
Fully Dynamic Electrical Flows: Sparse Maxflow Faster Than Goldberg-Rao

Yu Gao

School of Computer Science
Georgia Institute of Technology

Atlanta, USA
ygao380@gatech.edu

Yang P. Liu

Department of Mathematics
Stanford University

Palo Alto, USA
yangpliu@stanford.edu

Richard Peng

School of Computer Science
Georgia Tech / University of Waterloo

Atlanta, USA / Waterloo, Canada
rpeng@cc.gatech.edu

Abstract—We give an algorithm for computing exact max-
imum flows on graphs with m edges and integer capacities
in the range [1, U] in ˜O(m

3
2
− 1

328 logU) time.1 For sparse
graphs with polynomially bounded integer capacities, this is
the first improvement over the ˜O(m1.5 logU) time bound from
[Goldberg-Rao JACM ‘98].

Our algorithm revolves around dynamically maintaining the
augmenting electrical flows at the core of the interior point
method based algorithm from [Mądry JACM ‘16]. This entails
designing data structures that, in limited settings, return edges
with large electric energy in a graph undergoing resistance
updates.

Keywords-Maximum flow; Data structures; Interior point
methods; Electric flow

See https://arxiv.org/abs/2101.07233 for the full version

of this paper.

I. INTRODUCTION

The maxflow problem asks to route the maximum amount

of flow between two vertices in a graph such that the flow

on any edge is at most its capacity. The efficiency of this

problem is well-studied and has numerous applications in

scheduling, image processing, and network science [1], [2].

The main result of this paper is a faster exact maxflow al-

gorithm on sparse directed graphs in the weakly polynomial

setting, where the runtime depends logarithmically on the

capacities.

Theorem 1. There is an algorithm that on a graph G with m
edges and integer capacities in [1, U] computes a maximum
flow between vertices s, t in time Õ(m

3
2− 1

328 logU).

In sparse graphs with polynomially large capaci-

ties, this is the first improvement over the classical

O(m3/2 logm logU) time algorithm of Goldberg-Rao [3],

which represented the culmination of a long line of work

starting from the work of Hopcroft-Karp [4] for bipartite

matchings and Karzanov and Even-Tarjan for unit capacity

maxflow [5], [6]. Improving over this exponent of 3/2 for

graph optimization problems has been intensively studied

over the past decade via combinations of continuous opti-

mization and discrete tools.

1We use ˜O(·) to suppress logarithmic factors in m.

This line of work was initiated by Christiano-Kelner-

Mądry-Spielman-Teng [7] who gave a Õ(m4/3ε−O(1)) time

algorithm for (1 + ε)-approximate maxflow. This has since

been improved to m1+o(1)ε−O(1) [8], [9] and the focus

shifted to achieving improved ε dependencies [10], [11]

and exact solutions. Towards this, two breakthrough results

were the Õ(m10/7U1/7) time algorithm of Mądry [12], [13]

which broke the 3/2 exponent barrier on unweighted graphs,

and the Õ(m
√
n logU) time algorithm of Lee-Sidford [14],

which was an improvement for any dense graph. Since

then, these results respectively have been improved to yield

algorithms that run in time m4/3+o(1)U1/3 [15], [16] and

Õ((m+n3/2) logU) [17], [18]. However, the 3/2 exponent

of Goldberg-Rao [3] remained the state-of-the-art on sparse

capacitated graphs.

Classical approaches to solving maxflow use augmenting

paths to construct the final flow. Our algorithm, as well as the

recent improvements above, instead computes the maxflow

using a sequence of electric flows. For resistances r ∈ R
E
≥0,

the s-t electric flow is the one that routes one unit from s
to t while minimizing the quadratic energy:

min
f routes one s-t unit

∑
e∈E

ref
2
e.

Electric flows are induced by vertex potentials, and corre-

spond to solving a linear system in the graph Laplacian.

Motivated by this connection with scientific computing, two

decades of work on combinatorial preconditioners led to the

breakthrough result by Spielman-Teng [19] that Laplacian

systems and electrical flows can be computed to high accu-

racy in Õ(m) time.

Our algorithm, as well as the recent faster runtimes for

dense graphs [17], [18], are built upon the dynamic processes

view of flow augmentations [20], [21] that provided much

impetus for the study of dynamic graph data structures.

In this view, the final flow is obtained via a sequence of

flow modifications, and dynamic tree data structures such as

link-cut trees [21], [20] are designed to allow for sublinear

time identification and modification of edges that limit flow

progress. Concretely, the maxflow is built using a sequence

of Õ(
√
m) electric flows on graphs with slowly changing

resistances. This corresponds to the celebrated interior point

516

2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/21/$31.00 ©2021 IEEE
DOI 10.1109/FOCS52979.2021.00058

20
21

 IE
EE

 6
2n

d
An

nu
al

 S
ym

po
siu

m
 o

n
Fo

un
da

tio
ns

 o
f C

om
pu

te
r S

ci
en

ce
 (F

O
CS

) |
 9

78
-1

-6
65

4-
20

55
-6

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

FO
CS

52
97

9.
20

21
.0

00
58

Authorized licensed use limited to: University of Waterloo. Downloaded on June 26,2022 at 02:50:34 UTC from IEEE Xplore. Restrictions apply.

method (IPM henceforth) which shows that linear programs

can be solved using Õ(
√
m) slowly changing linear system

solves [22], [23]. To implement this framework we design

data structures that on a graph with dynamic changing

resistances:

• Identify all edges e with at least an ε2 fraction of the

total electric energy in the electric flow f on a graph

with resistances r:

ref
2
e ≥ ε2

∑
e∈E

ref
2
e.

• Estimate the square root of energy or flow value of an

edge up to an additive error of ±ε/10 ·
√∑

e∈E ref
2
e,

i.e. a ε/10 fraction of the square root of the total electric

energy.

Finally, we leverage this data structure along with several

modifications to the outer loop to achieve our main result

Theorem 1.

A. Key Algorithmic Pieces

At a high level, our algorithm implements an IPM which

augments Õ(
√
m) electric flows by building a data structure

that detects large energy edges in an s-t electric flow on a

dynamic graph. In addition to this, our algorithm requires

several modifications to the IPM. First, our data structure

requires properties specific to s-t electric flows to achieve

its guarantees. Consequently, we are forced to design an IPM

that only augments via s-t electric flows. On the other hand,

a standard IPM alternates between routing electric flows and

routing additional electric circulations every step. Second,

our data structures are randomized and thus their outputs

may affect future inputs when applied within the IPM. This

requires delicately modifying our algorithm to bypass this

issue. We now give more detailed descriptions of each piece.
Locating high energy edges in s-t electric flows.: Our

data structures for dynamic electric flows are based on the

interpretation of electrical flow as random walks on the

graph [24], which has been used previously for dynamic

effective resistances [25], [26]. In our setting we wish to

detect edges with at least ε2 fraction of the �2 electric energy.

To achieve this, we use a spectral vertex sparsifier, which

approximates the electric flow and potentials on this smaller

set of terminal vertices. We use this sparsifier as well as

additional random walks to maintain the result of an �2
heavy hitter sketch on the electric flow vector. This allows

us to approximately maintain a short sketch vector and thus

recover the large entries of the electric flow vector.

Our data structure has several subtleties which affect its

interaction with the outer loop. First, it is essential that

the electrical flows maintained are s-t to ensure additional

stability in our algorithms. s-t electrical flows have addi-

tional, sharper, upper bounds on vertex potentials and flow

values on edges, which do not hold for electrical flows

with more general demands. Secondly, we only maintain

an approximate �2 heavy hitter sketch but argue that this

suffices for detection of large energy edges (Lemma 5.1).

IPM with s-t flows.: We must modify the IPM outer

loop to interact with our dynamic electric flow data struc-

ture described above which fundamentally uses properties

specific to s-t flows. The standard IPM [27] which uses

electric flows to solve maxflow [28], [13], [15] has both a

progress phase where an s-t electric flow is augmented, and

a centering phase where electric circulations are added to

slightly fix the flow.

We modify the IPM to only use s-t electric flows to

make more than 1/
√
m progress before we pay Õ(m) time

to center using electric circulations. We leverage two key

properties of the method to achieve this. First, we argue that

damping the step size of the IPM causes errors to accumulate

more slowly. This allows us to use several s-t electric flow

steps (maintained in sublinear time by data structures) as

opposed to flows with general demands before a centering

step. Also, to argue this formally we use the fact that the

resistances are multiplicatively stable to within a polynomial

factor of the number of steps of standard size 1/
√
m.

Randomness in data structures and adaptivity.: Be-

cause we are applying randomized data structures inside an

outer loop, their outputs may affect future inputs. In the

literature, this is referred to as an adaptive adversary. On

the other hand, our data structures naïvely only work against

oblivious adversaries, where the inputs are independent of

the outputs and randomness of the data structure.

We handle these issues by carefully designing our data

structures and outer loop to not leak randomness between

components, instead of making our data structures deter-

ministic or work against adaptive adversaries in general. We

start by breaking the data structure into a LOCATOR and a

CHECKER, based on ideas from [29]. The LOCATOR returns

a superset that contains all edges with large energy with

high probability, and the CHECKER independently estimates

the energies of those edges to decide whether to update

them. This way, the randomness of LOCATOR does not

affect its inputs. However, the outputs of CHECKER may

affect its inputs. Now, we leverage that the sequence of

flows encountered during the IPM outer loop are almost

deterministic, and there are only a few iterations between

deterministic instances. This way, we can use a separate

CHECKER for each of these iterations before resetting every

CHECKER to the deterministic instance.

B. Heuristic Runtime Calculation

The following key properties of the IPM outer loop

are necessary to understand why a sublinear time data

structure suffices to achieve a m3/2−Ω(1) time algorithm for

capacitated maxflow.

1) Computing electric flows on graphs whose resistances

are within 1±γ of the true resistances suffices to make

1/
√
m progress (for some parameter γ = Ω̃(1)).

517

Authorized licensed use limited to: University of Waterloo. Downloaded on June 26,2022 at 02:50:34 UTC from IEEE Xplore. Restrictions apply.

2) The resistances change slowly multiplicatively

throughout the course of the algorithm. In fact, at

most Õ(T 2γ−2) edges have their resistances change

by at least 1± γ multiplicatively over T steps of the

method for any γ (Lemma 6.6). In particular, over all

Õ(
√
m) iterations of electric flow computation, each

edge’s resistance changes Õ(1) times on average.

3) The resistance of an edge is approximately the inverse

of its residual capacity squared. This way, an edge’s

resistance changes significantly if the electric energy

of the edge is large in the computed electric flows.

If we have a data structure which detects edges with large

energies in m1−η amortized time per edge for some constant

η > 0, then we can leverage it along with the above facts to

design the following algorithm. We take steps in batches of

size k, after which we pay Õ(m) time to fix and recenter

our flow to find the true underlying resistances. During each

batch, we use the data structure to detect all edges whose

resistance changed by more than 1 + Ω̃(1) multiplicatively,

and return their resistances.

Now we estimate the runtime of this algorithm. The cost

of recentering is O(m) · Õ(m1/2/k) = Õ(m3/2/k), as there

are
√
m total steps and we recenter every k iterations. Also,

by the second item above that at most Õ(k2) edges have

their resistances change significantly during a batch, so the

data structure takes Õ(m1−ηk2) time per batch. The total

time used by the data structure is therefore Õ(m1−ηk2) ·
Õ(
√
m/k) = Õ(m3/2−ηk). Taking k = mη/2 gives a

final runtime of Õ(m3/2−η/2), which is less than m3/2 as

desired. The tradeoffs in our algorithms are significantly

higher and more complicated in reality: we have higher

exponents on the batch size k due to compounding errors in

the method, and we have additional layers of intermediate

rebuilds. Nonetheless, the final tradeoffs by which we obtain

Theorem 1 are still similar in spirit.

C. Related Work and Discussion

There is a long history of work on the maximum flow

problem, as well as work related to each of our key algo-

rithmic pieces in Section I-A: dynamic graph data structures,

IPMs in the context of data structures, and random and

adaptivity in data structures.

Our discussion below focuses on algorithms whose ca-

pacity dependence is logarithmic (weakly polynomial). The

weakly polynomial setting also is equivalent to the setting

where the edge capacities are positive real numbers, and

we wish to compute an ε-approximate solution in runtime

depending on log(1/ε). In the strongly polynomial setting,

where the algorithm runtime has no capacity dependence,

following early work of [30], [20], [21], the best known

maxflow runtime is O(mn) and O(n2/ log n) when m =
O(n) [31], [32].

Maxflow Algorithms: Network flow problems are

widely studied in operations research, theoretical computer

science, and optimization [2]. Among the many variants, the

capacitated maxflow problem captures key features of both

combinatorial graph algorithms and numerical optimization

routines. As a result, it has an extensive history starting

from the work of Dinic and Edmonds-Karp [33], [34].

The seminal work by Edmonds-Karp [34] presented two

algorithms: an O(n2m) strongly polynomial time algorithm

by finding shortest augmenting paths, and an O(m2 logU)
weakly polynomial time algorithm based on finding bot-

tleneck shortest paths. Improving these algorithms pro-

vided motivation for dynamic tree data structures [20],

dual algorithms [35], and numerical primitives such as

scaling [3]. These progress culminated in a runtime of

Õ(min(m3/2,mn2/3) logU): for more details, we refer the

reader to the review by Goldberg and Tarjan [2].

In the two decades since Goldberg-Rao [3], all im-

provements on the exact maximum flow problem rely

on continuous optimization techniques. These include the

Õ(m
√
n logU) runtime of Lee-Sidford [14], and several

results culminating in a Õ(m/ε) runtime for ε-approximate

maxflow on undirected graphs [7], [8], [9], [36], [37], [11].

Additionally, a line of work [12], [13], [15] achieving a

m4/3+o(1) runtime in uncapacitated graphs [16] by using

weight changes and �p-norm flows [38] to eliminate high

energy edges, as opposed to our approach of using data

structures to detect them. Recently, approaches that combine

interior point methods (IPMs) with graphical data structures

achieved a Õ((m+ n3/2) logU) runtime for maxflow [17],

[18]. In this way, the bound of Golberg-Rao [3] has been

improved in higher error approximate settings (on undirected

graphs), for uncapacitated graphs, and for dense capacitated

graphs. However, our result is the first to show an improve-

ment for exact maxflow in the weakly polynomial parameter

regime central to the line of work spanning from Edmonds-

Karp [34] to Goldberg-Rao [3]: sparse directed graphs with

polynomially bounded capacities.

Data Structures for IPMs.: Starting from early work of

Karmarkar [22] and Vaidya [23], several results leverage the

fact that the linear systems resulting from IPMs are slowly

changing, and that only approximate solutions are needed

to implement the method. In this way, data structures for

efficiently maintaining the inverse of dynamically changing

linear systems have been used to speed up IPMs for linear

programming [39], [40], [41], [42], [43], [17] and recently

semidefinite programming [44]. Additionally, our algorithm

uses the fact the multiplicative change in resistances is at

most polynomial in the number of steps taken. While this

type of result was previously known2, we are not aware of

other IPM analyses that use this fact.

In the graphical setting of maxflow, this corresponds

to dynamically maintaining electric flows in a graph with

2Personal communication with Yin Tat Lee and Aaron Sidford [45], also
similar in spirit to [14, Lemma 67].

518

Authorized licensed use limited to: University of Waterloo. Downloaded on June 26,2022 at 02:50:34 UTC from IEEE Xplore. Restrictions apply.

changing resistances. Our result is heavily motivated by

the recent [17] and its follow-up [18] which obtained

Õ(m+n1.5) type running times for flow problems. The flow-

based version of these results use dynamic sparsification

algorithms to maintain approximate electric flows in Õ(n)
instead of Õ(m) time per iteration. Additionally these works

required several other techniques to achieve their runtimes,

including robust central paths/different measures of central-

ity, and weighted barriers. While we do not use these pieces

in our algorithm, we are optimistic that understanding how

to apply these techniques could improve the runtime of our

method.

Also, �2 heavy hitters are used in [17], [18] and our

algorithms; however, we open up the standard statement of

�2 heavy hitter [46] to prove that an approximate matrix-

vector product suffices to implement the heavy hitter data

structure (Lemma 5.1). Critically, we treat the heavy hitter

sketch matrix as demands on which we compute electric

flows which allows for interaction with random walks and

spectral vertex sparsification.

Dynamic graph data structures.: The data structures we

use to make sublinear time steps in interior point methods

broadly belong to data structures maintaining approxima-

tions to optimization problems in dynamically changing

graphs [47], [48], [49], [50], [51], [52], [53], [26]. Our

maintenance of electrical flows is most directly related to

dynamic effective resistance data structures [54], [55], [25],

[26]. In particular, they heavily rely on dynamic vertex

sparsifiers, which by itself has also received significant

attention in data structures [56], [57], [58]. In particular, our

sublinear runtime comes in part from maintaining a spectral

vertex sparsifier onto a smaller vertex subset.

Adaptivity and randomness.: Our data structures are

randomized, and are accessed in an adaptive manner: queries

to it may depend on its own output. While there has been

much recent work on making randomized sparsification

based data structures more resilient against such adaptive in-

puts [59], [60], [61], [62], [63], [64], our approach at a high

level bypasses most of these issues because the (non-robust,

unweighted) central path of IPMs is a fixed object. In this

way, our randomized data structures are essentially pseudo-

deterministic [65], [66]: while the algorithm is randomized,

the output is the same with high probability. Additionally, the

top-level interactions of our randomized components involve

calling one data structure inside another to hide randomness.

This has much in common with the randomized approximate

min-degree algorithm from [29].

D. General Notation and Conventions

We use plaintext to denote scalars, bold lower case for

vectors, and bold upper case for matrices. A glossary of

variables and parameters is given in Appendix B. We will

use the ·̂ notation to denote a later, modified, copy of a

variable. As our update steps are approximate, we will

also use the ·̃ notation to denote approximate/error carrying

versions of true variables.

We use Õ(·) to suppress logarithmic factors in m and

Ω̃(·) to suppress the inverse logarithmic factors in m. We

let 0,1 ∈ R
n denote the all zeroes/ones vectors respectively.

For vectors x,y ∈ R
n we let (x◦y)i def

= xiyi. When context

is clear, we also use x
y to denote the entry-wise division of

two vectors, that is
(

x
y

)
i

def
= xi

yi
. We use |x| and |Y| to

denote the entry-wise absolute values of vector x and matrix

Y.

Instead of tracking explicit constants in our parameters,

we sometimes use c and C to denote sufficiently small

(respectively large) absolute constants. E.g., for a parameter

k > 1, we write ε = ck−6 to denote that there is a constant

c where ε = ck−6, and we will set c later to be sufficiently

small. c and C may denote different constants in different

places. We use “with high probability” or “w.h.p.” to mean

with probability at least 1− n−10.

We say that a symmetric matrix M ∈ R
n×n is positive

semidefinite (psd) if x�Ax ≥ 0 for all x ∈ R
n. For psd

matrices A,B we write A � B if B−A is psd. For positive

real numbers a, b we write a ≈γ b to denote exp(−γ)b ≤
a ≤ exp(γ)b. For psd matrices A,B we write A ≈γ B if

exp(−γ)B � A � exp(γ)B.

E. Organization of Paper

Due to space constraints, we will only provide an

overview of our result in Section II. We elaborate on each

major piece of our algorithm introduced in Section I-A: dy-

namic electric flow data structures, our modified IPM outer

loop, and handling of randomness and adaptive adversaries.

Then in Section III we give the linear algebraic formulation

of the maximum flow problem. We then introduce the key

notion of electric flows and its relationship with linear

systems and random walks. The full version of the paper

is at arXiv 2101.07233.

II. OVERVIEW OF APPROACH

In this section we elaborate on the key pieces of our

approach described in Section I-A: dynamic electrical flow

data structures (Section II-A), an interior point method for

maxflow using this data structure (Section II-B), and how

to handle issues with randomness and adaptive adversaries

(Section II-C).

A. Overview of LOCATOR for Dynamic Electric Flows

Recall the dynamic electric flow problem we solve. For a

graph G = (V,E) with changing resistances r ∈ R
E
≥0 such

that the energy of the electric flow f is at most 1 always,

i.e.
∑

e∈E ref
2
e ≤ 1, return a set of at most Õ(ε−2) edges

S ⊆ E that contains all edges with energy at least ε2, i.e.

ref
2
e ≥ ε2 for e ∈ S. We wish to solve this in amortized

sublinear time per resistance update.

519

Authorized licensed use limited to: University of Waterloo. Downloaded on June 26,2022 at 02:50:34 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Shortcutting random walks from the red edge to a terminal set C when under the insertion of the black vertex to C.

At a high level, our approach is based on the vertex

sparsification view towards data structures. In this view, we

achieve sublinear runtimes by maintaining an object onto

a smaller subset of terminal vertices C ⊆ V that approxi-

mately preserve the desired property in our data structure.

For example, in our setting we will leverage spectral vertex
sparsifiers that maintain the electrical properties of the

graph onto the set of terminals, such as pairwise effective

resistances. Alternatively, this can be viewed as maintaining

the spectral properties of the inverse of the graph Laplacian

(and is known as the Schur complement). In our algorithms,

the set C will increases in size throughout our data structure

to ensure that edge changes happen within C. Hence the

focus is on maintaining properties onto C while new vertices

are added to it throughout the algorithm.

We detect edges with large electric energies by first

setting up a linear �2 heavy hitter sketch [46] against the

energy vector R1/2f , where R is the diagonal matrix of

resistances and f is the electric flow. We then approximately

maintain the sketch using random walks and spectral vertex

sparsifiers. At a high level, an �2 heavy hitter sketch works

by estimating the total �2-norm / energy of various edge

subsets using Johnson-Lindenstrauss sketches up to accuracy

ε. In this way, for Õ(ε−2) sketch vectors q ∈ {−1, 0, 1}m,

we must maintain the quantity 〈q,R1/2f〉. Now we relate

the electric flow to the electric potentials φ using Ohm’s

law: for any edge e = (u, v) we have f e = (φu − φv)/re.
Written algebraically, this is f = R−1Bφ where B is the

(unweighted) edge-vertex incidence matrix of the graph G.

Plugging this into our previous formula gives us

〈q,R1/2f〉 = 〈q,R−1/2Bφ〉 = 〈B�R−1/2q,φ〉.

For simplicity we now let d
def
= B�R−1/2q. Intuitively, the

sketch vector q is inducing a demand d on the vertices which

we now want to dot against the vertex potentials φ.

Now our goal is to use a smaller set of terminal vertices

C to estimate the quantity 〈d,φ〉. We achieve this by

leveraging the fact that we can recover potentials outside C
by harmonically extending the potentials restricted to C: φC .

Precisely, the potential φv at vertex v �= s, t is the average of

its neighbors, weighted proportional to inverse resistances.

Equivalently, starting a random walk at a vertex v /∈ C
and taking exit edges proportional to inverse of resistances

is a martingale (preserves mean) on the potentials. In this

way we can write φ = HφC where H ∈ R
V (G)×C is this

extension operator. Hence

〈d,φ〉 = 〈d,HφC〉 = 〈H�d,φC〉.

To compute this final quantity we must maintain H�d and

φC efficiently in sublinear time. For the former, given our

random walk interpretation of H, we may interpret H�d as

the vector given by “projecting” d onto the terminal set C
via random walks, and we write πC(d)

def
= H�d (Defini-

tion 5.5). In other words, the demand vector d is distributed

onto C based on the probabilities that random walks from

vertices v hit C for the first time. This interpretation of H�d
allows us to build random walks to simulate the changes to

this vector under the terminal set C growing in size. For the

latter, we maintain φC by using the approximate spectral

vertex sparsifier of [25] which approximately maintains

the Laplacian inverse on C and hence the potentials. This

construction is also based on running random walks from

edges outside C until they hit C.

We briefly elaborate on how resistance updates affect the

terminal set C and the random walks we maintain. We start

by initializing C to be a random set of size βm. (The reader

can imagine β = m−0.01 so that |C| is sublinear.) We run

random walks from each edge or vertex until it hits C.

These walks are short, specifically visiting Õ(β−1) distinct

vertices with high probability, because C was chosen to be

βm random vertices. Now, in general when the resistance of

an edge e = (u, v) is changed we add both endpoints u, v of

e to C. Now the edge e will be contained fully inside C so

we can directly perform the resistance change. However we

must update our random walks due to C changing. To do

this we shortcut each random walk we computed to when it

hit the larger set C and update the necessary properties. A

depiction of this process is given in Fig. 1.

520

Authorized licensed use limited to: University of Waterloo. Downloaded on June 26,2022 at 02:50:34 UTC from IEEE Xplore. Restrictions apply.

f(μ)

f((1− 1/
√
m)μ)

f((1− 2/
√
m)μ)

f((1− 3/
√
m)μ)

f((1− 4/
√
m)μ)

f((1− 5/
√
m)μ)

Figure 2. Our algorithm is split into ˜O(
√
m/k) batches of steps. Each batch is split into ˜O(k4) smaller steps to reduce error so that we can recenter in

˜O(m) time at the end of each batch (Lemma 6.2). Each small step implements an approximate electric flow using data structures. . In the diagram, the
dashed line is standard path following which recenters (depicted by the double arrows) after each step of size 1/

√
m. The dotted line is the finer steps

which takes more total steps but only recenters after 4/
√
m progress.

To conclude, we describe some difficulties with the ap-

proach described above, specifically pertaining to maintain-

ing the projected demand H�d = πC(d). The first concern

is that entries of d = B�R−1/2q are too large if some

edge e has resistance re close to 0 (as then r
−1/2
e is large).

We handle this with the observation that edges with small

resistances cannot have large energies in an s-t electric flow

(Lemma 5.2), so we can restrict our heavy hitter sketch

to edges with sufficiently large resistances. Also, naïvely

estimating the projection πC(d) with random walks from

each vertex accumulates too much variance because the

demand vector d is dense. Instead we exactly compute

πC(d) by solving a linear system to start, and we estimate

the change in this vector under insertions to C by locally

sampling random walks from the inserted vertex (Fact 5.7).

Finally, we periodically recalculate this vector to ensure that

error does not accumulate.

B. Overview of Interior Point Method

In this section we formalize the outer loop that our

algorithm uses to argue that Õ(
√
m) approximate electric

flow computations suffice to compute a maxflow. We assume

that the graph G is undirected [67], [12] and that we know

the optimal maxflow value F ∗ by a standard binary search

reduction. Given this, the central path is a sequence of

flows f(μ) for μ ∈ (0, F ∗] defined by the minimizers of

a logarithmic barrier potential:

f (μ)
def
= argmin

B�f=(F∗−μ)χst

V (f)

for V (f)
def
=

∑
e∈E

− log(ue − fe)− log(ue + fe).

(1)

Note that for μ = F ∗ that f(F ∗) = 0, the zero flow. Starting

there, the goal of our algorithm is to follow this central

path by slowly decreasing μ towards 0 while computing

the flows f(μ) along the way. While μ never equals 0
exactly, the flows f(μ) approach the maximum flow as

μ approaches 0. We want to emphasize that the sequence

of flows encountered by the algorithm along the way is

deterministic in this sense, as the minimizer of the convex

problem (1) is unique.

We remark that this central path (which is adapted from

[13]) differs from the more standard central path used to

solve mincost flow with cost c�f . While this version can

also work by setting c as a large negative cost on an s-
t edge, we choose to work with our formulation because

the intuition that we are augmenting by s-t electric flows is

useful for our data structure based approach.

Now consider trying to decrease the path parameter μ to

μ̂ < μ starting from the current central path flow f(μ). Then

we wish compute a flow Δf which routes μ− μ̂ units from

s to t such that adding Δf to our current flow f(μ) gets to

521

Authorized licensed use limited to: University of Waterloo. Downloaded on June 26,2022 at 02:50:34 UTC from IEEE Xplore. Restrictions apply.

the minimizer of (1) for μ̂, i.e. f(μ̂) = f(μ) + Δf . While

directly computing Δf exactly is more difficult, one can

show that up to a first order approximation, Δf is given by

the electric flow that routes μ − μ̂ units from s to t, with

resistances given by re = (ue−f(μ)e)
−2+(ue+f(μ)e)

−2.

To handle the approximations induced by using s-t elec-

tric flows, we require another fact: if we are able to calculate

a flow f̃ that is “close” to f(μ̂) on all edges, then we

can compute f(μ̂) exactly using Õ(m) additional time

(by computing additional electric circulations). Here, f̃ is

close to f(μ̂) if all residual capacities differ by at most a

multiplicative 1.1 factor (Lemma 6.2). Now, one can show

that if μ̂ = (1− c/
√
m)μ for a small constant c, Δf̃ is the

electric s-t flow routing μ− μ̂ units (even with approximate

resistances), and f̃ = f(μ) + Δf̃ , then f̃ is close to

f(μ̂). Thus, this gives a method that terminates in Õ(
√
m)

iterations and Õ(m3/2) time.

To achieve a m3/2−Ω(1) time maxflow algorithm using

IPMs we must be able to to decrease μ to μ̂ = (1−k/
√
m)μ

for some k = mΩ(1) in Õ(m) amortized time. This would

achieve a Õ(m3/2/k) time algorithm. Directly adding the

electric flow routing μ − μ̂ = kμ/
√
m units from s to

t accumulates too much error. We instead split this step

into a batch of smaller steps, each which is an electric

flow routing (μ̂ − μ)/k4 = μ/(k3
√
m) units. We show in

Section 6 that because the electric flow is the first order

approximation to the change in the central path, and because

residual capacities are stable within a O(k2) factor during

the step (Lemma 6.7), that this sufficiently reduces error.

Now our method approximately implements each of the

smaller steps in the batch using the data structure described

in Section II-A. We would like to emphasize again that even

though the flows encountered during the small steps within

a batch are randomized, we can pay Õ(m) at the end of

each batch to move our flow back to the exact minimizer

of (1) so that it is deterministic. A depiction of the batches,

splits into small steps, and recentering is given in Fig. 2.

C. Overview of Handling of Randomness

In this section we explain how to adapt our IPM outer

loop and data structures to ensure that randomness in the

data structures used to produce outputs does not affect the

distribution of future inputs to itself. To this end, let us recall

our setup described in the above Sections II-A and II-B.

We have a heavy hitter data structure which returns a set S
of edges that contains all edges with an ε2 fraction of the

energy, and estimates their energies up to additive error.

Our first step towards addressing the randomness issue

is to decouple the data structure. We split it into two

parts: the first part which returns edges with large energies

(LOCATOR), and a separate part which estimates again the

energies of returned edges (CHECKER). Our reasons for

doing this are twofold – it both helps with reasoning about

where randomness arises in the algorithm, and provides mild

runtime improvements.

Figure 3. Within a batch of steps, during the i-th step the LOCATOR passes
an edge subset to the i-th CHECKER. This communicates with the outside
loop which passes updates to later CHECKERs as well as the LOCATOR.

In this new setup the LOCATOR corresponds to the heavy

hitter, and returns a set of at most O(ε−2) edges that

contains all edges with at least ε2/10 fraction of the electric

energy. This set is fed to the CHECKER which independently

estimates the amount of electric flow on that edge for each

edge in the set. The CHECKER wishes to accept any edge

with at least ε2 fraction of the electric energy and to estimate

its flow value. Due to our IPM setup, these data structures

are used within an outer loop consisting of Õ(
√
m/k)

batches of steps, each which is split into k4 smaller steps.

After each batch, the algorithm perfectly moves back to the

minimizer of (1) in Õ(m) time and updates resistances. For

each smaller step within the batch, we call LOCATOR and

CHECKER together to find edges with large energies / flows,

and hence must have their resistances updated. A depiction

of the interactions between the LOCATOR, CHECKER data

structures, and the algorithmic outer loop is given in Fig. 3.

Note that the flow that we maintain is deterministically

equal to the minimizer of (1) at the start and end of each

batch, so we can essentially update both the data structures

deterministically. Hence we focus on ensuring the property

that our data structures outputs do not affect futures inputs

or states during the k4 steps within a batch. We first describe

why LOCATOR can be assumed to be against oblivious

adversaries, i.e. inputs are independent of the randomness.

To understand why this is the case, consider the algorithm

that does not use the LOCATOR data structure at all, and

instead uses the CHECKER to independently estimate the

flow on every single edge and decides whether it believes

the edge to have high energy. Clearly this algorithm is

valid. We argue that using the LOCATOR data structure

simulates this algorithm that checks every edge. Indeed, we

may set the thresholds for LOCATOR so that any edge that

CHECKER decides to update with non-negligible probability

is included in the set of edges LOCATOR returns with high

probability. In this way, the outputs of LOCATOR do not

affect its future inputs as long as CHECKER is checking

each edge independently.

522

Authorized licensed use limited to: University of Waterloo. Downloaded on June 26,2022 at 02:50:34 UTC from IEEE Xplore. Restrictions apply.

While this explains why LOCATOR may operate against

oblivious adversaries, the same is unclear for CHECKER.

Indeed, different flow value estimates for an edge e affect

whether the resistance of e is changed, and this can affect

the internal state of CHECKER itself even during the same

batch. To handle this, we actually construct k4 independent

CHECKER data structures, which we call D
(chk)
i for i ∈ [k4],

one for each small step within a batch. We use D
(chk)
i to

handle the set of edges that LOCATOR returns at small step i

out of k4. After this step, we stop updating D
(chk)
i until the

end of the batch. At that time, we roll back all changes made

to D
(chk)
i during the batch and then deterministically update

its state to the new exact minimizer flow we compute. In

this way, we can argue that the outputs of D
(chk)
i can only

affect inputs of D
(chk)
j for j > i, so no D

(chk)
i has inputs

affecting itself. In this way, we may assume that each D
(chk)
i

actually operates against oblivious adversaries.

III. PRELIMINARIES: MAXFLOW AND ELECTRICAL

FLOWS

We start by formally defining the maxflow problem, the

electrical flow subroutine, and key objects for representing

both problems. We will use G = (V,E) to denote graphs,

u to denote edge capacities, and f to denote flows. We

will also use degv to denote the combinatorial/unweighted

degree of vertex v in G, that is, degv = |{e ∈ E | e
 v}|.

A. Maxflow

One can reduce directed maxflow to undirected maxflow

with linear time overhead [67], [12], so we assume our graph

G = (V,E) is undirected throughout. m will be the number

|E| of edges and n will be the number |V | of vertices. We

assume m ≤ n2.

We also assume that G is connected and has at least two

vertices and one edge. Thus, each vertex of G has at least one

edge incident to it. By standard capacity scaling techniques

[68] we may assume that U = poly(m) throughout this

paper. Also, we assume we know the optimal numbers

of units F ∗ = poly(m), as our algorithm works for any

underestimate. Furthermore, our algorithm actually works

for general demand maxflows, as we can add a super source

s and super sink t to accumulate to positive (respectively

negative) demands on vertices.

We can then formalize the decision version of maxflow

via linear algebra. Define B to be the edge-vertex incidence

matrix of G:

B ∈ R
E×V Beu =

⎧⎪⎨
⎪⎩
1 if u is the head of e

−1 if u is the tail of e

0 otherwise

and χst to be the indicator vector with −1 at source s, 1
at sink t and 0 everywhere else. Routing F ∗ units of flow

from s to t then becomes finding f ∈ R
E such that

B�f = F ∗χst and − u ≤ f ≤ u.

B. Electrical Flows

Electrical flows are �2-minimization analogs of maxflow,

and underlie all interior point method oriented approaches

to high-accuracy maxflow [28], [12], [14], [13], [69].

We use the term demand vector for any vector d such

that d ∈ R
n and 1�d = 0. We let r ∈ R

E be the

vector of resistances: re denotes the resistance of edge e.
For a demand vector d, and the vector of resistances r, the

electrical flow problem is

min
f :B�f=d

∑
e

ref
2
e.

Here the energy function can be further abbreviated using

the norm notation: by letting R denote the diagonal matrix

with r on the diagonal, the energy can be written as ‖f‖2R.

The quadratic minimization nature of this problem means its

solution, or the optimal electrical flow, has a linear algebraic

closed form, specifically

f = R−1B
(
B�R−1B

)†
d,

where † denotes the Moore-Penrose pseudoinverse. The

matrix B�R−1B is important on its own, and is known

as the graph Laplacian matrix, L = B�R−1B. Laplacian

systems can be solved to high accuracy in nearly linear time

[70], [71], [72], [73], [74], [75], [76]. The resulting solution

vector on the vertices also have natural interpretations as

voltages that induce the electrical flow [24]. Specifically,

for the voltages

φ = L†d =
(
B�R−1B

)†
d

the flow is given by Ohm’s Law:

fe =
φu − φv

re
for all e = (uv).

Both this flow, and the voltages, can be computed to high

accuracy in nearly-linear time using Laplacian solvers [70].

Theorem 2. Let G be a graph with n vertices and m edges.
Let r ∈ R

E
>0 denote edge resistances. For any demand

vector d and ε > 0 there is an algorithm which computes in
Õ(m log ε−1) time potentials φ such that ‖φ − φ∗‖L ≤
ε‖φ∗‖L, where L = B�R−1B is the Laplacian of G,
and φ∗ = L†d are the true potentials determined by the
resistances r.

Critical to our data structures are the intuition of electrical

flows as random walks. Specifically, that the unit electrical

flow from s to t is the expected trajectory of the random

523

Authorized licensed use limited to: University of Waterloo. Downloaded on June 26,2022 at 02:50:34 UTC from IEEE Xplore. Restrictions apply.

walk from s to t, with cancellations, where from vertex u
we go to v ∼ u with probability

r−1
uv∑

w∼u r
−1
uw

where the reciprocal of resistances, conductance, plays a role

analogous to the weight of edges. Many of our intuitions

and notations have overlaps with the electrical flow based

analyses of sandpile processes [77]. For a more systematic

exposition, we refer the reader to the excellent monograph

by Doyle and Snell [24].

ACKNOWLEDGMENTS

Yang P. Liu was supported by the Department of Defense

(DoD) through the National Defense Science and Engineer-

ing Graduate Fellowship (NDSEG) Program. Richard Peng

is supported by the National Science Foundation (NSF)

under Grant No. 1846218.

We thank Jan van den Brand, Arun Jambulapati, Yin

Tat Lee, and Aaron Sidford for helpful discussions and

pointing out typos in an earlier version of this manuscript.

We especially thank Aaron Sidford for discussions during

which an error in the handling of adaptivity and randomness

in the original version of this manuscript was pointed out.

REFERENCES

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to Algorithms, 3rd Edition. MIT
Press, 2009. [Online]. Available: http://mitpress.mit.edu/
books/introduction-algorithms

[2] A. V. Goldberg and R. E. Tarjan, “Efficient maximum flow
algorithms,” Communications of the ACM, vol. 57, no. 8,
pp. 82–89, 2014, available at https://cacm.acm.org/magazines/
2014/8/177011-efficient-maximum-flow-algorithms.

[3] A. V. Goldberg and S. Rao, “Beyond the flow decomposition
barrier,” Journal of the ACM, vol. 45, no. 5, pp. 783–
797, 1998, announced at FOCS’97. [Online]. Available:
http://doi.acm.org/10.1145/290179.290181

[4] J. E. Hopcroft and R. M. Karp, “A n5/2 algorithm for
maximum matchings in bipartite graphs,” SIAM Journal on
Computing, vol. 2, no. 4, pp. 225–231, 1973.

[5] A. V. Karzanov, “On finding maximum flows in networks with
special structure and some applications,” Matematicheskie
Voprosy Upravleniya Proizvodstvom, vol. 5, pp. 81–94, 1973.

[6] S. Even and R. E. Tarjan, “Network flow and testing graph
connectivity,” SIAM Journal on Computing, vol. 4, no. 4, pp.
507–518, 1975.

[7] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and
S. Teng, “Electrical flows, Laplacian systems, and faster
approximation of maximum flow in undirected graphs,” in
Proceedings of the 43rd ACM Symposium on Theory of
Computing, STOC 2011, San Jose, CA, USA, June 6-8 2011.
ACM, 2011, pp. 273–282, available at https://arxiv.org/abs/
1010.2921.

[8] J. Sherman, “Nearly maximum flows in nearly linear time,” in
54th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2013, Berkeley, CA, USA, October 26-29,
2013, 2013, pp. 263–269, available at https://arxiv.org/abs/
1304.2077.

[9] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford,
“An almost-linear-time algorithm for approximate max flow
in undirected graphs, and its multicommodity generaliza-
tions,” in Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland,
OR, USA, January 5-7, 2014, 2014, pp. 217–226, available
at https://arxiv.org/abs/1304.2338.

[10] A. Schild, “An almost-linear time algorithm for uniform
random spanning tree generation,” in Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018. ACM,
2018, pp. 214–227, available at https://arxiv.org/abs/1711.
06455.

[11] A. Sidford and K. Tian, “Coordinate methods for accelerating
�∞ regression and faster approximate maximum flow,” in
59th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2018, Paris, France, October 7-9, 2018, 2018,
pp. 922–933, available at https://arxiv.org/abs/1808.01278.

[12] A. Madry, “Navigating central path with electrical flows:
From flows to matchings, and back,” in 54th IEEE Annual
Symposium on Foundations of Computer Science, FOCS
2013, Berkeley, CA, USA, October 26-29, 2013. IEEE
Computer Society, 2013, pp. 253–262, available at https:
//arxiv.org/abs/1307.2205.

[13] ——, “Computing maximum flow with augmenting electrical
flows,” in 57th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2016, 9-11 October 2016, Hyatt
Regency, New Brunswick, New Jersey, USA. IEEE Computer
Society, 2016, pp. 593–602, available at https://arxiv.org/abs/
1608.06016.

[14] Y. T. Lee and A. Sidford, “Solving linear programs with
sqrt(rank) linear system solves,” CoRR, vol. abs/1910.08033,
2019. [Online]. Available: http://arxiv.org/abs/1910.08033

[15] Y. P. Liu and A. Sidford, “Faster energy maximization for
faster maximum flow,” in Proccedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, STOC
2020, Chicago, IL, USA, June 22-26, 2020. ACM, 2020,
pp. 803–814, available at https://arxiv.org/abs/1910.14276.

[16] T. Kathuria, Y. P. Liu, and A. Sidford, “Unit capacity maxflow
in almost O(m4/3) time,” in 61st IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2020, Durham,
NC, USA, November 16-19, 2020. IEEE, 2020, pp. 119–130.

[17] J. v. d. Brand, Y. T. Lee, D. Nanongkai, R. Peng, T. Saranurak,
A. Sidford, Z. Song, and D. Wang, “Bipartite matching in
nearly-linear time on moderately dense graphs,” in 61st IEEE
Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, November 16-19, 2020,
2020, pp. 919–930.

524

Authorized licensed use limited to: University of Waterloo. Downloaded on June 26,2022 at 02:50:34 UTC from IEEE Xplore. Restrictions apply.

[18] J. v. d. Brand, Y. T. Lee, Y. P. Liu, T. Saranurak, A. Sidford,
Z. Song, and D. Wang, “Minimum cost flows, MDPs, and �1-
regression in nearly linear time for dense instances,” CoRR,
vol. abs/2101.05719, 2021, available at https://arxiv.org/abs/
2101.05719.

[19] D. A. Spielman and S.-H. Teng, “Spectral sparsification of
graphs,” SIAM Journal on Computing, vol. 40, no. 4, pp. 981–
1025, 2011, available at https://arxiv.org/abs/0808.4134.

[20] Z. Galil and A. Naamad, “An O(EV log2 V) algorithm for
the maximal flow problem,” Journal of Computer and System
Sciences, vol. 21, no. 2, pp. 203–217, 1980.

[21] D. D. Sleator and R. E. Tarjan, “A data structure for dynamic
trees,” Journal of Computer and System Sciences, vol. 26,
no. 3, pp. 362–391, 1983, announced at STOC’81.

[22] N. Karmarkar, “A new polynomial-time algorithm for linear
programming,” Combinatorica, vol. 4, no. 4, pp. 373–395,
1984.

[23] P. M. Vaidya, “Speeding-up linear programming using fast
matrix multiplication (extended abstract),” in 30th IEEE
Annual Symposium on Foundations of Computer Science,
FOCS 1989, Research Triangle Park, NC, USA, October 30
- November 1, 1989. IEEE Computer Society, 1989, pp.
332–337.

[24] P. G. Doyle and J. L. Snell, Random Walks and Electric
Networks. Mathematical Association of America, 1984,
available at https://arxiv.org/abs/math/0001057.

[25] D. Durfee, Y. Gao, G. Goranci, and R. Peng, “Fully dynamic
spectral vertex sparsifiers and applications,” in Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, Phoenix, AZ, USA, June 23-
26, 2019. ACM, 2019, pp. 914–925, available at https:
//arxiv.org/abs/1906.10530.

[26] L. Chen, G. Goranci, M. Henzinger, R. Peng, and T. Sara-
nurak, “Fast dynamic cuts, distances and effective resistances
via vertex sparsifiers,” in 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020, Durham, NC,
USA, November 16-19, 2020. IEEE, 2020, pp. 1135–1146,
available at https://arxiv.org/abs/2005.02368.

[27] J. Renegar, “A polynomial-time algorithm, based on newton’s
method, for linear programming,” Mathematical Program-
ming, vol. 40, no. 1-3, pp. 59–93, 1988.

[28] S. I. Daitch and D. A. Spielman, “Faster approximate
lossy generalized flow via interior point algorithms,” in
Proceedings of the 40th annual ACM Symposium on Theory
of Computing, STOC 2008, Victoria, BC, Canada, May
17-20, 2008. New York, NY, USA: ACM, 2008, pp. 451–
460, available at http://arxiv.org/abs/0803.0988. [Online].
Available: http://doi.acm.org/10.1145/1374376.1374441

[29] M. Fahrbach, G. L. Miller, R. Peng, S. Sawlani, J. Wang,
and S. C. Xu, “Graph sketching against adaptive adversaries
applied to the minimum degree algorithm,” in 59th IEEE
Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018. IEEE
Computer Society, 2018, pp. 101–112, available at https:
//arxiv.org/abs/1804.04239.

[30] A. Karzanov, “Determining the maximal flow in a network
by the method of preflows,” Doklady Mathematics, vol. 15,
pp. 434–437, 02 1974.

[31] J. B. Orlin, “Max flows in O(nm) time, or better,” in
Proceedings of the 45th Annual ACM Symposium on Theory
of Computing, STOC 2013, Palo Alto, CA, USA, June 1-4,
2013. ACM, 2013, pp. 765–774.

[32] V. King, S. Rao, and R. Tarjan, “A faster deterministic
maximum flow algorithm,” Journal of Algorithms, vol. 17,
no. 3, pp. 447–474, 1994.

[33] E. Dinic, “Algorithm for solution of a problem of maximum
flow in networks with power estimation,” Soviet Mathematics
Doklady, vol. 11, pp. 1277–1280, 1970.

[34] J. Edmonds and R. M. Karp, “Theoretical improvements in
algorithmic efficiency for network flow problems,” Journal of
the ACM, vol. 19, no. 2, pp. 248–264, Apr. 1972.

[35] A. V. Goldberg and R. E. Tarjan, “A new approach to the
maximum-flow problem,” J. ACM, vol. 35, no. 4, pp. 921–
940, 1988.

[36] R. Peng, “Approximate undirected maximum flows in
O(mpolylog(n)) time,” in Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016.
SIAM, 2016, pp. 1862–1867.

[37] J. Sherman, “Generalized preconditioning and undirected
minimum-cost flow,” in Proceedings of the Twenty-Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA
2017, Barcelona, Spain, Hotel Porta Fira, January 16-19.
SIAM, 2017, pp. 772–780, available at https://arxiv.org/abs/
1606.07425.

[38] R. Kyng, R. Peng, S. Sachdeva, and D. Wang, “Flows in
almost linear time via adaptive preconditioning,” in Proceed-
ings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, Phoenix, AZ, USA, June 23-
26, 2019. ACM, 2019, pp. 902–913, available at https:
//arxiv.org/abs/1906.10340.

[39] Y. T. Lee and A. Sidford, “Efficient inverse maintenance
and faster algorithms for linear programming,” in 56th IEEE
Annual Symposium on Foundations of Computer Science,
FOCS 2015, Berkeley, CA, USA, October 17-20, 2015. IEEE
Computer Society, 2015, pp. 230–249, available at https:
//arxiv.org/abs/1503.01752.

[40] M. B. Cohen, Y. T. Lee, and Z. Song, “Solving linear
programs in the current matrix multiplication time,” in Pro-
ceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, Phoenix, AZ, USA, June
23-26, 2019. ACM, 2019, pp. 938–942, available at https:
//arxiv.org/abs/1810.07896.

[41] J. v. d. Brand, “A deterministic linear program solver in
current matrix multiplication time,” in Proceedings of the
Thirty-First Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2020, Salt Lake City, UT, USA, January
5-8, 2020. SIAM, 2020, pp. 259–278, available at https:
//arxiv.org/abs/1910.11957.

525

Authorized licensed use limited to: University of Waterloo. Downloaded on June 26,2022 at 02:50:34 UTC from IEEE Xplore. Restrictions apply.

[42] J. van den Brand, “Unifying matrix data structures: Simplify-
ing and speeding up iterative algorithms,” in 4th Symposium
on Simplicity in Algorithms, SOSA 2021, Virtual Conference,
January 11-12, 2021. SIAM, 2021, pp. 1–13, available
at https://arxiv.org/abs/2010.13888.

[43] J. v. d. Brand, Y. T. Lee, A. Sidford, and Z. Song, “Solving tall
dense linear programs in nearly linear time,” in Proccedings
of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020.
ACM, 2020, pp. 775–788, available at https://arxiv.org/abs/
2002.02304.

[44] H. Jiang, T. Kathuria, Y. T. Lee, S. Padmanabhan, and
Z. Song, “A faster interior point method for semidefinite
programming,” in 61st IEEE Annual Symposium on Founda-
tions of Computer Science, FOCS 2020, Durham, NC, USA,
November 16-19, 2020. IEEE, 2020, pp. 910–918, available
at: https://arxiv.org/abs/2009.10217.

[45] Y. T. Lee and A. Sidford, Personal communication.

[46] D. M. Kane, J. Nelson, E. Porat, and D. P. Woodruff, “Fast
moment estimation in data streams in optimal space,” in
Proceedings of the 43rd ACM Symposium on Theory of
Computing, STOC 2011, San Jose, CA, USA, June 6-8 2011.
ACM, 2011, pp. 745–754, available at https://arxiv.org/abs/
1007.4191.

[47] K. Onak and R. Rubinfeld, “Maintaining a large matching
and a small vertex cover,” in Proceedings of the 42nd
ACM Symposium on Theory of Computing, STOC 2010,
Cambridge, MA, USA, June 5-8 2010. ACM, 2010, pp.
457–464, available at http://people.csail.mit.edu/ronitt/papers/
01-maintaining.pdf.

[48] M. Gupta and R. Peng, “Fully dynamic (1 + ε)-approximate
matchings,” in 54th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS 2013, Berkeley, CA, USA,
October 26-29, 2013, 2013, pp. 548–557, available at http:
//arxiv.org/abs/1304.0378.

[49] A. Bernstein and C. Stein, “Fully dynamic matching in
bipartite graphs,” in Automata, Languages, and Programming
- 42nd International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Proceedings, Part I, ser. Lecture Notes in
Computer Science, vol. 9134. Springer, 2015, pp. 167–179,
available at https://arxiv.org/abs/1506.07076.

[50] S. Bhattacharya, M. Henzinger, and D. Nanongkai, “New
deterministic approximation algorithms for fully dynamic
matching,” in Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge,
MA, USA, June 18-21, 2016. ACM, 2016, pp. 398–411,
available at https://arxiv.org/abs/1604.05765.

[51] I. Abraham, D. Durfee, I. Koutis, S. Krinninger, and R. Peng,
“On fully dynamic graph sparsifiers,” in 57th IEEE Annual
Symposium on Foundations of Computer Science, FOCS
2016, Hyatt Regency, New Brunswick, New Jersey, USA,
October 9-11, 2016. IEEE Computer Society, 2016, pp.
335–344, available at https://arxiv.org/abs/1604.02094.

[52] M. Henzinger, S. Krinninger, and D. Nanongkai, “Decremen-
tal single-source shortest paths on undirected graphs in near-
linear total update time,” Journal of the ACM, vol. 65, no. 6,
pp. 36:1–36:40, 2018, available at https://arxiv.org/abs/1512.
08148.

[53] S. Forster and G. Goranci, “Dynamic low-stretch trees via
dynamic low-diameter decompositions,” in Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019. ACM, 2019, pp. 377–388, available at https://arxiv.
org/abs/1804.04928.

[54] G. Goranci, M. Henzinger, and P. Peng, “The power of vertex
sparsifiers in dynamic graph algorithms,” in 25th Annual
European Symposium on Algorithms, ESA 2017, September
4-6, 2017, Vienna, Austria, ser. LIPIcs, vol. 87. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017, pp. 45:1–
45:14, available at https://arxiv.org/abs/1712.06473.

[55] ——, “Dynamic effective resistances and approximate schur
complement on separable graphs,” in 26th Annual European
Symposium on Algorithms, ESA 2018, August 20-22, 2018,
Helsinki, Finland, ser. LIPIcs, vol. 112. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2018, pp. 40:1–40:15,
available at https://arxiv.org/abs/1802.09111.

[56] R. Peng, B. Sandlund, and D. D. Sleator, “Optimal offline
dynamic 2, 3-edge/vertex connectivity,” in Algorithms and
Data Structures - 16th International Symposium, WADS 2019,
Edmonton, AB, Canada, August 5-7, 2019, ser. Lecture Notes
in Computer Science, vol. 11646. Springer, 2019, pp. 553–
565, available at https://arxiv.org/abs/1708.03812.

[57] G. Goranci, “Dynamic graph algorithms and graph spar-
sification: New techniques and connections,” CoRR, vol.
abs/1909.06413, 2019, available at https://arxiv.org/abs/1909.
06413.

[58] W. Jin and X. Sun, “Fully dynamic c-edge connectivity
in subpolynomial time,” CoRR, vol. abs/2004.07650, 2020,
available at https://arxiv.org/abs/2004.07650.

[59] D. Nanongkai and T. Saranurak, “Dynamic spanning for-
est with worst-case update time: adaptive, Las Vegas, and
O(n1/2−ε)-time,” in Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017, 2017, pp. 1122–
1129, available at https://arxiv.org/abs/1611.03745.

[60] C. Wulff-Nilsen, “Fully-dynamic minimum spanning forest
with improved worst-case update time,” in Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-
23, 2017, 2017, pp. 1130–1143, available at https://arxiv.org/
abs/1611.02864.

[61] D. Nanongkai, T. Saranurak, and C. Wulff-Nilsen, “Dynamic
minimum spanning forest with subpolynomial worst-case
update time,” in 58th IEEE Annual Symposium on Founda-
tions of Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15-17, 2017. IEEE Computer Society, 2017, pp.
950–961, available at https://arxiv.org/abs/1708.03962.

526

Authorized licensed use limited to: University of Waterloo. Downloaded on June 26,2022 at 02:50:34 UTC from IEEE Xplore. Restrictions apply.

[62] T. Saranurak and D. Wang, “Expander decomposition and
pruning: Faster, stronger, and simpler,” in Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, Jan-
uary 6-9, 2019. SIAM, 2019, pp. 2616–2635, available
at https://arxiv.org/abs/1812.08958.

[63] J. Chuzhoy, Y. Gao, J. Li, D. Nanongkai, R. Peng, and
T. Saranurak, “A deterministic algorithm for balanced cut with
applications to dynamic connectivity, flows, and beyond,” in
61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-
19, 2020. IEEE, 2020, pp. 1158–1167, available at https:
//arxiv.org/abs/1910.08025.

[64] A. Bernstein, J. v. d. Brand, M. P. Gutenberg, D. Nanongkai,
T. Saranurak, A. Sidford, and H. Sun, “Fully-dynamic
graph sparsifiers against an adaptive adversary,” CoRR, vol.
abs/2004.08432, 2020, available at https://arxiv.org/abs/2004.
08432.

[65] E. Gat and S. Goldwasser, “Probabilistic search algo-
rithms with unique answers and their cryptographic applica-
tions,” Electronic Colloquium on Computational Complexity
(ECCC), vol. 18, p. 136, 2011, available at https://eccc.
weizmann.ac.il/report/2011/136/.

[66] O. Goldreich, S. Goldwasser, and D. Ron, “On the possi-
bilities and limitations of pseudodeterministic algorithms,”
in Proceedings of the 4th Conference on Innovations in
Theoretical Computer Science, ser. ITCS ’13, 2013, pp. 127–
138.

[67] H. Lin, “Reducing directed max flow to undirected max flow,”
Unpublished Manuscript, vol. 4, no. 2, 2009.

[68] R. K. Ahuja and J. B. Orlin, “Distance-directed augmenting
path algorithms for maximum flow and parametric maximum
flow problems,” Naval Research Logistics, vol. 38, no. 3, pp.
413–430, 1991.

[69] M. B. Cohen, A. Madry, P. Sankowski, and A. Vladu,
“Negative-weight shortest paths and unit capacity minimum

cost flow in ˜O(m10/7 logW) time (extended abstract),” in
Proceedings of the Twenty-Eighth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, January 16-19. SIAM, 2017, pp. 752–771,
available at https://arxiv.org/abs/1605.01717.

[70] D. A. Spielman and S. Teng, “Nearly-linear time algorithms
for graph partitioning, graph sparsification, and solving linear
systems,” in Proceedings of the 36th Annual ACM Symposium
on Theory of Computing, STOC 2004, Chicago, IL, USA, June
13-16, 2004, 2004, pp. 81–90, available at https://arxiv.org/
abs/0809.3232, https://arxiv.org/abs/0808.4134, https://arxiv.
org/abs/cs/0607105.

[71] I. Koutis, G. L. Miller, and R. Peng, “Approaching optimality
for solving SDD linear systems,” in 51th IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS 2010,
Las Vegas, NV, USA, October 23-26, 2010, 2010, pp. 235–
244, available at https://arxiv.org/abs/1003.2958.

[72] ——, “A nearly-m log n time solver for SDD linear sys-
tems,” in 52nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2011, Palm Springs, CA, USA,
October 22-25, 2011, 2011, pp. 590–598, available at https:
//arxiv.org/abs/1102.4842.

[73] J. A. Kelner, L. Orecchia, A. Sidford, and Z. Allen Zhu,
“A simple, combinatorial algorithm for solving SDD systems
in nearly-linear time,” in Proceedings of the 45th Annual
ACM Symposium on Theory of Computing, STOC 2013, Palo
Alto, CA, USA, June 1-4, 2013, 2013, pp. 911–920, available
at https://arxiv.org/abs/1301.6628.

[74] M. B. Cohen, R. Kyng, G. L. Miller, J. W. Pachocki, R. Peng,
A. B. Rao, and S. C. Xu, “Solving SDD linear systems in
nearly m log1/2 n time,” in Proceedings of the 46th Annual
ACM Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, June 1-3, 2014, 2014, pp. 343–352.

[75] R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva, and D. A.
Spielman, “Sparsified Cholesky and multigrid solvers for
connection Laplacians,” in Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, 2016, pp.
842–850, available at https://arxiv.org/abs/1512.01892.

[76] R. Kyng and S. Sachdeva, “Approximate gaussian elimination
for Laplacians - fast, sparse, and simple,” in 57th IEEE An-
nual Symposium on Foundations of Computer Science, FOCS
2016, Hyatt Regency, New Brunswick, NJ, USA, October 9-
11, 2016, 2016, pp. 573–582, available at https://arxiv.org/
abs/1605.02353.

[77] D. Durfee, M. Fahrbach, Y. Gao, and T. Xiao, “Nearly tight
bounds for sandpile transience on the grid,” in Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, January
7-10, 2018. SIAM, 2018, pp. 605–624, available at https:
//arxiv.org/abs/1704.04830.

527

Authorized licensed use limited to: University of Waterloo. Downloaded on June 26,2022 at 02:50:34 UTC from IEEE Xplore. Restrictions apply.

