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Abstract

Pedigrees have a long history in classical genetics, agronomics, evolutionary ecology, and ex situ captive breeding. Use
of molecular techniques has expanded the variety of species for which pedigrees can be constructed. However, molecular
pedigrees almost exclusively consider microsatellite loci, despite advances in high-throughput sequencing allowing develop-
ment of genomic marker sets in nearly any organism. Here we generate a novel set of genomic SNPs derived from ddRAD
sequencing in two populations of Weddell seals (Leptonychotes weddellii) and describe the diversity and differentiation
between them. We then compare and contrast parentage assignment rates and accuracy in one population that has been the
subject of long-term monitoring. Specifically, we consider pedigrees constructed using two sets of markers (microsatellites
and SNPs), two pedigree construction software (CERVUS than Sequoia), as well as varying the groupings of candidate
parents (either all individuals simultaneously, only individuals born before a focal year, or only individuals known to have
survived to a focal year). ddRAD sequencing returned between 1568 and 3240 loci depending on whether both populations
were considered simultaneously or individually. Parentage assignment rates were always higher using CERVUS than Sequoia,
with the latter at times either not assigning parentage or creating “inferred parents”. In all cases, “polarizing” the datasets
(e.g., including year of birth) significantly improved assignments. This represents one of the first direct comparisons of
pedigree construction using different markers in the same set of individuals, and the SNPs described here will be a resource
for continued pedigree construction, and future research in Weddell seals.
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Introduction

Pedigrees have long been used in classical genetics, agro-
nomics, evolutionary ecology, and ex situ captive breeding
efforts. They are the basis for classical trait mapping (Lynch
and Walsh 1998), have been used to increase yields in crops
and livestock (Piepho et al. 2008; Mrode and Thompson
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2014), and are used to manage stud books for domesticated
and companion animals (Leroy 2011). Pedigrees also play a
key role in conservation efforts (Nielsen et al. 2007; Fienieg
and Galbusera 2013; Miller et al. 2015; Jiménez-Mena et al.
2016) including equalizing family sizes among individuals
in ex situ populations to prevent adaptation to captivity
(Allendorf 1993; Williams and Hoffman 2009).

Although most often applied to model organisms or those
in captivity, pedigrees have also been constructed for a vari-
ety of wild populations (Pemberton 2008; Jones and Wang
2010). Such efforts were aided by the advent of affordable
genetic tools coupled with statistical software for parentage
assignment (Jones et al. 2010; Flanagan and Jones 2019).
Unlike pedigrees based solely on field observations, molecu-
lar pedigrees can assign parentage in species with no paren-
tal care, as well as highlight incorrect assignments due to
multiple mating, nonmonogamy, or cryptic female choice
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(Reid et al. 2014; Farquharson et al. 2019). Pedigrees in
wild populations allow for examination of questions relating
to evolutionary ecology, including mating system dynam-
ics (Szulkin et al. 2013; Richardson et al. 2020) and moni-
toring of inbreeding (Keller 1998; Malenfant et al. 2016;
Chen et al. 2018), as well as questions related to quantita-
tive genetics, such as estimating heritability (Kruuk 2004;
Malenfant et al. 2018) and genetic mapping of traits through
linkage mapping (Backstrom et al. 2006; Jaari et al. 2009;
Poissant et al. 2012; Nietlisbach et al. 2015). In the latter
cases, pedigrees are especially important for species where
controlled crosses are not feasible due to litter/clutch size,
longevity, or conservation concerns.

However, use of pedigrees in wild populations has been
relatively rare as their construction can be logistically com-
plicated, usually requiring long-term monitoring to collect
samples and identify candidate parents (Pemberton 2008;
Jones et al. 2010). In the absence of long-term monitoring,
attempting to place individuals into age groups or cohorts
(e.g., year of birth or known recruitment into the popula-
tion) can help “polarize” the data, thereby reducing and
focusing the pool of candidate parents making the calcu-
lations more powerful and tractable. Intuitively, some of
these factors could be mitigated by studying small, isolated
populations where the pool of candidate parents is reduced
relative to large, outbred populations. However, pedigree
construction in such populations is challenging given that
these small populations often have reduced genetic diversity
and increased relatedness among individuals, both of which
result in the need for more genetic markers to achieve the
same amount of power as in a large, outbred population.

Molecular pedigrees have traditionally been built using
data from microsatellite loci given their high allelic diversity
and thereby power, abundance in the genome, and ability to
be applied across species (Jones and Wang 2010; Guichoux
et al. 2011; Flanagan and Jones 2019). However as genomic
techniques have continued to improve, allowing rapid dis-
covery and typing of 100 s to 1000 s of single nucleotide
polymorphism (SNP) loci, using SNPs for pedigree con-
struction has become feasible (Anderson and Garza 2006;
Anderson 2012; Huisman 2017; Flanagan and Jones 2019).
Although information content per SNP is lower, orders of
magnitude more markers returned by most genomic meth-
ods could lead to more confident assignments, and improved
estimates of relatedness to infer distant relationships (e.g.,
half-sibs) in the absence of complete sampling. As such,
new software for SNP-based pedigree construction have
been developed (Anderson 2012; Huisman 2017).

Here we present the development and application of SNP
markers for Weddell seals (Leptonychotes weddellii) from
White Island (WI) and Erebus Bay (EB) in the Ross sea,
Antarctica (Fig. 1). These populations represent a unique
study system where the WI population is a small, isolated

@ Springer

group that was established after as few as five individuals
from EB were cut off from the larger population by a large
expanse of sea ice and has been the subject of long-term
monitoring (Stirling 1972; Testa and Scotton 1999). Specifi-
cally, we compare the diversity and divergence between the
two populations using newly developed SNP loci, update the
WI pedigree with 17 years of new samples collected between
2001 and 2017, and compare and contrast pedigree construc-
tion for the WI population using SNP loci and the set of
microsatellite loci previously used. This is the first compari-
son of pedigree construction using two different marker sets
in the same individuals. We also examine how results differ
when construction incorporates covariates which can “polar-
ize” the pedigree compared to when “unpolarized” data is
used. The latter representing similar conditions to pedigree
construction from a single sampling event.

Methods
Study system

The population of Weddell Seals at WI was hypothesized
to have been founded in the 1950’s by immigration of indi-
viduals from the adjacent population at EB (Fig. 1). Despite
their physical proximity, intensive mark-recapture work
each year at EB and typically two annual visits to WI (Siniff
etal. 1977; Rotella et al. 2016; Paterson et al. 2018), migra-
tion between EB and WI has only been observed once (one
immature female born in EB was sighted at WI in one year),
and is typically prevented due to the ice shelf blocking pas-
sage to open water in Erebus Bay. Since the late 1960s the
WI population has been the subject of continuous moni-
toring (Stirling 1972; Testa and Scotton 1999). Beginning
in 1993 the entire adult population has been individually
marked, allowing collection of detailed life-history metrics
and construction of a microsatellite-based pedigree (Gelatt
et al. 2010).

Sample collection and DNA extraction

Samples were collected as in Gelatt et al. (2010). Briefly,
trips from McMurdo to White Island were made 2—4
times a season (more commonly two trips in recent years)
between late October and mid-February. This period cor-
responds to when adult females and pups are observed
together on the surface of the fast ice. Seals were uniquely
marked with livestock ear tags in the rear flippers. All tis-
sue samples were collected under Marine Mammal Protec-
tion Act Permits and Antarctic Conservation Act Permits
and with methods approved by Montana State Universi-
ty’s Institutional Animal Care and Use Committee. Total
genomic DNA was extracted from tissue samples collected
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Fig. 1 A map of the study area. The detailed map was adapted from: NOAA National Centers for Environmental Information (NCEI);
Polar Geospatial Center, 2018, “PGC Map Catalog”, https://doi.org/ International Bathymetric Chart of the Southern Ocean (IBCSO);
10.7910/DVN/6R8F7U, Harvard Dataverse, V1, Map 16: Victoria General Bathymetric Chart of the Oceans (GEBCO)

Land, August 16, 2021. The inset Antarctic map was obtained from:
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during tagging using DNeasy spin columns (QIAGEN)
following the manufacturer’s protocols.

Microsatellite genotyping

For microsatellite-based pedigree construction we geno-
typed the newly collected samples at 41 loci as in Gelatt
et al. (2010). Briefly, multiplex PCRs were performed as
previously described (Gelatt et al. 2010) and resolved on
a 3730 DNA Analyzer (Applied Biosystems). Genotypes
were then scored with GeneMapper version 2.0 (Applied
Biosystems).

ddRAD genotyping

Double digest restriction-site associated DNA sequencing
(ddRAD:; Peterson et al. 2012) libraries were prepared for
both EB (N=29) and all WI samples for which DNA was
available (N = 144). Library construction followed the pro-
tocols outlined by MacDonald et al. (2020). However, in our
case the restriction enzymes used were Sbfl and EcoRI. We
sequenced two pooled libraries containing 168 and 32 indi-
vidually barcoded samples with single-end, 75 bp sequenc-
ing on a high output flowcell of an Illumina NextSeq 500.
Here the latter library contained novel individuals as well as
individuals included in the first run but for which additional
sequencing depth was desired.

Following sequencing, reads that failed Illumina chas-
tity filtering were removed, and then demultiplexed using
STACKS 2.0b (Catchen et al. 2011, 2013). Adapters were
removed and reads were quality trimmed using cutadapt ver-
sion 1.9.1 (Martin 2011). Specifically, we trimmed the 5'
end of the demultiplexed reads to remove the PstI cut site,
as well as to remove any remnant [llumina adapter sequence.
Reads from each individual were aligned to the Weddell Seal
reference genome (LepWed1.0, GenBank assembly acces-
sion: GCA_000349705.1) using the mem algorithm in bwa
0.7.17 (Li and Durbin 2009, 2010) with default parameters.
SNPs were then called using the ref_map pipeline within
STACKS 2.0b, run on ComputeCanada Cedar cluster. When
calling SNPs we considered four different sets of individu-
als: (1) All WI and EB (172 individuals; one WI individual
was removed following genotyping thresholds, see Results);
(2) WI only (143 individuals); (3) the “founding genera-
tion” of WI (18 individuals); and 4) EB only (29 individu-
als). Across all sets, we filtered loci to include only those
that had a minimum minor allele frequency (MAF) of 0.01,
minimum genotype quality score of 30, and were present in
80% of individuals in a given population. We output a single
SNP per RAD-tag to reduce linkage within a tag, though
acknowledge there may be linkage among tags.
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Diversity and divergence between EB and Wl using
SNP loci

For each of the datasets outlined above, we calculated per-
population allelic diversity, heterozygosity, and G;, (an esti-
mate of inbreeding), as well as a measure of differentiation
between populations (Fy) when appropriate (Weir and Cock-
erham 1984). All calculations were conducted in GenoDive
version 2.0b27 (Meirmans and Van Tienderen 2004) using
default settings. For the all WI and EB dataset we conducted
a principal component analysis (PCA) of allele frequencies
among individuals to visualize differentiation between the
populations, and search for evidence of migrants (Patterson
et al. 2006). Previous research has shown that the filter-
ing parameters used when generating RAD genotypes can
influence estimates of diversity and divergence (Paris et al.
2017; Shafer et al. 2017; Rochette and Catchen 2017). These
parameters include the within population minor allele fre-
quency and the minimum number of populations in which a
locus must be present. Given the large sample size difference
between WI and EB we generated several subsets of the full
dataset with equal sampling between the two populations
to more directly compare diversity and divergence. Spe-
cifically, we generated 10 datasets containing a random 18
individuals from EB and the original 18 founders of the WI
population. In theory the WI founders represent a random
subset of unrelated EB individuals that should capture diver-
sity in the population before the effects of genetic drift and
inbreeding in subsequent generations. We then recalculated
genetic diversity and divergence statistics for each of these
subsets using the same methods as above.

Pedigree reconstruction

When building the pedigree for WI we initially updated the
existing pedigree with the newly collected samples using
the microsatellite loci and previously described methods
(Gelatt et al. 2010). Briefly, parentage was assigned using
CERVUS (Marshall et al. 1998; Kalinowski et al. 2007)
where the candidate parent file was adjusted for each cohort
to include only individuals that had reached breeding age
(at least 4 years) and were not assumed to have died (4 years
since last sighting/inference of parentage) (Gelatt et al.
2010). Maternal assignments were verified against recorded
mother—pup pairs at time of tagging.

We then compared and contrasted pedigrees constructed
using the two sets of markers (microsatellites and SNPs)
and two pedigree construction software (CERVUS and
Sequoia) as applied to all WI samples. CERVUS (Marshall
et al. 1998; Kalinowski et al. 2007) calculates log-likeli-
hood ratios for trios between a focal offspring and candi-
date parents. However, CERVUS is not able to explicitly
incorporate covariates to aid in pedigree construction,
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such as cohort or year of birth. Sequoia (Huisman 2017)
is also a likelihood-based pedigree construction method,
but was explicitly made to consider large panels of SNP
markers and incorporate covariates such as year of birth to
aid in assignments. In addition, the program will attempt
to assign full or half siblings through generation of unsam-
pled (inferred) parents (Huisman 2017). However, Sequoia
cannot analyze microsatellite data. While not designed for
large sets of SNP loci, CERVUS can analyze such datasets.
Therefore, we applied CERVUS for both microsatellite and
SNP based pedigree construction.

Molecular markers used in CERVUS were either all
microsatellite loci (N=41), or the SNP loci discovered in
WI that were genotyped in 90% of individuals and had a
MAF greater than or equal to 0.01 (N=1303). For the SNP
analyses, individuals had to have less than 25% missing
data to be retained (N =142). We performed parentage
assignment in three ways using CERVUS: (1) Considering
all individuals simultaneously (All); (2) In a sequential
fashion where the candidate parent file was adjusted to
include all “older” individuals, e.g. for pup born in 1999,
all individuals born before 1998 were included as parents
(Older); and (3) In a sequential fashion where the candi-
date parent file was adjusted to include only individuals
that had reached breeding age (at least 4 years old) and
were not assumed to have died (4 years since last sighting/
inference of parentage) (Gelatt et al. 2010); (Survivor).
These last two methods were undertaken to account for the
fact that CERVUS cannot “polarize” assignments through
time when all individuals are considered simultaneously.
Such lack of polarization does not account for births or
death of candidates, and therefore may miss-assign rela-
tionships among closely related individuals. For all three
methods allele frequencies (for both microsatellites and
SNPs) were calculated from all individuals sampled as
adults in the population (N =26) and used in simula-
tions of 10,000 offspring from 82 females and 55 males
(maximum number of individuals at least 1 year old in
1997) with the empirical proportion of loci typed (0.998
for microsatellites and 0.983 for SNPs) with 1% of loci
mistyped and a 1% likelihood error. Assignments were
assessed for offspring-mother-father assignments using
LOD scores and a 99% confidence level for assignment.

For pedigree construction using Sequoia we created two
sets of SNP loci. The first was as described above for use
in CERVUS, and the second had the MAF threshold raised
to 0.3 as recommended in the documentation for Sequoia
(Huisman 2017). For both sets of loci we implemented a
single assignment method where all individuals were con-
sidered simultaneously, incorporating sex and year of birth.
We increased the number of iterations for sibship cluster-
ing to 10 and set the log10-likelihood ratio (LLR) threshold
for differentiating between a proposed relationship versus

unrelated to — 20. These analyses used Sequoia 1.3.3 in R
3.6 (R Core Team 2019).

Following pedigree construction, we compared the
assignments made among the two marker types and two
programs in terms of the number of assignments and the
number of concordant assignments among the datasets and
methods.

Results

Sample collection, microsatellite genotyping,
and ddRAD genotyping

Between 2001 and 2017 67 pups were observed in WI.
Tissue samples were collected from 61 of these, and for 5
out of the 6 pups without tissue samples, mothers could be
assigned based on field observations.

Microsatellite genotyping of the newly collected samples
resulted in nearly complete genotypes for all loci in all indi-
viduals. When combined with the long-term database there
were only 6 missing genotypes across 145 individuals and
41 loci (0.1% missing data). Only one individual is missing
data at more than one locus (4 loci).

After demultiplexing the two sequencing runs pro-
duced a total of 290,242,376 reads. Post quality filtering
269,029,186 reads were retained with a mean of 1,564,123
reads per individual (SD=1,190,225) among 172 individu-
als (one individual from WI being removed by quality filters
in STACKS).

Diversity and divergence between EB and WI

When all individuals were considered together 2096 SNP
loci were retained following filtering (Table 1). In this
sample allelic diversity was higher in EB (1.352) than WI
(1.337), as was observed heterozygosity EB =0.232 vs
WI=0.223. Similarly, G;, in EB was larger and not sig-
nificantly different than 0, whereas in WI the estimate was
negative including 95% CI. F; values between the two popu-
lations was 0.140, with this differentiation reflected in the
PCA which clearly separated the two populations with no
evidence of migrants (Fig. 2).

When each population was analyzed separately the num-
ber of SNPs discovered was higher in EB and lower in WI
(Table 1). However, when compared to the combined data-
set, observed heterozygosity was slightly higher in WI and
appreciably lower in EB. G, estimates remained negative in
WI and were not different from O in EB.

Across the 10 subsets considering the 18 WI found-
ers and a randomized equal number of EB individuals the
number of loci retained was higher than when all sam-
ples were analyzed together (mean+SD=3194.3 +42.7),
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values that were more on par with when EB was con-
sidered on its own. In these subsets allelic diversity
was always higher in EB (mean+ SD =1.235+0.004)
than WI (mean+SD=1.216+0.004), as was observed
heterozygosity (EB mean+SD =0.162 +0.003 ver-
sus WI mean+SD =0.156 +£0.003). Similarly, G val-
ues in EB (mean+SD= —0.001 +0.014) were always
larger than those in WI, which were always less than O
(mean + SD= —0.149 +0.002). F, values between the
populations averaged 0.104 (SD=0.003) and were not cor-
related with the number of markers in the dataset (Pearson's
product-moment correlation=0.17; t;=0.496, p=0.633).

Pedigree reconstruction and comparison

All of the 61 individuals with tissue samples born between
2001 and 2017 had parents successfully assigned when
we used microsatellite loci and the pedigree construction
methods of Gelatt et al. (2010). The assigned maternities
matched the field-observed mother in all but 2 cases, where
the discrepancy may have arisen from a pup-switch in the
year 2000. The addition of these individuals brings the total
number of unique individuals in the WI pedigree to 160. Of
this, 145 individuals comprise the genetic-based pedigree
which includes 127 individuals with maternal and paternal
genetic assignments, and the 18 founding individuals.

PC1 (9.2%)

For the SNP dataset, filtering with MAF 0.01 and per-
individual missingness threshold of 75% resulted in 1303
loci genotyped in 142 individuals of which 124 represent
“non-founding” individuals. Filtering to loci with MAF
greater than 0.30 resulted in retention of 394 loci. Mean
polymorphic information content (PIC) was higher with the
microsatellite dataset than with SNPs (Table 2), however
non-exclusion probabilities were lower for SNPs, though all
values were below 4.7%107 for all marker sets.

When considering the entirety of the WI population,
results of pedigree construction differed depending on the
program (CERVUS or Sequoia), method (All, Older, or
Survivor), and marker set being considered (microsatellites
or SNPs). In CERVUS, assignment rates were consistent
for the microsatellite dataset. Here, 127 progenies (100% of
those considered) were assigned a sire and dam regardless
of the analytical method being used. However, there were
differences in the specific individuals assigned as parents
(see below). Using the MAF 0.01 dataset, assignment rates
in CERVUS were equally robust to analytical method with
124 progeny (100% of those considered) assigned sires and
dams. However, when Sequoia was applied to the full SNP
dataset the program assigned only 54 individuals (43.2%)
both a sire and dam, 7 individuals (5.6%) were assigned
only a dam, and 4 (3.2%) were assigned only a sire. With
the MAF 0.30 dataset assignment rates in Sequoia increased,
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Table 2 Diversity statistics
and exclusion probabilities for

marker sets used in parentage
assignment of Weddell seals
from White Island

Microsatellites ~ All SNPs High MAF SNPs
Number of loci: 41 1303 394
Mean proportion of loci typed: 1 0.982 0.975
Mean expected heterozygosity: 0.527 0.286 0.478
Mean polymorphic information content (PIC): 0.461 0.227 0.358
Combined non-exclusion probability (first parent): 4.72E-04 5.73E-32 9.25E-21
Combined non-exclusion probability (second parent):  3.40E-07 2.77E-70 1.68E-34
Combined non-exclusion probability (parent pair): 1.33E-11 3.61E-117  7.93E-55
Combined non-exclusion probability (identity): 6.60E-24 1.32E-321  2.35E-160
Combined non-exclusion probability (sib identity): 3.89E-11 1.01E-164  3.13E-84

Calculations were done in CERVUS

with 75 individuals (60.0%) assigned a sire and dam, 13
individuals (10.4%) assigned only a dam, and 3 individu-
als (2.4%) assigned only a sire. Note that the previous two
results do not include assignments to inferred parents.

For the microsatellite-based CERVUS results, parent-
age assignments were 100% concordant for the Older and
Survivor datasets. Therefore, these pedigrees will serve as
the base against which all other comparisons will be made.
When considering the All dataset and microsatellite loci,
assignments differed for 10 progeny: for 6 individuals both
parents were different, for 2 individuals only the dams dif-
fered, and for 2 individuals only the sires differed. The Older
and Survivor datasets with SNP loci showed differences
involving assignments for 4 offspring: for 3 individuals, only
the dam assigned was different; for the remaining individual,
only the sire differed. In contrast, the All dataset with SNP
loci differed in assignments for 10 individuals: for 5 indi-
viduals both parents were different, for 2 individuals only
the dams differed, and for 3 individuals the sires differed.

Note, for comparisons involving Sequoia we did not
consider cases where the program was unable to assign
either parent (no-calls), only cases where the program
made an assignment and it differed from the reference
microsatellite pedigree. When considering the MAF 0.01
SNP dataset the Sequoia pedigree differed in assignments
for 38 progenies: for 2 individuals both parents were differ-
ent, and for the remaining 36 individuals the sire assigned
was different. The major source of discrepancy was when
an inferred parent was assigned to a sample (both parent
offspring trios, as well as for 32 sires). In the remaining 4
cases a different sire was assigned compared to the refer-
ence pedigree. In this dataset a total of 4 inferred dams
and 8 inferred sires were created. Three of the 4 dams of
which were assigned to individuals in the oldest individu-
als (Generation G, of Gelatt et al. 2010) that did not have
assignments in the microsatellite pedigree. The remain-
ing dam was assigned to two offspring that had different
dams in the reference pedigree. Three of the 8 inferred
sires were assigned to individuals in G, that did not have
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assignments in the microsatellite pedigree. Of the remain-
ing inferred sires 4 could be consistently associated to a
corresponding male in the microsatellite pedigree (though
these males were also assigned paternities in Sequoia)
while 1 inferred sire was assigned to two offspring that
had different sires in the microsatellite pedigree.

When considering the MAF 0.3 SNP dataset the
Sequoia pedigree differed in assignments for 27 progenies:
for 3 individuals both parents were different, and for the
remaining 24 individuals the sire assigned was different.
Again, the major discrepancy was when an inferred parent
was assigned to a sample (all 3 parent offspring trios and
21 of the sires). In this pedigree there were only 4 cases
where Sequoia assigned a different sire than the micros-
atellite pedigree, and no cases where a different dam was
assigned. In total, 4 inferred dams and 10 inferred sires
were created. Two of the 4 dams were assigned to indi-
viduals in the G, generation that did not have assignments
in the microsatellite pedigree, while 1 of the remaining
inferred dams was assigned to two offspring that had dif-
ferent dams in the microsatellite pedigree. The remaining
inferred dam was assigned both to individuals in the G,
generation that did not have assignments in the micros-
atellite pedigree as well as one individual that did have
an assignment in the microsatellite dataset. Two of the
inferred sires were exclusively assigned to individuals in
G, that did not have assignments in the microsatellite pedi-
gree. Four sires could be consistently associated to a cor-
responding male in the reference pedigree (though these
males were also assigned paternities in this pedigree).
Two inferred sires were associated with a single sire in
the reference pedigree (who was also assigned paternities
in this pedigree). One inferred sire was assigned to two
offspring that had different sires in the reference pedigree.
The remaining inferred sire was assigned both to individu-
als in the G, generation that did not have assignments in
the reference pedigree as well as one individual that did
have an assignment in the reference dataset.
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Discussion

Here we developed a new set of SNP loci for Weddell
seals discovered through ddRAD sequencing of individu-
als from two populations. When comparing genetic diver-
sity between populations, WI showed consistent signs of
reduced diversity compared to EB. This result is consistent
with a population bottleneck after the founding of WI from
EB individuals (Stirling 1972; Testa and Scotton 1999;
Gelatt et al. 2010). It is noteworthy that the number of loci
returned was diminished when all WI and EB individuals
we sampled were analyzed simultaneously. In this situa-
tion, “rare” loci in the outbred EB population were not
retained after frequency-based filters were applied. How-
ever, when the sample sizes were equalized the number
of loci retained increased, especially in EB. We note that
our choice to focus on the 18 WI founders and a match-
ing number of EB individuals in the subsampling analyses
did not detect as large a reduction in genetic diversity as
was found in previous work (Gelatt et al. 2010). This is
likely because the latter study, in addition to using multi-
allelic microsatellites, included multiple generations of
related WI individuals. Such related individuals would
have depressed observed heterozygosity even more than
the initial founder effect. However, in these cases our pri-
mary interest was in investigating the number of loci that
were discovered and not genetic diversity between the two
populations per se. We observed moderate genetic diver-
gence between WI and EB and found no genetic evidence
of migration between the two populations. In 2017 a year-
ling female born in EB was recorded during both surveys
conducted at WI, establishing a connection between the
EB and WI populations (Jay Rotella, personal commu-
nication); however, as this sole female seal has not been
observed as a mother, there continues to be no effec-
tive dispersal between the two populations. Therefore,
it appears that enough uninterrupted ice cover exists to
continue preventing sizable movement between the two
populations.

We applied this new marker set to pedigree construction
in WI, comparing the results to those from microsatellite
loci and two pedigree construction software (CERVUS
and Sequoia). CERVUS had higher rates of assignment
regardless of marker type. However, having some sort of
“polarization” significantly improved assignment using
both SNPs and microsatellites. In these cases, polarization
reduces and focuses the pool of candidate parents making
the calculations more powerful and tractable (Pemberton
2008; Jones et al. 2010; Flanagan and Jones 2019). In the
absence of polarization, when all individuals were simul-
taneously assessed, the majority of assignment differences
were for “middle tier” individuals (i.e., those with both

parents and offspring in the dataset). Without polariza-
tion, a focal “middle tier” individual could be assigned
as the parent of its parent. In many cases polarization
comes from long-term observation of a population. How-
ever, other methods exist to group individuals into cohorts
based on single sampling events; for example, tooth age-
ing (Hewison et al. 1999; Gipson et al. 2000; Blundell
and Pendleton 2008), counting horn annuli in wild sheep
(Geist 1966; Hemming 1969), or using molt patterns in
birds (Mulvihill 1993; Wolfe et al. 2010; Johnson et al.
2011). These covariates assist in determining reproductive
tenure, but additional information such as spatial proxim-
ity of candidate parents can also help in pedigree construc-
tion (e.g. Hadfield et al. 2006).

When built in CERVUS pedigrees based on yearly
cohorts and SNP loci differed in only 4 assignments com-
pared to the reference microsatellite pedigree. One of these
is likely a true error of the microsatellite data where the
original analysis had two equally probable candidate sires
(0 trio mismatches), but the SNP genotypes showed that the
originally selected sire had 25 mismatches while the alter-
nate one had 0. In 2 of the remaining 3 cases there are almost
no mismatches between offspring and either the candidate
dam or candidate sire when considered independently, but
when a trio is suggested there are > 13 mismatches found. To
us, this suggests that one of the parents is incorrectly called
as homozygous for alleles that should be heterozygous. This
phenomenon seems similar to how null alleles in micros-
atellite genotypes can influence assignments (Paetkau and
Strobeck 1995; Dakin and Avise 2004).

We agree with Pemberton (2008) that pedigrees con-
structed in wild populations will remain an important tool
in evolution and conservation research. As new pedigrees
are developed researchers will likely move to construction
based on SNPs for a number of reasons including accuracy,
repeatability, and ability to incorporate non-invasive samples
which may be necessary for getting full stock of candidate
parents in illusive or rare species. Therefore, we expect that
the methods of assigning parentage using SNPs will likely
develop with their increased use (Huisman 2017; Flanagan
and Jones 2019). However, we acknowledge that develop-
ment of genomic SNPs allows for pedigree-free assessments
of some of the same questions. In particular, genomic esti-
mates of relatedness can be used to calculate the heritability
of traits (Evans et al. 2018; Perrier et al. 2018), and genome-
wide association studies (GWAS) can link genotypes to phe-
notypes for trait mapping (Santure and Garant 2018).

In addition to being a resource for continued pedigree
construction in WI, the SNPs described here will be used
to address a number of research questions. This includes
linking genomic diversity with phenotypic or life-history
characteristics (Huisman et al. 2016), examining reproduc-
tive tenure and correlates with success (Charpentier et al.
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2005; Wikberg et al. 2017), and searching for evidence of
inbreeding avoidance or tolerance in this isolated population
(Rioux-Paquette et al. 2010; Szulkin et al. 2013). Further-
more, the loci can help examine the demographic histories
of both the WI and EB populations (Cabrera and Palsbgll
2017; Nunziata and Weisrock 2018).
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