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Abstract—We give an algorithm for computing exact max-
imum flows on graphs with m edges and integer capacities
in the range [1,U] in O(m%’ﬁlog U) time.! For sparse
graphs with polynomially bounded integer capacities, this is
the first improvement over the O(m'-5log U) time bound from
[Goldberg-Rao JACM 98].

Our algorithm revolves around dynamically maintaining the
augmenting electrical flows at the core of the interior point
method based algorithm from [Madry JACM °¢16]. This entails
designing data structures that, in limited settings, return edges
with large electric energy in a graph undergoing resistance
updates.
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See https://arxiv.org/abs/2101.07233 for the full version
of this paper.

I. INTRODUCTION

The maxflow problem asks to route the maximum amount
of flow between two vertices in a graph such that the flow
on any edge is at most its capacity. The efficiency of this
problem is well-studied and has numerous applications in
scheduling, image processing, and network science [1], [2].
The main result of this paper is a faster exact maxflow al-
gorithm on sparse directed graphs in the weakly polynomial
setting, where the runtime depends logarithmically on the
capacities.

Theorem 1. There is an algorithm that on a graph G with m

edges and integer capacities in [1,U] computes a maximum
. . . ~ 3 1

Sflow between vertices s,t in time O(m?z 328 logU).

In sparse graphs with polynomially large capaci-
ties, this is the first improvement over the classical
O(m?3/?logmlogU) time algorithm of Goldberg-Rao [3],
which represented the culmination of a long line of work
starting from the work of Hopcroft-Karp [4] for bipartite
matchings and Karzanov and Even-Tarjan for unit capacity
maxflow [5], [6]. Improving over this exponent of 3/2 for
graph optimization problems has been intensively studied
over the past decade via combinations of continuous opti-
mization and discrete tools.

IWe use 6(~) to suppress logarithmic factors in m.
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This line of work was initiated by Christiano-Kelner-
Madry-Spielman-Teng [7] who gave a O(m*/3¢=C()) time
algorithm for (1 + €)-approximate maxflow. This has since
been improved to m!'to(Me=OM) [8], [9] and the focus
shifted to achieving improved e dependencies [10], [11]
and exact ~soluti0ns. Towards this, two breakthrough results
were the O(m!'%/7U/7) time algorithm of Madry [12], [13]
which broke the 3/2 exponent barrier on unweighted graphs,
and the O(m+/nlogU) time algorithm of Lee-Sidford [14],
which was an improvement for any dense graph. Since
then, these results respectively have been improved to yield
algorithms that run in time m*/3+°My1/3 [15], [16] and
O((m+n3/?)logU) [17], [18]. However, the 3/2 exponent
of Goldberg-Rao [3] remained the state-of-the-art on sparse
capacitated graphs.

Classical approaches to solving maxflow use augmenting
paths to construct the final flow. Our algorithm, as well as the
recent improvements above, instead computes the maxflow
using a sequence of electric flows. For resistances r € RZ,
the s-t electric flow is the one that routes one unit from s
to ¢ while minimizing the quadratic energy:

: 2
min E rofe.
f routes one s-t unit

ecE

Electric flows are induced by vertex potentials, and corre-
spond to solving a linear system in the graph Laplacian.
Motivated by this connection with scientific computing, two
decades of work on combinatorial preconditioners led to the
breakthrough result by Spielman-Teng [19] that Laplacian
systems and electrical flows can be computed to high accu-
racy in O(m) time.

Our algorithm, as well as the recent faster runtimes for
dense graphs [17], [18], are built upon the dynamic processes
view of flow augmentations [20], [21] that provided much
impetus for the study of dynamic graph data structures.
In this view, the final flow is obtained via a sequence of
flow modifications, and dynamic tree data structures such as
link-cut trees [21], [20] are designed to allow for sublinear
time identification and modification of edges that limit flow
progress. Concretely, the maxflow is built using a sequence
of O(y/m) electric flows on graphs with slowly changing
resistances. This corresponds to the celebrated interior point
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method (IPM henceforth) which shows that linear programs
can be solved using O(y/m) slowly changing linear system
solves [22], [23]. To implement this framework we design
data structures that on a graph with dynamic changing
resistances:
o Identify all edges e with at least an €2 fraction of the
total electric energy in the electric flow f on a graph
with resistances 7:

refi= ey rfl

eclE
Estimate the square root of energy or flow value of an

edge up to an additive error of +¢/10- /> . p rf?,

i.e. a /10 fraction of the square root of the total electric
energy.

Finally, we leverage this data structure along with several
modifications to the outer loop to achieve our main result
Theorem 1.

A. Key Algorithmic Pieces

At a high level, our algorithm implements an IPM which
augments O(y/m) electric flows by building a data structure
that detects large energy edges in an s-t electric flow on a
dynamic graph. In addition to this, our algorithm requires
several modifications to the IPM. First, our data structure
requires properties specific to s-¢ electric flows to achieve
its guarantees. Consequently, we are forced to design an IPM
that only augments via s-t¢ electric flows. On the other hand,
a standard IPM alternates between routing electric flows and
routing additional electric circulations every step. Second,
our data structures are randomized and thus their outputs
may affect future inputs when applied within the IPM. This
requires delicately modifying our algorithm to bypass this
issue. We now give more detailed descriptions of each piece.

Locating high energy edges in s-t electric flows.: Our
data structures for dynamic electric flows are based on the
interpretation of electrical flow as random walks on the
graph [24], which has been used previously for dynamic
effective resistances [25], [26]. In our setting we wish to
detect edges with at least €2 fraction of the /5 electric energy.
To achieve this, we use a spectral vertex sparsifier, which
approximates the electric flow and potentials on this smaller
set of terminal vertices. We use this sparsifier as well as
additional random walks to maintain the result of an /5
heavy hitter sketch on the electric flow vector. This allows
us to approximately maintain a short sketch vector and thus
recover the large entries of the electric flow vector.

Our data structure has several subtleties which affect its
interaction with the outer loop. First, it is essential that
the electrical flows maintained are s-t to ensure additional
stability in our algorithms. s-t electrical flows have addi-
tional, sharper, upper bounds on vertex potentials and flow
values on edges, which do not hold for electrical flows
with more general demands. Secondly, we only maintain
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an approximate /5 heavy hitter sketch but argue that this
suffices for detection of large energy edges (Lemma 5.1).

IPM with s-t flows.: We must modify the IPM outer
loop to interact with our dynamic electric flow data struc-
ture described above which fundamentally uses properties
specific to s-t flows. The standard IPM [27] which uses
electric flows to solve maxflow [28], [13], [15] has both a
progress phase where an s-t electric flow is augmented, and
a centering phase where electric circulations are added to
slightly fix the flow.

We modify the IPM to only use s-t electric flows to
make more than 1/,/m progress before we pay O(m) time
to center using electric circulations. We leverage two key
properties of the method to achieve this. First, we argue that
damping the step size of the IPM causes errors to accumulate
more slowly. This allows us to use several s-t electric flow
steps (maintained in sublinear time by data structures) as
opposed to flows with general demands before a centering
step. Also, to argue this formally we use the fact that the
resistances are multiplicatively stable to within a polynomial
factor of the number of steps of standard size 1/y/m.

Randomness in data structures and adaptivity.: Be-
cause we are applying randomized data structures inside an
outer loop, their outputs may affect future inputs. In the
literature, this is referred to as an adaptive adversary. On
the other hand, our data structures naively only work against
oblivious adversaries, where the inputs are independent of
the outputs and randomness of the data structure.

We handle these issues by carefully designing our data
structures and outer loop to not leak randomness between
components, instead of making our data structures deter-
ministic or work against adaptive adversaries in general. We
start by breaking the data structure into a LOCATOR and a
CHECKER, based on ideas from [29]. The LOCATOR returns
a superset that contains all edges with large energy with
high probability, and the CHECKER independently estimates
the energies of those edges to decide whether to update
them. This way, the randomness of LOCATOR does not
affect its inputs. However, the outputs of CHECKER may
affect its inputs. Now, we leverage that the sequence of
flows encountered during the IPM outer loop are almost
deterministic, and there are only a few iterations between
deterministic instances. This way, we can use a separate
CHECKER for each of these iterations before resetting every
CHECKER to the deterministic instance.

B. Heuristic Runtime Calculation

The following key properties of the IPM outer loop
are necessary to understand why a sublinear time data
structure suffices to achieve a m3/2~*(1) time algorithm for
capacitated maxflow.

1) Computing electric flows on graphs whose resistances

are within 14y of the true resistances suffices to make
1/4/m progress (for some parameter v = Q(1)).
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2) The resistances change slowly multiplicatively
throughout the course of the algorithm. In fact, at
most O(T?y~2) edges have their resistances change
by at least 1 + v multiplicatively over 7' steps of the
method for any  (Lemma 6.6). In particular, over all
O(y/m) iterations of electric flow computation, each
edge’s resistance changes O(1) times on average.
The resistance of an edge is approximately the inverse
of its residual capacity squared. This way, an edge’s
resistance changes significantly if the electric energy
of the edge is large in the computed electric flows.

3)

If we have a data structure which detects edges with large
energies in m'~" amortized time per edge for some constant
1 > 0, then we can leverage it along with the above facts to
design the following algorithm. We take steps in batches of
size k, after which we pay O(m) time to fix and recenter
our flow to find the true underlying resistances. During each
batch, we use the data structure to detect all edges whose
resistance changed by more than 1 + (1) multiplicatively,
and return their resistances.

Now we estimate the runtime of this algorithm. The cost
of recentering is O(m)-O(m'/2/k) = O(m>/?/k), as there
are /m total steps and we recenter every k iterations. Also,
by the second item above that at most O(k?) edges have
their resistances change significantly during a batch, so the
data structure takes O(mn'~"k?) time per batch. The total
time used by the data structure is therefore O(m'~"k?) -
O(ym/k) = O(m3/*7nk). Taking k = m"/? gives a
final runtime of O(m3/2~7/2), which is less than m>/2 as
desired. The tradeoffs in our algorithms are significantly
higher and more complicated in reality: we have higher
exponents on the batch size k due to compounding errors in
the method, and we have additional layers of intermediate
rebuilds. Nonetheless, the final tradeoffs by which we obtain
Theorem 1 are still similar in spirit.

C. Related Work and Discussion

There is a long history of work on the maximum flow
problem, as well as work related to each of our key algo-
rithmic pieces in Section I-A: dynamic graph data structures,
IPMs in the context of data structures, and random and
adaptivity in data structures.

Our discussion below focuses on algorithms whose ca-
pacity dependence is logarithmic (weakly polynomial). The
weakly polynomial setting also is equivalent to the setting
where the edge capacities are positive real numbers, and
we wish to compute an e-approximate solution in runtime
depending on log(1/¢). In the strongly polynomial setting,
where the algorithm runtime has no capacity dependence,
following early work of [30], [20], [21], the best known
maxflow runtime is O(mn) and O(n?/logn) when m =
O(n) [31], [32].

Maxflow Algorithms: Network flow problems are
widely studied in operations research, theoretical computer
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science, and optimization [2]. Among the many variants, the
capacitated maxflow problem captures key features of both
combinatorial graph algorithms and numerical optimization
routines. As a result, it has an extensive history starting
from the work of Dinic and Edmonds-Karp [33], [34].
The seminal work by Edmonds-Karp [34] presented two
algorithms: an O(n?m) strongly polynomial time algorithm
by finding shortest augmenting paths, and an O(m?logU)
weakly polynomial time algorithm based on finding bot-
tleneck shortest paths. Improving these algorithms pro-
vided motivation for dynamic tree data structures [20],
dual algorithms [35], and numerical primitives such as
scaling [3]. These progress culminated in a runtime of
O(min(m3/2, mn?/3)log U): for more details, we refer the
reader to the review by Goldberg and Tarjan [2].

In the two decades since Goldberg-Rao [3], all im-
provements on the exact maximum flow problem rely
on continuous optimization techniques. These include the
O(m+/nlogU) runtime of Lee-Sidford [14], and several
results culminating in a O(m/¢) runtime for e-approximate
maxflow on undirected graphs [7], [8], [9], [36], [37], [11].
Additionally, a line of work [12], [13], [15] achieving a
m?*/3+°(D) runtime in uncapacitated graphs [16] by using
weight changes and /,-norm flows [38] to eliminate high
energy edges, as opposed to our approach of using data
structures to detect them. Recently, approaches that combine
interior point methods (IPMs) with graphical data structures
achieved a O((m + n3/2)1log U) runtime for maxflow [17],
[18]. In this way, the bound of Golberg-Rao [3] has been
improved in higher error approximate settings (on undirected
graphs), for uncapacitated graphs, and for dense capacitated
graphs. However, our result is the first to show an improve-
ment for exact maxflow in the weakly polynomial parameter
regime central to the line of work spanning from Edmonds-
Karp [34] to Goldberg-Rao [3]: sparse directed graphs with
polynomially bounded capacities.

Data Structures for IPMs.: Starting from early work of
Karmarkar [22] and Vaidya [23], several results leverage the
fact that the linear systems resulting from IPMs are slowly
changing, and that only approximate solutions are needed
to implement the method. In this way, data structures for
efficiently maintaining the inverse of dynamically changing
linear systems have been used to speed up IPMs for linear
programming [39], [40], [41], [42], [43], [17] and recently
semidefinite programming [44]. Additionally, our algorithm
uses the fact the multiplicative change in resistances is at
most polynomial in the number of steps taken. While this
type of result was previously known?, we are not aware of
other IPM analyses that use this fact.

In the graphical setting of maxflow, this corresponds
to dynamically maintaining electric flows in a graph with

2Personal communication with Yin Tat Lee and Aaron Sidford [45], also
similar in spirit to [14, Lemma 67].
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changing resistances. Our result is heavily motivated by
the recent [17] and its follow-up [18] which obtained
O(m~+n!-3) type running times for flow problems. The flow-
based version of these results use dynamic sparsification
algorithms to maintain approximate electric flows in O(n)
instead of O(m) time per iteration. Additionally these works
required several other techniques to achieve their runtimes,
including robust central paths/different measures of central-
ity, and weighted barriers. While we do not use these pieces
in our algorithm, we are optimistic that understanding how
to apply these techniques could improve the runtime of our
method.

Also, {5 heavy hitters are used in [17], [18] and our
algorithms; however, we open up the standard statement of
¢y heavy hitter [46] to prove that an approximate matrix-
vector product suffices to implement the heavy hitter data
structure (Lemma 5.1). Critically, we treat the heavy hitter
sketch matrix as demands on which we compute electric
flows which allows for interaction with random walks and
spectral vertex sparsification.

Dynamic graph data structures.: The data structures we
use to make sublinear time steps in interior point methods
broadly belong to data structures maintaining approxima-
tions to optimization problems in dynamically changing
graphs [47], [48], [49], [50], [S1], [52], [53], [26]. Our
maintenance of electrical flows is most directly related to
dynamic effective resistance data structures [54], [55], [25],
[26]. In particular, they heavily rely on dynamic vertex
sparsifiers, which by itself has also received significant
attention in data structures [56], [57], [58]. In particular, our
sublinear runtime comes in part from maintaining a spectral
vertex sparsifier onto a smaller vertex subset.

Adaptivity and randomness.: Our data structures are
randomized, and are accessed in an adaptive manner: queries
to it may depend on its own output. While there has been
much recent work on making randomized sparsification
based data structures more resilient against such adaptive in-
puts [59], [60], [61], [62], [63], [64], our approach at a high
level bypasses most of these issues because the (non-robust,
unweighted) central path of IPMs is a fixed object. In this
way, our randomized data structures are essentially pseudo-
deterministic [65], [66]: while the algorithm is randomized,
the output is the same with high probability. Additionally, the
top-level interactions of our randomized components involve
calling one data structure inside another to hide randomness.
This has much in common with the randomized approximate
min-degree algorithm from [29].

D. General Notation and Conventions

We use plaintext to denote scalars, bold lower case for
vectors, and bold upper case for matrices. A glossary of
variables and parameters is given in Appendix B. We will
use the ~ notation to denote a later, modified, copy of a
variable. As our update steps are approximate, we will
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also use the ~ notation to denote approximate/error carrying
versions of true variables.

_ We use O(-) to suppress logarithmic factors in m and
Q(-) to suppress the inverse logarithmic factors in m. We
let 0,1 € R”™ denote the all zeroes/ones vectors respectively.
For vectors ,y € R” we let (zoy); = x;y,. When context
is clear, we also use % to denote the entry-wise division of
. We use |x| and |Y]| to
denote the entry-wise absolute values of vector  and matrix
Y.

Instead of tracking explicit constants in our parameters,
we sometimes use ¢ and C to denote sufficiently small
(respectively large) absolute constants. E.g., for a parameter
k > 1, we write € = ck~% to denote that there is a constant
c where € = ck~6, and we will set c later to be sufficiently
small. ¢ and C' may denote different constants in different
places. We use “with high probability” or “w.h.p.” to mean
with probability at least 1 — n =19,

We say that a symmetric matrix M € R™*"™ is positive
semidefinite (psd) if " Ax > 0 for all € R™. For psd
matrices A, B we write A < B if B— A is psd. For positive
real numbers a,b we write a =, b to denote exp(—y)b <
a < exp(7)b. For psd matrices A, B we write A ~, B if
exp(—7)B < A < exp(7)B.

x def m7

two vectors, that is (y

E. Organization of Paper

Due to space constraints, we will only provide an
overview of our result in Section II. We elaborate on each
major piece of our algorithm introduced in Section I-A: dy-
namic electric flow data structures, our modified IPM outer
loop, and handling of randomness and adaptive adversaries.
Then in Section III we give the linear algebraic formulation
of the maximum flow problem. We then introduce the key
notion of electric flows and its relationship with linear
systems and random walks. The full version of the paper
is at arXiv 2101.07233.

II. OVERVIEW OF APPROACH

In this section we elaborate on the key pieces of our
approach described in Section I-A: dynamic electrical flow
data structures (Section II-A), an interior point method for
maxflow using this data structure (Section II-B), and how
to handle issues with randomness and adaptive adversaries
(Section II-C).

A. Overview of LOCATOR for Dynamic Electric Flows

Recall the dynamic electric flow problem we solve. For a
graph G = (V, E) with changing resistances r € RZ such
that the energy of the electric flow f is at most 1 ‘always,
ie. Y .cp rof2 < 1, return a set of at most O(e~2) edges
S C E that contains all edges with energy at least €2, i.e.
Te fg > ¢2 for e € S. We wish to solve this in amortized
sublinear time per resistance update.
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Figure 1.

At a high level, our approach is based on the vertex
sparsification view towards data structures. In this view, we
achieve sublinear runtimes by maintaining an object onto
a smaller subset of terminal vertices C' C V' that approxi-
mately preserve the desired property in our data structure.
For example, in our setting we will leverage spectral vertex
sparsifiers that maintain the electrical properties of the
graph onto the set of terminals, such as pairwise effective
resistances. Alternatively, this can be viewed as maintaining
the spectral properties of the inverse of the graph Laplacian
(and is known as the Schur complement). In our algorithms,
the set C' will increases in size throughout our data structure
to ensure that edge changes happen within C. Hence the
focus is on maintaining properties onto C while new vertices
are added to it throughout the algorithm.

We detect edges with large electric energies by first
setting up a linear {5 heavy hitter sketch [46] against the
energy vector R'/2f, where R is the diagonal matrix of
resistances and f is the electric flow. We then approximately
maintain the sketch using random walks and spectral vertex
sparsifiers. At a high level, an /5 heavy hitter sketch works
by estimating the total /5-norm / energy of various edge
subsets using Johnson-Lindenstrauss sketches up to accuracy
e. In this way, for O(e~2) sketch vectors ¢ € {—1,0,1}™,
we must maintain the quantity (q, R'/2f). Now we relate
the electric flow to the electric potentials ¢ using Ohm’s
law: for any edge e = (u,v) we have f, = (¢, — ¢,)/Te-
Written algebraically, this is f = R™'!B¢ where B is the
(unweighted) edge-vertex incidence matrix of the graph G.
Plugging this into our previous formula gives us

(@.RV2f) = (¢, R"'/?B¢) = (BTR™ /¢, ¢).
For simplicity we now let d = BTR~1/2q. Intuitively, the
sketch vector q is inducing a demand d on the vertices which
we now want to dot against the vertex potentials ¢.

Now our goal is to use a smaller set of terminal vertices
C to estimate the quantity (d,¢). We achieve this by
leveraging the fact that we can recover potentials outside C
by harmonically extending the potentials restricted to C: ¢ .
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Shortcutting random walks from the red edge to a terminal set C' when under the insertion of the black vertex to C.

Precisely, the potential ¢,, at vertex v # s, t is the average of
its neighbors, weighted proportional to inverse resistances.
Equivalently, starting a random walk at a vertex v ¢ C
and taking exit edges proportional to inverse of resistances
is a martingale (preserves mean) on the potentials. In this
way we can write ¢ = H¢po where H € RV (G)*C s this
extension operator. Hence

<d7 ¢> = <da H¢C> = <HTd7 ¢C>

To compute this final quantity we must maintain " d and
¢ efficiently in sublinear time. For the former, given our
random walk interpretation of 7, we may interpret ' d as
the vector given by “projecting” d onto the terminal set C'
via random walks, and we write 7€ (d) = H'd (Defini-
tion 5.5). In other words, the demand vector d is distributed
onto C' based on the probabilities that random walks from
vertices v hit C for the first time. This interpretation of ' d
allows us to build random walks to simulate the changes to
this vector under the terminal set C' growing in size. For the
latter, we maintain ¢~ by using the approximate spectral
vertex sparsifier of [25] which approximately maintains
the Laplacian inverse on C' and hence the potentials. This
construction is also based on running random walks from
edges outside C' until they hit C.

We briefly elaborate on how resistance updates affect the
terminal set C' and the random walks we maintain. We start
by initializing C' to be a random set of size Sm. (The reader
can imagine 3 = m~%%! so that |C| is sublinear.) We run
random walks from each edge or vertex until it hits C.
These walks are short, specifically visiting O(37!) distinct
vertices with high probability, because C' was chosen to be
Bm random vertices. Now, in general when the resistance of
an edge e = (u,v) is changed we add both endpoints u, v of
e to C. Now the edge e will be contained fully inside C' so
we can directly perform the resistance change. However we
must update our random walks due to C' changing. To do
this we shortcut each random walk we computed to when it
hit the larger set C' and update the necessary properties. A
depiction of this process is given in Fig. 1.
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Figure 2. Our algorithm is split into 5(\/m/ k) batches of steps. Each batch is split into 5(k4) smaller steps to reduce error so that we can recenter in
O(m) time at the end of each batch (Lemma 6.2). Each small step implements an approximate electric flow using data structures. . In the diagram, the
dashed line is standard path following which recenters (depicted by the double arrows) after each step of size 1//m. The dotted line is the finer steps

which takes more total steps but only recenters after 4/+/m progress.

To conclude, we describe some difficulties with the ap-
proach described above, specifically pertaining to maintain-
ing the projected demand H " d = 7 (d). The first concern
is that entries of d = BTR~!/2q are too large if some
edge e has resistance r. close to 0 (as then r 12 s large).
We handle this with the observation that edges with small
resistances cannot have large energies in an s-¢ electric flow
(Lemma 5.2), so we can restrict our heavy hitter sketch
to edges with sufficiently large resistances. Also, naively
estimating the projection 7 (d) with random walks from
each vertex accumulates too much variance because the
demand vector d is dense. Instead we exactly compute
7% (d) by solving a linear system to start, and we estimate
the change in this vector under insertions to C' by locally
sampling random walks from the inserted vertex (Fact 5.7).
Finally, we periodically recalculate this vector to ensure that
error does not accumulate.

B. Overview of Interior Point Method

In this section we formalize the outer loop that our
algorithm uses to argue that O(y/m) approximate electric
flow computations suffice to compute a maxflow. We assume
that the graph G is undirected [67], [12] and that we know
the optimal maxflow value F'* by a standard binary search
reduction. Given this, the central path is a sequence of
flows f(u) for p € (0, F*] defined by the minimizers of
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a logarithmic barrier potential:

fp= V(f)

arg min
BT f=(F*—p)Xt

for V(f) =) —log(uc — f.) — log(uc + f.)-
ecE
(1)

Note that for y = F* that f(F*) = 0, the zero flow. Starting
there, the goal of our algorithm is to follow this central
path by slowly decreasing ;v towards 0 while computing
the flows f(u) along the way. While p never equals O
exactly, the flows f(u) approach the maximum flow as
1 approaches 0. We want to emphasize that the sequence
of flows encountered by the algorithm along the way is
deterministic in this sense, as the minimizer of the convex
problem (1) is unique.

We remark that this central path (which is adapted from
[13]) differs from the more standard central path used to
solve mincost flow with cost ¢’ f. While this version can
also work by setting c as a large negative cost on an s-
t edge, we choose to work with our formulation because
the intuition that we are augmenting by s-t electric flows is
useful for our data structure based approach.

Now consider trying to decrease the path parameter y to
I < p starting from the current central path flow f(u). Then
we wish compute a flow A f which routes p — 2 units from
s to t such that adding A f to our current flow f(u) gets to
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the minimizer of (1) for g, i.e. f(i) = f(u) + Af. While
directly computing A f exactly is more difficult, one can
show that up to a first order approximation, A f is given by
the electric flow that routes p — fi units from s to ¢, with
resistances given by 7. = (ue—f(11)e) 24 (ue+ f(p)e) 2.

To handle the approximations induced by using s-t elec-
tric flows, we require another fact: if we are able to calculate
a flow f that is “close” to f(ji) on all edges, then we
can compute f(u) exactly using O(m) additional time
(by computing additional electric circulations). Here, f is
close to f(i) if all residual capacities differ by at most a
multiplicative 1.1 factor (Lemma 6.2). Now, one can show
that if 7 = (1 — ¢/4/m)u for a small constant ¢, Af is the
electric s-t flow routing y — /2 units (even with approximate
resistances), and f = f(u) + Af, then f is close to
J(f). Thus, this gives a method that terminates in O(y/m)
iterations and O(m3/2) time.

To achieve a m3/2~() time maxflow algorithm using
IPMs we must be able to to decrease i to i = (1—k//m)u
for some k& = mS*() in O(m) amortized time. This would
achieve a O(m?/?/k) time algorithm. Directly adding the
electric flow routing 4 — 1t ku/y/m units from s to
t accumulates too much error. We instead split this step
into a batch of smaller steps, each which is an electric
flow routing (1 — p)/k* = p/(k3y/m) units. We show in
Section 6 that because the electric flow is the first order
approximation to the change in the central path, and because
residual capacities are stable within a O(k?) factor during
the step (Lemma 6.7), that this sufficiently reduces error.

Now our method approximately implements each of the
smaller steps in the batch using the data structure described
in Section II-A. We would like to emphasize again that even
though the flows encountered during the small steps within
a batch are randomized, we can pay O(m) at the end of
each batch to move our flow back to the exact minimizer
of (1) so that it is deterministic. A depiction of the batches,
splits into small steps, and recentering is given in Fig. 2.

C. Overview of Handling of Randomness

In this section we explain how to adapt our IPM outer
loop and data structures to ensure that randomness in the
data structures used to produce outputs does not affect the
distribution of future inputs to itself. To this end, let us recall
our setup described in the above Sections II-A and II-B.
We have a heavy hitter data structure which returns a set .S
of edges that contains all edges with an €2 fraction of the
energy, and estimates their energies up to additive error.

Our first step towards addressing the randomness issue
is to decouple the data structure. We split it into two
parts: the first part which returns edges with large energies
(LOCATOR), and a separate part which estimates again the
energies of returned edges (CHECKER). Our reasons for
doing this are twofold — it both helps with reasoning about
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where randomness arises in the algorithm, and provides mild
runtime improvements.

/ Main algorithm \

~~

CHECKER
Batch of T = O(k*) steps

/

Figure 3. Within a batch of steps, during the i-th step the LOCATOR passes
an edge subset to the ¢-th CHECKER. This communicates with the outside
loop which passes updates to later CHECKERs as well as the LOCATOR.

In this new setup the LOCATOR corresponds to the heavy
hitter, and returns a set of at most O(e2) edges that
contains all edges with at least €2/10 fraction of the electric
energy. This set is fed to the CHECKER which independently
estimates the amount of electric flow on that edge for each
edge in the set. The CHECKER wishes to accept any edge
with at least 2 fraction of the electric energy and to estimate
its flow value. Due to our IPM setup, these data _structures
are used within an outer loop consisting of O(y/m/k)
batches of steps, each which is split into k* smaller steps.
After each batch, the algorithm perfectly moves back to the
minimizer of (1) in O(m) time and updates resistances. For
each smaller step within the batch, we call LOCATOR and
CHECKER together to find edges with large energies / flows,
and hence must have their resistances updated. A depiction
of the interactions between the LOCATOR, CHECKER data
structures, and the algorithmic outer loop is given in Fig. 3.

Note that the flow that we maintain is deterministically
equal to the minimizer of (1) at the start and end of each
batch, so we can essentially update both the data structures
deterministically. Hence we focus on ensuring the property
that our data structures outputs do not affect futures inputs
or states during the k* steps within a batch. We first describe
why LOCATOR can be assumed to be against oblivious
adversaries, i.e. inputs are independent of the randomness.
To understand why this is the case, consider the algorithm
that does not use the LOCATOR data structure at all, and
instead uses the CHECKER to independently estimate the
flow on every single edge and decides whether it believes
the edge to have high energy. Clearly this algorithm is
valid. We argue that using the LOCATOR data structure
simulates this algorithm that checks every edge. Indeed, we
may set the thresholds for LOCATOR so that any edge that
CHECKER decides to update with non-negligible probability
is included in the set of edges LOCATOR returns with high
probability. In this way, the outputs of LOCATOR do not
affect its future inputs as long as CHECKER is checking
each edge independently.
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While this explains why LOCATOR may operate against
oblivious adversaries, the same is unclear for CHECKER.
Indeed, different flow value estimates for an edge e affect
whether the resistance of e is changed, and this can affect
the internal state of CHECKER itself even during the same
batch. To handle this, we actually construct k4 independent
CHECKER data structures, which we call DgChk) for i € [k4],
one for each small step within a batch. We use DEChk) to
handle the set of edges that LOCATOR returns at small step ¢
out of k*. After this step, we stop updating DEChk) until the
end of the batch. At that time, we roll back all changes made
to DEChk) during the batch and then deterministically update
its state to the new exact minimizer flow we compute. In
this way, we can argue that the outputs of DgChk) can only
affect inputs of D§Chk) for j > i, so no DEChk) has inputs
affecting itself. In this way, we may assume that each DEChk)
actually operates against oblivious adversaries.

III. PRELIMINARIES: MAXFLOW AND ELECTRICAL
FLows

We start by formally defining the maxflow problem, the
electrical flow subroutine, and key objects for representing
both problems. We will use G = (V, E) to denote graphs,
u to denote edge capacities, and f to denote flows. We
will also use deg,, to denote the combinatorial/unweighted
degree of vertex v in G, that is, deg, = |[{e € E | e 5 v}|.

A. Maxflow

One can reduce directed maxflow to undirected maxflow
with linear time overhead [67], [12], so we assume our graph
G = (V, E) is undirected throughout. m will be the number
|E| of edges and n will be the number |V| of vertices. We
assume m < n2.

We also assume that GG is connected and has at least two
vertices and one edge. Thus, each vertex of G has at least one
edge incident to it. By standard capacity scaling techniques
[68] we may assume that U = poly(m) throughout this
paper. Also, we assume we know the optimal numbers
of units F* = poly(m), as our algorithm works for any
underestimate. Furthermore, our algorithm actually works
for general demand maxflows, as we can add a super source
s and super sink ¢ to accumulate to positive (respectively
negative) demands on vertices.

We can then formalize the decision version of maxflow
via linear algebra. Define B to be the edge-vertex incidence
matrix of G:

1 if u is the head of e
BeRF*Y  B,, =< -1 ifuis the tail of e
0 otherwise

and X, to be the indicator vector with —1 at source s, 1
at sink ¢ and 0 everywhere else. Routing F™* units of flow
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from s to ¢ then becomes finding f € R¥ such that

B'f=F'x, and —u< f<u.

B. Electrical Flows

Electrical flows are /5-minimization analogs of maxflow,
and underlie all interior point method oriented approaches
to high-accuracy maxflow [28], [12], [14], [13], [69].

We use the term demand vector for any vector d such
that d € R" and 1'd = 0. We let » € R¥ be the
vector of resistances: . denotes the resistance of edge e.
For a demand vector d, and the vector of resistances r, the
electrical flow problem is

min
FBT f=d

> orefi.

e

Here the energy function can be further abbreviated using
the norm notation: by letting R denote the diagonal matrix
with = on the diagonal, the energy can be written as || f||%{.
The quadratic minimization nature of this problem means its
solution, or the optimal electrical flow, has a linear algebraic
closed form, specifically

f=R'B(B'R'B) d,

where T denotes the Moore-Penrose pseudoinverse. The
matrix BTR™'B is important on its own, and is known
as the graph Laplacian matrix, L = BTR~'B. Laplacian
systems can be solved to high accuracy in nearly linear time
[701, [71], [72], [73], [741, [75], [76]. The resulting solution
vector on the vertices also have natural interpretations as
voltages that induce the electrical flow [24]. Specifically,
for the voltages

¢=1Lid= (BTR—lB)T d
the flow is given by Ohm’s Law:
_ ¢u B ¢v

= for all ¢ = (uv).
. - or all e = (uv)

Both this flow, and the voltages, can be computed to high
accuracy in nearly-linear time using Laplacian solvers [70].

Theorem 2. Let G be a graph with n vertices and m edges.
Let 7 € REZ denote edge resistances. For any demand
vector d and € > O there is an algorithm which computes in
O(mloge™!) time potentials ¢ such that ||¢p — ¢*||r. <
€||l¢™ ||, where L B'R !B is the Laplacian of G,
and ¢* = Ltd are the true potentials determined by the

resistances 1.

Critical to our data structures are the intuition of electrical
flows as random walks. Specifically, that the unit electrical
flow from s to ¢ is the expected trajectory of the random
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walk from s to ¢, with cancellations, where from vertex u
we go to v ~ u with probability

-1

Tuw
-1

2w

Tuw

where the reciprocal of resistances, conductance, plays a role
analogous to the weight of edges. Many of our intuitions
and notations have overlaps with the electrical flow based
analyses of sandpile processes [77]. For a more systematic
exposition, we refer the reader to the excellent monograph
by Doyle and Snell [24].
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