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Email: fay.remi@gmail.com 1. An increasing number of empirical studies aim to quantify individual variation in
Handling Editor: Res Altwegg demographic parameters because these patterns are key for evolutionary and

ecological processes. Advanced approaches to estimate individual heterogeneity
are now using a multivariate normal distribution with correlated individual ran-
dom effects to account for the latent correlations among different demographic
parameters occurring within individuals. Despite the frequent use of multivariate
mixed models, we lack an assessment of their reliability when applied to Bernoulli

variables.
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2. Using simulations, we estimated the reliability of multivanate mixed effect models

for estimating correlated fixed individual heterogeneity in demographic param-
eters modelled with a Bernoulli distnbution. We evaluated both bias and precision
of the estimates across a range of scenanos that investigate the effects of life-
history strategy, levels of individual heterogeneity and presence of temporal varia-
tion and state dependence. We also compared estimates across different sampling
designs to assess the importance of study duration, number of individuals moni-

tored and detection probability.

. In many simulated scenarios, the estimates for the correlated random effects were

biased and imprecise, which highlight the challenge in estimating correlated ran-
dom effects for Bernoulli vanables. The amount of fixed among-individual hetero-
geneity was frequently overestimated, and the absolute value of the correlation
between random effects was almost always underestimated. Simulations also
showed contrasting performances of mixed models depending on the scenarnio
considered. Generally, estimation bias decreases and precision increases with

slower pace of life, large fixed individual heterogeneity and large sample size.

. We provide guidelines for the empirical investigation of individual heterogeneity

using correlated random effects according to the life-history strategy of the spe-
cies, as well as, the volume and structure of the data available to the researcher.
Caution is warranted when interpreting results regarding correlated individual
random effects in demographic parameters modelled with a Bernoulli distribu-
tion. Because bias varies with sampling design and life history, comparnisons of in-
dividual heterogeneity among species is challenging. The issue addressed here is
not specific to demography, making this warning relevant for all research areas,

including behavioural and evolutionary studies.

KEYWORDS

1 | INTRODUCTION

Populations are composed of individuals that differ in their attn-
butes, both at the phenotypic and genetic level, which influences
their fitness. This among-individual heterogeneity is ubiquitous
across populations and is a fundamental topic in ecology and evolu-
tion (Bolnick et al_, 2011; Hamel et al., 2018). Among-individual het-
erogeneity profoundly affects population responses as the average
performance of all individuals in a population is typically different
from the performance of a population of average individuals (van
de Pol & Verhulst, 2006; Vaupel & Yashin, 1985). More generally, in-
dividual heterogeneity affects the estimation of critical parameters
such as vital rates, population growth rate and components of de-
mographic varance (iL.e. demographic stochasticity, environmental
stochasticity and density dependence), with profound implications
for population dynamics, phenotypic selection and the evolution of

accuracy, among-individual vaniation, capture-recapture, GLMMs, individual quality, joint
mixed models, multivariate normal distnibution, precision

life-history strategies (Lomnicki, 1978 for a pioneer study: Snyder &
Ellner, 2018; Vindenes et al., 2008; Vindenes & Langangen, 2015 for
recent developments).

Warious definitions of individual heterogeneity have been
formulated (Cam et al, 2014; Gimenez et al, 2018; Wilon &
Mussey, 2010). In evolutionary and behavioural studies, individual
heterogeneity often refers to the among-individual vanance ob-
served in a phenotypic trait. In this context, individual heterogeneity
is generally trait specific and may vary within individuals over time
{e.g. Jolles et al., 2020). Here, we define individual heterogeneity
maore restrictively as the among-individual variance in demographic
parameters. Some of the factors generating individual heterogeneity
can be easily observed (e.g. sex, age, size), but some are typically
not observed by biologists (e.g. those due to dominance, personal-
ity or genetic make-up). Here, individual heterogeneity refers to this
unobserved heterogeneity in demographic parameters that persists
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after accounting for observed differences such as age, state and sex.
Our demographic definition of individual heterogeneity is identical
to what has been called fixed heterogeneity (Tuljapurkar et al., 2009:
van Daalen & Caswell, 2020) or demographic heterogeneity (Stover
et al., 2012), and align with the concept of frailty, although the latter
is specific to individual variation in survival (Vaupel & Yashin, 1985).

Because quantifying all aspects of phenotypic vanation that
cause among-individual variation in demographic parameters is
impossible, individual heterogeneity is frequently defined as am
unmeasured latent vaniable (Cam et al., 2016). Many recent studies
aimed to specifically quantify the amount of among-individual het-
erogeneity in demographic parameters to evaluate its biological im-
portance and determine its drivers. Two main modelling approaches
have been used to estimate individual heterogeneity as a latent
variable—the finite mixture models charactenizing the presence of
unobserved groups (Hamel et al,, 2017; Pledger et al, 2003) and the
mixed effect models quantifying random individual effects (Gimenez
& Choquet, 2010; Hamel et al., 2018; van de Pol & Verhulst, 2008).
Although both approaches have been employed to account for
and quantify unobserved individual heterogeneity (Gimenez
et al_, 2018), mixed effect models are most widely used for two rea-
sons. First, they are convenient because they allow for straightfor-
ward quantification, interpretation and comparison of heterogeneity
across traits and populations. Second, they are easier to implement.
Indeed, mixture models often suffer from convergence problems,
especially when Bernoulli-distributed traits are included, and defin-
ing the appropriate number of groups is not an easy task (Cubaynes
et al., 2012; Hamel et al., 2017).

Although many studies have focused on measuring individual
heterogeneity for a single demographic parameter, quantifying indi-
vidual heterogeneity in multiple demographic parameters with their
covanation is critical. Indeed, covariation in individual heterogene-
ity in multiple demographic parameters may reveal biological pro-
cesses driving individual heterogeneity such as allocation trade-offs
or among-individual variation in resource acquisition {van Noordwijk
& de Jong, 1984). For instance, some studies found that indhvidu-
als with a high survival probability also tend to have a high proba-
bility of breeding (Cam et al., 2002; McElligott et al., 2002; Pigeon
et al_, 2017), supporting the hypothesis that the overall covanations
shaping individual heterogeneity may correspond to a continuum of
low- to high-quality individuals (Wilson & Nussey, 2010). Excitingly,
important advances have been made to expand statistical tech-
niques to not only quantify the amount of unobserved heteroge-
neity in demographic rates, but also look at whether patterns exist
in how different demographic rates covary within a population.
Recent approaches have gquantified individual heterogeneity in
multiple demographic parameters based on mixed effect models
using a multivariate normal distribution (e.g. Browne et al, 2007
Cam et al_, 2002; Knape et al_, 2011; Paterson et al, 2018). In these
madels, normally distributed individual random effects and their co-
variation are jointly estimated in several demographic parameters
accounting explicitly for the non-independence in among-individual
heterogeneity occurring in demographic parameters.

Mo studies, however, have assessed the statistical reliability of
multivariate mixed effects models in estimating correlated individ-
ual random effects for traits modelled with a Bernoulli distribution
(hereafter Bernoulli-distributed traits). Previous studies have inves-
tigated the performance of multivariate mixed effects models (also
referred to as joint mixed effects models) for normally distributed
traits (Martin et al., 2011; van de Pol, 2012). Based on simulations,
they found that reliable estimates and statistical inferences could be
reached with sample sizes of a few hundred individuals. However,
the difficulty in estimating individual heterogeneity could vary with
the type of trait. For Bernoulli-distributed traits, accurately esti-
mating individual random effects could be more challenging (Hamel
et al., 2012; Kain et al., 2015). Previous studies have shown that in
situations where individual variation in continuous traits is accu-
rately estimated, all else being equal, estimates of individual het-
erogeneity in Bernoulli-distributed traits can be biased (Bonnet &
Postma, 2016). Bernoulli-distributed data contain less information
than continuous response data (i.e. presence or absence vs. pres-
ence, absence and magnitude of the response). Furthermore, data
available to estimate individual variability in demographic parame-
ters are generally scarce (Browne et al_, 2007). In longitudinal studies
of wild populations, individuals are often observed only once or a
few times (<5) throughout their lifetime due to imperfect detection
and a short life span. Thus, the reliability of multivariate mixed ef-
fects models to estimate correlated individual random effects for
Bernoulli-distributed demographic parameters remains an unre-
solved issue.

To fill this knowledge gap, we performed simulations to evalu-
ate the reliability of multivariate mixed effects models in estimating
correlated among-individual heterogeneity in demographic parame-
ters that follow a Bernoulli distribution. Previous studies suggested
that the amount of among-individual heterogeneity and the num-
ber of observations for each individual are critical to estimate indi-
vidual random effects (Kain et al., 2015). Because life span affects
the number of occasions when an individual can be observed, and
thus the amount of information potentially available to estimate
demographic parameters, we may expect model performance to
vary according to life span, and thereby with the life-history strat-
egy of the species considered. We first investigated the effects of
Iife-history strategy and the amount of among-individual heteroge-
neity on the bias and precision of estimated correlated individual
random effects in survival and reproduction. Furthermore, temporal
variation and state-dependent vanation (Le. the probability that a
given event for individual i at time t depends on the state of that
individual at time t - 1), which are both pervasive in the wild, can
be mistakenly attributed to fixed individual heterogeneity if ignored
{Authier et al., 2017 Cam et al, 2014). Positive state dependence
can be particularly problematic because the variation it generates
in individual life-history trajectories can mimic that induced by fied
individual heterogeneity (Cam et al_, 2014). For instance, if the prob-
ability of reproducing successfully is higher after a successful repro-
ductive attempt, state dependence will generate state persistence
in life histories with some individuals accumulating successes and
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others accumulating failures, in the same way fixed individual het-
erogeneity in reproductive success acts. Thus, empirical studies
investigating individual heterogeneity have to estimate both individ-
ual heterogeneity and state dependence simultaneously, otherwise
the estimates might be biased because state dependence and fixed
individual heterogeneity could be confounded (Authier et al., 2017;
Cam et al., 2014). Thus, in a second step, we assessed the reliability
of mixed effects models to estimate correlated individual random
effects including temporal variation and positive state dependence
in our simulations. Finally, because the sample size (i.e. the number
of individuals monitored) and the design of long-term studies show
large vanation, we also considered the effect of the number of indi-
viduals and the sampling design (i.e. detection probability and dura-
tion of the monitoring) on the bias and precision of the correlated
individual random effects. We compared results across scenanos to
provide guidelines for quantifying individual heterogeneity accord-
ing to the ife-history strategy, the structure and the volume of data
available to the researcher.

2 | MATERIALS AND METHODS
2.1 | Datasimulation
2.1.1 | Baseline model

We simulated individual life-history trajectories considering two
demographic parameters, annual survival probability and reproduc-
tive success probability (i.e. the probability of successfully raising at
least one offspring to independence), that are each modelled with a
Bernoulli distrnbution. Each individual's trajectory starts when the
individual is recruited as a first-time breeder in the population, and
we did not simulate any age effect. The survival process was mod-
elled as follows:

SURVIVAL,;, ~ Bernoulli{logit™* (g + a;g)),

where SURVIVAL, is the survival of individual I from year t - 1 to year
t and g, is the logit transform of @, which is the average survival prob-
ability. Conditional on its survival, individual i may breed successfully in
year t following an additional Bernoulli process where:

SUCCESS,| (SURVIVAL, = 1) ~ Bernoulli{logit *{u, + ;).

where pris the logit transform of w, which is the average reproductive
SUCCESS. and @, are individual random effects that determine the
fate of each individual and follow a multivanate normal distribution:

Ty 0, Eii TV g,
T 0, OV EF:. I

where af i the variance of trait x (x refers to either survival @ or repro-
ductive success ) and covy,, is the covariance between the two

demographic parameters. The correlation between the two demo-
graphic parameter is calculated as cory,, = 'i“_x:rr_.
L

212 | Full model

Individual variation in demographic parameters may originate from
processes other than individual heterogeneity such as temporal vari-
ation due to changing environmental conditions and state depend-
ence, that is, the probability that a given survival or reproductive
event for individual i at time t depends on the state of that individual
at time t - 1. If not accounted for, positive state dependency would
increase the estimated individual heterogeneity. Inversely, negative
state dependency would lead to an underestimation of individual
heterogeneity. To account for these two additional processes, we
madified the baseline model by including temporal vanation and
state dependence. The model then becomes:

SURVIVAL, ~ Bernoulli (Iu:-g]t."l (g + g + vo X SUCCESSY 1) +Erg) ;I \

and

SUCCESSy]| (SURVIVAL, = 1) ~ Bermoull (logit ™ (s, +a,, +7, % SUCCESSy 4, +5,, ) ).

where y, and ¥, are the parameters quantifying the intensity of state
dependence in survival and reproductive success probabilities re-
spectively. £, and £y, are the temporal random effects simulating the
environmental effects following normal distnbutions of mean O and
variance o2, and .:rf.r respectively (futhier et al.. 2017)

2.1.3 | Parameterization

Based on the models described above, we simulated datasets with
different parameter values corresponding to wvarious scenarios
(Table 1). For the means g, and u, we considered two sets of values
corresponding to a fast and a slow life-history strategy. These values
were chosen to reflect the pace of life of a small passerine (g, = 0.5
and H,= 0.7, generation time of 2 years assuming recruitment at
1 year) and a long-lived seabird (u, = 0.9 and B, = 0.8, generation
time of 19 years assuming recruitment at 10 years). We simulated
small and large amounts of individual heterogeneity in survival and
reproductive success probability. Because the vanance of a Bemoull
process is maximized at a mean probability of 0.5 and is constrained
towards O as the mean approaches 0 or 1, we slightly adjusted
the value representing a small and large amount of individual het-
erogeneity according to the life-history strategies as traits' means
markedly differed between these strategies (Table 1; Figure 1). The
correlation between the random effects was set to be 0.4, based
on previous studies reporting positive covariations between de-
mographic parameters (Cam et al., 2002; Fay et al., 2018; McLean
et al., 2019). We simulated the absence or the presence of both tem-
poral vanation in demographic parameters and state dependence
(Table 1). Specifically, we included positive state dependence, that
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TABLE 1 Parameter values used to simulate the datasets. For convenience, parameter values are alternatively given on the probability

scale (P5) or logit scale (LS)

Parameters Meaning Scenarios Values
Biological process
L Mean survival (PS5} Fast-slow 050r09
w Mean reproductive success (P5) Fast-slow 07or0.8
O Standard deviation of the individual heterogeneity in survival Low-high 0.2/0.3 or 0.6/0.8
(Ls)
a, Standard deviation of the individual heterogeneity in Low-high 0.2/0.3 or 0.6/0.8
reproductive success (L5)
LW g Correlation between individual random effects for survival Quality 0.8
and reproductive success [LS)
o, Standard deviation of the temporal variation in survival [L5) Abszent-present Oor0.5
O Standard deviation of the temporal variation in reproductive Absent-present Dor(.5
success (LS)
Yo State dependence in survival [P5) Absent-present Oor0l
e State dependence in reproduction (P5) Absent-present Oor0l
Sampling process
- Study duration Low-medium-high 10 or 20 or 40
Mind Humber of individuals marked per year Low-high 25 or 100
] Detection probability (P5) Imperfect-perfect 05orl
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FIGURE 1 Distribution of the simulated individual heterogeneity () in survival (@) and in reproductive success (w) probabilities according
to the life-history strategy and the amount of individual heterogeneity simulated. The vertical lines display the means. In each case,
individual heterogeneity included in the trajectories corresponds to a continuum of increasing individual performance along the x-axis

that can be interpreted as frailty for survival probability and as a measure of reproductive ability for reproductive success probability. The
correlation between these axes of performance is positive and thereby corresponds to a continuum of individual quality

is, higher survival and reproductive success following a successful
reproductive event the previous year. Although negative state de-
pendence is predicted by life-history trade-offs (Bell, 1980), empiri-
cal studies on natural populations have frequently reported positive
state dependence (McElligott et al., 2002; Smith, 1981). which may
persist even when individual heterogeneity is accounted for (Cam

et al, 2013; Zhang et al., 2015). After a failure, we used values for
which survival value was @ -0.1 and reproductive success was
-0.1 regardless of the life-history strategy. These values reflect ef-
fect sizes reported in empirical studies (e.g. Fay et al., 2018; Lescroél
et al., 200%; McElligott et al., 2002). For simplicity, individuals per-
form as if they were previously unsuccessful at the first occasion.



26 | Methods in Ecology and Evolution

FAY ET AL

Finally, we also simulated different sampling designs by using data-
sets consisting of 10, 20 or 40 years of monitoring with 25 or 100
new individuals, recruited as first-time breeders, added each year,
which produce six combinations of sample size, from 250 to 4,000
individuals. These designs allowed us to disentangle the effect of
the number of individuals from the number of years of monitoring.
For instance, to investigate fixed individual heterogeneity, one may
ask whether it is better to have a sample size of 1,000 individuals
that come from 20 years of monitoring with 100 new individuals re-
cruited as first breeders per year, or from 40 years of monitoring
with 25 new individuals recruited as first breeders per year. Lastly,
because animal monitonng in the wild is usually akin to imperfect
detection, we simulated datasets with either perfect (p = 1) or im-
perfect detection (p = 0.5) (Table 1). Ulimately, our simulations
captured two distinct life-history strategies, two levels of individual
heterogeneity, the presence or absence of temporal varability and
state dependence, three levels of monitoring duration, two mark-
ing effort schemes and two levels of detection probability, thereby
leading to 192 scenarios. The parameter space explored was a trade-
off between the number of factors investigated and the number of
resulting scenarios and computation time. Although the parameter
space investigated remained relatively limited, contrasting two or
three levels for each factor allowed describing the relevant patterns
regarding model performance.

2.1.4 | Mixture of binomial and continuous traits

Reliably estimating individual random effects is particularly challeng-
ing for Bernoulli variables, but is easier for non-binary traits (Bonnet
& Postma, 2014). One may thus suggest that the inclusion of addi-
tional demographic parameters following a Poisson or Mormal distri-
bation for instance would improve the reliability of estimates of other
individual random effects on survival and reproduction. Assuming
that all random effects are correlated, accurately estimating one may
improve the estimation of the others. To evaluate this possibility, we
ran six additional scenanos to test how bias and precision of corre-
lated random effects in Bernoulli-distributed traits change when we
include a third Poisson-distributed demographic parameter corre-
lated with the previous two. See Appendix 51 for details.

2.2 | Analysing the simulated data

To assess the quality of the estimates provided by the multivaniate
mixed models, we simulated 100 datasets for each scenario, which
led to n = 19,800 simulated datasets in total. For each dataset, we
ran a Bayesian multi-state capture-recapture model identical to the
model used to simulate the data. We computed the bias, both non-
scaled and scaled, and the precision for all estimates for each sce-
nario using the set of 100 simulated datasets/fitted models. The bias
was the difference between the average estimate over the 100 fitted
models and the simulated value. The scaled bias was the bias divided

by the simulated value. The precision was the average coefficient of
variation of the estimate. Ninety five per cent credible interval (CRI)
coverages were computed over 300 fitted models. To reduce com-
putation time, we computed CRI for a subset of 44 scenanos (over
192} including two distinct life-history stratemes, two levels of indi-
vidual heterogeneity, the simultaneous presence or absence of both
temporal vanability and state dependence, three levels of monitor-
ing duration, two levels of detection probability and the low marking
effort level (L.e. 25 new indniduals, recruited as first-time breeders,
added each year). When simulated datasets had perfect detection, we
fixed the detection probability to 1 in the model analysing the data
rather than estimating its value. This corresponds to the choice made
in practice when detection is equal or close to 1 in real datasets (e.g.
Cam et al, 2002; Knape et al., 2011). This means that for scenarios
with perfect detection, we were not using capture-mark-recapture
(CMR) models but classical GLMMs with correlated random effects.
We simulated data using R 3.5.1 (R Core Team, 2018) and conducted
all analyses in JAGS (Plummer, 2003) using the jagsUl' r package
(Kellner, 2014). R and JAGS codes used are provided in Appendix 52
We used a modified Cholesky decomposition (Chen & Dunson, 2003)
to specify the prior of the covariance matric. In order to improve
mixing of chains, we used parameter expansion as in the study by
Dunson (2008), a technique to improve computational efficiency by
reducing dependence among MCMC draws (Browne, 2004). Details
including the description of the prior used for the covaniance matrix
are given in Appendix 53. Given the large amount of computation
required to fit Bayesian models with individual random effects, the
analyses were run on two supercomputers located in Canada.

3 | RESULTS

3.1 | Model performance across life histories and
amount of individual heterogeneity

Simulations based on the baseline model showed that both life-
history strategy and amount of individual heterogeneity have a
critical effect on the ability of the model to accurately estimate cor-
related random effects (Figure 2). When we simulated datasets cor-
responding to a fast life-history strategy, individual heterogeneity in
both survival and reproductive success tended to be overestimated
(relative bias of the two demographic parameters ranging from -6%
to +157% according to the level of heterogeneity, sample size and
detection probability: Appendixc 54; Figure 2ab). Correlation and
covariation among random effects were strongly underestimated
(bias -4% to -946% and -3% to -94% respectively; Figure 2ah).
Additional simulations with different correlation values showed that
it was the absolute value of the correlation that was underestimated
(Figure 51). By contrast, the amount of individual heterogeneity was
estimated with smaller bias (bias -11% to +124%) and higher preci-
sion for the slow strategy. The correlation and covanation between
random effects were also underestimated for the slow strategy
and bias was potentially large, but slightly smaller than for a fast
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FIGURE 2 Bias and precision in the estimates of individual random effects and their correlation for Bernoulli vaniables. Parameters
include the standard deviation of the individual heterogeneity in survival (v¢) and reproductive success ls,) and their correlation (cor) and
covanance (cov). Each plot displays the estimates for a scenario with a specific amount of individual heterogeneity (i.e. low vs. high), and for
scenanos that include or exclude temporal vanation in demographic parameters and positive state dependence (i.e. baseline vs. full model).
The study duration was 20 years and the number of new individuals recruiting as first-time breeders per year was 25, leading to a sample
size of 500 individuals. Diamonds in darker colour give the values used to simulate the datasets and points in lighter colour give the average
estimates over the 100 models fitted to the 100 simulated datasets. Error bars give the range including 95% of the estimated values

life-history strategy (bias —0.5% to -94% and -1% to -89% respec-
tively: Figure 2ab). Finally, the amount of simulated individual het-
erogeneity had a strong effect on the reliability of estimates. When
simulated individual heterogeneity was high, bias decreased for in-
dividual heterogeneity estimates (bias -8% to +16% compared with
-4% to +157% for low individual heterogeneity) and for estimates
of correlations and covarnation between random effects (bias -0.5%
to -76% compared with -21% to -94% and -1% to -65% compared
with —19% to -94%, respectively), but estimates generally became
less precise (Figure 2a,b). Coverages of 95% CRI were generally high
(=80%) showing that despite frequent bias, CRIs were large and in-
cluded the true parameter value maost of the time.

3.2 | The effect of temporal variation and
state dependence

The full model included two additional processes: tempaoral vari-
ation and positive state dependence. Generally, the inclusion of

these processes made the estimation of the vaniance of individual
random effects and correlation and covariation between random
effects more challenging (Figure 2c.d). The inclusion of these
processes accentuated the bias and decreased the precision
compared with the estimates obtained from the baseline model.
These effects were independent of the simulated amount of in-
dividual heterogeneity, but it was more detrimental for fast life-
history strategies. For this latter, relative bias in the estimated
individual heterogeneity ranged from -6% to +157% for the
baseline model compared with a range of -14% to +225% when
including temporal variation and state dependence (Appendix 54;
Figure 2). In contrast, for the slow life-history strategy, bias
ranged from -11% to +124% for the baseline model and from -7%
to +129% for the full model (Figure 2). Although both temporal
variation and state dependence tended to decrease the quality of
the estimates, they did not contribute equally to this deteriora-
tion. An increased bias was mainly observed when state depend-
ence was included (Appendix 54). While we obtained unbiased
estimation of temporal variation on average for most scenarios,
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state dependence estimates were frequently biased negatively.
When state dependence was underestimated, the individual
random effects were strongly positively biased, which suggests
that random effects captured part of the individual heterogene-
ity in demographic parameters generated by the positive state

3.3 | Influence of sampling design

As expected, sampling design had a strong effect on the performance
of the estimates. All else being equal, increasing the study duration,
the number of marked individuals and the detection probability
reduced bias and increased precision (Figures 3 and 4). However,
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of the estimated values

increasing sample size may reduce 95% CRI coverage when estimates
are biased (Appendix 54). For large sample sizes (1,000 recruited
individuals), individual heterogeneity estimates were fairly accurate
for most scenarios for the slow life-history strategy (relative bias
-6% to +6%; Figures 3e,f and 4b-f). However, the clear underesti-
mation of the correlation and covaniation between random effects
persisted when we simulated low individual heterogeneity (relative

bias -30% to -60% and -31% to -0.56% respectively; Figures 3e
and 4a,c,e). For the fast life-history strategy, the bias persisted for a
sample size of 1,000 individuals, especially when the model included
state dependence (Appendix 54). With very large sample sizes
(4,000 recruited individuals), a slight bias of the individual heteroge-
neity in reproductive success persisted (relative bias -11% to +12%)
and the correlation and covariation between random effects were
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still strongly underestimated (relative bias -15% to -93% and -12%
to —-91% respectively; Figure 4e f). Doubling the study duration had
maore impact on improving the reliability of estimates than doubling
the number of marked individuals per year for the slow life-history
strategy (Figure 3c.d vs. Figures 3ef and 4ab), but not for the fast
Iife-history strategy. Imperfect detection generally increased the
bias and lowered the precision, but these effects were stronger for
the estimated amount of individual heterogeneity. When detection
probability decreased from 1 to 0.5, the bias in individual heteroge-
neity increased from 0% to 232%, whereas the bias in the correlation
and covariation between the random effects increased from 0% to
47% and from 7% to 832% respectively (Figure 52).

3.4 | Mixture of Bernoulli- and Poisson-distributed
demographic parameters

Additional simulations showed that including a Poisson-distributed
trat—such as the number of offspring produced per successful
breeding attempt—had only a weak effect on the ability of the model
to accurately estimate correlated random effects for the Bernoulli-
distributed traits. Although estimated individual heterogeneity of
the demographic parameter following a Poisson distribution was
unbiased and precise under all simulated scenarios, bias in corre-
lated individual random effects for Bernoulli-distributed traits was
almost unchanged (Figure 53). Individual heterogeneity estimates
for Bernoulli variables were the same with and without the Poisson
variable and the bias of the correlation between random effects was
slightly decreased only for high individual heterogeneity. For high
individual heterogeneity, relative bias in the estimated correlation
ranged from -22% to -44% when modelling only Bernoull traits
compared with -12% to -60% when including a Poisson-distributed
trait, whereas for low individual heterogeneity, the relative bias
remained the same with or without the inclusion of a Poisson-
distributed trait, ranging from -93% to -96%.

4 | DISCUSSION

Although ecologists have shown increasing interest in estimat-
ing individual heterogeneity by modelling correlated random ef-
fects in multivariate mixed models (Bonnet & Postma, 2016; Cam
et al, 2013; Knape et al., 2011; Paterson et al, 2018), an assess-
ment of how reliably these models quantify individual heteroge-
neity in demographic parameters was lacking. Qur simulations fill
this gap and reveal that estimating correlated random effects for
Bernoulli variables is challenging because estimations of fixed indi-
vidual heterogeneity in survival and reproductive success and their
correlation could be strongly biased and imprecise for most of the
scenarios investigated in our study. Simulations also indicated that
bias in estimates strongly depends on the life-history strategy of
the species, which we measured by the species pace of life (gen-
eration times spanning over an order of magnitude), as well as the

amount of individual heterogeneity and the sample size, both cover-
ing the ranges commonly reported in empirical studies. Generally,
estimates become less biased and more precise when a large sample
size was obtained from a focal population that had a slow pace of
life and higher individual heterogeneity. Although our study raises
concerns regarding the biological interpretation of previously pub-
lished empirical estimates of correlated individual random effects
for Bernoulli-distributed demographic parameters, it also provides
useful guidelines for future empirical studies determining under
which conditions reliable estimates could be obtained depending
on the type of life-history strategy of the study species considered.
Most importantly, although we address this issue in a demographic
framework, the problem treated here is not specific to demography
and these results are relevant for all research areas using correlated
random effects for Bernoulli-distributed traits.

4.1 | Biasin the variance and correlation estimates

In many scenarios, estimates from the variance-covariance matrix
were biased and imprecise. Although individual heterogeneity was
frequently overestimated, the absolute value of the correlation be-
tween random effects was almost always underestimated. Here, we
used the same model for generating and analysing the data, meaning
that we describe model performances under the best-case scenario.
These results confirm the concerns raised by Knape et al. (2011) re-
garding the large uncertainty associated with empirical estimates of
correlated random effects.

Correlation and standard deviation of the individual hetero-
geneity in survival and reproduction are directly related since
COf,, = Cov(®, w)/lsg x o). Therefore, for a given covariance level,
an overestimation of individual heterogeneity also results in an un-
derestimation of the correlation. The systematic underestimation of
the correlation among random effects is in line with results from pre-
vious simulations investigating the reliability of temporal correlation
estimates among demographic components (Riecke et al, 2019).
Based on datasets including temporal random effects simulated
with a multivariate normal distribution, these authors found that the
temporal correlation could be underestimated whichever the sign
of the true correlation. The systematic underestimation of covaria-
tion could be compared with the well-known problem of regression
dilution in linear models. When fitting a linear model, the random
measurement error in the explanatory vanable systematically biases
the estimate of the regression slope towards zero (Spearman, 1904).
In our case, the estimation error in individual heterogeneity causes
a systematic underestimation of the correlation between random
effects.

The priors we used for the covariance matrix may affect the
observed bias and precision. To assess the sensitivity of the re-
sults to prior choice, we reran simulations with two different
priors (Appendix 55). Results show that this choice of prior dis-
tributions has a small effect on the magnitude of the bias in the
estimated amount of individual heterogeneity and correlation
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between random effects (Figure 54). Overestimation of the indi-
vidual heterogeneity and strong underestimation of the correla-
tion estimate were observed irrespective of the prior used. The
prior used for our simulation study tends to shrink the correlation
estimates towards zero. This effect was expected since we used a
slightly informative prior favouring a null value for the correlation
(Appendix 53). Ensuring a marginal uninformative prior is straight-
forward in the case of a 2 x 2 covariance matrix but not for matri-
ces of higher dimensions. The advantage of the prior used for this
simulation study is that it can be used for more than two traits (e.g.
Cam et al., 2013; Appendix 51). Finding priors with marginal uni-
form correlations for multivariate covariance matrices is an active
area of research (Huang & Wand, 2013).

4.2 | Effect of the pace of life and state dependence
on estimates

We found contrasting model performance depending on the pace of
life of the species. Although the two life-history strategies simulated
may not be representative of the whole slow-fast continuum, they
clearly suggest patterns according to the species' pace of life and
reveal key aspects affecting model performances. Estimates were
substantially less biased and more precise for the slow life-history
strategy, especially for individual heterogeneity in reproductive suc-
cess. This contrasting performance according to the life history is
likely due to variation in the number of reproductive attempts per
individual caused by differences in the average life span within con-
trasting life-history strategies. In our simulations, individuals bred
once a year, meaning individuals with a fast strategy [mean sur-
vival = 0.5 leading to an adult life expectancy of 1 year) reproduced
twice on average (iL.e. at recrutment and the year after), whereas
individuals with a slow strategy {mean survival = 0.9 leading to an
adult life expectancy of ¢ years) reproduced 10 times on average.
Thus, the information available to estimate individual-specific per-
formance in reproduction was larger for individuals with a slow life-
history strategy. In contrast, the information available to estimate
individual heterogeneity in survival probability was less affected by
the pace of life because mortality occurs only once per individual,
regardless of the pace of life.

Although temporal variation in demographic parameters has
weak effects on model performance, the simulation results showed
the detrimental effect of positive state dependence on the estima-
tion of the individual random effects. This reveals the difficulty in
disentangling individual heterogeneity in life-history trajectory due
to positive state dependence, from that of inherent individual dif-
ferences in survival and reproductive ability. In many scenarios, in-
dividual heterogeneity generated by state dependence was partly
captured by the inflated variances of the individual random effects.
Because both processes can replace each other in accounting for
state persistence over time, they have to be estimated simultane-
ously when both are present to get unbiased estimates (Authier
et al., 2017). In accordance with previous studies, our results show

that simultaneously estimating state dependence and ficed individ-
ual heterogeneity is challenging (Hamel et al., 2012; Nerlove, 2014).
still, our simulations show that disentangling these processes is
possible when sample size is large enough. For the slow life-history
strategy, relatively reliable estimates of state dependence were ob-
tained from sample sizes of 1,000 or more recruited individuals. For
the fast life-history strategy, unbiased estimation of state depen-
dence seemed possible from 4,000 individuals.

4.3 | Importance of the sampling design

The reliability of estimates of the variance-covariance matrix de-
pended strongly on the study design. Maost of the difficulties de-
scribed above wvanished with large sample sizes, that is =1,000
individuals monitored. This demonstrates that observed bias is not
due to the unidentifiability of the parameters but rather related
to a lack of information in the data. Clearly, reliable estimation of
correlated random effects for Bernoulli vanables requires very
large sample sizes. According to the simulation results, the order
of magnitude for an adequate sample size should be =1,000 indi-
viduals. Although this is larger than most sample sizes available
from individual-based long-term studies in the wild, some datasets
meet this requirement (e.g. Cam et al_, 2013; Gillespie et al., 2013;
Paterson et al., 2018).

For the sampling designs we investigated, study duration seemed
to be more influential than total number of individuals monitored for
the slow life-history strategy. but not for the fast life-history strat-
egy. This difference according to the pace of life is, again, likely due to
the average life span associated with each life-history strategy. Since
average life span of an individual with a slow life-history strategy is
longer than that of an individual with a fast life-history strategy, in-
creasing the study duration is more likely to increase the number of
observations per individual for the former. As a general rule, it seems
more efficient to increase the number of observations per individual
than to increase the number of individuals (see Figure 56 for an illus-
tration of the effect of the number of observations per individuals).

4.4 | Implications for future research

Results from studies estimating correlated individual random ef-
fects among demographic parameters modelled with Bernoull
distribution should be interpreted cautiously because bias is likely
to be pervasive and strong. We also found that it can vary accord-
ing to demographic parameters, pace of life and true amount of
fixed individual heterogeneity. These difficulties make compara-
tive studies very challenging to perform. Although multi-species
comparisons play a key role in life-history research, differences in
estimates of individual heterogeneity could be affected, or even
driven, by biases that change according to the species’ pace of life,
the amount of individual heterogeneity and sample size. Variable
bias according to the true amount of individual heterogeneity is
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particularly problematic because we cannot know the true amount
of fixved individual heterogeneity in any specific demographic pa-
rameter a prion.

Although our results raise concerns about the biological inter-
pretation of individual random effects for Bernoulli-distributed
variables, investigating individual heterogeneity with multivariate
mixed models is not a hopeless cause. Studies interested in esti-
mating and interpreting individual heterogeneity from correlated
individual random effects should favour the investigation of contin-
uous traits. When Bernoulli-distributed traits are involved, estimat-
ing individual heterogeneity reliably is possible if studies are based
on very large sample sizes (i.e. thousands of individuals or more for
fast life-history species), and include individuals with near complete
life histories. Although such datasets are not common, some moni-
toring on long-lived sea birds, marine mammals, small passerines or
humans meet this requirement. Ideally, such studies should simulate
data to assess precision of estimates prior to drawing inference on
estimated correlated random effects from their data. We provided
R code (see Appendix 52) that will help researchers perform cus-
tomized simulations for their specific study system and sampling
design.

ACKNOWLEDGEMENTS

The idea for this paper was developed during a workshop on
‘Individual heterogeneity in animal's life histories—more than meets
the eye’ and the authors acknowledge the Lorentz Centre of Leiden
University for their support and facilitating this meeting. The analy-
ses presented in this paper were run on two supercomputers located
in Canada (Beluga & Cedar). They thank the support provided by
Compute Canada (www.computecanada.ca). They also acknowledge
the support of NSF OPP 1640481 and 1840058 to J.R. and 5. re-
spectively. Finally, they thank Julien Martin and two anonymous re-
viewers for providing useful comments on this manuscript.

CONFLICT OF INTEREST
Mo conflict of interest to declare.

AUTHORS" CONTRIBUTIONS

All authors discussed the ideas that lead to the study: R.F.. M.A
SH., 501, MyvdP, EC., J-M.G. and N.GY. designed the simulation
plan; R.F. and M_A. developed the R and JAGS codes; R.F. ran the
analyses and led the writing of the manuscript. All authors contrib-
uted to the drafts and gave final approval for publication.

PEER REVIEW
The peer review history for this article is available at https-//publo
ns.com/publon/10.1111/2041-210X_13728.

DATA AVAILABILITY STATEMENT
Code from this study has been deposited in Zenodo repository
https://doi.org/10.5281/zenodo. 5552789 (Fay et al., 2021).

ORCID

Rémi Fay "' https:/forcid.org/0000-0002-7202-367X

Matthieu Authier *~" https:/forcid org/0000-0001-7394-1993
Sandra Hamel “%" https:/forcid org/0000-0003-1126-8814
Stéphanie Jenouvrier https:/forcid.org/0000-0003-3324-2383
Martijn van de Pol https:/forcid org/0000-0003-4102-4079
Emmanuelle Cam "' https:/forcid.org/0000-0001-7324-6958
Paul Acker "% https:/forcid.org/0000-0002-3815-772X

Andrew Allen "5 https://orcid.org/0000-0002-0119-2425

Lise M. Aubry "5 https:/forcid org/0000-0003-3318-7329
Christophe Bonenfant https:/forcid org/0000-0002-9924-419X
Christophe F. D. Coste https://orcid .org/0000-0003-3680-5049
Benjamin Larue "= https:/forcid.org/0000-0002-4608-9288
Christie Le Coeur "= https://orcid_org/0000-0002-0911-2506
Marléne Gamelon "= https:/forcid.org/0000-0002-9433-2369
Kaitlin R. Macdonald https://orcid.org/0000-0002-63746-1486
Fanie Pelletier "= https:/forcid org/0000-0002-0113-5412

Jay J. Rotella https:/forcid.org/0000-0001-7014-7524

Caitlin P. Wells "= https:/forcid.org/0000-0002-8840-3095
Bernt-Erik S&ther https:/forcid.org/0000-0002-0049-9767

REFERENCES

Authier, M., Aubry, L. M., & Cam, E. (2017). Wolf in sheep's clothing:
Model misspecification undermines tests of the neutral theory for
life histories. Ecology and Evolution, 7(10), 3348-3361. hittps://doi.
org/10.1002/ece3. 2874

Bell, G. (1980). The costs of reproduction and their consequences. The
American Naturalist, 116(1), 45-76. https://doi.org/10.10846/283611

Bolnick, O 1., Amarasekare, P, Aradjo, M. 5, Bdrger, R., Levine, J. M.,
Movak, M., Rudolf, V. H., Schreiber, 5. 1., Urban, M. C_, & Vasseur,
D. A.(2011). Why intraspecific trait variation matters in community
ecology. Trends in Ecology & Evolution, 256(4), 183-192. https://doi.
org/10.101&/j.tree. 2011.01.009

Bonnet, T., & Postma, E. [2018). Successful by chance? The power of
mixed models and neutral simulations for the detection of indi-
vidual fixed heterogeneity in fitness components. The American
Maturalist, 187(1), 60-74. https://doiorg/10.10846/584158

Browne, W. J. (2004). An illustration of the use of reparameterization
methods for improving MCMC efficiency in crossed random effect
models. Multilevel Modelling Newsletter, 15{1), 13-25.

Browne, W. J., McCleery, R. H., Sheldon, B. C., & Pettifor, R. A. (2007).
Using cross-classified multivariate mixed response models with ap-
plication to life history traits in great tits (Parus major]. Statistical
Modelling, 7(3), 217-238. https:/fdoi.org/10.1177/1471082%07
00700301

Cam, E., Aubry, L. M_, & Authier, M. {2015). The conundrum of heteroge-
neities in life history studies. Trends in Ecolegy & Evelution, 31(11),
B72-B846. https:/doi.org/10.1014/j.tree 2015.08.002

Cam, E., Gimenez, 0., Alpizar-lara, R., Aubry, L. M., Authier, M., Cooch,
E. G, Koons, D. M., Link, W. A., Monnat, J.-¥, Michols, J. D,
Rotella, J. J, Royle, J. A, & Pradel, R. {2013). Looking for a nee-
dle in a haystack: Inference about individual fitness components
in a heterogeneous population. Qikes, 122(5), 739-753. https://doi.
org/10.1111/5.1600-0706.2012.20532.x

Cam, E., Link, W. A_, Cooch, E. G., Monnat, J.-¥., & Danchin, E. {2002).
Individual covariation in life-history traits: Seeing the trees despite
the forest. The American MNaturalist, 159(1), 96-105. https://doi.
org/10.1086/324126


http://www.computecanada.ca
https://publons.com/publon/10.1111/2041-210X.13728
https://publons.com/publon/10.1111/2041-210X.13728
https://doi.org/10.5281/zenodo.5552789
https://orcid.org/0000-0002-7202-367X
https://orcid.org/0000-0002-7202-367X
https://orcid.org/0000-0001-7394-1993
https://orcid.org/0000-0001-7394-1993
https://orcid.org/0000-0003-1126-8814
https://orcid.org/0000-0003-1126-8814
https://orcid.org/0000-0003-3324-2383
https://orcid.org/0000-0003-3324-2383
https://orcid.org/0000-0003-4102-4079
https://orcid.org/0000-0003-4102-4079
https://orcid.org/0000-0001-7324-6958
https://orcid.org/0000-0001-7324-6958
https://orcid.org/0000-0002-3815-772X
https://orcid.org/0000-0002-3815-772X
https://orcid.org/0000-0002-0119-2425
https://orcid.org/0000-0002-0119-2425
https://orcid.org/0000-0003-3318-7329
https://orcid.org/0000-0003-3318-7329
https://orcid.org/0000-0002-9924-419X
https://orcid.org/0000-0002-9924-419X
https://orcid.org/0000-0003-3680-5049
https://orcid.org/0000-0003-3680-5049
https://orcid.org/0000-0002-4608-9288
https://orcid.org/0000-0002-4608-9288
https://orcid.org/0000-0002-0911-2506
https://orcid.org/0000-0002-0911-2506
https://orcid.org/0000-0002-9433-2369
https://orcid.org/0000-0002-9433-2369
https://orcid.org/0000-0002-6376-1486
https://orcid.org/0000-0002-6376-1486
https://orcid.org/0000-0002-0113-5412
https://orcid.org/0000-0002-0113-5412
https://orcid.org/0000-0001-7014-7524
https://orcid.org/0000-0001-7014-7524
https://orcid.org/0000-0002-8840-3095
https://orcid.org/0000-0002-8840-3095
https://orcid.org/0000-0002-0049-9767
https://orcid.org/0000-0002-0049-9767
https://doi.org/10.1002/ece3.2874
https://doi.org/10.1002/ece3.2874
https://doi.org/10.1086/283611
https://doi.org/10.1016/j.tree.2011.01.009
https://doi.org/10.1016/j.tree.2011.01.009
https://doi.org/10.1086/684158
https://doi.org/10.1177/1471082X0700700301
https://doi.org/10.1177/1471082X0700700301
https://doi.org/10.1016/j.tree.2016.08.002
https://doi.org/10.1111/j.1600-0706.2012.20532.x
https://doi.org/10.1111/j.1600-0706.2012.20532.x
https://doi.org/10.1086/324126
https://doi.org/10.1086/324126

FAY ET AL

Methods in Ecology and Evolution 103

Chen, Z., & Dunson, D. B. (2003). Random effects selection in lin-
ear mixed models. Biometrics, 59(4), 762-756%. https://doi.
org/10.1111/j.00056-3413.2003.0008%.x

Cubaynes, 5., Lavergne, C., Marboutin, E, & Gimenez, O. (2012).
Assessing individual heterogeneity using model selection crite-
ria: How many mixture components in capture-recapture mod-
els? Methods in Ecology and Evolution, 3(3), 564-573. hitps://doi.
org/10.1111/§.2041-2100_2011.00175.x

Dunson, D. B. (2008). Random effect and latent variable model selection.
Springer.

Fay, R., Authier, M., Hamel, 5., Jemouvrier, 5., van de Pol, M., Cam, E.,
Gaillard, J. M., Yoccoz, M. G, Acker, P, Allen, A., Aubry, L. M.,
Bonenfant, C., Caswell, H., Coste, C. F D, Larue, B., Le Crceur,
C_, Gamelon, M., Macdonald, K. R, Maoiron, M_, __ Sesther, B. E.
{2021). Data from: Quantifying fixed individual heterogeneity in
demographic parameters: Performance of correlated random ef-
fects for Bernoulli wariables. Zenode, https://doiorg/10.5281/
zenodo 535352789

Fay, R, Barbraud, C., Delord, K., & Weimerskirch, H. [2018). From early life to
senescence: Individual heterogeneity in a long-lived seabird. Ecological
Menographs, 88(1), 50-73. https://doi.org/10.1002/ecm.1275

Gillespie, D. O., Russell, A. F., & Lummaa, V. (2013). The effect of ma-
ternal age and reproductive history on offspring survival and
lifetime reproduction in preindustrial humans. Ewvolution, 67(7),
1964-1974.

Gimenez, 0., Cam, E., & Gaillard, J-M. {2018). Individual heterogeneity
and capture-recapture models: What, why and how? Oikos, 127(5),
G64-686. https://doi.org/10.1111 foik.04532

Gimenez, 0., & Chogquet, R. (2010). Individual heterogeneity in stud-
ies on marked animals using numerical integration: Capture-
recapture mixed models. Ecology, 91(4), 951-957. hitps://doi.
org/10.1890/07-1903.1

Hamel, 5., Gaillard, J.-M., Douhard, M., Festa-Bianchet, M_, Pelletier, F,
& Yoccoz, M. G. (2018). Quantifying individual heterogeneity and
its influence on life-history trajectories: Different methods for dif-
ferent questions and contexts. Oikes, 127(5), 687-704. hitps://doi.
org/10.1111/oik 04725

Hamel, 5., Yoccoz, M. G., & Gaillard, J.-M. (2012). Statistical evaluation
of parameters estimating autocorrelation and individual heteroge-
neity in longitudinal studies. Methods in Ecology and Evolution, 3(4),
731-742. https://doi.org/10.1111/j.2041-210%.2012.00195.x

Hamel, 5., Yoccoz, M. G., & Gaillard, J.-M. [2017). Assessing variation in
life-history tactics within a population using mixture regression
maodels: A practical guide for evolutionary ecologists. Biological
Reviews, $2(2), 754-775. https-//doi.org/10.1111/brv.12254

Huang, &., & Wand, M. P. (2013). Simple marginally noninformative prior
distributions for covariance matrices. Bayesian Analysis, 8(2), 439-
452 https:/fdoiorg/10.1214/13-BAB15

Jolles, 1. W, King, A_J_, & Killen, 5. 5. (2020). The role of individual hetero-
geneity in collective animal behaviour. Trends in Ecology & Evolution,
35(3), 278-291. https://doi.org/10.1015/jtree.2019.11.001

Kain, M. P, Bolker, B. M., & McCoy, M. W. [2015). A practical guide and
power analysis for GLMMs: Detecting among treatment waria-
tion in random effects. Peer), 3, 12246, https:/fdoiorg/10. 7717/
peerj.l224

Kellner, K. (20164). JagsUI- A wrapper around ‘riags’ to streamline JAGS' anal-
yses. R package version 1.4.4. Retrieved from https://CRAN.R-proje
ct.org/package=jagsl|

Knape, J., Jonzén, M., Skdld, M., Kikkawa, J., & McCallum, H. (2011).
Individual heterogeneity and senescence in Silvereyes on Heron
Island. Ecology, $2(4), 813-820. https://doiorg/10.1890/10-0183.1

Lescroél, A, Dugger, K. M., Ballard, G., & Ainley, D. G. (2009). Effects
of individual quality, reproductive success and environmental vari-
ability on survival of a long-lived seabird. Journal of Animal Ecology,
78, 798-804. https-/fdoiorg/10.1111/5.13465-26546.2009.01542

Lomnicki, A. (1978). Individual differences between animals and the
natural regulation of their numbers. The Journal of Animal Ecology,
47(2), 461-475. https://doiorg/10.2307/3794

Martin, J. G., Mussey, D. H., Wilson, A. ] & Réale, D. (2011). Measuring
individual differences in reaction norms in field and experi-
mental studies: A power amalysiz of random regression mod-
els. Methods in Ecelogy and Evelution, 2(4), 3562-374. https://doi.
org/10.1111/].2041-210:.2010.00084.x

McElligott, A. G., Altwegg, R., & Hayden, T. 1. (2002). Age-specific sur-
wvival and reproductive probabilities: Evidence for senescence in
male fallow deer [Dama dama). Proceedings of the Royal Society of
London. Series B: Biological Sciences, 269(14948), 1129-1137.

MclLean, E. M., Archie, E. A, & Alberts, 5. C. (2019). Lifetime fitness in
wild female baboons: Trade-offs and individual heterogeneity
in quality. The American MNaturalist, 194(8), 745-759. https://doi.
org/10.10846/ 705810

Merlove, M. (2014). Individual heterogeneity and state dependence: From
George Biddell Airy to James Joseph Heckman. Beconomia: History,
Methodology., Philosophy, 4-3, 281-320. https://doiorg/10.4000/
oeconomia. B3

Paterson, J. T, Rotella, J. J, Link, W. A., & Garrott, R. {2018). Variation
in the vital rates of an Antarctic marine predator: The role of in-
dividual heterogeneity. Ecology, 99(10), 2385-2394. https://doi.
org/10.1002 fecy. 2481

Pigeon, G., Festa-Bianchet, M_ & Pelletier, F. (2017). Long-term fit-
ness consequences of early environment in a long-lived ungulate.
Proceedings of the Royal Society B: Biolegical Sciences, 284(1853),
20170222, https://doi.org/101098/rspb.2017.0222

Pledger, 5., Pollock, K. H_, & Morris, J. L. (2003). Open capture-recapture
models with heterogeneity: 1. Cormack-Jolly-S5eber model.
Biometrics, 57(4), 7TB6-794.

Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical
models using Gibbs sampling. Proceedings of the 3rd International
Workshop on Distributed Statistical Computing (DSC 2003), 2, 1-10.

R Core Team. [2018). R: A language and envirenment for statistical comput-
ing. R Foundation for Statistical Computing. Retrieved from https:/
www.R-project.org/

Riecke, T. V., Sedinger, B. 5., Williams, P. 1, Leach, A. G_, & Sedinger, 1.
5. (2019). Estimating correlations among demographic parameters
in population models. Ecology and Evolution, $(23), 13521-13531.
https://doiorg/10.1002/eced 5809

Smith, J. M. (1981). Does high fecundity reduce survival in Song
Sparrows? Evolution, 35{4), 1142-1148. hitps://doiorg/10.1111/
j-1558-53646 1981 th04985.x

Snyder, R. E., & Eliner, 5. P. (2018). Pluck or luck: Dioes trait variation or
chance drive variationin lifetime reproductive success? The American
Maturalist, 191(4), E?0-E107. https://doi.org/10.10848/6956125

Spearman, C. (1904). The proof and measurement of association be-
tween two things. International Journal of Epidemiology, 39(5), 1137-
1150. https://doi.org/10.1093/ijje/dyql?1

Stover, J. P, Kendall, B. E, & Fox, G. A. (2012). Demographic het-
erogeneity impacts density-dependent population dymamics.
Theoretical Ecology, 5(2), 297-309. https://doi.org/10.1007/51208
0-011-012%9-x

Tuljapurkar, 5., Steiner, U. K., & Orzack, 5. H. (200%). Dynamic hetero-
geneity in life histories. Ecology Letters, 12(1), 93-104. hitps://doi.
org/10.1111/].14461-0248. 200801262 x

wvan Daalen, 5., & Caswell, H. (2020). Variance as a life history out-
come: Sensitivity analysis of the contributions of stochasticity
and heterogeneity. Ecological Modelling, 417, 108856, https:/fdoi.
org/10.1014/j.ecolmodel 2019108856

wvan de Pol, M. (2012). Quantifying individual variation in reaction norms:
How study design affects the accuracy, precision and power of ran-
dom regression models. Methods in Ecology and Evolution, 2(2), 268-
280. https:/fdoi.org/10.1111/j.2041-2100{_2011.001560.x


https://doi.org/10.1111/j.0006-341X.2003.00089.x
https://doi.org/10.1111/j.0006-341X.2003.00089.x
https://doi.org/10.1111/j.2041-210X.2011.00175.x
https://doi.org/10.1111/j.2041-210X.2011.00175.x
https://doi.org/10.5281/zenodo.5552789
https://doi.org/10.5281/zenodo.5552789
https://doi.org/10.1002/ecm.1275
https://doi.org/10.1111/oik.04532
https://doi.org/10.1890/09-1903.1
https://doi.org/10.1890/09-1903.1
https://doi.org/10.1111/oik.04725
https://doi.org/10.1111/oik.04725
https://doi.org/10.1111/j.2041-210X.2012.00195.x
https://doi.org/10.1111/brv.12254
https://doi.org/10.1214/13-BA815
https://doi.org/10.1016/j.tree.2019.11.001
https://doi.org/10.7717/peerj.1226
https://doi.org/10.7717/peerj.1226
https://CRAN.R-project.org/package=jagsUI
https://CRAN.R-project.org/package=jagsUI
https://doi.org/10.1890/10-0183.1
https://doi.org/10.1111/j.1365-2656.2009.01542.x
https://doi.org/10.2307/3794
https://doi.org/10.1111/j.2041-210X.2010.00084.x
https://doi.org/10.1111/j.2041-210X.2010.00084.x
https://doi.org/10.1086/705810
https://doi.org/10.1086/705810
https://doi.org/10.4000/oeconomia.895
https://doi.org/10.4000/oeconomia.895
https://doi.org/10.1002/ecy.2481
https://doi.org/10.1002/ecy.2481
https://doi.org/10.1098/rspb.2017.0222
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1002/ece3.5809
https://doi.org/10.1111/j.1558-5646.1981.tb04985.x
https://doi.org/10.1111/j.1558-5646.1981.tb04985.x
https://doi.org/10.1086/696125
https://doi.org/10.1093/ije/dyq191
https://doi.org/10.1007/s12080-011-0129-x
https://doi.org/10.1007/s12080-011-0129-x
https://doi.org/10.1111/j.1461-0248.2008.01262.x
https://doi.org/10.1111/j.1461-0248.2008.01262.x
https://doi.org/10.1016/j.ecolmodel.2019.108856
https://doi.org/10.1016/j.ecolmodel.2019.108856
https://doi.org/10.1111/j.2041-210X.2011.00160.x

104 Methods in Ecology and Evolution

FAY ET AL

van de Pol, M., & Verhulst, 5. (2004). Age-dependent traits: A new
statistical model to separate within-and between-individual ef-
fects. The American Naoturalist, 167(5), 766-773. hittps://doi.
org/10.10846/503331

van Moordwijk, A. J., & de Jong, G. (1984). Acquisition and alloca-
tion of resources: Their influence on wvariation in life history
tactics. The American MNaturalist, 128(1), 137-142. hittps://doi.
org/10.10846/284547

Vaupel, J. W., & Yashin, A. |. (1985). Heterogeneity's ruses: Some sur-
prising effects of selection on population dynamics. The American
Statistician, 39(2), 176-185.

Vindenes, Y., Engen, 5., & Sather, B.-E. (2008). Individual heterogeneity
in vital parameters and demographic stochasticity. The American
Maturalist, 171(4), 455-4467. https://doi.org/10.10846/528965

Vindenes, Y., & Langangen, @. (2015). Individual heterogeneity in life his-
tories and eco-evolutionary dynamics. Ecology Letters, 18(5), 417-
432. hitps://doi.org/10.1111/ele 12421

Wilson, A. )., & Nussey, D. H. (2010). What is individual quality? An evo-
lutionary perspective. Trends in Ecology & Evelution, 25(4), 207-214.
https//doi.org/10.10146/].tree . 2009.10.002

Zhang, H., Vedder, O. Becker, P. H., & Bouwhuis, 5. (2015).
Contrasting between-and within-individual trait effects on

mortality risk in a long-lived seabird. Ecology, 96{1), 71-79. https//
doi.org/10.1890/14-0064.1

SUPPORTING INFORMATION
Additional supporting information may be found in the online ver-
sion of the article at the publisher's website.

How to cite this article: Fay, R., Authier, M., Hamel, 5_,
Jenouvrier, 5., van de Pol, M_, Cam, E., Gaillard, 1.-M., Yoccoz,
M. G., Acker, P, Allen, A, Aubry, L. M_, Bonenfant, C.,
Caswell, H., Coste, C. F. D, Larue, B., Le Coeur, C_, Gamelon,
M.. Macdonald, K. R., Moiron, M., . Seether, B-E. (2022).
Quantifying fixed individual heterogeneity in demographic
parameters: Performance of correlated random effects for
Bernoulli vanables. Methods in Ecology and Evolution, 13,
91-104. https://doi.org/10.1111/2041-210¥_13728



https://doi.org/10.1086/503331
https://doi.org/10.1086/503331
https://doi.org/10.1086/284547
https://doi.org/10.1086/284547
https://doi.org/10.1086/528965
https://doi.org/10.1111/ele.12421
https://doi.org/10.1016/j.tree.2009.10.002
https://doi.org/10.1890/14-0064.1
https://doi.org/10.1890/14-0064.1
https://doi.org/10.1111/2041-210X.13728



