0. Let €, ¢, ¢, be positive constants. Given a control policy that always
selects the max pressure policy according to Equation (7) whenever the switching is activated, if the demand belongs
to the interior of the admissible demand region (a, R) € intD and the following conditions with regard to the switching
time are satisfied:

Tipl = Thy s (24a)
[~ 0[5, ] 2 e - 8 Axo Fdx@l: ab)
E [(T/'m ~ 7 Srk] <T2 +¢, (Flx@): (24c)
E [L(x(t + 1)) = Lx(@) |S,] < —ellwx)ll, Vx(@0) € C°t € {7, iy + Lo To1 5 (24d)

then the network queue lengths will be strongly stable.

The temporal axis illustration given by Figure 6 could help to understand this theorem. The second and the third
condition given by (24b-24c) restrict the expectation of the first and second order of the temporal difference T]’( |~ T
For the first condition given by (24a), if this condition holds as equality, then the last condition will be redundant. If
the first condition holds as inequality, which means that the (k + 1)th switching is activated after T;H_l, then we need
an extra condition given by Equation (24d), requiring a step-by-step negative Lyapunov drift from rl’(H to 7,1 when
the (k + 1)th switching is activated.

With Jensen’s inequality, from Equation (24c) we have:

Elry,y — 7 | Se 1 S T, + /e, F(llx(zo)ll) (25)

/

and thus we have the two-sided bound for the temporal difference between the 7; and the random stopping time 7, _,

given by Equation (25) and Equation (24b).
The proof of this theorem is based on a lemma that bounds the Lyapunov drift from the switching time 7, and the

random stopping time T;( + for each k. Let A’Tk be the conditional Lyapunov drift from 7, to the random stopping time

!/ .
Trat

AL =E (L(x(z;, ) | S;)) = L(x(zy), (26)

Tk

then the lemma can be written as:
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Figure 6: Temporal axis of the switching times.

Lemma 1. Ifthe max pressure control policy satisfies the conditions given in Theorem 2, then given the demand within
the admissible demand region and n > 0, c3 < o0, we have:

A% <6 = nF(lx@)Dllw@) )l @7

The proof of Lemma 1 is attached in Appendix B. Lemma | essentially provides an upper bound for the Lyapunov
drift from the time 7, to Tllc+1 as shown in Figure 6. With Lemma [, here we give a sketch of the proof of the Theorem
2. As shown on the green axis in Figure 6, let 7* be a new time series that skips the time slots when 7 € (7, rl’( +1),

T T
T = [Tl*, T;, T;, ] = [TO,T{, T; +1,..,1, ré, Té +1,.., 79, ] . (28)
We will first show that the global queue lengths are strongly stable in this new time series and then complete the
proof by extending the results to the whole time series. It is easy to verify that under the new time series, the augmented
system state is still a Markov chain given the generalized max pressure policy. Combining the Lemma | and the last
condition in Theorem 2, we have:

E | LGee}, ) = Lex(e))

ST‘_*] < —ellwx)l, Vi, (29)

This equation comes from Lemma | when T;:_l —7; > 1 and from Equation (24d) when Tl,*+1 — 7/ = 1. Taking the

expectation for both sides of this equation and summing up all the equations for all i, we will finally get:

T T

1 * . 1 .

7 LEUxE)ID <o, VT = lim sup 3 ZE(lx(z)l) < oo, (30)
i=1 i=1

which means that the network queue lengths under the new time series 7* is strongly stable. To prove that the queue
lengths are strongly stable of the whole time series, the remaining issue is to prove the queue lengths stability for every
skipped period (7, rl’( +1)> Vk. Here we do not provide the detailed proof, which can be easily derived from Equation
(25) and the assumption that the number of arrival for each time slot is bounded. This omitted part is similar to the
proof of theorem 1 in Celik et al. (2016).

4.3. Stability of SCMP
With the sufficient conditions of the queue lengths stability given in the previous subsection, this subsection will
show that SCMP given by Equation (7-12) is throughput-optimal which means that it could stabilize the network
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queue lengths as long as the traffic demand is strictly within the network capacity. Before we prove the stability of the
proposed control policy, we will first introduce a lemma which defines a biased-based policy (Celik et al., 2016; Hsieh
et al., 2017) that can stabilize the network queue lengths by satisfying the sufficient conditions in Theorem 2 with the
first condition as an equality.

Lemma 2. Given a max pressure control that chooses the control policy according to Equation (7), if the switching is
activated whenever the the following y'(+) function

w'(®) = [|x(0) = x(z)|l = OF(lx(z)l), 6> 0 (€29
is greater than zero, the control policy satisfies the conditions in Theorem 2 with the first condition as equality.

We choose not to go through the details of the proof of this Lemma since it is similar to the proof in Celik et al.
(2016). Basically, it can be easily derived by using some relaxation tricks to bound first- and second-order moments of
the temporal difference between the previous switching time and the time when the y’(-) function given by Equation
(31) is firstly satisfied. With Lemma 2, the following theorem shows that, when the demand is strictly within the ad-
missible demand region, SCMP given by Equation (7-12) satisfies the condition in Theorem 2, and hence can stabilize
the network queue lengths.

Theorem 3. When the demand is strictly within the admissible demand region, SCMP given by Equation (7-12) sat-
isfies the condition in Theorem 2 with the first condition as inequality, and hence could stabilize the network queue
lengths.

The proof of Theorem 3 is provided in Appendix C. The basic idea of the proof is to first show that before the
switching is activated according to the switching rule given by Equation (10), there is always a corresponding biased-
based policy given by Equation (31) that the switching is activated in advance. This means that the second and the
third condition of Theorem 2 is satisfied by Lemma 2. Then we show that the Lyapunov drift is negative step-by-step
after that by using the fact that the condition given by Equation (10) is not satisfied yet. Theorem 3 eventually shows
that SCMP is throughput-optimal under the store-and-forward network model with the phase switching loss.

5. Simulation Experiments

We use a simulation model built on SUMO (Krajzewicz et al., 2012) to compare the proposed max pressure control
methods including ESCMP and LESCMP with two benchmark methods including the vehicle-actuated control and the
original max pressure control . Figure 7 shows the network used in the simulation, which is a corridor with six intersec-
tions on Plymouth Road, Ann Arbor, Michigan. The network topology is directly extracted from the OpenStreetMap
data set (Haklay and Weber, 2008) while the traffic demand is calibrated from the historical data collected by videos
during the evening peak hours. Figure 8 shows the traffic demand pattern used for the reinforcement learning. The
duration of each episode is 60 min, which is divided into 5 different periods with variant demand levels or arrival rates.
The vehicle arrival follows the Poisson process with a stationary arrival rate within each period. The relative demand
level refers to the ratio of the realized demand to the calibrated peak-hour demand value. The green line and area
are the mean value and the standard derivation of 10 random samples of the overall vehicle arrival rate of the whole
network. For the signal controller, each movement (controlled lane) will has an enforced 3-second yellow time when
it is switched from green light to red light and a 2-second all-red clearance time.

In this paper, we use an open-source reinforcement learning library (i.e., Ray rllib) (Liang et al., 2017) for the
implementation of LESCMP. The input state includes the traffic state as well as the current signal state; the traffic
state is represented by the number of the stopped and running vehicles within each cell of each lane while each lane is
divided into cells for every 50 meters. The reward of the environment is chosen as the negative value of the total stop
delay while a vehicle is regarded as stopped when its speed is less than a given threshold. The policy network of the
PPO is described in Section 3.2 while the switching curve is chosen as

F(x)=a-x’, (32)

where « and f are the parameters. Besides the policy network, the PPO also learns a value network at the same time as
the critic to guide the update of the policy network; the value network is simply chosen as a two-layer fully-connected
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Figure 8: Input demand profile of the simulation environment.

neural network with 256 neurons for each layer. Figure 9 shows the training curve of the PPO with the proposed max
pressure policy network. The horizontal axis is the total time steps of the simulation environment while the vertical
axis is the average scaled reward for each episode.

Two benchmark controllers are used for the comparison: the actuated control and the max pressure control without
consideration of the switching loss. The actuated control tested in this experiment used the default actuated controller
provided by the SUMO environment (Krajzewicz et al., 2012). The max pressure control without the consideration
of the switching loss is chosen as the position weighted back pressure control (PWBP) proposed by Li and Jabari
(2019). For the implementation of PWBP, we slightly change the position-based weight curve in the PWBP by using
different curves for the running vehicles and the stopped vehicles as shown in Section 3.2. The weight curve for the
running vehicles is chosen as the same as the PWBP while a uniform flat curve is used for the stopped vehicles. The
proposed ESCMP tested in this section has the same weight curves with the implementation of PWBP but with an
extra switching curve F(x) = x%*, where the parameter 0.4 is selected by a heuristic line search program. To obtain
LESCMP, ESCMP is further optimized by using the PPO as aforementioned.

Under the demand profile given by Figure 8, Figure 10 and Table 1 show the comparison of the proposed max
pressure methods with the two benchmarks. There are totally four different controllers tested: the actuated control,
PWBP, ESCMP, and LESCMP. The evaluation for each controller is repeated 10 times. For each evaluation, the
input demand for all the controllers is generated using the same random seed which means that the input demand is
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Figure 10: System stop delay under the different traffic signal controllers.

Table 1
Comparison of the system total delay of different controllers. Input demand is given by Figure 8.

Control policy  Average system total delay (h)  Total delay std (h)

CAC 68.56 45.66
PWBP 331.98 37.97
ESCMP 108.87 21.53

LESCMP 71.95 3.63

exactly the same for all the controllers. Figure 10 shows the mean and standard derivation of the system total delay of
the four controllers. Compared with the delay curves of the three different max pressure controllers, the delay curve
of the actuated control show obvious oscillation since the actuated control is quasi-periodic while the max pressure
controllers do not follow the cyclic phase structure. When the traffic demand is low, almost all the max pressure
controllers outperform the actuated control since the max pressure control without fixed phase sequence structure is
more flexible than the actuated control. However, when the demand increased, the system delay of the PWBP increases
significantly. This is because the max pressure control without considering the phase switching loss could lead to very
frequent switching so that the traffic demand cannot be served and the queue built up quickly. Compared with the
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Table 2
Mean and standard derivation of the system total delay (h) under different demand level (stationary arrival rate).
Different relative demand levels
Control Policy 0.2 0.4 0.6 0.8 1.0 1.2

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
CAC 126 44 26.6 7.7 444 116 775 204 185.0 .7 4229 2195
PWBP 5.7 0.2 15.2 05 146.2 25.2 5884 93.0 12929 170.6 18359 129.3
ESCMP 426 25 491 13 628 12 885 34 3281 388 10209 1345
LESCMP 9.1 01 215 03 409 05 794 11 1699 6.5 680.4 131.0

PWBP without the switching curve, ESCMP can dynamically adjust the phase switching frequency so that it would
switch less frequently under the higher traffic demand. Based on ESCMP, LESCMP performs even better since the
parameter is further optimized using the RL algorithms, which is intuitive and consistent with the result in Figure
9. Table 1 lists the mean and standard derivation of the system total delay of the four controllers. ESCMP control
outperformed both the actuated control and PWBP significantly and the RL can further improve ESCMP by further
decreasing the system total delay by more than 35%.

The evaluation results given by Figure 10 and Table 1 use the same input demand distribution with the training
process. Therefore, we design another “out-of-sample” experiment to test the four controllers under the different levels
of stationary arrival rates. Similarly, the evaluation is repeated for 10 times for each controller with each demand rate.
Table 2 shows the mean and standard derivation of the system total delay under different relative demand levels ranging
from 0.2 to 1.2. This result is quite similar to the previous one. Both ESCMP and LESCMP performs very well in all
levels of the demand. However, as a more flexible controller without a fixed cyclic phase structure, the max pressure
controller suffers a larger variance when the traffic demand was high; although it had a much less mean value compared
with the actuated control. The robustness of the max pressure control is not considered in this work and we leave that
for future study.

6. Discussions and conclusions

This paper presents a framework that utilizes the policy-gradient reinforcement learning methods to learn a mod-
ified max pressure control policy considering the switching loss. The proposed max pressure control (SCMP) uses a
switching rule that dynamically adjusts the switching frequency according to the congestion level. It is proved that
SCMP is a throughput-optimal policy under the store-and-forward model with the phase switching loss. We also ex-
tend the theoretically derived SCMP to a more practical and flexible ESCMP with the weight curve and the switching
curve. These two parametric curves are further optimized in LESCMP using the policy-gradient reinforcement learn-
ing algorithms. While the switching curve is used to address the switching loss caused by phase switching, the position
weighted pressure can implicitly take the coordination between intersections into account. The simulation study es-
tablished on a calibrated network showed that ESCMP and LESCMP outperformed the original max pressure control
and vehicle-actuated control significantly.

The proposed max pressure control methods shows many advantages in the real-world implementation. The con-
trol policy is decentralized so that each intersection makes its own decision based on the upstream and downstream
traffic state without requiring communication between intersections. The switching rule enables the control policy to
dynamically adjust the switching frequency (equivalent to cycle lengths) according to the congestion level so that we
do not have to split the whole day into different time of days (TOD) and perform different signal timing plans or adjust
the parameters. Besides, the max pressure control is an end-to-end control policy, which directly generates the control
policy from the observation; hence it can be efficiently implemented in the real world.

This paper assumes that the locations of all the vehicles are available for the signal controller, which could be
obtained by the infrastructure sensor or with 100% penetration rate of the connected vehicles. When the complete
traffic state is not available, for example, there are only loop detectors at certain locations or the penetration rate of
connected vehicles is not high enough, a traffic state estimation might be required before the implementation of the
max pressure control. There have been different methods proposed to estimate the traffic state using different data
resources (Liu et al., 2009; Zhao et al., 2019; Wang et al., 2020). Varaiya (2013) has pointed that the stability will
not be undermined in the store-and-forward model as long as the estimation of the pressure is unbiased. In fact, it
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is easy to verify that, with the infinite link capacity assumption, the stability will not be influenced if the traffic state
estimation is unbiased or the estimation error is bounded. However, this situation will change if the assumption does
not hold. Therefore, for the store-and-forward model with finite link capacity, we might need additional requirements
for the traffic state estimation error to insure the network queue length stability.
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A. Proof of Theorem 1

Define p with y;(t) = min{x;;(t), ¢;;s;;(t)}. Obviously, we have u < Cs, thatis C~'u € S. If there is no switching
loss, the dynamics for each time step can be written as:

x(t + 1) = x(t) + a(?) — (I — R)u@). (33)

If Equation (21) is not true, then there exists an i € M and a positive constant ¢ > 0, such thata,—{(I-R)u}; > e.
Applying 1-norm and taking the expectation on both sides of Equation (33) yield:

Edllx; + DID = E(llx;OID + € = ... Z E(llx;(0)]]) + (7 + De. (34)

That is, the queue lengths of this movement i will diverge to infinity when the time keeps increasing. With the switching
loss, the inequality will turn to a strict inequality and the network queue lengths will diverge more quickly. []

B. Proof of Lemma 1

Noted that this proof will involve many bounded positive constants such as c; in Equation (27); we choose not keep
track of the exact mathematical expressions to simplify the proof unless necessary. In fact, all the terms ordered by
[lw(x(z;))|| can be put into the bounded constant term, since these bounded constants will not undermine the stability
of the network queue lengths. The Lyapunov drift A’T X defined in Equation (26) can be written as:

x;i(tr)

x,-(r’+
Al =E lz/é_o e - Z/ w;(§)dé ka]
k

=E lz w; (xi(fk) +p- (x,»(r,'(H) — x,-(fk))) (x (rk_H) x,-(Tk))
i
where the second equality comes from the mean-value theorem and f € [0, 1]. According to the last property of the
weight function, there exists a constant B, such that the Lyapunov drift is bounded by:

(35)

A, <E [Z w; (x,(t)) - (xi(t), ) — x,(7})) + B Z (xi(z, ) - x(t0) ka] (36)
which is equivalent to the matrix form:

A;k <E [w(x(rk)) (x(zp, 1) = x(5)) + B - (x(z,, ) — x(Tk)) (x(rp, ) — x(rk))| Srk] (37
Let A" and A" be the first term and second term of Equation (37):

A = E [wx(m) (et ) - 22| S, | (382)

A = [B (x(zf, ) = x(@) (x(2], ) = X)) ka] . (38b)

We will bound these two terms of the Lyapunov drift separately. For x(rl'C )~ *(@) in the first term, we have the
dynamics:

!
Th+1

x(t,, ) = x(zp) = Z a(t) — (I = R")min{x(zy), (7, , | — 7 — T, - I)Cs; } (39)

=1
where R’ is the average turning ratio during the period:

k+l

R = Z R(®) (40)

Topr ~ Tk i Tk
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II, is the diagonal indicator matrix with {II; },,, = 1 if movement m is switched from the red light to the green light
during this kth switching. s, is the selected control policy during this period. By taking the expectation on both sides
of Equation (39), and utilizing the fact that a(f) and R(¢) are both i.i.d., we will get:

E [x(z,, ) — x(z)] = (zr,, — 7)a— T — Rymin{x(zy), (r,,, — 7 — T, - I;)Cs; }

) . (41
= (Tk+1 —1)a— (I — R)min{x(z;), D - Cs;},
where the matrix D is defined as:
D:(T]/H_]—Tk)'I—Tr'ka(T]/C+1—Tk)'I (42)

The matrix D is also a diagonal matrix with positive diagonal entries. Noted that not all the nodes are necessary to
switch to a new phase after each switching but at least there will be one.
By applying the Equation (41) to the first term of the Lyapunov drift given by Equation (38a), it becomes:

A;<kl> =E [w(x())" - ((r,, — 7)a— I — R) - min{x(zy), DCsk})| Srk]

—F [w(x(z)" - ((z],, - 7)a = DI = RYCsy + D(I — RXCs; — D(I — R) - min{ D" x(z,), Cs; }) Srk]
=E [w(x(rk))TD(I — R)(Cs; — min{Cs,, D_lx(fk)})| Srk]
+E [w(x(rk))T (41 =70 - @ = DU = RICsy))| S,k] .
(43)

For the first item of RHS of the last equality, we have Vx(z;):

w(x(t))" DI — R)(Cs; —min{Cs;, D~'x(r)}) < (z;,, — r)w(x(z;))" (I = R)(Cs; —min{Cs;, D~ x(z,)})

<B- (1';(+1 - 7).
(44)

where B’ > 0 is a bounded constant. The first inequality of this equation comes directly from Equation (42). For the
second inequality: when D~! x(z;) within the min{-, -} operator is larger than the first term Cs,, the whole term
(Cs; — min{-,-}) will become zero. Therefore, the LHS of Equation (44) could be greater than zero only when the
term D! . x(7;) is less than Cs,; under this condition we can easily bound the whole LHS of of Equation (44) with
a bounded x(7;) < DCs.

By applying Equation (44) and (25) to Equation (43), the first term of the Lyapunov drift given by Equation (38a)
can be bounded as:

A< B E [r,’m —_ Srk] +E [w(x(fk))T (], =70 - @a— D(I - R)Csy))

& (45)

<l + IOl + E [wix(m) (e, — 70 a~ DU =~ RICsp)| S,

where c;, ¢y > 0’ are positive constants.
We can further bound the last term of Equation (45) utilizing the condition that the demand (a, R) is within the
interior of the admissible demand region. Since (a, R) € intD, we have:

a—(I-R)Cs" <—¢l, Is"e€ S,e>0. (46)
Since the control policy s, is selected according to Equation (7), we have:

wx(t) (2], — 1)U = R)Cs; > w(x(z)! (z),, — 1) — R)Cs” (47)
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The last term of Equation (45) can be simplified as:

E [w(x(rk))T (], =) -a— DU - R)Cs)))

S, ]

= E [wx(@) (¢}, = 5@ — I = RICs) | S, | +E |w(x(z)) (I = RCsp) | 5, |

< E [wix(z) (¢}, = )@~ (I = RICs™) | S, | + E [wix(z)) T = RICs) | S, | (48)
< —ellw(x(e)l - E |(z}, = 70 | S, | + E |wx@) I = RICsp | S, |

< —ellwGxl - (E [,y - 70 1S, ] = <))

where the first inequality comes from Equation (47). The last inequality holds since the norm of the vector II, (I —
R)Cs,, can be easily bounded by a constant.

Applying Equation (24b) to Equation (48) and substituting it to Equation (45), we bound A(TB as follows:

ATV < ef + S F(lx@olh = € (1= 8" lx@IN) Flx(z) D lw(x (@) (49)

where 6" (-) satisfies lim 6" (x) = 0. So far we have bounded the first term of the Lyapunov drift given by Equation
(384).

For the second term A'T(kz), it can be simply bounded as:

X—00

A/r(kZ) =B-E [(x(fllcﬂ) - x(Tk))T(x(Tlch) - x(T"))| S,
<B-E[,, -t a+c) (a+0)
[+ ¢ (Fax@on)’]

<) (Flx(ol) + ¢

(50)
<c

PN

A

where the first inequality is a loose relaxation from Equation (39). E||la + C ||§ can be bounded by a constant since the
variance of the arrival is assumed to be bounded; the second inequality is from Equation (24c). Summing up the first
and second term leads to:

A, =ATD + AT
=c| + S F(|x(zp)l) + ¢} - (F(llx(zplD)’ =€ (1= 8" (lx(zlD) Flx(z)Dllwxz)l G
<c3 — nF(|lx(z)Dlwx @)l

k

since F () is a sublinear function and &'(-) converges to zero when the queue lengths go to infinity. This completes the
proof of the Lemma 1. []

C. Proof of Theorem 3

We will first show that under the switching rule defined by Equation (10), for each k, there is always a random
stopping time rli nE when the switching is activated according to the switching rule defined in Lemma 2, before the
switching condition given by Equation (10) is satisfied. Then according to Lemma 2, the proposed generalized max
pressure control policy will satisfy the first three conditions with the first condition as an inequality. Then we only
need to check the last condition.

For each sampled trajectory of the system state, we have:

—w(x(r))" (I — R)(s(341) — 5(7)) 2 0

T (52)
w(x(ty1))" (I = R)(s(7y11) — s(7)) = F(l|x(zp )
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where the first inequality is due to the fact that at time 7, when a new policy s(z;) is selected, it maximized the weight
given by Equation (7). The second inequality follows from the switching rule given by Equation (10). Summing these
two equations up yields:

[w(x(tiy1)) — W) (T = R)(s(741) = s(z)) > F(llx(zi)ID. (53)
Then we can have:

lw(x(zii1)) — wx@)I - 1T = R)(s(zpy1) = STl 2 F(llx(zr)ID
cl|x(zyq1) = (@Il = F(|llx(@ll = lx(zye41) = x(z)lID (54)
cl|x(zyq1) = %zl = Fl[x(z)lD) = B - ||x(zy41) — x(z)l

where both B and c are bounded positive constants. The first inequality (first line) follows from the Cauchy-Schwarz
inequality; the change of the LHS from the first inequality to the second inequality utilizes the condition that the general
weight function has a bounded first-order derivative and the term ||( — R)(s(z;,;) — s(7;))|| can be bounded by a
constant; the last inequality follows from the condition that F(-) is a sublinear function.

Equation (54) can be simplified as:

lx(zpq1) — x(zll 2 Bic - F(llx(@)ID, (55)

which indicates that before the switching is activated according to Equation (10), a corresponding switching activation
condition given by Lemma 2 under 6 = 1/(Bc¢) > 0 will be satisfied in advance. Then according to Lemma 2, the first
three conditions of the Theorem 2 are satisfied.

Here we will show that the last condition is also satisfied. Before the switching is activated, we have:

max w(x(ti,1)) (I = R)(s — s(zp)) < Fllx(zq. DD, (56)

which means that the current control policy is still close to the max pressure policy. Let A, be the one-slot conditional
Lyapunov drift. Repeating the similar procedure in the proof of Lemma | with the only change from the complicated
multiple-slots case to one-slot case, we can finally have:

A, < e = ellxOll + FIxOl) 0

which is equivalent to the last condition in Theorem 2 since F(-) is a sublinear function. []
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