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Temporal correlations among demographic parameters are
ubiquitous but highly variable across species
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INTRODUCTION

In an increasingly variable world, understanding sto-
chastic population dynamics is a critical issue (Boyce
et al.,, 2006). An important aspect of demography in
stochastic environments is that population-level demo-
graphic parameters (e.g. survival, reproduction) rarely
fluctuate independently from one another but rather
show temporal correlations. For instance, in good en-
vironmental conditions, survival and reproduction are
often both higher than their long-term average, whereas
in poor conditions, they are often lower, which results
in a positive correlation between reproduction and sur-
vival at the population level (Fay et al., 2020; Oberg et al.,
2015; Reid et al., 2004). Temporal correlations between
demographic parameters may amplify or alternatively
attenuate the negative impact of demographic variation
on population growth (Iles et al., 2019). Specifically, pos-
itive correlations should magnify the negative effect of
temporal variation on population growth rate, whereas
negative correlations should buffer the negative effect of
demographic variation (Boyce et al., 2006; Tuljapurkar,
1982). The magnitude and direction of correlations
among demographic parameters also affect elasticities,
which measure the impact of a proportional change in a
demographic parameter on population growth (Benton
& Grant, 1996; Davison et al., 2013; Doak et al., 2005).
Despite their recognized importance to our understand-
ing of population dynamics in stochastic environments,
correlations among demographic parameters have so far
received little empirical interest, especially in compari-
son with temporal variation (Gaillard & Yoccoz, 2003;
Hilde et al., 2020; Pfister, 1998).

Previous studies reported the existence of population-
level temporal correlations among demographic param-
eters (Jongejans et al., 2010; Reid et al., 2004; Riecke
et al., 2019) and showed evidence of consequences on
population dynamics (Coulson et al., 2005; Davison
et al., 2013, 2019; Doak et al., 2005; Ezard et al., 2006;
Wisdom et al., 2000 but see Compagnoni et al., 2016 for a
weak influence). For instance, the effect of global warm-
ing on population growth of tundra plants is buffered

and adult survival, reproductive probability, reproductive success and productivity.
Correlations among demographic parameters were ubiquitous, more frequently
positive than negative, but strongly differed across species. Correlations did not
markedly change along the slow-fast continuum of life histories, suggesting that
they were more strongly driven by ecological than evolutionary factors. As positive
temporal demographic correlations decrease the mean of the long-run population
growth rate, the common practice of ignoring temporal correlations in population
models could lead to the underestimation of extinction risks in most species.

capture-recapture, demographic correlation, demography, environmental stochasticity, slow-fast
continuum, stochastic population dynamics, temporal covariation

by negative correlations between vegetative growth and
both survival and reproduction (Doak & Morris, 2010).
However, empirical research on temporal correlations
among demographic parameters remains limited. First,
most of these studies, especially those focusing on an-
imals, were based on a single species, preventing a full
understanding of how correlation patterns vary across
taxa and life histories. Second, although some studies
have found population-level temporal correlations, they
generally involved only a few correlations and provided
little information on the direction and magnitude of
these correlations, simply because this was not their pri-
mary focus (e.g. Reid et al., 2004; Sim et al., 2011). For
instance, because survival is typically estimated from
one breeding season to the next in vertebrate popula-
tions (i.e. pre- or post- breeding census; Caswell, 2001),
correlations among survival and reproductive param-
eters could be assessed by considering either survival
from previous (t — 1 — t) or to the next (t—t+1) breeding
season (Figure 1). Surprisingly, the distinction between
these two types of correlations has received little atten-
tion so far. Consequently, it is still unclear whether the
sequential order between survival and reproduction has
a strong effect on the correlation structure, which ob-
scures our interpretation of the existing literature.

The identification of broad patterns of temporal
correlations among demographic parameters is essen-
tial to make realistic population forecasts (Davison
et al., 2013; Ferson & Burgman, 1995; Wisdom et al.,
2000). When available demographic information is in-
sufficient to estimate temporal correlations, the non-
independence among demographic parameters can be
accounted for by examining a large variety of scenarios
(Fieberg & Ellner, 2001). However, the uncertainty in
both the direction and magnitude of demographic cor-
relations can lead to a dramatic increase in the uncer-
tainty of demographic inferences. In this situation, only
a better understanding of correlation structures could
compensate for the lack of empirical data (Fay et al.,
2020). A first step toward this goal is to compare cor-
relations estimated within pairs of demographic param-
eters in a standardized way across different species to
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1. Correlation between reproduction and survival from previous breeding season

t-1 t-1

Survwal fromt-1tot
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2. Correlation between reproduction and survival to the next breeding season

t-1 t-1

Reproductlon t

FIGURE 1

Survival from ttot+l

Estimation of two types of correlations between survival and reproduction. In practice, reproductive parameters are often

estimated within a year, while survival probabilities between two consecutive years. This means that two types of correlations between survival
and reproduction could be estimated, that is, the correlation between reproduction in a given year and either the probability of survival from
the previous breeding season to the current one (i.e. survival from time t — 1 to t, type 1) or survival to the next breeding season (i.e. survival
from time t to t + 1, type 2). This distinction is critical because these two types of correlations are likely to be influenced by different processes
such as carryover effects of the previous non-breeding season (causing positive correlation) versus reproductive cost carried over subsequent
survival (causing negative correlation). Consequently, the direction and magnitude of the correlation likely depend on the period over which the

correlation is estimated

assess the consistency of the direction and magnitude of
the correlations. This comparative approach may allow
the identification of common demographic correlation
patterns across species. Furthermore, because previous
studies suggest that correlations vary across species (e.g.
Compagnoni et al., 2016; Jongejans et al., 2010 in plants),
a second important step is, thus, to investigate factors
that may predict among-species variation. Identifying
such factors would allow prediction of demographic
correlations for populations for which limited informa-
tion is available, such as endangered species.

A species’ position on the slow-fast continuum of life
histories is known to predict various demographic proper-
ties. For instance, species with fast life-history strategies,
characterized by an early age at maturity, high fecundity
and a short lifespan, generally show larger temporal vari-
ance in demographic parameters compared with species
with slower life histories that have opposite character-
istics (Sether et al., 2002,2004,2013). In addition, envi-
ronmental stochasticity contributes more to variation
in population growth rate in species with a faster than
a slower life-history strategy (Davison et al., 2019). This
suggests that species toward the fast end of the continuum
are more sensitive to variation in environmental stochas-
ticity. Because environmental variation is a key driver
of demographic correlations (Doak & Morris, 2010; Fay
et al., 2020; Knops et al., 2007), species at the fast end
of the continuum could thus be more prone to show cor-
relations among demographic parameters. Therefore, for
a given environmental condition, the species-specific life
history is expected to shape temporal correlations among

demographic parameters, and the ranking of species along
the slow-fast continuum could be proposed as a predic-
tor of correlation structures. Although identifying such
patterns would be critical to robust extrapolation of cor-
relation structures to unstudied species, the relationship
between correlation structures in demographic parame-
ters and species life history remains an unexplored issue.
To fill this knowledge-gap, we investigated population-
level correlations among demographic parameters in 15
bird and mammal species that are spread widely along
the slow-fast continuum of life histories. Using a multi-
variate normal distribution of temporal random effects
implemented in a capture-recapture modelling frame-
work, we estimated the correlation between pairs of five
demographic parameters, including juvenile survival,
adult survival, reproductive probability (i.e. laying eggs
in birds or giving birth in mammals), reproductive suc-
cess (i.e. reproductive females successfully raising at least
one offspring to fledging/weaning) and productivity (i.e.
number of offspring raised per successful reproductive
attempt). We addressed the following questions: (1) What
is the direction, magnitude, and uncertainty of temporal
correlations among demographic parameters? (2) Are
correlation estimates between survival and reproduction
affected by the sequential order of these events, that is,
do correlations between reproduction and preceding or
subsequent survival differ? (3) Are correlations among
demographic parameters similar across species? (4) are
correlations among demographic parameters stronger in
species closer to the fast end of the slow-fast continuum
of life histories.
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MATERIAL AND METHODS
Data sets

The accurate estimation of temporal correlations in de-
mographic parameters requires high-quality long-term
data sets. First, it requires individual-based monitoring
in which individuals are marked and tracked. Second,
precise estimates of annual demographic parameters
and temporal correlations require large sample size, with
hundreds of individuals monitored over several decades
(Gilljam et al., 2019; Riecke et al., 2019). These require-
ments strongly limit the number of data sets adequate
for the investigation of temporal correlations in demo-
graphic parameters. Here, we analysed 15 high-quality
data sets from five mammal and 10 bird species (Table 1).
All these populations were subjected to detailed long-
term individual monitoring ranging between 19 and
55 years, thereby satisfying the requirements for the in-
vestigation of temporal correlations. Individuals were
uniquely marked at first capture and physically recap-
tured or resighted later in life. In this sample, generation
time (i.e. mean age of mothers in a population), which
reliably measures the ranking of species on the slow-fast
continuum (Gaillard et al., 2005), ranged from 1.9 (house
sparrow) to 23.2 years (snow petrel), allowing for a criti-
cal investigation of variation in correlation patterns
along the slow-fast continuum of life histories (Table 1).

Estimating population-level variation
and covariation in demographic parameters:
general model

Temporal variation and covariation in demographic pa-
rameters were estimated using a multivariate distribu-
tion within capture-recapture models fitted in a Bayesian
framework. This approach allowed us to model demo-
graphic parameters with their temporal variation and
covariation within a single analysis. In addition, since
the outputs of Bayesian inference are posterior distribu-
tions, it is straightforward to derive quantities while re-
taining uncertainties of model parameters. For example,
we derived the posterior distribution of the grand mean
correlation across species by iteratively averaging sam-
ples from posteriors of species-specific correlations.

Data sets were analysed with multi-state capture-
recapture models with the same general structure for all
species. For each individual, juvenile survival (first-year
survival) was modelled as:

Alive; , ~ Bernoulli(logit™ (pe + @, ¢ ) )

and subsequent survival (adult survival) was modelled as:

(Alive; | Alive;,_; = 1)
~ Bernoulli(logil_1 (M@ +/o (agei,,) +ro*BS i+ at’d)’ad) )

where Alive, , is a dummy variable indicating whether
individual i survived from year ¢ — [ to year ¢, ug i
the intercept on the logit scale, fy(age;,) is a function
of age, y¢ 1s the effect of the breeding state (BS, e.g.
successful breeder vs. failed breeder) of an individual
at time t-1 on the probability of survival to year t, and
@, ¢y a0d @, g 44 are the temporal random effects for
juvenile and adult survival, respectively. Thus, we as-
sumed that temporal variation in survival was the same
for all the individuals from age one. This choice was
made to ensure among-species comparability of tem-
poral variance and covariance. Conditional on being
alive, individual i may breed following an additional
Bernoulli process:

(Breed, ,|Alive, , =1)
~ Bernoulli(logit™ (1, +1, (age;,) +7, *BS; 1 +a,,))

where Breed, , is a dummy variable indicating whether in-
dividual i bred in year 7, u,, is the intercept on logit scale,
f,, (age;,)is a function of age, y,, is the effect of the breeding
state and @, , is the temporal random effect. Then condi-
tional on breeding, individual i may succeed in producing
at least one offspring following an additional Bernoulli
process:

(Success; ,|Breed; ,=1)
~Bernoulli(logit™ (u, +f, (age;,) +7,*BS;,_ +a,,))

where Success; , is a dummy variable indicating whether
individual i was successful in year ¢, and all other param-
eters and explanatory variables have the same definitions
as in the survival and reproduction model but apply to
success probability (z). Finally, for species that can raise
more than one offspring per year, we modelled the number
of offspring produced by successful breeders (defined as
productivity) as follows:

(Productivity, ,|Success; , =1)
~ Distribution (link function (ug +/q(age;,) +a,q))

Because the distribution of the number of offspring
successfully raised in a given year by reproductive
females strongly varied among species (Kendall &
Wittmann, 2010), we chose different statistical distri-
butions according to the average number of offspring
produced. When the number of offspring produced
varied little among individuals (oystercatchers (1-3),
kittiwakes (1-2) and roe deer (1-3)) and few individ-
uals produced more than one offspring, we modelled
the probability of producing more than 1 offspring
using a Bernoulli distribution with a logit link func-
tion. When the number of offspring produced was po-
tentially higher, but the distribution was still skewed
toward small numbers (dippers), we used a Normal dis-
tribution truncated at 0 with an identity link function.
In that case, we estimated an additional parameter
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ag, corresponding to the variation in the number of
offspring produced. Finally, when the average num-
ber of offspring produced was high (blue and great
tits, Savannah sparrows, ground squirrels), we used
a Poisson distribution truncated at 0 with a log link
function.

Temporal random effects of all demographic pa-
rameters followed a multivariate normal distribution
on the scale of the link function used (i.e. logit, log or

identity):

¥ 0, 0 o éj COVe.0, COVcID,W COVg 1 Vg0

%o, 0 covq,{%, @, cov}badw COVq, Vg
., ~ MVN 0 s COV@j_V, COVg, 65/ covllwr COVy0
a 0 cov}bjﬂ covclbadﬂ cov;m o> covt

a0 0 | covgg cov}%g2 cov, o cov,q o5

where (5%( is the variance of demographic parameter X —
Le. either juvenile survival (®@;), adult survival (®,,), re-
productive probability (y), reproductive success (x) or
productivity () — and covyy is the covariance between
the demographic parameters X and X' The correlation be-
tween X and X'is calculated as: ryy, = :‘W*—’;X' Importantly,
temporal random effects are shared a?no)ﬁg individuals,
meaning that we estimated temporal correlation at the
population-level rather than at the individual level. The
formulation of variance-covariance among random ef-
fects shown here is for estimating the correlation between
temporal effects on survival and subsequent reproduction
(Figure 1). Reindexing a, 4 as @, ¢ allows estimating the
correlation between temporal effects on reproduction and
subsequent survival (Figure 1).

Finally, detection probability was modelled as follows:

(Detection, ,|Alive; , =1)
~Bernoulli(logir™" (u,+/, (age;,) +7,* BS;, +a,,))

where Detection,, indicates whether individual i was
detected in year ¢, @,, is the temporal random effect
assumed to be normally distributed with mean 0 and
variance o2, and all other parameters and explanatory
variables have the same definitions as in the survival
and reproduction model but apply to detection proba-

bility (p).

Species-specific parameterization

Parameterization of the general model above was tai-
lored for each species (Table Sl1). For instance, the age
function for the survival probability of passerine species
only included two age classes (i.e. juveniles (from fledg-
ing to age 1) vs. older individuals (21 year old)), whereas
we distinguished four age classes in bighorn sheep (i.e.
juveniles (from weaning to age 1), yearling (from age 1 to

2), prime-age adult (from age 3 to 8), and elderly (>9 years
old)). Note that for some species we also added an in-
teraction between age and breeding state using a pre-
breeder state for individuals from 2 years old until their
first reproduction (Table S1). Importantly, although we
adapted the age functions and breeding state effects on
the intercept for each demographic parameter, we did
not change the model structure estimating the temporal
variances and correlations to make correlation estimates
fully comparable across species.

While juvenile survival, adult survival and reproduc-
tive success varied over time in all species, reproductive
probability was close to one in most of the short-lived
species (blue and great tit, European dipper, Savannah
sparrow and house sparrow), and productivity was
limited to a single offspring in most long-lived species
(Weddell seal, Antarctic fulmar, black-browed albatross,
snow petrel, mountain goat, bighorn sheep). For these
constant parameters, by definition, there was no tempo-
ral variance and covariance to be estimated (Table 1).

Relationships between temporal correlations
among demographic parameters and species-
specific generation time

To assess the relationship between demographic cor-
relations and the species’ pace of life, we regressed
species-specific mean correlation estimates against their
generation time. Generation time is defined as the mean
age of females (in years) when they lay eggs or give birth
to offspring and was obtained from age-structured popu-
lation projection models parametrized with the average
demographic parameters estimated. Generation time was
computed as the inverse of the sum of the elasticities of
the growth rate to changes in fecundities (Bienvenu &
Legendre, 2015). Due to the relatively small number of spe-
cies, we did not correct for phylogenetic relatedness among
species (see S@ther et al., 2013 for a similar argument).

Model implementation

We used a Bayesian approach for inference on the
model parameters, relying on Markov chain Monte
Carlo (MCMC) methods for posterior sampling. We
conducted the analyses in JAGS (Plummer, 2003) via
the R package jagsUI (Kellner, 2016, see Appendix Sl
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for an example of JAGS code used). We modelled the
variance-covariance matrix using the Cholesky decom-
position with Parameter Expansion following Chen and
Dunson (2003, see Appendix S2 for details). We carried
out a prior sensitivity analysis to assess the effect of prior
choice on correlation estimates (Appendix S3). Results
show that prior choice is unlikely to have affected our
results (Figure SI). Posterior summaries were based on
3000 values extracted from three or four Markov chains.
The number of iterations (range 3000-30,000), burn-in
(range 1000-5000), and thinning intervals (1-25) varied
among species according to the difficulty in reaching
convergence. We confirmed convergence of MCMCs
for each parameter by graphical examination and using
the Gelman Rubin statistic (satisfied with all R-hat < 1.1,
Brooks & Gelman, 1998). To gauge the evidence of an ef-
fect, we calculated the proportion of the posterior distri-
bution that had the same sign as the posterior mean, ‘P’.
Values of P that are close to 1 indicated strong evidence
of an effect with a given sign, while values close to the
minimum value of 0.5 indicated no clear evidence.

RESULTS

What is the pattern of temporal correlations
among demographic parameters?

Grand mean correlations among demographic param-
eters across species were moderate, with posterior means
ranging from —0.02 for correlations between productiv-
ity and adult survival to the next reproductive season to
0.36 for correlations between juvenile and adult survival.
Grand mean correlations were more frequently positive
than negative, with estimates (i.e. posterior means) being
positive in 14 out of 16 cases (Figures 2—4). These posi-
tive grand mean correlations ranged from 0.02 to 0.36
and received strong support in ten cases (P > 0.94). The
estimates of these ten correlations were also more fre-
quently positive at the species level (91%, n =96, Figures
2-4). In contrast, the two grand mean correlations with
negative estimate ranged from —0.01 to —0.02, and both
received very weak support (P < 0.64). Furthermore,
correlation estimates within species were not consist-
ently negative for these two correlations since only 56%
of species-specific correlations were negative (n = 18).
Overall, species-specific correlations were very uncer-
tain: 137 out of 158 (87%) of the species-specific correla-
tion estimates showed 95% credible intervals (CRI) that
overlapped with zero (Table S2).

Does sequential order affect the correlation
between survival and reproduction?

The sequential order chosen to estimate the cor-
relation between reproduction and survival (i.e.

considering survival from vs. to a given reproductive
season, Figure 1), had a strong impact on the estimates
(Figures 2—4). Overall, posterior means of correlations
were more frequently negative when correlations were as-
sessed between reproduction and survival from the pre-
vious reproductive season compared with survival from
current breeding season to the next (42% vs. 21%, n = 62).
The effect of the reproduction-survival sequential order
on correlations also varied according to the species. For
some species (e.g. great tit, Savannah sparrow, southern
fulmar), estimates changed according to the type of cor-
relation that was modelled, affecting both the magnitude
and direction of correlations, but for others (e.g. black-
browed albatross, ground squirrel, mountain goat), esti-
mates were similar. For example, for Savannah sparrow,
posterior mean of the correlation between productivity
and adult survival to the next reproductive season was
0.37 but changed to —0.29 for survival from the previ-
ous reproductive season, while they were both close to 0
for house sparrow. Changes in the direction of the pos-
terior mean of the correlation between reproduction and
survival according to when survival was measured were
quite common, occurring in 43% of the estimated corre-
lations (n = 62). Nevertheless, these shifts were uncertain
for most species. Posterior distributions of the difference
between pairs of correlations frequently crossed 0.

Are correlations among demographic parameters
similar across species?

Across species, the consistency of the direction of
correlations varied depending on the focal pair of de-
mographic parameters. For instance, although correla-
tions between juvenile and adult survival and between
reproductive probability and reproductive success
were consistently positive across species (Figures 2
and 4), the direction of the correlation between repro-
ductive success and adult survival was more variable,
regardless of when survival was measured (Figure 2).
Posterior means of correlations were generally highly
variable among species for all pairs of demographic
parameters (SD = 0.22). For instance, even though the
posterior means of correlations between juvenile and
adult survival were positive in all species, the magni-
tude of the correlation varied a lot among species, with
estimates ranging from 0.08 (southern fulmar) to 0.77
(snow petrel) (Figure 2; Table S2).

Are correlations among demographic parameters
stronger in faster species?

Among-species variance in correlation was poorly ex-
plained by species generation time, which accounted for
<10% of the variation observed among species-specific
correlations for 11 correlations out of 15 (Table S3).



FAY ET AL.

1647

10
] — = !
087 == gs%cRi : ! ¢ . *

ANRARA

-0.2 1
-0.4 !
-0.6
-0.8
-1.0

—_—— -

 ——
—_———
- e —

(%}, Paa)

Grand mean

400 600 800

200

AF BBA BS BT EO GS GT HS

1.0
0.8
06
0.4

A | P
b

- SD
= = 95%CRI

r(#;,m)

-0.2 4
-0.4 4
-06 4
-0.8 4
-1.0 4

— Sumival-Breeding
— Breeding-Sunvival
T

400 600 800
600 800

400

200
200

P=0.97

0

AF BBA BS

SP

q1P= OGSJl
- r T T T 1
40 05 00 05 10

1.0
1] — s .
089 — —i 9s%cRi ) i K
06

04
02

0.2 !

7(®qa, 1)

-06
-0.8
-1.0

~— Sumvival-Breeding
— Breeding-Sunvival

400 600 800
600 800

400

200
200

P=0.97

0

T T T T T T T T T T
AF BBA BS BT EO GS GI HS Ki MG

T
SP

VRN AR 1

T T
SS WD 05

FIGURE 2 Temporal correlations estimated for three pairs of demographic parameters including juvenile survival (®)), adult survival (®,,)
and reproductive success (7). We estimated correlations between reproductive success and both survival from the previous and to the next
reproductive season, leading to two correlation estimates (green and blue, respectively). Species names: AF = Antarctic fulmar, BBA = black-
browed albatross, BS = bighorn sheep, BT = blue tit, EO = Eurasian oystercatcher, GS = golden-mantled ground squirrel, GT = great tit,

HS = house sparrow, Ki = kittiwake, MG = mountain goat, RD = roe deer, SP = snow petrel, SS = Savannah sparrow, WD = white-throated
dipper, WS = Weddell seal. For notation, ‘SD’ indicates standard deviation, ‘CRI” indicates credible interval and ‘P’ indicates the proportion of
the posterior distribution that has the same sign as the posterior mean

Furthermore, support for a relationship between tem-
poral correlations and generation time was weak in all
cases (P <0.89, Table S3) except for the negative relation-
ship between juvenile survival and reproductive success
and generation time (slope = —0.008, P = 0.96, Figure 95).
This correlation varied in the a priori predicted direction
from ca. 0 for species with a slow pace of life (generation
time >15 years) to ca. 0.20 for species with a fast pace of
life (generation time <7 years, Figure 5).

DISCUSSION

Identification of broad patterns of temporal correla-
tions among demographic parameters is essential for our
understanding of population dynamics in variable envi-
ronments but has not been yet thoroughly investigated,
especially in animals. We filled this knowledge gap by
investigating correlations among five demographic pa-
rameters across 15 bird and mammal species with con-
trasting life histories. Overall, we found that correlations
among demographic parameters are ubiquitous, more

frequently positive than negative, but that their magni-
tude is highly variable among species and difficult to
predict based on species-specific life history. Here, we
discuss the various ecological and evolutionary mecha-
nisms from which this pattern could result, and conclude
that correlations among demographic parameters are
most likely driven by the environmental context.

Positive correlations are ubiquitous

Positive correlations were clearly more prominent than
negative correlations. This finding is consistent with
previous studies and supports that positive correlations
among demographic parameters are the rule rather than
the exception across species (Coulson et al., 2005; Ezard
etal., 2006; Fay et al., 2020; Jongejans et al., 2010; Morris
et al., 2011; Reid et al., 2004; Sether & Bakke, 2000).
This suggests that environmental stochasticity gener-
ally affects demographic parameters in the same way,
generating years with good conditions where most de-
mographic parameters are higher than their long-term
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average, and years with poor conditions where most de-
mographic parameters are lower than their long-term
average. Among environmental factors, climatic condi-
tions and food availability are expected to be key factors
generating positive correlations (Fay et al., 2020; Paniw
et al., 2020). For instance, the strong positive correlation
between juvenile survival and adult survival found here
for great tits is likely due to variation in availability of
winter food resources that drives the annual survival of
both juvenile and adult individuals in this population
(Perdeck et al., 2000). In long-lived seabirds, years with
high reproductive probability were also years with high

reproductive success likely because both are driven by
climatic conditions that affect foraging condition and/
or food availability (Jenouvrier et al., 2015, 2018; Sauser
et al., 2021). In addition, for seabirds, climatic conditions
affecting reproduction can affect juvenile survival, for
instance through their impact on fledging condition,
hence generating a positive covariation between these
traits (Jenouvrier et al., 2015; Sauser et al., 2018).

This general pattern of positive correlations has im-
portant implications for population management and
conservation. Overall, positive correlations tend to de-
stabilize population dynamics by decreasing the mean
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and increasing the variance of the long-run population
growth rate and thereby increasing extinction risk. Thus,
the increase in environmental variation predicted under
ongoing global climate change (Masson-Delmotte et al.,
2021) is likely to negatively affect population growth
through an increase of both variance and covariance in
and among demographic parameters. The predominance
of positive correlations makes their inclusion into popu-
lation models critical since ignoring them would lead to
overoptimistic population forecasts. Yet, most conserva-
tion studies relying on demographic models still ignore
temporal correlations among demographic parameters
(e.g. >80% in the review from Earl, 2019).

Among-species variation in correlation structure

We found high among-species variation in the magni-
tude of the correlations observed for a given pair of de-
mographic parameters. This variation is also supported
by previous studies comparing demographic correlations
among plant species (Compagnoni et al., 2016; Jongejans

et al., 2010). Contrary to our expectation, among-species
variation was poorly predicted by generation time. This
contrasts with previous research conducted on temporal
variance. Indeed, the demographic buffering hypothesis
predicts that traits that have the highest potential impact
on population growth rate should be the most buffered
against environmental variation. As the potential influ-
ence of demographic parameters on population growth
rate is a direct function of generation time (Hamilton,
1966), temporal variation in demographic parameters is
also expected to vary along the slow-fast continuum (as
reported by Barraquand et al., 2014; Gaillard & Yoccoz,
2003; Hilde et al., 2020). The weak empirical evidence
we report for the decrease of demographic correlations
with generation time (only 1 out of 15 comparisons sup-
ported this prediction) shows that these relationships are
unlikely to be general in nature.

Weak relationships between generation time and tem-
poral correlations suggest that temporal correlations are
primarily driven by ecological factors (e.g. climatic con-
ditions, food availability, predation pressure) rather than
among-species variation in life histories. For instance,
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although Savannah sparrows and Eurasian oystercatch-
ers display very different life-history strategies, located
close to either end of the slow-fast continuum (i.e. gener-
ation time of 2 and 22.5 years, respectively), both show
a similar positive correlation between juvenile survival
and adult survival, most likely because of the critical
role of winter temperature in determining survival of
all individuals in both species (van de Pol et al., 2010;
Woodworth et al., 2017b). Because the ecological context
is much more variable than life-history strategies, demo-
graphic correlations are likely to be population-specific.
Making accurate predictions about the direction and
magnitude of temporal correlations may, thus, require
a detailed understanding of species ecology and a good
knowledge of environmental factors driving population
dynamics.

Effects of trade-offs and density dependence

Although environmental stochasticity is expected to be
the key process generating population-level covariation
among demographic parameters, other processes such as
life-history trade-offs and density dependence could also
play a role. Energy allocation trade-offs generate non-
independent variation in demographic parameters at the
individual level that may scale up to the population level
to generate negative temporal covariation among demo-
graphic rates (Van Tienderen, 1995). For instance, trade-
offs between growth and reproduction at the individual

level can generate a negative temporal correlation be-
tween these traits at the population level in some plants
(e.g. Compagnoni et al., 2016). Nevertheless, this scaling
up is expected to occur only when variation in resource
acquisition is smaller than variation in resource allocation
(Descamps et al., 2016; van Noordwijk & de Jong, 1986).
In most cases, empirical studies typically report positive
rather than negative correlations between traits compet-
ing for the same resources (e.g. growth and reproduction in
plants (Jongejans et al., 2010), survival and reproduction in
animals (Coulson et al., 2005; Fay et al., 2020; Morris et al.,
2011)). This suggests that trade-offs are often masked and
dominated by environmental stochasticity, and that demo-
graphic correlations are primarily driven by the absolute
amount of resources available in the environment.
Density dependence may also affect temporal correla-
tions among demographic parameters either directly, via
short-term density feedback, or indirectly by modulat-
ing the effect of environmental stochasticity. Direct ef-
fects can take place when density dependence happens
within a short period (i.e. a year). For instance, strong
winter mortality may allow higher breeding probability
the following breeding season because of the lower pop-
ulation density (Pradel et al., 1997, Wauters et al., 2004).
Such short-term density feedback could explain why the
correlations between reproductive performance and sur-
vival shift from negative to positive within some species
depending on whether one considers survival from or sur-
vival to this attempt. In Savannah sparrows, for instance,
although annual survival is mostly density-independent
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and thus weakly affected by the number of new individ-
uals produced, survival from the previous reproductive
season strongly influences reproductive parameters be-
cause the breeding performance is under strong density-
dependence (Woodworth et al., 2017a, 2017b). When
reproduction is mostly affected by density dependent
factors and survival by density-independent factors (e.g.
environmental stochasticity), both a negative correlation
between reproductive performance and survival from
the previous reproductive season and a positive correla-
tion between reproductive performance and survival to
the next breeding season may co-occur. Accordingly,
after accounting for population density (Appendix S4),
grand mean correlations were all positive or null, includ-
ing correlations between reproduction and survival from
the previous breeding season (Figures S2, S3, S4 & S5).

Indirect density dependence could be equally com-
mon. High population density is expected to magnify the
effect of poor environmental conditions, while low pop-
ulation density may decrease the negative effect of poor
conditions (Barbraud & Weimerskirch, 2003; Coulson
et al., 2001; Sandvig et al., 2017). For instance, both ju-
venile survival and reproductive performance in bighorn
sheep are positively affected by precipitation, but this
effect is magnified at high density (Portier et al., 1998).
This interplay between population density and environ-
mental conditions is likely shaping the strong correlation
between juvenile survival and reproductive performance
(both reproductive probability and reproductive success)
observed in this population. Similarly, high population
density is known to magnify the negative effect of envi-
ronmental stochasticity on demographic parameters in
the dipper (Gamelon et al., 2017).

Challenges when estimating correlations

Although the data sets we analysed are among the
most comprehensive individual-based long-term moni-
toring available, uncertainty in correlation estimates
was large and most of them had 95% CRI overlapping
0. This considerable uncertainty associated with cor-
relation estimates has also been reported in previous
studies (Compagnoni et al., 2016; Fay et al., 2020) and
shows that precise estimation of temporal correlations
is challenging and requires large sample size (Gilljam
et al., 2019; Riecke et al., 2019). It is therefore unsur-
prising that many studies did not detect any correlation
among demographic parameters (Jongejans et al., 2010),
but this does not necessarily mean that correlations
are non-existent or even negligible. While correlation
estimates are uncertain, they often show a consistent
positive pattern across species. Such consistency in the
direction of the correlation would not be expected if true
correlations were null and observed magnitude simply
an artefact of sampling variance. Consequently, ignor-
ing correlations for which 95% CRI overlap with zero

would lead one to assume in many circumstances that
demographic parameters are independent while they
are actually correlated (with potential implications for
population growth rate Boyce et al., 2006; Tuljapurkar,
1982). Although strong correlations can be detected in
very small data sets (Ramula & Lehtild, 2005; type M
error sensu Gelman & Carlin, 2014), the absolute effect
sizes of demographic correlations are generally under-
estimated (Fay et al., 2021; Riecke et al., 2019). Indeed,
sampling variance increases raw variance and decreases
raw covariance, leading to the underestimation of the
correlation since cor 45 = cov(A4, B) /(o 4 X o). Critically,
even if the magnitude of correlations is frequently un-
derestimated and very uncertain, the direction of the
correlation is generally well estimated and could provide
useful information about correlation patterns (Fay et al.,
2021; Riecke et al., 2019).

CONCLUSION

Although temporal correlations among demographic
parameters are challenging to estimate precisely, even
from some of the longest-running vertebrate studies
in the world, we stress the need to incorporate them
routinely in population models. Positive correlations
are ubiquitous and ignoring these positive correla-
tions would lead to overoptimistic population fore-
casts, especially for small populations in which density
dependence is weak. Our results indicate that corre-
lations are more strongly driven by ecological rather
than evolutionary factors. This makes the anticipation
of correlations challenging for species for which little
information is available because the population eco-
logical context appears to matter most. However, the
average effect sizes we reported provide realistic val-
ues that should be useful to simulate reliable popula-
tion forecast in birds and mammals. Furthermore, in
systems where the main environmental drivers have
been identified and affects simultaneously several vital
rates, including these drivers in population models
could account for most of the non-independence of the
temporal variation in vital rates.
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