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In this article we consider the numerical modeling and simulation via the phase field 
approach for coupled two-phase free flow and two-phase porous media flow of different 
densities and viscosities. The model consists of the Cahn-Hilliard-Navier-Stokes equations 
in the free flow region and the Cahn-Hilliard-Darcy equations in porous media that are 
coupled by several domain interface conditions. It is showed that the coupled model 
satisfies an energy law. Then we first propose a coupled unconditionally stable finite 
element method for solving this model and analyze the energy stability for this method. 
Furthermore, based on the ideas of pressure stabilization and artificial compressibility, we 
propose an unconditionally stable time stepping method that decouples the computation 
of the phase field variable, the velocity and pressure of free flow, the velocity and pressure 
of porous media, hence significantly reduces the computational cost. The energy stability 
of this decoupled scheme with the finite element spatial discretization is rigorously 
established. We verify numerically that our schemes are convergent and energy-law 
preserving. Numerical experiments are also performed to illustrate the features of two-
phase flows in the coupled free flow and porous media setting.

 2022 Elsevier Inc. All rights reserved.

1. Introduction

Multi-phase flow in superposed fluids and porous media has many applications in science and engineering. A prime 
example is the mixing of shallow groundwater and surface water in the hyporheic zone–a region of sediment and porous 
space beneath and alongside a stream bed. The hyporheic zone is a natural habitat for aquatic organisms and plays a 
major role in maintaining the self-purification function of streams. It is important to understand the hydrodynamic and 
biogeochemical processes of multiphase nature in this zone, cf. [24]. Other applications of multi-phase flow in superposed 
fluids and porous media include contaminant transport in karst aquifers [92,111,136], oil recovery in petroleum engineering 
[49,67,72,83,84,157,158], water management in PEM fuel cell technology [134], etc. Therefore it is of great importance to 
develop numerical models and efficient algorithms for simulating multi-phase flow in coupled free flow and porous media.
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As a solid fundamental work, the modeling of single-phase flow (such as water) in superposed free flow and porous 
media is usually based on the Stokes-Darcy type systems, which couple the free flow with the porous media flow with 
appropriate interface conditions, see [47,95,108,109,122,131,133,159] and many others. There have been abundant numerics 
for investigating this type single-phase model, such as finite element methods [5,18,22,110], discontinuous Galerkin method 
[28,37,65,86,89,103], domain decomposition methods [13,20,31,45,46,48,135], multigrid methods [3,17,114], and many oth-
ers [12,32,36,51,52,60,54,61,66,87,100,116,121,138,151,152]. Plenty of analysis works have also been carried out for the 
related models and numerical methods [4,6,7,21,23,26,27,71,82,106,112,94].

The study of multi-phase flow in this context is very challenging, and up to our knowledge no sharp interface model is 
available for coupled two-phase free flow and porous media flow. In recent years, diffuse interface model has become pop-
ular in numerical modeling of multi-phase flow [8,9,15,57,58,69,93,98,101,104,107,118,137,143,153,154]. In this approach 
the sharp interface of two immiscible fluids is replaced by a diffusive interface of finite thickness where different fluids 
mix due to chemical diffusion. The diffuse interface approach could describe topological transitions of interfaces and avoid 
the cumbersome procedure of interface tracking in numerical simulations, cf. [96,97]. A hybrid of the traditional two-phase 
flow model in porous media and the diffuse interface model in the free flow is proposed in [29]. In [78], a diffuse interface 
model, the Cahn-Hilliard-Stokes-Darcy model, was systematically derived for two-phase flow of matched/similar densities in 
the setting of coupled free flow and porous media. Well-posedness and numerical solvers for this model have been studied 
in [33,77,80], respectively. Generalization of the model to include inertia effect is done in [63]. However, all of these works 
are based on constant densities. Hence a diffuse interface model for two-phase coupled free flow and porous media flow of 
arbitrary densities and viscosities remains open.

There are mainly two types of approach on developing diffuse interface models for two-phase flow of different densities 
in a single domain. The first approach defines a mass-averaged velocity that leads to a quasi-incompressible Cahn-Hilliard 
fluid model [107]. The mass-averaged velocity is non-solenoidal inside the diffusive interface, and the resulting model is a 
high order, nonlinear, strongly coupled system that is difficult for numerical simulation [73]. The second approach adopts 
a volume-averaged velocity which is a solenoidal vector field everywhere, cf. [1,14,44]. Due to the divergence-free velocity, 
efficient legacy numerical solvers for incompressible fluid are applicable. However, the classical continuity equation for 
density is no longer valid if volume-averaged velocity is employed.

In this article we take an approximation approach for developing numerical models for coupled two-phase free flow and 
porous media flow, in the sense that we utilize the mass-averaged velocity but neglect the compressibility effect of the 
velocity field inside the thin diffusive interface. Such an approach has appeared in [128] for numerical modeling of two-
phase flow of variable densities in a single domain. On the domain interface between free flow region and porous media 
region, we consider the Beavers-Joseph-Saffman-Jones interface boundary condition [11] and the Lions interface condition 
which states that the free-flow stress in the normal direction including the total pressure (pressure plus dynamic pressure) 
is balanced by the pressure in porous media. Under these conditions, we show that our model, the Cahn-Hilliard-Navier-
Stokes-Darcy (CHNSD) system, satisfies an energy law.

The design of accurate and long-time stable time-stepping method for the Cahn-Hilliard-Navier-Stokes-Darcy system is 
very challenging for a number of reasons. The first challenge is the stiffness inherent to diffuse interface models (large tran-
sition over thin layers). There is a large body of literature on developing unconditionally stable time-marching algorithms 
for diffuse interface models. These methods include the convex-splitting strategy [10,50,53,68,74,76,79,99,120,125], the sta-
bilization method [59,85,129,141], the Invariant Energy Quadratization approach [35,139,146,148–150,156,160], the Scalar 
Auxiliary Variable approach [2,64,91,102,119,126,127], and zero-energy-contribution [144,145,147,155]. The second chal-
lenge is the coupling between the nonlinear Cahn-Hilliard equation and the fluid equations, and the coupling between fluid 
velocity and pressure. Operator-splitting is typically utilized to decouple the computation, cf. [33,76,130]. The third chal-
lenge is the coupling between free flow and porous media flow via domain interface conditions. Various efficient approaches 
have been proposed to minimize the computational cost for decoupling the two types of flows [19,33,47,55,95,114,115,124]. 
Convergence analysis for the phase field methods have also been carried out [10,42,43,56,58,105,141]. Moreover, we con-
sidered different densities and viscosities for two-phase flow, which further increases the difficulty of numerical algorithms. 
Therefore, it is not a trivial work to develop a long-time time-stepping numerical scheme for CHNSD system with different 
densities and viscosities.

For a solid foundation, in this paper we first propose and analyze a coupled unconditionally stable finite element method 
for solving the CHNSD system. Then it is of great importance to develop more efficient decoupled numerical algorithms 
while maintaining the unconditional stability for solving this system. A decoupled algorithm is proposed in [33] for solving 
the Cahn-Hilliard-Stokes-Darcy model in which the decoupling between the Cahn-Hilliard equation and fluid equations 
hinges upon the presence of time derivative in the Darcy equations. In our CHNSD model the governing equations for 
flow in porous media is the classical Darcy equations without the time derivative term. To accomplish the decoupling 
between phase field variable and Darcy velocity we resort to the technique of pressure stabilization from [76], which was 
originally designed for solving the Cahn-Hilliard-Darcy equations. Furthermore, it is desirable to separate the computation 
of velocity and pressure when solving the Navier-Stokes equations. Due to the presence of the nonlinear Lions domain 
interface condition, we adopt a special method of artificial compressibility [40,81] which avoids boundary conditions in the 
update of the pressure. We rigorously establish the unconditional long-time stability of the proposed algorithm and verify 
numerically that the fully discrete schemes are convergent and energy-law preserving. Ample numerical experiments are 
performed to illustrate the distinctive features of two-phase flows in superposed fluids and porous media.
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Fig. 1. A sketch of the porous median domain !m , fluid domain !c , and the interface ".

The rest of the article is as follows. In Section 2, we propose the Cahn-Hilliard-Navier-Stokes-Darcy model for two-phase 
flows of arbitrary densities in superposed fluid and porous media, we show that the model satisfies an energy law, and we 
also develop an unconditionally stable coupled time-stepping method for solving the model. In Section 3, we provide the 
fully discrete, decoupled numerical scheme and establish its energy stability. Numerical results are reported in Section 4.

2. The Cahn-Hilliard-Navier-Stokes-Darcy model

In this section, we propose the Cahn-Hilliard-Navier-Stokes-Darcy model (CHNSD) for two-phase flows of different den-
sities and viscosities in a fluid layer overlying porous media. We refer to [34,78,80] for a phase field model for two-phase 
flows of matched density in the coupled setting where the linear flow regime (Stokes equations) is assumed in the free flow 
region. We provide the weak formulation of this model and then show that the model obeys a dissipative energy law on 
the PDE level. We also introduce an unconditionally stable coupled time-stepping method for solving the CHNSD system.

2.1. The model

We consider the coupled CHNSD system on a bounded connected domain ! = !c
⋃

!m ⊂Rd, (d = 2, 3) consisting of a 
free-flow region !c and a porous media region !m . Let ∂!c and ∂!m denote the Lipschitz continuous boundaries of !c and 
!m with the outward unit normal vectors nc and nm to the fluid and the porous media regions, respectively. The interface 
between the two parts is denoted by ", i.e. " := ∂!m ∩ ∂!c . A typical two-dimensional geometry is illustrated in Fig. 1.

Let w j ( j = c, m) denote the chemical potential and M j ( j = c, m) denote a mobility constant related to the relaxation 
time scale. Let f (φ) be a polynomial of φ such that f (φ) = F ′(φ), where F (φ) represents the Helmholtz free energy and 
is commonly taken to be a non-convex function of φ for two immiscible flows. In this article, we consider the Ginzburg-
Landau double-well potential F (φ) = 1

4ε (φ2 − 1)2 with the width of mixing layer ε . ρ and ν are the density and viscosity 
of the mixture, denoted by

ρ = ρ1 − ρ2

2
φ + ρ1 + ρ2

2
, ν = ν1 − ν2

2
φ + ν1 + ν2

2
. (2.1)

The gravity vector is g = g j with the gravity constant g and the unit upward vector j. ρg denotes the external gravitational 
forces. Furthermore, γ and ε denote the elastic relaxation time and the capillary width, respectively, of the thin interfacial 
region. The order parameters (phase functions) are denoted by φ j ( j = c, m) in ! j ( j = c, m) which assume distinct values 
±1 respectively in the bulk phases away from the diffuse interface and varies smoothly inside it.

In the porous media region !m , consider the porous media flow governed by the following Cahn-Hilliard-Darcy (CHD) 
system [41]:

K−1um + ∇pm + φm∇wm = ρg, (2.2)

∇ · um = 0, (2.3)
∂φm

∂t
+ ∇ · (umφm) − ∇ · (Mm∇wm) = 0, (2.4)

wm + γ ε'φm − γ f (φm) = 0, (2.5)

where um is the fluid discharge rate in the porous media, K is the hydraulic conductivity tensor, pm is the hydraulic head, 
and the term φm∇wm is the induced extra stress from the free energy. Assuming external forces to be zero, and inserting 
Darcy’s law (2.2) into the mass conservation equation (2.3), we will consider the second order formulation as follows:
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−∇ · (K∇pm +Kφm∇wm) = 0. (2.6)

After solving this equation, one can recover the Darcy velocity via (2.2).
In the fluid region !c , consider the two phase fluid flows governed by a coupled Cahn-Hilliard-Navier-Stokes (CHNS) 

system with different densities and viscosities [128,130]:

ρ

(
∂uc

∂t
+ (uc · ∇)uc

)
− ∇ ·T (uc, pc) + φc∇wc = ρg, (2.7)

∇ · uc = 0, (2.8)
∂φc

∂t
+ ∇ · (ucφc) − ∇ · (Mc∇wc) = 0, (2.9)

wc + γ ε'φc − γ f (φc) = 0, (2.10)

where uc is the fluid velocity, pc is the kinematic pressure, ν is the kinematic viscosity of the fluid, T (uc, pc) = 2νD(uc) −
pcI is the stress tensor, D(uc) = (∇uc + ∇T uc)/2 is the deformation tensor, and I is the identity matrix.

We now introduce domain interface conditions in order to couple the CHD system (2.3)-(2.5) and CHNS system 
(2.7)-(2.10). The continuity of normal component of velocity is assumed across the interface

uc · nc = −um · nm. (2.11)

The balance of normal force over the interface is satisfied by

−nc · (T (uc, pc) · nc) + ρ

2
|uc|2 = pm. (2.12)

The Beavers-Joseph-Saffman-Jones (BJS) interface condition [11,88,123] holds as follows

−τ j · (T (uc, pc) · nc) = αν
√

d
√

trace(
∏

)
τ j · uc, (2.13)

where τ j ( j = 1, · · · , d − 1) are mutually orthogonal unit tangential vectors through the interface ", and 
∏

is the perme-
ability of the porous media.

Moreover, we assume the continuity conditions for the phase field function, the chemical potential, and their normal 
derivatives on the interface " [78,80],

φc = φm, (2.14)

wc = wm, (2.15)

∇φc · nc = −∇φm · nm, (2.16)

Mc∇wc · nc = −Mm∇wm · nm. (2.17)

For the boundary conditions and initial conditions, we consider

um · nm|"m = 0, ∇φm · nm|"m = 0, Mm∇wm · nm|"m = 0, (2.18)

on "m = ∂!m\", and

uc|"c = 0, ∇φc · nc|"c = 0, Mc∇wc · nc|"c = 0, (2.19)

on "c = ∂!c\". The initial conditions can be simply given as

φ j(0, x, y) = φ0
j (x, y), j = c,m, uc(0, x, y) = u0

c (x, y).

For the ease of presentation, we assume external forces ρg on the right side of equations (2.2) and (2.7) to be zero as these 
forces are given quantities which enter the system linearly. Hence, they do not have a qualitative effect on estimates or 
results. Without loss of generality, we also assume that K is a bounded, symmetric and uniformly positive definite matrix.

2.2. The weak formulation

In this subsection, we present the weak formulation of the CHNSD model system (2.2)-(2.17). Let Hm (!) be the classical 
Sobolev space with the norm ‖ · ‖m , where m is a nonnegative integer. The norm ‖ · ‖∞ denotes the essential supremum. 
For the sake of simplicity, we denote L2 norm ‖ · ‖0 by ‖ · ‖. Furthermore, we set V = [H1

0(!)]d = {v ∈ [H1(!)]d : v|∂! = 0}.
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Given v ∈ L1(! j) ( j = c, m), we denote its mean value by v̂ = |! j|−1 ∫
! j

v(x) dx. Then we define the space

L̇2(! j) := {v ∈ L2(! j) :
∫

! j

v dx = 0}. (2.20)

Let Ḣ1(! j) = H1(! j) ∩ L̇2(! j) be a Hilbert space with inner product (u, v)H1 =
∫
! j

∇u ·∇v dx due to the classical Poincaré 
inequality for functions with zero mean. We denote its dual space by (Ḣ1(! j))

′ . For the coupled CHNSD system, we intro-
duce the following spaces utilized throughout this paper

Xc = {v ∈ [H1(!c)]d | v = 0 on "c},
Xm = {v ∈ [H1(!m)]d | v · nm = 0 on "m},
X j,div = {v ∈ X j | ∇ · v = 0},
Q c = L2(!c), Q m = Ḣ1(!m),

Y j = H1(! j), Y = H1(!), j = c,m.

Define Pτ to be the projection onto the tangent space on ", i.e. Pτ u = ∑d−1
j=1(u · τ j)τ j . For the domain ! j ( j = c, m), (·, ·)

denotes the L2 inner product on the domain ! j decided by the subscript of integrated functions, and 〈·, ·〉 denotes the L2

inner product on the interface ". Then it is clear that

(um, vm) =
∫

!m

um vmdx, (uc, vc) =
∫

!c

uc vcdx, (u, v) =
∫

!m

um vmdx +
∫

!c

uc vcdx,

‖um‖ :=




∫

!m

|um|2dx





1
2

, ‖uc‖ :=




∫

!c

|uc|2dx





1
2

, ‖u‖2 =
∫

!m

|um|2dx +
∫

!c

|uc|2dx,

where um := u|!m and uc := u|!c . We also denote H ′ the dual space of H with the duality induced by the L2 inner product.
Different from the equal density case [62], it is difficult to eliminate the nonlinear convective term of Navier-Stokes 

equation in the proof of the energy law. Hence a new variable σ = √
ρ is introduced to replace ρ [70]. Using the mass 

conservation

∂ρ

∂t
+ ∇ · (ρuc) = 0, (2.21)

one can derive

σ
∂(σ uc)

∂t
= ρ

∂uc

∂t
+ 1

2
∂ρ

∂t
uc = ρ

∂uc

∂t
− 1

2
∇ · (ρuc)uc .

Therefore, (2.7) can be rewritten by replacing ρ ∂uc
∂t with σ ∂(σ uc)

∂t + 1
2 ∇ · (ρuc)uc as

σ
∂(σ uc)

∂t
+ ρ (uc · ∇) uc − ∇ ·T (uc, pc) + φc∇wc + 1

2
∇ · (ρuc)uc = 0. (2.22)

The application of this technique and the resulting (2.22) in the context of multiphase flows first appears in [129] by 
Shen and Yang. It is noted by Lowengrub and Truskinovsky in [107] that the mass-averaged velocity which maintains the 
continuity equation (2.21) is quasi-incompressible, that is, the mixture of two incompressible fluids is slightly compressible 
inside the diffusive interface. Hence the divergence-free condition in our model amounts to an approximation to the quasi-
incompressibility of the mass-averaged velocity. This adoption is for the convenience of numerical modeling so that classical 
numerical methods for incompressible fluid such as pressure-correction can be employed. The approximation can be justified 
from the point-of-view of sharp interface limit, in the sense that our model will recover the sharp interface model as the 
interfacial width goes to zero in the case of single domains (the sharp interface model for two-phase flow in the coupled 
setting remains open). It is also a common practice to adopt the simplification of incompressibility when the Mach number 
is small. We point out that one could use the divergence-free (solenoidal) volume-averaged velocity as is proposed in [1]
by Abels et al. In the formalism of volume-averaged velocity, the continuity equation (2.21) is no longer valid, and there is 
an extra advection term from the chemical flux in the momentum equation. The numerical modeling utilizing the volume-
averaged velocity is deferred to a future work.

In order to derive the weak formulation of CHNSD system, we firstly utilize three interface conditions (2.11)-(2.13) in the 
traditional way for the single-phase Navier-Stokes-Darcy model in the literature [65,75,82]. More precisely, taking L2 inner 
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product of (2.3) with q ∈ Q m , using Green’s formulation, applying (2.2) under assumption of zero external forces, boundary 
conditions (2.18), and interface conditions (2.11), we derive

(K∇pm,∇q) + (Kφm∇wm,∇q) − 〈uc · nc,q〉 = 0. (2.23)

Taking L2 inner product of (2.22) with v ∈ Xc , exploiting integration by parts and plugging (2.12)-(2.13) in, we obtain

(σ
∂(σ uc)

∂t
, v) + (ρ (uc · ∇) uc, v) + (2νD(uc),D(v)) − (pc,∇ · v) + (φc∇wc, v) + 1

2
(∇ · (ρuc)uc, v)

+〈pm − ρ

2
|uc|2, v · nc〉 + α

√
d

√
trace(

∏
)
〈ν Pτ uc, Pτ v〉 = 0. (2.24)

Taking L2 inner product of (2.8) with q ∈ Q c , we obtain:

(∇ · uc,q) = 0, ∀ q ∈ Q c . (2.25)

Unlike [63], where two Cahn-Hilliard equations are solved on !m and !c separately, we will solve Cahn-Hilliard equa-
tions on the whole domain ! inheriting the idea from [33]. Taking L2 inner product of (2.4) and (2.9) with ψ ∈ Y (on !m

and !c , respectively), employing Green’s formulation, plugging the boundary conditions and interface conditions for φ, and 
adding them together, one can easily derive the weak formulation:

(
∂φ

∂t
,ψ) − (uφ,∇ψ) + (M∇w,∇ψ) = 0, ∀ ψ ∈ Y . (2.26)

Similarly, taking (2.5) and (2.10) with ω ∈ Y (on !m and !c , respectively), employing Green’s formulation, plugging the 
boundary conditions and interface conditions for w , adding them together, one can easily derive the weak formulation:

(w,ω) − γ ε(∇φ,∇ω) − γ ( f (φ),ω) = 0, ∀ ω ∈ Y . (2.27)

Combining the above results of weak form, the weak formulation of the proposed Cahn-Hilliard-Navier-Stokes-Darcy is 
to find

(pm, uc, pc,φ, w) ∈ (Q m, Xc, Q c, Y , Y )

satisfying (2.23)-(2.27), where t ∈ [0, T ], T is a finite time, um ∈ L∞(0, T ; [L2(!m)]d) ∩ L2(0, T ; Xm), uc ∈ L∞(0, T ; [L2(!c)]d)
∩ L2(0, T ; Xc,div), ∂uc

∂t ∈ L2(0, T ; X ′
c,div), p j ∈ L2(0, T ; Q j) ( j = {c, m}), φ ∈ L∞(0, T ; Y ) ∩ L2(0, T ; H3(!)), ∂φ

∂t ∈ L2(0, T ; Y ′), 
w ∈ L2(0, T ; Y ).

Furthermore, based on (2.2), um is defined by

um = −K∇pm −Kφm∇wm. (2.28)

2.3. A dissipative energy law

In order to show that the above weak formulation obeys a dissipative energy law, we first note that the total energy of 
the coupled system is given by

E(t) = 1
2
‖σ uc‖2 + γ [ε

2
‖∇φ‖2 + (F (φ),1)]. (2.29)

Theorem 2.1. Assume (um, uc, φ) is a smooth solution to the initial boundary value problem (2.2)-(2.17). Then (um, uc, φ) satisfies 
the basic energy law

d
dt

E(t) = −D(t), (2.30)

where the energy dissipation D is given by

D(t) = ‖
√

2νD(uc)‖2 + M‖∇w‖2 + ‖
√
K−1um‖2 + α

√
d

√
trace(

∏
)
〈ν Pτ uc, Pτ uc〉. (2.31)

Proof. First, choose the test functions v = uc and q = pc in (2.24)-(2.25). Adding the resultants together, we get

1
2

d
dt

‖σ uc‖2 + (ρ(uc · ∇)uc, uc) + 1
2
(∇ · (ρuc)uc, uc) + (φc∇wc, uc)

+‖
√

2νD(uc)‖2 + α
√

d
√

trace(
∏

)
〈ν Pτ uc, Pτ uc〉 + 〈uc · nc, pm − ρ

2
|uc|2〉 = 0. (2.32)
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Using integration by parts, we can show that

((uc · ∇)v, v) + 1
2
((∇ · uc)v, v) = 1

2
〈uc · nc, v · v〉, ∀v ∈ Xc. (2.33)

Thanks to (2.33), we have

((ρuc · ∇)uc, uc) + 1
2
(∇ · (ρuc)uc, uc) = 1

2
〈ρuc · nc, uc · uc〉. (2.34)

Thus, applying (2.34) in (2.32), we obtain

1
2

d
dt

‖σ uc‖2 + (φc∇wc, uc) + ‖
√

2νD(uc)‖2 + 〈uc · nc, pm〉 + α
√

d
√

trace(
∏

)
〈ν Pτ uc, Pτ uc〉 = 0. (2.35)

Second, by taking q = pm in (2.23), and applying (2.28), we obtain

−(um,∇pm) − 〈uc · nc, pm〉 = 0. (2.36)

Taking the inner product of (2.28) with um , we have

‖
√
K−1um‖2 = −(∇pm, um) − (φm∇wm, um). (2.37)

Adding (2.36) and (2.37), we obtain

‖
√
K−1um‖2 + (φm∇wm, um) − 〈uc · nc, pm〉 = 0. (2.38)

By taking ψ = w and ω = − ∂φ
∂t in (2.26) and (2.27), respectively, and adding these two equations, we derive

γ [ε
2

d
dt

‖∇φ‖2 + d
dt

(F (φ),1)] + M‖∇w‖2 − (uφ,∇w) = 0. (2.39)

Summing the above resultants (2.35), (2.38) and (2.39) together, we obtain (2.30). This completes the proof of Theo-
rem 2.1. !

2.4. An unconditionally stable coupled time-stepping method

Unconditionally stable but coupled time-stepping methods can be readily constructed for solving the CHNSD system 
(2.23)-(2.27). Here we present such an example and discuss its energy stability.

We shall follow the stabilization technique [129,161,140] to handle the non-convex double-well potential F (φ). In order 
to ensure the stability of this approach, we assume that the potential function F (φ) satisfying the following condition: there 
exists a constant L such that

max
φ∈R

|F ′′(φ)| ≤ L. (2.40)

It is clear that the common Ginzburg-Landau double well potential F (φ) does not satisfy (2.40). Following [16,39,129], one 
truncates F (φ), still denoted by F (φ), such that (2.40) holds with L = 2

ε without affecting the accuracy of the solution. We 
point out that both the IEQ method and the SAV approach will lead to linear schemes with energy laws reformulated in 
terms of Lagrange multipliers.

Let tn, n = 0, 1 · · · M be a uniform partition of [0, T ] with .t = tn+1 − tn = T
M being the time step size. Then, we construct 

the following discrete time, and continuous space scheme in the weak form (2.23)-(2.27): Find

(pn+1
m , un+1

c , pn+1
c ,φn+1, wn+1) ∈ (Q m, Xc, Q c, Y , Y )

such that for all (q, v, q, ψ, ω) ∈ (Q m, Xc, Q c, Y , Y )

(K∇pn+1
m ,∇q) + (Kφn

m∇wn+1
m ,∇q) − 〈un+1

c · nc,q〉 = 0, ∀ q ∈ Q m, (2.41)

(σ n σ nun+1
c − σ n−1un

c

.t
, v) +

(
ρn (

un
c · ∇

)
un+1

c , v
)
+ (2νnD(un+1

c ),D(v))

− (pn+1
c ,∇ · v) + (φn

c ∇wn+1
c , v) + 1

2
(∇ · (ρnun

c )un+1
c , v) + 〈pn+1

m , v · nc〉

− 1
2
〈ρnun

c · un+1
c , v · nc〉 + α

√
d

√
trace(

∏
)
〈νn Pτ un+1

c , Pτ v〉 = 0, ∀ v ∈ Xc, (2.42)

7
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(∇ · un+1
c ,q) = 0, ∀ q ∈ Q c, (2.43)

(
φn+1 − φn

.t
,ψ) − (un+1φn,∇ψ) + (M∇wn+1,∇ψ) = 0, ∀ ψ ∈ Y , (2.44)

(wn+1,ω) − γ ε(∇φn+1,∇ω) − γ

ε
(φn+1 − φn,ω) − γ ( f (φn),ω) = 0, ∀ ω ∈ Y , (2.45)

where

un+1
m = −K∇pn+1

m −Kφn
m∇wn+1

m . (2.46)

We now proceed to prove the energy stability theorem as follows.

Theorem 2.2. The scheme (2.41)-(2.46) is unconditionally energy stable, in the sense that its approximation (un+1
c , φn+1) satisfies the 

following discrete energy law:

En+1 − En ≤ −Dn+1, (2.47)

where the discrete energy E is defined as

En = 1
2
‖σ n−1un

c ‖2 + γ [ε
2
‖∇φn‖2 + (F (φn),1)], (2.48)

and the energy dissipation Dn+1 is given by

Dn+1 = 1
2
‖σ nun+1

c − σ n−1un
c ‖2 + .t‖

√
2νnD(un+1

c )‖2 + .t‖
√
K−1un+1

m ‖2 + γ ε

2
‖∇(φn+1 − φn)‖2

+.tM‖∇wn+1‖2 + .t
α

√
d

√
trace(

∏
)
〈νn Pτ un+1

c , Pτ un+1
c 〉. (2.49)

Proof. We first consider the Cahn-Hilliard part. Taking ψ = .t wn+1 in (2.44), using the identity

2a(a − b) = a2 − b2 + (a − b)2, (2.50)

we get

(φn+1 − φn, wn+1) − .t(un+1φn,∇wn+1) + .tM‖∇wn+1‖2 = 0. (2.51)

We take ω = −(φn+1
c − φn

c ) in (2.45), use (2.50) and the Taylor expansion

F (φn+1) − F (φn) = f (φn)(φn+1 − φn) + F ′′(ξn)

2
(φn+1 − φn)2, (2.52)

to get

−(wn+1,φn+1 − φn) + γ ε

2
[‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇(φn+1 − φn)‖2] + γ

ε
‖φn+1 − φn‖2

+γ (F (φn+1) − F (φn),1) ≤ γ

2
|F ′′(ξn)|‖φn+1 − φn‖2. (2.53)

Then, combining (2.40), we derive

−(wn+1,φn+1 − φn) + γ ε

2
[‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇(φn+1 − φn)‖2] + γ (F (φn+1) − F (φn),1) ≤ 0. (2.54)

Adding (2.51) and (2.54) together, we get

γ ε

2
[‖∇φn+1‖2 − ‖∇φn‖2] + γ (F (φn+1) − F (φn),1) + .tM‖∇wn+1‖2

+γ ε

2
‖∇(φn+1 − φn)‖2 − .t(un+1φn,∇wn+1) ≤ 0. (2.55)

Then, we consider conduit part. Thanks to (2.33), we have

((ρnun
c · ∇)un+1

c , un+1
c ) + 1

2
(∇ · (ρnun

c )un+1
c , un+1

c ) = 1
2
〈ρnun

c · un+1
c , un+1

c · nc〉. (2.56)

By taking the test function v = .tun+1
c in (2.42), q = .tpn+1

c in (2.43), summing the resultants, applying (2.56) and (2.50), 
we obtain

8
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1
2
[‖σ nun+1

c ‖2 − ‖σ n−1un
c ‖2 + ‖σ nun+1

c − σ n−1un
c ‖2] + .t‖

√
2νnD(un+1

c )‖2 + .t(φn
c ∇wn+1

c , un+1
c )

+.t〈un+1
c · nc, pn+1

m 〉 + .t
α

√
d

√
trace(

∏
)
〈νn Pτ un+1

c , Pτ un+1
c 〉 = 0. (2.57)

Next, we consider the matrix part. Choosing q = .tpn+1
h in (2.41) and taking the inner product of (2.46) with v = .tun+1

m , 
then adding the resultants together, we derive

.t‖
√
K−1un+1

m ‖2 + .t(φn
m∇wn+1

m , un+1
m ) − .t〈un+1

c · nc, pn+1
m 〉 = 0. (2.58)

Summing (2.55), (2.57) and (2.58) together, we have

En+1 − En ≤ −1
2
‖σ nun+1

c − σ n−1un
c ‖2 − .t‖

√
2νnD(un+1

c )‖2 − .t‖
√
K−1un+1

m ‖2

− γ ε

2
‖∇(φn+1 − φn)‖2 − .tM‖∇wn+1‖2 − .t

α
√

d
√

trace(
∏

)
〈νn Pτ un+1

c , Pτ un+1
c 〉,

(2.59)

namely, we obtain (2.47). Therefore, the conclusion of Theorem 2.2 follows. !

Remark 2.1. The fully discrete scheme (2.41)-(2.46) is coupled, but linear. Hence the solvability of the linear system follows 
from the uniqueness which is in turn a consequence of the energy law.

3. An unconditionally stable decoupled numerical scheme

The CHNSD model is a typical complex multi-domain and multi-physics coupling problem. It not only involves two 
domains, i.e. free flow region and porous media, but also considers two-phase flow with different densities in respective 
regions. The coupled numerical scheme (2.41)-(2.46) presented in Section 2.4 will lead to a very large algebra system at each 
time step. Therefore, in order to save the computational cost, it is necessary to develop the decoupled numerical scheme 
that only needs to solve several much smaller algebra systems.

In this section, we will present an unconditionally stable decoupled numerical algorithms for solving the CHNSD model. 
Finite elements are used for the spatial discretization. Let 0h be a quasi-uniform triangulation of domain ! under mesh 
size h. We introduce the finite element spaces Yh ⊂ Y , Y jh ⊂ Y j , Xch ⊂ Xc and Q jh ⊂ Q j with j = c, m. Here we assume 
Xch ⊂ Xc and Q ch ⊂ Q c satisfy an inf-sup condition for the divergence operator in the following form: There exists a 
constant C > 0 independent of h such that the LBB condition

inf
0 1=qh

sup
0 1=vh

(∇ · vh,qh)

‖vh‖1
> C‖qh‖, ∀ qh ∈ Q ch, vh ∈ Xch

holds.
We first recall the following lemma for the estimate of the interface term from [33,113]:

Lemma 3.1. There exists a constant C such that, for v ∈ Xc , qmh ∈ Q mh

|〈v · nc,qmh〉| ≤ C‖v‖Xdiv ‖∇qmh‖, (3.1)

where ‖v‖2
Xdiv

= ‖v‖2 + ‖∇ · v‖2 .

In order to decouple the velocity and pressure in the Navier-Stokes equations, we follow the idea of artificial compress-
ibility method [38,40,81,132,142] and replace the divergence-free condition by

∇ · v − δpt = 0,

where δ is an artificial compression parameter such that the pressure can be solved explicitly. We propose the following 
decoupled, unconditionally stable, linear scheme:
Step 1. Find (φn+1

h , wn+1
h ) ∈ Yh × Yh , such that

(
φn+1

h − φn
h

.t
,ψh) − (ūn+1

h φn
h ,∇ψh) + (M∇wn+1

h ,∇ψh) = 0, ∀ ψh ∈ Yh, (3.2)

(wn+1
h ,ωh) − γ ε(∇φn+1

h ,∇ωh) − γ

ε
(φn+1

h − φn
h ,ωh) − γ ( f (φn

h ),ωh) = 0, ∀ ωh ∈ Yh, (3.3)

where

9
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ūn+1
h =

{
un

c1, x ∈ !c,

un+1
mh , x ∈ !m,

and un
c1 and un+1

mh are defined as follows

un
c1 = un

ch − 1
ρn .tφn

ch∇wn+1
ch , (3.4)

un+1
mh = −K∇pn

mh −Kφn
mh∇wn+1

mh . (3.5)

Step 2. Find pn+1
mh ∈ Q mh , such that

(K∇pn+1
mh ,∇qh) + (Kφn

mh∇wn+1
mh ,∇qh) + β.t(∇pn+1

mh ,∇qh) − 〈un
ch · nc,qh〉 = 0, ∀ qh ∈ Q mh. (3.6)

Step 3. Find un+1
ch ∈ Xch , such that

(
ρ̄n+1un+1

ch − ρnun
ch

.t
, vh) +

(
ρn (

un
ch · ∇

)
un+1

ch , vh

)
+ (2νnD(un+1

ch ),D(vh)) + (φn
ch∇wn+1

ch , vh)

−(2pn
ch − pn−1

ch ,∇ · vh) + 1
2
(∇ · (ρnun

ch)un+1
ch , vh) + ξ

.t
(∇ · (un+1

ch − un
ch),∇ · vh) (3.7)

+〈pn+1
mh , vh · nc〉 − 1

2
〈ρnun

ch · un+1
ch , vh · nc〉 + α

√
d

√
trace(

∏
)
〈νn Pτ un+1

ch , Pτ vh〉 = 0, ∀ vh ∈ Xch,

with ρ̄n+1 = ρn+1 + ρn

2
.

Step 4: Find pn+1
ch ∈ Q ch , such that

(pn+1
ch − pn

ch,qh) = − ζ

.t
(∇ · un+1

ch ,qh), ∀ qh ∈ Q ch, (3.8)

with ζ = 1
4 min{ρ1, ρ2}.

Remark 3.1. The term β.t(∇pn+1
mh , ∇qh) in (3.6) is a stabilization term [33] in order to deduce the unconditional stability 

for the linearized numerical scheme. The parameter β depends only on the geometry of !.

Remark 3.2. The term − ξ
.t ∇(∇ · (un+1

ch − un
ch)) in (3.7) is a term to ensure the energy stability of continuity equation [25,

117]. Thus, one can derive the stability of numerical method under some approximate constant for ξ .

Remark 3.3. The scheme (3.2)-(3.8) is a decoupled, linear scheme. Indeed, (3.2)-(3.3), (3.6), (3.7) and (3.8) are decoupled 
linear elliptic equations for φn+1

h , wn+1
h , pn+1

mh , un+1
ch and pn+1

ch . Therefore, at each time step, one only needs to solve a 
sequence of linear equations which can be solved very efficiently.

Now we discuss the unique solvability of scheme (3.2)-(3.8). Since that the operator splitting technique decouples Cahn-
Hilliard equation and fluid equations, the unique solvability of linear system (3.6) and (3.8) are obvious. We only focus on 
the well-posedness according with (3.2)-(3.3) and (3.7), respectively. The system (3.2)-(3.3) and (3.7) can be reformulated 
as follows: Find (φh, wh) ∈ Yh × Yh, uh ∈ Xch via, for ∀ψh ∈ Yh , ωh ∈ Yh , vh ∈ Xch

(φh,ψh) + .t(M∇wh,∇ψh) = ( f1,ψh), (3.9)

−(wh,ωh) + γ ε(∇φh,∇ωh) + γ

ε
(φh,ωh) = ( f2,ωh), (3.10)

(ρ̄n+1uch, vh) + .t
(
ρn (

un
ch · ∇

)
uch, vh

)
+ .t(2νnD(uch),D(vh)) + .t

2
(∇ · (ρnun

ch)uch, vh) (3.11)

+ξ(∇ · un+1
ch ,∇ · vh) − .t

2
〈ρnun

ch · uch, vh · nc〉 + .t
α

√
d

√
trace(

∏
)
〈νn Pτ uch, Pτ vh〉 = ( f 3, vh),

where f1, f2, f 3 include all explicit terms involving in previous time steps.

Lemma 3.2. The linear system (3.9)-(3.10) admits a unique solution (φh, wh) ∈ Yh × Yh.

10
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Proof. The system (3.9)-(3.10) can be denoted as

(AU h, V h) = (B, V h), (3.12)

where A is a linear operator, U h = (φh, wh)T , V h = (ωh, ψh)T , U h, V h ∈ Yh ×Yh , the subscript T refers the matrix transpose.
Applying trace theorem, for any U h = (φh, wh)T and V h = (wh, ψh)T , we have

(AU h, V h) ≤ C1
(
‖φh‖H1 + ‖wh‖H1

)
(‖ψh‖H1 + ‖ωh‖H1), (3.13)

where constant C1 depends on .t , M , γ and ε , which implies the boundedness of operator A.
On the other hand, we can easily derive

(AU h, U h) = γ ε‖∇φh‖2 + γ

ε
‖φh‖2 + .t‖

√
M∇wh‖2 ≥ C2(‖φh‖2

H1 + ‖wh‖2
H1), (3.14)

where constant C2 depends on .t , M , γ and ε , which means coercive of A.
From Lax-Milgram theorem, we conclude that the linear system (3.9)-(3.10) admits a unique solution (φh, wh). !

Lemma 3.3. The linear system (3.11) admits a unique solution uh ∈ Xch .

Proof. We rewrite (3.11) as the following equivalent form

(Luch, vh) = ( f 3, vh), (3.15)

with the linear operator L. Then, one can easily obtain, for any vh ,

(Luch, vh) ≤ C3‖uch‖H1‖vh‖H1 , (3.16)

and

(Luch, uch) = ‖uch‖2 + .t‖
√

2νnD(uch)‖2 + ξ‖∇ · uch‖2 + .t〈νn Pτ uch, Pτ uch〉, (3.17)

where (2.56) is used, C3 depends on .t , ξ , ν , ρ and ‖un
ch‖∞ . Thus, the unique solvability of (3.11) is proven. !

Following the above lemmas, we can derive the existence and uniqueness of proposed decoupled algorithm (3.2)-(3.8).

Theorem 3.1. The numerical scheme (3.2)-(3.8) admits a unique solution (pn+1
mh , un+1

ch , pn+1
ch , φn+1

h , wn+1
h ).

We now prove the energy stability theorem as follows.

Theorem 3.2. Let (pn+1
mh , un+1

ch , pn+1
ch , φn+1

h ) be a smooth solution to the initial boundary value problem (3.2)-(3.8). Then the approx-
imation (pn+1

mh , un+1
ch , pn+1

ch , φn+1
h ) satisfies the following modified discrete energy law:

En+1 − En ≤ −Dn+1, (3.18)

where the modified discrete energy En is defined as

En = En + ξ

2
‖∇ · un

ch‖2 + .t2

2ζ
‖pn

ch‖2 + 1
2
.t‖

√
K∇pn

mh‖2, (3.19)

with

En =
∫

!c

1
2
|σ nun

ch|2dx + γ

∫

!

[ε
2
|∇φn

h |2 + F (φn
h )]dx,

and the energy dissipation Dn+1 is given by

Dn+1 = .t‖
√

2νnD(un+1
ch )‖2 + .tM‖∇wn+1

h ‖2 + γ ε

2
‖∇φn+1

h − ∇φn
h‖2 + .t2

2ζ
‖pn

ch − pn−1
ch ‖2

+1
4
.t‖

√
K∇(pn+1

mh − pn
mh)‖2 + .t

α
√

d
√

trace(
∏

)
〈νn Pτ un+1

ch , Pτ un+1
ch 〉. (3.20)

11
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Proof. We firstly consider the full discretization (3.2) and (3.3) for Cahn-Hilliard equation on whole domain !. Taking 
ψh = .t wn+1

h in (3.2), we get

(φn+1
h − φn

h , wn+1
h ) − .t(ūn+1

h φn
h ,∇wn+1

h ) + .tM‖∇wn+1
h ‖2 = 0. (3.21)

We take ωh = −(φn+1
h − φn

h ) in (3.3), the equality (2.50) and the Taylor expansion (2.52) to get

−(wn+1
h ,φn+1

h − φn
h ) + γ ε

2
[‖∇φn+1

h ‖2 − ‖∇φn
h‖2] + γ (F (φn+1

h ) − F (φn
h ),1) + γ

ε
‖φn+1

h − φn
h‖2

+γ ε

2
‖∇φn+1

ch − ∇φn
ch‖2 ≤ γ

2
|F ′′(ξn)|‖φn+1

h − φn
h‖2. (3.22)

Then, combining (2.40) and (3.22), we derive

−(wn+1
h ,φn+1

h − φn
h ) + γ ε

2
[‖∇φn+1

h ‖2 − ‖∇φn
h‖2] + γ (F (φn+1

h ) − F (φn
h ),1) ≤ −γ ε

2
‖∇φn+1

h − ∇φn
h‖2. (3.23)

Adding (3.21) and (3.23), we obtain

γ ε

2
[‖∇φn+1

h ‖2 − ‖∇φn
h‖2] + γ (F (φn+1

h ) − F (φn
h ),1) − .t(ūn+1

h φn
h ,∇wn+1

h )

≤ −γ ε

2
‖∇φn+1

h − ∇φn
h‖2 − .tM‖∇wn+1

h ‖2. (3.24)

Next, we discuss the conduit part. Taking the test function vh = .tun+1
ch in (3.7), combining (2.56), (3.4), and the identity 

(2.50), we obtain

1
2
[‖σ n+1un+1

ch ‖2 − ‖σ nun
c1‖2 + ‖σ n

(
un+1

ch − un
c1

)
‖2] + .t‖

√
2νnD(un+1

ch )‖2

+ξ

2
[‖∇ · un+1

ch ‖2 − ‖∇ · un
ch‖2 + ‖∇ · (un+1

ch − un
ch)‖2]

+.t(pn+1
ch − 2pn

ch + pn−1
ch ,∇ · un+1

ch ) − .t(pn+1
ch ,∇ · un+1

ch )

+.t〈un+1
ch · nc, pn+1

mh 〉 + .t
α

√
d

√
trace(

∏
)
〈νn Pτ un+1

ch , Pτ un+1
ch 〉 = 0. (3.25)

Taking qh = .t2

ζ
(pn+1

ch − 2pn
ch + pn−1

ch ) in (3.8), and using (2.50), we have

.t2

2ζ
[‖pn+1

ch − pn
ch‖2 − ‖pn

ch − pn−1
ch ‖2 + ‖pn+1

ch − 2pn
ch + pn−1

ch ‖2] = .t(∇ · un+1
ch , pn+1

ch − 2pn
ch + pn−1

ch ). (3.26)

Taking qh = −.t2

ζ
pn+1

ch in (3.8), and using (2.50), we obtain

.t2

2ζ
[‖pn+1

ch ‖2 − ‖pn
ch‖2 + ‖pn+1

ch − pn
ch‖2] = −.t(∇ · un+1

ch , pn+1
ch ). (3.27)

Adding (3.26) and (3.27) to get

.t2

2ζ
[‖pn+1

ch ‖2 − ‖pn
ch‖2 + ‖pn

ch − pn−1
ch ‖2 − ‖pn+1

ch − 2pn
ch + pn−1

ch ‖2]

= .t(∇ · un+1
ch , pn+1

ch − 2pn
ch + pn−1

ch ) − .t(∇ · un+1
ch , pn+1

ch ). (3.28)

Now, we estimate the term ‖pn+1
ch − 2pn

ch + pn−1
ch ‖2 on the right hand side of (3.28). Taking the difference of (3.8) at step 

tn+1 and step tn to derive,

pn+1
ch − 2pn

ch + pn−1
ch = − ζ

.t
∇ · (un+1

ch − un
ch), (3.29)

which implies

.t2

2ζ
‖pn+1

ch − 2pn
ch + pn−1

ch ‖2 ≤ ζ

2
‖∇ · (un+1

ch − un
ch)‖2. (3.30)
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Adding (3.25), (3.28) and (3.30), we obtain

1
2
[‖σ n+1un+1

ch ‖2 − ‖σ nun
c1‖2 + ‖σ n

(
un+1

ch − un
c1

)
‖2] + .t‖

√
2νnD(un+1

ch )‖2 + .t2

2ζ
[‖pn+1

ch ‖2 − ‖pn
ch‖2]

+ξ

2
[‖∇ · un+1

ch ‖2 − ‖∇ · un
ch‖2 + ‖∇ · (un+1

ch − un
ch)‖2] + .t2

2ζ
‖pn

ch − pn−1
ch ‖2

+.t〈un+1
ch · nc, pn+1

mh 〉 + .t
α

√
d

√
trace(

∏
)
〈νn Pτ un+1

ch , Pτ un+1
ch 〉

≤ ζ

2
‖∇ · (un+1

ch − un
ch)‖2. (3.31)

We rewrite (3.4) as

ρn(un
c1 − un

ch)

.t
= −φn

ch∇wn+1
ch , (3.32)

and take the inner product of (3.32) with .tun
c1 to obtain by using the identity (2.50)

1
2
[‖σ nun

c1‖2 − ‖σ nun
ch‖2 + ‖σ n(un

c1 − un
ch)‖2] = −.t(φn

ch∇wn+1
ch , un

c1). (3.33)

Adding (3.31) and (3.33), we obtain

1
2
[‖σ n+1un+1

ch ‖2 − ‖σ nun
ch‖2 + ‖σ n(un

c1 − un
ch)‖2 + ‖σ n(un+1

ch − un
c1)‖2] + .t2

2ζ
[‖pn+1

ch ‖2 − ‖pn
ch‖2]

+ξ

2
[‖∇ · un+1

ch ‖2 − ‖∇ · un
ch‖2] + ξ

2
‖∇ · (un+1

ch − un
ch)‖2 + .t2

2ζ
‖pn

ch − pn−1
ch ‖2

+.t‖
√

2νnD(un+1
ch )‖2 + .t

α
√

d
√

trace(
∏

)
〈νn Pτ un+1

ch , Pτ un+1
ch 〉 + .t〈un+1

ch · nc, pn+1
mh 〉

≤ −.t(φn
ch∇wn+1

ch , un
c1) + ζ

2
‖∇ · (un+1

ch − un
ch)‖2. (3.34)

Then, we study the matrix part. We take the inner product of (3.5) with .tun+1
mh to get

.t‖
√
K−1un+1

mh ‖2 = .t(∇(pn+1
mh − pn

mh), un+1
mh ) − .t(∇pn+1

mh , un+1
mh ) − .t(φn

mh∇wn+1
mh , un+1

mh ). (3.35)

From (3.5), (3.6) can be written as

−(un+1
mh ,∇qh) + (K∇(pn+1

mh − pn
mh),∇qh) + β.t(∇pn+1

mh ,∇qh) − 〈un
ch · nc,qh〉 = 0. (3.36)

We take qh = .tpn+1
mh in (3.36) and utilize the identity (2.50) to obtain

−.t(un+1
mh ,∇pn+1

mh ) + 1
2
.t[‖

√
K∇pn+1

mh ‖2 − ‖
√
K∇pn

mh‖2 + ‖
√
K∇(pn+1

mh − pn
mh)‖2] + β.t2‖∇pn+1

mh ‖2

= .t〈un
ch · nc, pn+1

mh 〉. (3.37)

Taking the sum of (3.35) and (3.37), we get

.t‖
√
K−1un+1

mh ‖2 + 1
2
.t[‖

√
K∇pn+1

mh ‖2 − ‖
√
K∇pn

mh‖2 + ‖
√
K∇(pn+1

mh − pn
mh)‖2] + β.t2‖∇pn+1

mh ‖2

= .t(∇(pn+1
mh − pn

mh), un+1
mh ) − .t(φn

mh∇wn+1
mh , un+1

mh ) + .t〈un
ch · nc, pn+1

mh 〉. (3.38)

Now, we estimate the term (∇(pn+1
mh − pn

mh), un+1
mh ). Combining

.t|(∇(pn+1
mh − pn

mh), un+1
mh )| ≤ .t‖

√
K−1un+1

mh ‖2 + 1
4
.t‖

√
K∇(pn+1

mh − pn
mh)‖2, (3.39)

then, we obtain from (3.38)

1
2
.t[‖

√
K∇pn+1

mh ‖2 − ‖
√
K∇pn

mh‖2] + 1
4
.t‖

√
K∇(pn+1

mh − pn
mh)‖2 + β.t2‖∇pn+1

mh ‖2

≤ −.t(φn
mh∇wn+1

mh , un+1
mh ) + .t〈un

ch · nc, pn+1
mh 〉. (3.40)
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Adding (3.24), (3.34) and (3.40) together, we obtain

1
2
[‖σ n+1un+1

ch ‖2 − ‖σ nun
ch‖2] + γ ε

2
[‖∇φn+1

h ‖2 − ‖∇φn
h‖2] + γ (F (φn+1

h ) − F (φn
h ),1)

+.t2

2ζ
[‖pn+1

ch ‖2 − ‖pn
ch‖2] + ξ

2
[‖∇ · un+1

ch ‖2 − ‖∇ · un
ch‖2] + ξ

2
‖∇ · (un+1

ch − un
ch)‖2

+1
2
.t[‖

√
K∇pn+1

mh ‖2 − ‖
√
K∇pn

mh‖2] + .t2

2ζ
‖pn

ch − pn−1
ch ‖2 + 1

4
.t‖

√
K∇(pn+1

mh − pn
mh)‖2

+.t‖
√

2νnD(un+1
ch )‖2 + .tM‖∇wn+1

h ‖2 + β.t2‖∇pn+1
mh ‖2 + γ ε

2
‖∇φn+1

h − ∇φn
h‖2

+1
2
[‖σ n(un

c1 − un
ch)‖2 + ‖σ n(un+1

ch − un
c1)‖2] + .t

α
√

d
√

trace(
∏

)
〈νn Pτ un+1

ch , Pτ un+1
ch 〉

≤ ζ

2
‖∇ · (un+1

ch − un
ch)‖2 + .t〈(un

ch − un+1
ch ) · nc, pn+1

mh 〉. (3.41)

Now, we estimate the last interface term in the above equation. Using Lemma 3.1 and the triangle inequality,

.t|〈
(

un
ch − un+1

ch

)
· nc, pn+1

mh 〉| ≤ C.t‖un
ch − un+1

ch ‖Xdiv ‖∇pn+1
mh ‖

≤ 1
4

min{ρ1,ρ2}‖un
ch − un+1

ch ‖2
Xdiv

+ C̃.t2‖∇pn+1
mh ‖2

= 1
4

min{ρ1,ρ2}‖un
ch − un+1

ch ‖2 + 1
4

min{ρ1,ρ2}‖∇ · (un
ch − un+1

ch )‖2

+C̃.t2‖∇pn+1
mh ‖2

≤ 1
4
‖σ n(un+1

ch − un
ch)‖2 + 1

4
min{ρ1,ρ2}‖∇ · (un

ch − un+1
ch )‖2

+C̃.t2‖∇pn+1
mh ‖2. (3.42)

On the other hand, we derive from the triangle inequality that

−1
2
[‖σ n(un

c1 − un
ch)‖2 + ‖σ n(un+1

ch − un
c1)‖2] ≤ −1

4
‖σ n(un+1

ch − un
ch)‖2. (3.43)

Adding (3.41), (3.42) and (3.43), we obtain

En+1 − En ≤ −.t‖
√

2νnD(un+1
ch )‖2 − .tM‖∇wn+1

h ‖2 − .t2

2ζ
‖pn

ch − pn−1
ch ‖2 − 1

4
.t‖

√
K∇(pn+1

mh − pn
mh)‖2

−γ ε

2
‖∇φn+1

h − ∇φn
h‖2 − .t

α
√

d
√

trace(
∏

)
〈νn Pτ un+1

ch , Pτ un+1
ch 〉

−(β − C̃).t2‖∇pn+1
mh ‖2 − 1

2
(ξ − ζ − 1

2
min{ρ1,ρ2})‖∇ · (un+1

ch − un
ch)‖2. (3.44)

If we now impose ξ ≥ ζ + 1
2 min{ρ1, ρ2} and β ≥ 2C̃ which only depends on ρ1, ρ2, and the geometry of !m and !c , 

then one leads to the energy stability and complete the proof of Theorem 3.2. !

Remark 3.4. We remark here that similar ideas can be adopted to derive a numerical scheme with the second-order accuracy 
with the help of works [10,30,43,105,125,141]. However, due to the multi-region and multi-physical features of CHNSD 
model with different densities and viscosities, it will be technically complicated to develop fully decoupled, second-order in 
time, linearized and unconditionally stable numerical schemes, such as the careful treatment of decoupling of fluid equation 
and phase field equation as well as the rigorous analysis of the energy stability. Therefore, we leave it for the future work.

4. Numerical results

In this section, we will use three numerical examples to illustrate the features of proposed model and numerical meth-
ods. Since the main goal of this paper is to develop decoupled numerical scheme for simulating CHNSD system and the 
results of coupled time-stepping scheme (2.41)-(2.46) are similar, we omit the numerical results of the coupled numerical 
scheme. The first example is provided to illustrate the convergence and accuracy. The second test is designed to verify 
that the proposed algorithm (3.2)-(3.8) obeys the energy dissipation of the CHNSD model (2.2)-(2.17). The last experiment 
presents the simulation of a lighter bubble rising through the interface driven by buoyancy forces. For all examples, we 
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Table 1
The order of convergence in space for error norms for uc and pc .

h ‖euc ‖ order ‖euc ‖1 order ‖epc ‖ order

1/4 6.3163E-3 5.4761E-2 1.0353E-1
1/8 6.7679E-4 3.22 6.5007E-3 3.07 3.6981E-2 1.84
1/16 8.6286E-5 2.97 1.2233E-3 2.41 1.0093E-2 1.87
1/32 1.2159E-5 2.83 3.0139E-4 2.02 2.6242E-3 1.94

Table 2
The order of convergence in space for error norms for φ and pm .

h ‖eφ‖ order ‖eφ‖1 order ‖epm ‖ order ‖epm ‖1 order

1/4 2.9077E-2 5.8721E-1 9.9369E-2 8.2818E-1
1/8 3.2129E-3 3.18 1.5886E-1 1.89 2.6547E-2 1.90 4.5968E-1 0.849
1/16 3.6121E-4 3.15 4.0798E-2 1.96 5.8678E-3 2.18 2.3371E-1 0.976
1/32 4.3424E-5 3.06 1.0277E-2 1.99 1.4238E-3 2.04 1.1772E-1 0.989

employ the celebrated Taylor-Hood elements for the Navier-Stokes equation and linear elements for the Darcy equation. For 
the single Cahn-Hilliard equation in the coupling free flow and porous media, we consider the quadratic elements.

Example 1: Convergence and accuracy. Consider the CHNSD model on ! = [0, 1] × [0, 2] where !m = [0, 1] × [0, 1] and 
!c = [0, 1] × [1, 2]. Set ν = 1, ρ1 = 1, ρ2 = 3, Mm = 1, γ = 1, ε = 1, Mc = 1 , K = I, β = 5, and ξ = 5. The simulation is 
performed out at terminational time T = 0.2. The exact solutions are chosen as:






φ = g(x)g(y) cos(πt),
pm = g(x)gm(y) cos(πt),
uc = [x2(y − 1)2, − 2

3 x(y − 1)3]T cos(πt),
pc = cos(πt)g(x)gc(y),

(4.1)

where g(x) = 16x2(x − 1)2, g(y) = 16y2(y − 2)2, gm(y) = 16y2(y − 1)2, gc(y) = 16(y − 1)2(y − 2)2. The boundary condition 
functions and the source terms can be computed based on the exact solutions.

To examine the accuracy of proposed scheme, we compute the pointwise convergence rate and define the rate of con-
vergence in space as follows

orderh =
log(|ev,h j |/|ev,h j+1 |)

log(h j/h j+1)
=

log(|vn
h j

− v(tn)|/|vn
h j+1

− v(tn)|)
log(h j/h j+1)

, v = φ, pm, uc, pc,

where | · | denotes the L2 and H1 norm errors with ‖ · ‖ and ‖ · ‖1, vh j is the numerical solution with spatial mesh size 
h j . Tables 1 and 2 list the L2- and H1-norm errors of the phase variable, pressure and velocity of the designed decoupled 
linearized numerical schemes, in which a uniform time partition .t = 2.5 ×10−4 is used. The numerical results in these two 
tables show that convergence rates in space are consistent with the optimal convergence rates expected for the proposed 
scheme.

To illustrate the order of convergence with respect to the time step .t , we introduce the following convergence rate for 
L2-norm error,

order.t = log(‖v.t
h − v.t/2

h ‖/‖v.t/2
h − v.t/4

h ‖)
log(2)

, v = φ, pm, uc.

The L2-norm errors are shown in Fig. 2 with fixing spatial mesh size h = 1
32 and varying partition .t = 0.02/2k , k =

0, 1, . . . , 5, which indicates that the proposed numerical method can achieve the first order accuracy in time for variables 
φ, pm and uc .

For the diffuse interface problem, adaptive mesh refinement is preferable for the computation of different dynamics, 
due to the fact at least four grid elements are required for accuracy over the width of interface [90]. Therefore, we use 
an adaptive mesh strategy in this simulation. In the following numerical experiments, the root-level mesh is taken to be 
uniform with h = 1

32 . Starting with this base mesh, mesh refinement is performed.

Example 2: Shape relaxation and energy dissipation. We consider the evolution of a square shaped circle bubble in the 
domain ! = [0, 1] × [0, 2] with !c = [0, 1] × [0, 1] and !m = [0, 1] × [1, 2]. The parameters are chosen M = 0.1, γ =
0.01, ε = 0.02, ν = 1 and K = 0.05I. The initial velocity, pressure and chemical potential are set to zero.

A uniform time partition with the time step-size .t = 0.005 is used in this simulation. Fig. 3 shows the initial shape 
of the bubble. Fig. 4 shows the dynamic of the square relaxing to a circular shape under the effect of surface tension for 
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Fig. 2. Log-Log plots of the L2 error norms with different time step size .t .

Fig. 3. Contour plots of the initial bubble.

the density ratio ρ1 : ρ2 = 1 : 50 by using the proposed decoupled numerical method. The corresponding relative discrete 
energy .E = En/E0 is presented in Fig. 5. We can easily observe that the discrete energy is non-increasing for different 
density ratio cases, which is consistent with the theoretical result, and validates the interface conditions (2.14)-(2.17).

Example 3: Buoyancy-driven flow. In this experiment, we simulate a light bubble rises in a heavier medium in order to 
validate the efficiency of proposed numerical method with respect to different density variations. Here, the karst geometry 
is modelled by a long tube ! = [0, 1] × [0, 2] with the conduit !c = [0, 1] × [0, 1] and porous media !m = [0, 1] × [1, 2]. 
The interface boundary is at [0, 1] × {1}. We set M = 0.01, γ = 0.01, ε = 0.01, ν = 1, and K = 0.05I. The initial velocity 
and pressure are set to be zero and initial phase function is given by

φ0
c (x, y) = tanh

(
(0.2 −

√
(x − 0.5)2 + (y − 0.5)2)/(

√
2ε)

)
. (4.2)

Fig. 6 shows the initial position of the bubble.
We test two cases with density ratios 1 : 5 and 1 : 50, respectively. Fig. 7 shows several snapshots of the droplet passing 

through the interface under the influence of buoyancy with a density ratio of ρ1 : ρ2 = 1 : 5. As the bubble rises in the 
conduit domain, it deforms into an ellipsoid. When it passes through the domain interface, one can clearly see an interface 
separating the bubble in conduit and in the porous medium. The shape evolution of the rising bubble is shown in Fig. 8
for the density ratio ρ1 : ρ2 = 1 : 50. We can observe that the droplet quickly deforms into a heart-like shape as compared 
with those in Fig. 7. As the droplet moves through the interface, the interface separates the bubble in conduit and matrix as 
presented in Figs. 7(c) and 8(c). The smooth and excepted shape change of the droplet further validates physically faithful 
interface conditions when the droplet across the interface. The tail is seen as it leaves the interface in Figs. 7(f) and 8(d). 
The tail is eventually smoothed out by the surface tension effect when it completely enters the porous medium as shown 
in Figs. 7(h) and 8(f).

Additionally, we plot typical mesh refinement in Figs. 6(b) and 9 for this example. Once again, we observe that the mesh 
is properly refined near the interfacial region. All of these reasonable observations validate the interface conditions, the 
mathematical model and the numerical method proposed in this article.
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Fig. 4. The dynamics of a square shape bubble with density ratio 1:50. All the sub-figures are indexed from left to right row by row as follows: : (a) t = 0.1, 
(b) t = 0.2, (c) t = 0.3, (d) t = 0.5, (e) t = 0.8, (f) t = 1.0, (g) t = 1.5, (h) t = 10.0.

Fig. 5. The evolution of discrete energy of two numerical schemes.

Fig. 6. Contour plots of the initial bubble.
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Fig. 7. The evolution of arising drop with density ratio 1:5. All the sub-figures are indexed from left to right row by row as follows: : (a) t = 1.0, (b) t = 2.0, 
(c) t = 3.0, (d) t = 4.0, (e) t = 5.0, (f) t = 6.0, (g) t = 8.0, (h) t = 11.0.

Fig. 8. The evolution of arising drop with density ratio 1:50. All the sub-figures are indexed from left to right row by row as follows: : (a) t = 1.0, 
(b) t = 1.25, (c) t = 1.5, (d) t = 2.0, (e) t = 2.5, (f) t = 3.0, (g) t = 4.0, (h) t = 5.0.

Fig. 9. Adaptive mesh for arising drop with density ratio 1:50. All the sub-figures are indexed from left to right row by row as follows: : (a) t = 1.25, 
(b) t = 2.0, (c) t = 2.5, (d) t = 4.0.
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5. Conclusions

In this paper, a new Cahn-Hilliard-Navier-Stokes-Darcy (CHNSD) model and two numerical schemes are developed for 
two-phase flows of different densities and viscosities in superposed fluid and porous layers. Moreover, the unconditionally 
energy stability is proposed and analyzed for a time-stepping method combining with interface conditions. After the basic 
coupled finite element method is proposed and analyzed for the CHNSD model, the novel decoupled numerical scheme is 
designed by introducing the artificial compressibility method and pressure stabilization strategy. The energy law is proposed 
and analyzed for the corresponding fully discretization in the framework of the finite element method for spatial discretiza-
tion. Therefore, only a sequence of linear equations is needed to solve at each discrete time level for the computation of the 
new decoupled linear numerical method. The features of the proposed methods, such as accuracy, energy dissipation, and 
applicability for challenging model scenarios, are demonstrated by various numerical experiments.
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[27] A. Çeşmelioğlu, B. Rivière, Analysis of time-dependent Navier-Stokes flow coupled with Darcy flow, J. Numer. Math. 16 (4) (2008) 249–280.
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