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Abstract

We propose a novel second—order BDF' time stepping method of variable time step sizes
combined with a classical residual-based stabilized finite element spatial discretization
using the Streameline-Upwind Petrov-Galerkin (SUPG)/pressure stabilization Petrov-
Galerkin (PSPG)/grad-div stabilization for solving the phase-field model for two—phase
incompressible flow of different densities and viscosities in the advection dominated regime.
In the case of uniform time step size and without extra stabilization, the scheme is shown
to satisfy a discrete energy law. Benchmark test of the Rayleigh—Taylor instability un-
der high Reynolds number and Péclect number demonstrates that the scheme captures
details of the instability comparable to results in the literature by schemes based on
sharp-interface models.

Keywords— Cahn-Hilliard-Navier-Stokes; two-phase incompressible flow; energy law
preserving; stabilized finite element method

1. Introduction

Phase field fluid models play increasingly important roles in the study of multiphase
flows, owing to their flexibility in modeling multi-physics, the ease of capturing moving
boundaries in numerical simulations, and the built-in physical mechanism (chemical dif-
fusion) allowing smooth topological changes of interfaces, cf. [3, 47] for some applications
of phase field fluid models. In this work, we focus on solving numerically the two-phase
incompressible flow problem of variable densities and viscosities using the thermodynami-
cally consistent Cahn-Hilliard phase-field model proposed by Abels et al. [1], see also [42].
Compared to the quasi-incompressible two-phase flow model developed by Lowengrub and
Truskinovsky [55], volume-averaged velocity is adopted in this model hence the velocity
field of the mixture remains solenoidal.
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A major challenge in solving phase field fluid models is the stiffness associated with
the diffusive interface (sharp transition of field variables in thin layers). Energy-law
preserving hence unconditionally stable time marching schemes are desired for solving
these systems so that stiffness can be resolved adaptively without suffering from a severe
CFL constraint. Many approaches have been proposed in recent years, including the
convex-concave splitting method [20, 21, 59, 25|, the stabilized linear approach [62], the
Invariant Energy Quadratization (IEQ) method [30, 68, 67, 26|, and the Scalar Auxiliary
Variable (SAV) approach [60, 61]. Applications of these methods to phase field fluid
models can be found in [46, 36, 23, 34, 63, 33, 19, 72, 32, 27] among many others.

There are several numerical methods for solving the phase field model for incompress-
ible two-phase flow of variable densities. In [31] a first-order energy-law preserving scheme
is developed in which the Cahn-Hilliard solver is decoupled from the Navier-Stokes solver
via a fractional step method, see also [63]. A second-order accurate, coupled, energy-law
preserving linear scheme is proposed in [27] based on the Crank-Nicolson method and
the IEQ approach. In this second-order accurate method, periodic boundary condition is
necessary for establishing energy stability of the fully discrete scheme since the scheme uti-
lizes a scaled wvelocity variable in the Crank-Nicolson discretization. Separately, a totally
decoupled, second-order accurate, unconditionally stable numerical method is constructed
in [69]. The key idea in this method is the introduction of two SAVs: one for linearizing
the Cahn-Hilliard solver, the other one for canceling out the explicitly discretized non-
linear terms in the energy estimate. The method is computationally efficient since the
only nonlinear equation involved is a low order polynomial for a scalar variable, and the
coefficient matrices are precomputable. We point out that linear versions of the method
in [69] can be readily derived by using variants of the SAV approach recently developed
in [70, 66, 49]. It should be noted that despite the unconditional stability of these SAV-
based schemes the time step size needs to be relatively small for meaningful numerical
simulations in the case of large Péclet number and constant mobility. One possible expla-
nation for it is that the CFL condition might be still necessary in the advection-dominated
regime due to explicit treatment of the advection terms in these schemes.

In this article we aim to solve the incompressible two—phase flow model of variable
densities in the advection-dominated regime (large Péclet number and Reynolds number)
with a degenerate mobility function. The degenerate mobility function implies that the
order parameter remains in its physical bounds, which is essential for two-phase flows
of arbitrary densities and viscosities. Moreover, thanks to the degenerate mobility, the
un-physical effect of bulk diffusion for two—phase flows is reduced/delayed to a large time
scale [16, 48]. Solving the Cahn-Hilliard equation with a degenerate mobility function
is very challenging [8]. Indeed, our numerical tests have shown that with a degenerate
mobility function the SAV variable of the decoupled scheme in [66] deviates significantly
from its true value, regardless of smallness of the time step size, which in turn contributes
to an order one consistency error to the modified PDEs. A second challenge is that in



the advection-dominated regime the diffusive interface behaves much like a viscous shock.
It is known that traditional high-order methods can produce spurious oscillations near
diffusive interfaces (analogous to the Gibbs phenomenon) which can pollute the numerical
solution beyond the sharp transition layers, cf. [24]. To address these challenges we
propose a second-order BDF time-stepping method of variable time step size effected with
SUPG/PSPG/grad-div stabilized continuous finite elements for the spatial discretization.
The scheme with uniform time step size and without extra stabilization is shown to satisfy
a discrete energy law. Extensive benchmark simulations of the Rayleigh-Taylor instability
under high Reynolds number and Péclet number show that the scheme captures details
of the instability comparable to those by sharp interface model-based numerical methods.
In particuler, the numerical results demonstrate that the stabilized scheme is more robust
than the plain Galerkin method without extra stabilization in the high Reynolds number
and Péclect number regime.

We will not pursue convergence analysis/error estimates of the proposed numerical
schemes, but verify convergence through numerical experiments in this article. Conver-
gence analysis for the Cahn-Hilliard-Navier-Stokes (Darcy) equations can be found in
(18, 19, 10, 54, 9]. In addition, there have been many developments on BDF2/BDF3
methods for various gradient flow models, cf. [65, 12, 22, 13, 56, 35].

The rest of the article is organized as follows: in Sec. 2 we introduce the model, present
the time-stepping method and the spatial discretization; numerical results are reported
in Sec. 3; we conclude in Sec. 4 with a brief summary and some further discussions.

2. The model and discretization

2.1. The model

We consider the following thermodynamically consistent Cahn-Hilliard phase-field
model of Abels et al. [1] for incompressible two-phase flow in the domain @ C R%
d=2,3:

Oi(p(o)u) + V- (u® (p(p)u+J)) + Vp— V- (2n(¢)D(u)) + 6V - (Vo ® Vo) =f,
(a)
V-u=0,
(1b)
0+ V- (pu) = V- (M(¢)Vp) =0,
) (1c)
p= = (F'(9) — €06) =0,
(1d)

J- P2V =0

2
(Le)



Here

p1+p2  p2—p1
plo)i=—5—+=5—9¢

is the density with ¢ being an order parameter related to the concentration of the fluids
and p; > 0 being the specific (constant) density of fluid j = 1,2, u is the mean velocity,
p is the pressure, D(u) = £(Vu + Vu?), f is the source term,
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is the viscosity of the mixture with 7; > 0 being the specific (constant) viscosity of fluid
J=12,

.3

7= ma
is the scaled surface tension with o being the physical surface tension, € > 0 is a (small)
parameter related to the thickness of the interfacial region, M(¢) is the mobility function,
i is the chemical potential, F'(¢) is the free energy density, and J is the relative flux
related to diffusion of the components. In this work, we consider the following double
well potential for the free energy density, and a degenerate mobility:

(¢* —1)

F<¢) = 4 ) M(¢) = 7(@52 - 1)27 (1f)

where v is the mobility coefficient. Another popular choice for the mobility function is
M(¢) = (1 — ¢?). The qualitative behavior of the solution may strongly depend on the
degeneracy order of the mobility function, as suggested by recent study in [57, 16, 17].
In this article we will utilize the model both in its dimensional form as in (1) and its
dimensionless form with Pe the diffusional Péclet number (measure of advection over
chemical diffusion) and Re the classical Reynolds number. We refer to [55, 45] for details
of the non-dimensionalization.
We close this system with the following initial and boundary conditions

u=0, ondx(0,7) (2a)
Vo-n=Vp-n=0, ondQx(0,7T) (2b)
(u,9)|i=0 = (ug, ¢o), in €. (2¢)

Here n denotes the unit outer normal vector of the boundary 9€). It can be shown that
the system (1) under the above boundary conditions satisfies the following energy law:

d 2
Eaﬂm@:—ﬁwwmmwmmw—[ymquw+quw, 3)

where the total energy E, is defined as

P, ) = [ ool s+ [ Z(F(@)+ FIVoP) o

Q
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Here we focus on the no-slip no penetration boundary condition (2a) so that the energy
identity (3) holds. Other boundary conditions such as outflow or open boundary condi-
tions can be treated using the recently developed generalized Positive Auxiliary Variable
approach for maintaining energy stability. We refer to [53] for details.

By introducing the following modified pressure

Pimp+ 2 (F0)+ 32908 ) - on, (@)

the momentum equation (la) can be reformulated as
O(p(¢)u) + V- (u® (p(¢)u+J)) + VP = V- (2n(¢)D(w)) + ¢Vu = f, ()
By the definition of the density, the relative flux in (1le), and equation (1c), we have

Oip(¢) + V- (p(¢)u+J) = 0.

Follow the idea in [28], we multiply the above identity with %u and subtract from the
momentum equation (5) to get

O(p(d)u) + V- (u@ (p(¢)u+J)) + VP = V- (2n(¢)D(w)) + ¢Vpu
~5u(0p(0) + V- (plo)u+ ) =1,

which can be simplified as

Vo) + (V- (@ (p(eu-+9)) = Ju V- (o) + )
+VP —V - (2n(¢)D(u)) + ¢Vu ={. (6)

It is clear that the equation (6), combined with equations (1b)—(1e) is mathematically
equivalent to the original system (1).

Remark 2.1 (On energy stability). The energy identity (3) can be directly obtained by
a standard variational approach, where one multiply the equations (6), (1b), (1c), and
(1d), with test functions u, P, u, and 0,¢, respectively, add up the resulting terms, and
then integrate over the domain 2. Hence, a Galerkin finite element spatial discretization
for the equations (6), and (1b)—(le) is expected to preserve this energy identity in the
semi-discrete (continuous in time) case.

To obtain a linear, fully discrete energy stable scheme for the model (1), we follow the
recent scalar auxiliary variable (SAV) approach [61, 50] by introducing a scalar variable
that only depends on time ¢:

du 1 0
@ =3 @5 (7e)



¢/ ——a)>®+3, (7b)

F'(¢) — s
V& )~ 36?)dx + B

and s > 0 is a user-defined stabilization parameter, B is a positive constant such that U
is well-defined. Note that we immediately have

W 9 - S6)ax+ B

With the help of the scalar variable U(t), we rewrite the system (6), (1b)—(1e) as follows:

where

(7c)

VA@O/p0)) + V- (0 ® (p(6)u+3) — Ju¥ - (p(é)u+T) + 6V
+VP -V - (2n(¢)D(u)) = f, (8a
V-u=0, (8b
o+ V- (pu) =V - (M(¢)Vp) =0, (8¢
w— %(Ur(@ + s8¢ — €A¢p) = 0, (8d

P1— P2
g~ -~
2

)
)
)
)

M()Vi=0.  (Se)

It is clear that the system (7)—(8) with boundary conditions (2) is equivalent to the
original system (1) with boundary conditions (2). In particular, the following energy
stability result holds:

o —FEyp = /QQV((b)]D)(u) : D(u) dx —/QM(@lV,u\de—i- /Qf -udx, 9)

where the modified total energy
~ 1 0,8 € o
Eijpo = | = 2d —(=¢* + — 2 dx + U
o= [ goouPaxr [ 236+ GIVoR) do+ T

Note that this modified energy is related to the original one by the identity E’wt =
Ei(u, o) + %B. Our numerical scheme is a discretization of the the modified system
(7)—(8), which preserve a discrete version of the modified energy identity (9). In the
discrete level, the modified energy may not be directly related to the original energy

Eioi(u, ¢), which could be a shortcoming of the proposed scheme that is common to all
SAV based methods.



2.2. The time-marching scheme

Phenomena associated with Cahn-Hilliard phase field fluid models often involve mul-
tiple time and spatial scales. Adaptive time-stepping is an important tool for efficient
simulation of these phenomena, especially when long-time simulation is of interest, cf.
(71, 31, 14, 51, 52] for development in this direction. In this subsection, we discretize
the system (7)—(8) in time using the (variable step-size) second-order BDF2 method with
Adam-Bashforth extrapolations to arrive at a second-order, unconditionally energy stable
(for the modified energy), and linearly coupled time-discretization scheme. A similar BDF
scheme of variable steps has been applied to solving the Cahn-Hilliard equation in [11].

Let U%u® ¢°, 1u° be the initial data, and let 0 =t < ¢! <2 < --- <tV =T be a
discretization of the time interval [0, 7], with a variable time step size At/ := t/ — /=1,
For any 7 > 1, we denote the difference operator

. (! — %) /At if j =1,
6twj = ) ] ) (10&)
wi? + i g7, > 2,

and the extrapolations

_ P’ ifj=1,
Y= o o (10D)
eI 4 el it j > 2,
where the (second-order) weights for j > 2 are
At

A1 4 2AH AL+ A

- - - - I = — = - - - 10
T AT AAET M At—IAE 0T AEL(AET 1 A (10c)
; At ; At
6’J1=1+W7 €p = T AGT (10d)

Without loss of generality, we further set 10 := °.
Now our temporal discretization for the system (7)—(8) reads as follows: for any j > 1,
find the solution U7, u/, ¢/, i/, P/ such that

§;U7 — %/ﬂr(&)étgbﬂ' dx = 0, (11a)

Vo(@)0(\ (@) + VP = V- (203 )D(w))
V- (W (@) + ) = Sw T () + T) + IV =, (1)
V-u =0, (11c)
8¢ + V- (Pw) = V- (M() V) =0, (11d)
(11c)

i = Z(UIn(F) + 560~ 20g) =0,



where

¥ =B Ea@)vir, (11f)

and the difference operator term in equation (11b) is

— (\/ P& )yul — wly/ p(¢0)u’) /At if j =1,
o (\/ p(¢)u’) = _
wir/ p(@)w + wiy/ p(di=1)wi =t + wiy/p(di=2)ui=2 if j > 2.
(11g)

It is clear that the above scheme is a fully coupled linear method. Moreover, when the
time step size does not change over time, the following unconditional modified energy
stability result holds.

Theorem 2.1 (Unconditional energy stability). Assume the time step size At/ = At for
all 3 =1,2,--- N, and assume the source term £ = 0, then the following equality holds
for the scheme (11) for j > 2:

Bl — Ely' ==t [ (200)D(w) : D) + M@)VF) dx =W, (120
Q
where the modified energy at time t7 is given as
~. 1 ~ o . , 20
Blai=3 ([ p@ P axs [ Z(s(o + 90 P) dxt ZZ0?) (120)
2
#1([[2o@me = o

1 ] Zlst2e - 24 AV - 0P d

ax+ 2% (207 — 2
€

and the non-negative numerical dissipation term is given as

e [ o |

+ (U =207 4 U
€

dx (12c¢)

P 3 Tt 20 1 60 @IV 29 )
4 Jq €

Proof. Multiplying the equations (11a) with test function %U J, and multiplying the equa-
tions (11b), (11c), (11d), (11e), (11f) with test functions w’/, P’ 7, —8;¢, respectively,
adding the resulting terms, integrating over the domain €2 and apply integration-by-parts,
we get

20 (5tUJ)UJ /Q (5t< p(aj)uj)) p(gj)uj + % (quﬁj(Stqu + 52V(]5j . 5t(V¢j)) dx

8



~ — [ (20@D(w) s D) + M@V d (13)

where we specifically mention that the integral of the coupling terms PV -0 and
V - (¢/w)p’ cancels out due to integration by parts and the boundary condition (2a).

Note that for the constant time step case we have 6,¢/ = 57 (307 — 4471 + ¢p72) for
J > 2. Elementary calculation yields that

1

6y = i (W97 209 = 37 2) = (W92 20970 = 9 2) o [y = 249 2P,
Combining the above identity with the equality (13), we immediately obtain the energy
identity (12a). This completes the proof. O

Remark 2.2 (On energy stability for variable time stepping). We are not able to give
a rigorous proof of energy stability of the scheme (11) for the more general variable time
step-size case. For an energy identity it is necessary to multiply the variable time-step
BDF2 method (10a) by the difference p’ —@?~t, which works for the Cahn-Hilliard equation
since it is a H™' gradient flow, cf. [11]. However, one has to test the advective Cahn-
Hilliard equation (11d) with @’ in order to cancel out advection term in the Cahn-Hilliard
equation with the capillarity term in the fluid equations in the energy estimate.

Remark 2.3 (On decoupled scheme and energy stability). It is generally difficult to
construct second-order linear decoupled energy stable schemes for variable density CHNS
models due to the nonlinear coupling of phase-field and flow variables. Recently there are
some interesting work to construct decoupled energy stable schemes [69, 66] for CHNS
models. The work [69] modified the scalar variable to be the square root of the sum of
the kinetic energy and the potential free enerqgy, instead of only the potential free energy
considered in our work. As a result, the modified energy stability result in [69, Theorem
2.1], which does not contain the “true” kinetic energy, is weaker than ours in Theorem
2.1.

Let us discuss more details on the recent work [66]. We focus on the application of the
key idea in [66] to our model (7) and (8). It introduces another auxiliary scalar variable
Q(t) to deal with the nonlinear (coupling/convection) terms, which satisfy the following
ODE:

T = [ (s e+ 3) - JuT (oo + )+ 0%n) - uds

+ /Q V- (pu)uds,

with Q(0) = 1. It is straightforward to verify that the right hand side of the above equation
is 1dentically zero as long asu-n =J-n =0 on the boundary OS2, which is termed as the
zero-energy-contribution property in [66]. Hence, Q(t) = 1 for all time. The author in
[66] then modified the equations (8a) and (8c) by multiplying the nonlinear terms therein
with Q(t) = 1. A linear decoupled scheme can be then constructed by treating the field

9



variables in the (Q-weighted) nonlinear terms in (8a) and (8¢c) explicitly and treating @
implicitly as follows:

V(@8 o)) + VP! — V- (20(F)D(w))
L (v (W @ (@)W + 7)) — W V- () + ) + &w) o,

5 + QY - (PW) — V- (M(¢)Vp!) = 0.

We can show that the resulting time discretization, which we call the QQ-scheme, is a lin-
early decoupled scheme that is unconditionally enerqgy stable for a slightly different modified
energy. While the QQ-scheme works reasonably well for the constant mobility case, we o0b-
serve robustness issues of the (Q-scheme when the mobility coefficient is degenerate. In
particular, our preliminary numerical experiments with the QQ-scheme for a CHNS model
with degenerate mobility (the numerical example in Section 3.3) for the rising bubble
benchmark problem [41] show that the Q) value quickly diminishes to a value close to zero
no matter how small the time step size At is chosen, which leads to an O(1) constancy
error as ) needs to stay around 1 for accuracy of the scheme. This phenomenon is very
surprising, which we do not have a good explanation. We will investigate on the issue in
more details in our future work.

Finally, we remark that a simple practice to decouple the scheme (11) is to treat the
convection term explicitly in equation (11d) by replacing w/ by w’. Due to the explicit con-
vection treatment in (11d), stability is expected to hold under a CFL condition. Although
we do not have a rigorous proof of energy stability of this decoupled scheme, ample numer-
ical experiments (not reported here for simplicity) show that taking At = 0.1h/vyax where
Umax 1S the maximum velocity magnitude is usually enough to obtain a stable simulation.

2.3. Spatial discretization

In this subsection, we introduce the classical finite element discretization for the time-
discrete system (11) using a mixed finite element method for the velocity and pressure
variables and a continuous Galerkin method for the phase-field variables ¢ and p. Due to
the Galerkin formulation, it is trivial to show that the energy stability result of Theorem
2.1 naturally carries over to this fully discrete setting.

It is a common practice to introduce stabilized methods for convection-diffusion type
problems with a strong convection effect. Here we use the classical SUPG (residual-based)
stabilization for the phase-field equation and the SUPG/PSPG/grad-div stabilization for
the flow equations; see [38, 7, 37, 39, 5, 2, 40, 15] for more details on stabilized methods.

To this end, let T, := {T'} be a conforming simplicial triangulation of the domain €2,
and let &, = {F'} be the collection of facets (edges in 2D, faces in 3D) of 7,. We set h to
be the maximum mesh size of 7j,. Given a simplex element S C R?, d = 1,2, 3, we denote
P (S) as the space of polynomials of degree at most m on the element S. We denote
(-,-)q as the L*-inner product on the domain €, and || - || as the L?-norm. We introduce
the following continuous finite element spaces:

XP={we H(Q): wlpcPXT), VT € Ty}, (14a)
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[PUD)" @ [{br}]? if k=1,

be = {V € [H&(Q)]d . Vir € { [Pk(T)]d if k> 2,

VT € ﬁ} , (14b)

where by € P4(T) is the bubble polynomial that vanishes on the element boundary OT.
Note that the velocity and pressure pair Y} x X} is the mini element [4], while the pair
Y) x X7t for k > 2 is the Taylor-Hood element [64].

2.3.1. The plain Galerkin method
Given a polynomial degree k > 1, let ul), 9, 19 € YF x XF x XF be the interpolation
of the initial data ug, ¢g, and

o = L(F(gn) — & 100),

respectively, and let U be given according to the initial data (7b). For any j > 1, the
plain Galerkin method finds approximations (U}, ul, P!, ¢7 ) € Rx Y x X;f” X XFx XF
where k, := max{k — 1,1} such that

1

5,U7 —§< (@), 5t¢h)9 (15a)

(Vo@s /@i w) = (15 -+ (2006800). B0
5 (W@ (@), + 3, vv) + 3 (Ve (3 uhw) 1)
), =

2
<¢] V:u}u v

Q

Q

(f,v)g

(15b)
(V- uj, an), =0, (15¢)

(00h &)y — (0, V&) + (M@G)Vul,Va) =0, (150)
_§ (1, 40n), + Ul (r(%ﬁ;), %)Q + (s@h ) + € (Vh, Vi), =0,  (15e)

Q

for all (Vi g, &, tn) € YE X X17 x XF x XF where

i P1 = P2 2 o T~
3= P2 M)V, (15)
It is clear from the proof of Theorem 2.1 that the unconditional modified energy stability

result of Theorem 2.1 carries over to this fully discrete setting.

2.3.2. The stabilized method
For convection dominated flow problems, it is beneficial to introduce extra stabiliza-
tion to the plain Galerkin method (15) to suppress numerical oscillations due to strong

convection. Here we introduce a classical (residual-based) SUPG-type stabilization for
the phase-field equation (15d), and the SUPG/PSPG /grad-div stabilization for the flow

11



equations (15b)—(15¢). More advanced stabilization techniques like the variational mul-
tiscale method [5] can also be used. Denoting the following (linearized) residual terms:

]
<

5= (@5 (\ oG] + VP = V- (2n(5)D(w])
+ V- (w, @ (), + 7)) — Jul V- (o), +T]) + 3V~ £, (16a)

=00, + W, Vo, = V- (M(6) Vi), (16¢)

the proposed stabilized method adds to the plain Galerkin method (15) with the following
(linear) residual-based stabilization term:

u

BS ((ugL’Pf]u ial’["ljz)ﬂ(vth77,7¢h7€h Z/TSUPS <uh Vv h+ an ¢h £h> -1l dx

TeT, p(4)
+ Z / (;Sh VLSIC (V-wvp) - rj dx
TeTh

T Z/ (&3)ups (W), - V&) - dx, (17a)

TeTh

where the stabilization parameters TgUPS and V{SIC are given by the following formulas, see
e.g. [6, Chapter 2] and [43, Chapter 5/8] for discussions on the choice of the stabilization
parameters:

—-1/2

+i - Gl + O (”(%{)> G:G , (17b)
p(71,)

visic i= (trG Tsups) 7, (17¢c)

TSUPS = (Atﬂ)

where C} is the inverse estimate constant taken to be C; = 3, and trG = Zle G, 1s the
trace of the element metric tensor G = F~7F~! with F being the element Jacobian matrix.
Here we briefly comment on the role of each term on the right hand side of equation (17a).
The first term is a stabilization for the momentum equation (8a), which contains the SUPG
term, with test function ﬁi -Vvp,, that stabilizes dominating convection, the PSPG term,
with test function Vg/ /)(5%); that stabilizes the potential violation of discrete inf-sup
condition for the velocity-pressure finite element pair, and the additional stabilization
term with test function %th / p((ﬂ) that stabilizes dominated surface tension effects.
The second term is the grad-div stabilization term for the mass conservation equation (8b),
which gives additional control on the violation of the mass conservation for the velocity-
pressure finite element pair. And the last term is the SUPG term for the convective Cahn-
Hilliard equation (8c) that again stabilizes dominating convection. Hence, the stabilized

12



method seeks approximations (U7, ul, PJ, %, ul) € R x YF x X,’f" X XF x XF such that

BQ ((U}JN u{w P}ia gw Mi)a (Vh» qh, I/Jha gh))
+BS ((ugw P]i? ?mlugl)a (Vha qh, whyfh)) = (fja V)QJ (18>

for all (vi, qn, &, ¥n) € YF x X}’f” X XF x XJ, where By(-,-) is the collection of the left
hand side terms in the plain Galerkin method (15). Due to the additional stabilization
terms, it is well-known that the velocity/pressure pair for the stabilized method (18) does
not need to satisfy the inf-sup condition, and a popular choice is to use equal-order finite
element spaces for both quantities; see, e.g., [5]. However, in this work we still stick with
the inf-sup stable spaces used for the plain Galerkin method to facilitate a fair comparison
between the two methods.

We note particularly that the stabilized method (18) is still a linear scheme. More
interestingly, we find that the linear system for the stabilized method is easier to solve
than that for the plain Galerkin method (15) due to the effect of the stabilization terms,
when a sparse direct solver is used. However, we are not able to establish the same
energy stability result in Theorem 2.1 for the stabilized method. We suggest to add the
stabilization terms when the flow has a large Reynolds number and/or a large Péclet
number. In particular, numerical evidence for the Rayleigh-Taylor instability problem
in Section 3.4 below showed that the plain Galerkin method performs surprisingly well
for Reynolds number Re = 1000 and Péclet number Pe = 10000, while the stabilized
method outperform the plain Galerkin method both in terms of the solution resolution
and computational time when the Reynolds number is increased to Re = 5000, where the
flow is strongly convection dominated.

3. Numerical results

In this section, we present several numerical results for the proposed schemes (15) and
(18). In all the simulations, we take s = By = 0 in the SAV model (7b), and use a sparse
direct solver to solve the linear system problems. The NGSolve software [58] is used for
the simulation.

3.1. Accuracy test

We use the method of manufactured solutions to test the spatial and temporal accuracy
of the scheme. In particular, we consider the model (1) with a source term f, in the
equation (1c) on a unit square domain, and take the source terms f; and f in (1a) such
that the exact solution is given as follows:

o(t,x) = cos( t) cos(mz) cos(my),
plt, x) = 6—1( "(¢(t, 7)) — eAg(t, x)),
u(t, ) = (=0,®(t, x), 0, %(t, v))
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with the stream function ®(t,z) = cos(nt) (z(1 — 2)y(1 — y))* Furthermore, we take p; =
1, po=3,m =mn =001, =0.1, e =0.1, and v = 0.01. The final time is taken to

k+1D/2 with polynomial degree

be T' = 0.4, and we use a uniform time step size 6t = h!
k =1 or k = 2. The history of convergence of the L?-norm errors in ¢y, 5, and uy, at the
final time 7" = 0.4 on a sequence of uniform square meshes are recorded in Table 1 and
Table 2, respectively, for the plain Galerkin method (15) and the stabilized method (18),
respectively. For these two tables, we find that the errors for both methods are similar on
the same mesh. Moreover, we observe optimal convergence order of k + 1 in the velocity
field u, and phase-field variable ¢, for both methods. In particular, this indicates the

expected second-order temporal accuracy of the proposed temporal discretization.

[ 6 — oul [l = pun]
kE|1/h | T/At| Error |Order | Error | Order | Error | Order
10 4 2.734e-02 - 4.940e-03 - 6.328e-04 -

11 20 8 6.622e-03 | 2.046 | 7.019e-04 | 2.815 | 1.708e-04 | 1.889
40 16 | 1.607e-03 | 2.043 | 1.836e-04 | 1.935 | 4.386e-05 | 1.962
80 32 | 3.951e-04 | 2.024 | 6.088e-05 | 1.592 | 1.099¢-05 | 1.996
10 13 | 2.477e-03 - 1.793e-04 - 4.325e-05 -
2| 20 36 | 3.102e-04 | 2.997 | 3.726e-05 | 2.267 | 4.684e-06 | 3.207
40 101 | 3.889¢-05 | 2.996 | 5.433e-06 | 2.778 | 5.573e-07 | 3.071
80 | 286 | 4.857e-06 | 3.001 | 7.555e-07 | 2.846 | 6.852¢-08 | 3.024

Table 1: History of convergence of the L?-errors for the plain Galerkin method (15).

[u — unl] ¢ — ol 1 — g

k| 1/h|T/At| Error | Order | Error | Order | Error | Order
10 4 2.727e-02 - 4.940e-03 - 6.841e-04 -
11 20 8 6.616e-03 | 2.043 | 6.928e-04 | 2.834 | 1.893e-04 | 1.853
40 16 | 1.606e-03 | 2.042 | 1.793e-04 | 1.950 | 4.708e-05 | 2.008
80 32 3.951e-04 | 2.024 | 6.035e-05 | 1.571 | 1.154e-05 | 2.029
10 13 | 2.473e-03 - 1.684e-04 - 2.425e-05 -

2| 20 36 | 3.100e-04 | 2.996 | 3.697e-05 | 2.188 | 5.497e-06 | 3.303
40 101 | 3.889e-05 | 2.995 | 5.428e-06 | 2.768 | 5.913e-07 | 3.217
80 | 286 | 4.858e-06 | 3.001 | 7.555e-07 | 2.845 | 6.985¢-08 | 3.081

Table 2: History of convergence of the L?-errors for the stabilized method (18).

3.2. Energy stability test

In this example, we confirm numerically the energy stability result in Theorem 2.1 for
the plain Galerkin method (15). We use the same modeling parameters as in the previous
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example, but ignore the source terms f and f4 therein. The initial condition is taken to
be

¢o(,y) = cos(4mx) cos(4my),
ll(](l‘, y) = (—8y<1>0(a:, y)? 8x<1>0(x, y)),

with ®g(z,y) = 16 (z(1 — 2)y(1 —y))* We take final time T = 40. The plain Galerkin
method (15) on a uniform triangular mesh with mesh size h = 0.05 and uniform time
stepping with time step size At = 0.05 is used for the simulation.

For this problem, Theorem 2.1 indicates that following (modified) energy stability
result for the numerical results of our method:

E}JL - E{;‘l < —AtDiss),

where

R

+ eIV + 15l V20], — o 1>||Q+2—(<UJ> U} - U )?)

is the modified total energy, and

Diss] := H 2n( gbj Duh

H VM Cb] V:Uh

is the physical dissipation rate at time t/. The above result is numerically confirmed in

Figure 1, where we plot the evolution of the modified energy along with the true energy

T R ST s

1 ; i
+ 06||V¢]IIQ+ Ve - d i+ g [ )+ P2 o)

and the evolution of the dissipation rates. In particular, from Figure 1 we observe that
that the modified total energy FEj, and the true energy E) are on top of each other, and

Bl R
the dissipation rates

~ - and D1ssh are on top of each other.

3.3. Rising bubble

We consider the rising bubble benchmark problem proposed in [41]. The test setup is
extensively described in [41]. The domain [0, 1] x [0, 2] is filled with fluid 1 (¢ ~ 1) except
for a circular bubble, which consists of fluid 2 (¢ ~ —1). The initial bubble has a radius
of 0.25 with its center at (0.5,0.5). The gravitational source term f = p(0, —0.98) is used
in the momentum equation (8a). Following [41], we consider the following two test cases:

Case 1: p; = 100, p, = 1000, = 1,19 = 10,0 = 24.5,

15
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—— Modified energy: Ej,
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Figure 1: Evolution of energies and dissipation rates for the plain Galerkin method (15) on a uniform
triangular mesh with mesh size h = 0.05 and uniform time step size At = 0.05. (For interpretation of
the colors in this figure, the reader is referred to the web version of this article.)

Case 2: p1 =1, p, = 1000, = 0.1, = 10,0 = 1.96.

We take the final time of simulation to be ¢ = 3. For Case 1, the bubble reaches a
stable bubble ellipsoidal shape; for Case 2, it develops a more non-convex shape and thin
filaments, which may or may not break, due to a decreased surface tension and larger
density ratio [41].

Due to symmetry of the problem, we run the simulation only on the half domain
2 =1[0,0.5] x [0,2]. As for the boundary conditions, we use a homogeneous Neumann
boundary condition (2b) for the phase-field variables ¢ and p, and no slip velocity bound-
ary condition on the horizontal boundaries and free slip velocity boundary condition on
the vertical boundaries. We take the interface thickness € to be either 0.01 or 0.005.
Based on preliminary numerical experiments, it was observed that taking the mobility

coefficient v € (L < ) in (1f) leads to a fairly good agreement of our simulation results

200’ 5o
with reference data provided in [41]. We use v = 15~ for our simulation results reported
in this subsection. Furthermore, the initial condition for ¢ is taken to be a hyperbolic

tangent:

¢o(x,y) = tanh (%) , r=+/(z—05)2+(y—0.5)2

while the initial condition for velocity is zero.

For each €, we consider a triangular mesh that is locally refined on the sub-region
; = [0.15,0.5] x [0.2 x 1.4], where the mesh size is h = 1.6e on §; and h = 6.4¢ on
O\, see an illustration in Figure 2. We apply the plain Galerkin method (15) with
polynomial degree k = 2 on these meshes and take uniform time step size At =4 x 1073
or At =2 x 1072 when € = 0.01, and At = 2 x 1073 or At = 1 x 1072 when e = 0.005.
Contour plots of the phase field variable ¢, for the two cases at final time ¢t = 3 using
€ = 0.005 and At =1 x 1073 are shown in Figure 2 (c) and (d). We observe the expected
stable ellipsoidal bubble for Case 1, and the non-convex shape with filaments for Case 2.
In particular, our simulation results in a break of the bubble filaments for Case 2.
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Figure 2: Computational meshes and contour of ¢, at time ¢t = 3. (a): The mesh with 2278 vertices for
e = 0.01. (b): The mesh with 8442 vertices for e = 0.005. (c) Contour of ¢ at t = 3 for Case 1 using
e = 0.005 and At = 0.002 (red color: ¢ =1, blue color: ¢ = —1). (d) Contour of ¢, at t = 3 for Case 2
using € = 0.005 and At = 0.002. (For interpretation of the colors in this figure, the reader is referred to
the web version of this article.)
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We compute the following three benchmark quantities and compare them with refer-
ence values from group 3 in [41], which solves the sharp interface model using an arbitrary
Euler-Lagrangian finite element method within the MooNMD software [44]:

e Center of mass
o = Joo¥ 9
f¢<0 1dx’

where y is the vertical coordinate.
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e Circularity:

perimeter of area-equivalent circle 2\/ f¢><o mdx
c= = .

perimeter of bubble - oo Lds
e Rise velocity:
v — Joco v dx
° 50 L dx

where v is the vertical component of the velocity u.

Figure 3 shows the evolution of these benchmark quantities over time for Case 1.
We observe an excellent agreement with reference data for the center of mass and rising
velocity for all four simulation results. We also have a very good agreement with reference
data for the circularity, where an improved agreement is observed for ¢ > 1.5 when we
decrease interface thickness € from 0.01 to 0.005.

— e=le-2, At=4e-3
1.0 — £=1e-2, At=2e-3
— &=5e-3, At=2e-3
—— &=5e-3, At=1e-3
=== ref

— &=1e-2, At=4e-3
— g=le-2, At=2e-3

— £=le-2, At=4e-3
— g=1e-2, At=2e-3
0.05 4 — £=5e-3, At=2e-3
—— &=5e-3, At=1e-3
=== ref

0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0

Figure 3: Center of mass (left), circularity (middle), and rising velocity (right) over time for Case 1.
Reference data is taken from group 3 of [41]. (For interpretation of the colors in this figure, the reader is
referred to the web version of this article.)

Figure 4 shows the evolution of these benchmark quantities over time for Case 2. We
observe an excellent agreement with the reference data for all the three quantities up to
time ¢ = 1.5. The results for the center of mass for ¢ € [1.5, 3] also matches well with the
reference data. Meanwhile, we observe a better match of the circularity with the reference
data for t € [1.5, 3] when decreasing e from 0.01 to 0.005. Finally, for the rising velocity,
we observe a better match with the reference data for ¢ € [1.5,2] when decreasing € from
0.01 to 0.005.

3.4. Rayleigh-Taylor instability

The Rayleigh-Taylor instability is a two-phase instability which occurs whenever two
fluids of different density are accelerated against each other. We consider a similar setting
as in [29]. This problem consists of two layers of fluid initially at rest in the gravity
field in the domain Q = [0,1/2] x [—2,2]. The initial position of the perturbed interface
is n(z) = —0.1cos(2mx). The heavy fluid is above and the density ratio is 3 (p; = 1,
p2 = 3). The viscosity in both fluids is taken to be 7, = 7, = v/2/Re, where Re is
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1.1 — e=le-2, At=4e-3
— ¢e=le-2, At=2e-3
1.0 — €=5e-3, At=2e-3
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=== ref

— &=le-2, At=4e-3
— g=1e-2, At=2e-3
— &=5e-3, At=2e-3
—— g=5e-3, At=1e-3
=== ref

0.9
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0.7
— £=le-2, At=4e-3
— &=1le-2, At=2e-3
0.05 — £=5e-3, At=2e-3
—— &=5e-3, At=1e-3
=== ref
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Figure 4: Center of mass (left), circularity (middle), and rising velocity (right) over time for Case 2.
Reference data is taken from group 3 of [41]. (For interpretation of the colors in this figure, the reader is
referred to the web version of this article.)

the Reynolds number. The (initial) transition between the two fluids is regularized by
hyperbolic tangent:

6(t = 0) = tanh (ﬁ@ +0.1 cos(27rac))) |

We consider the gravitational source term f = p(0, —g) with g = 2. The other modeling
parameters are given as follows:

5 =107, Re e {1000,5000}, €€ {0.01,0.005}, v =e.

The final time of simulation is ¢ = 2.5. We note that the Reynolds number is defined
as Re = p,Ud/n, which varies according to the viscosity n, = v/2/Re, cf. [29], with

the characteristic velocity U = d'/?/g'/2. Note also the diffusional Peclet number Pe =
p,Ud
yo

dominated regime.

= \/it104, cf. [55]. Hence this numerical experiment is set up in the advection

For each €, we consider a triangular mesh that is locally refined on the sub-region
Q; :=[0,0.5] x [-1.25 x 0.75], where the mesh size is hy = 1.6e on Q; and is 4hy on
O\, see an illustration in Figure 5. For the case with Re = 1000, we apply the plain
Galerkin method (15) with polynomial degree k = 2 and take a variable time step size
At" = cfl hy/v},. with the CFL number ¢fl = 0.1, where v}, is the estimated maximum
velocity magnitude at time t". For the case with Re = 5000, we apply both the plain
Galerkin method (15) and the stabilized method (18) with polynomial degree k = 2, and
take a variable time step size At" = cfl ho/v],., where we reduce the CFL number to be
cfl = 0.05. We note that for the case with Re = 5000, using cfl = 0.1 leads to low quality
solutions with large numerical oscillations for both methods. We mention that the locally
refined mesh is about half the size of a uniformly refined mesh with mesh size h = hy,
and the total number of time steps is also about half of a uniform time stepping with step
size At = cfl ho/Umax Where vp.x &~ 2.5 is the estimated maximum velocity magnitude
for all time ¢ € [0,2.5]. The quality of numerical results for each scheme on the locally
refined mesh with variable time stepping is observed to be qualitatively similar to the same
method on a uniform mesh with mesh size hg and uniform time stepping At = c¢fl ho/Umax,

with the former being at least 25% cheaper to computer.
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Figure 5: (90-degree rotated) computational mesh for e = 0.01 (4658 triangular elements).

The time evolution of the contour of the phase-field variable ¢, for Re = 1000 (for
the plain Galerkin method) is plotted in Figure 6 at times 1, 1.5, 1.75, 2, 2.25, 2.5. We
observe that the solutions on the two meshes are consistent in that they show similar
structures and differ only in fine details at large time. In particular, no visible numerical
oscillation is observed for this case.

The time evolutions of the contour of the phase-field variable ¢, for Re = 5000 for both
methods for e = 0.01 on the coarse mesh and for e = 0.005 on the fine mesh, respectively,
are plotted in Figure 7, and Figure 8, respectively. From these figures, we observe that (1)
both the plain Galerkin method and the stabilized method produce qualitatively similar
results on the same mesh, (2) the solution for the plain Galerkin method show visible
numerical oscillations (the shaded area) near the two-phase interface especially on the
coarse mesh in the top row of Figure 7, while no visible numerical oscillations are observed
the stabilized method, (3) the solutions on the two meshes for both schemes are consistent
in that they show similar structures and differ only in fine details at large time and consist
in the development of structures within the main vortex that are more complex on the fine
mesh than on the coarse one. Moreover, we point out that the computational cost of the
sparse direct linear system solver per time step is about 12 seconds for the plain Galerkin
method , and about 7.4 seconds for the stabilized method on the fine mesh. Hence, the
stabilized method outperform the plain Galerkin method both in terms of solution quality
and computational cost in this case.

Finally, we note that all these results are qualitatively similar to the results in [29],
where a stabilized projection FEM was used to solve the variable density flow without
surface tension effects.

4. Conclusion and discussions

In this article we propose a second—order BDF time-stepping method of variable time
step size combined with the SUPG/PSPG/grad-div stabilized finite elements for solving
an incompressible two-phase flow model of variable densities in the advection dominated
regime. We show that the scheme preserves the underlying energy law of the model when
uniform time step size is utilized without additional stabilization. Numerical results
confirm the accuracy and stability of the scheme. Moreover, the benchmark of Rayleigh-
Taylor instability in the advection dominated regime demonstrate that our scheme well
captures the details of the instability.
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Figure 6: Re = 1000. Contour of the Rayleigh-Taylor instability problem on the subdomain [0,0.5] x
[-1.25,0.75] at time t = 1,1.5,1.75,2.0,2.25,2.5 (from left to right) for the plain Galerkin method (15)
with polynomial degree k = 2. Top: € = 0.01 on a triangular mesh with 4658 elements. Bottom: ¢ = 0.005
on a triangular mesh with 18560 elements. (For interpretation of the colors in this figure, the reader is
referred to the web version of this article.)

In spite of the efficiency and unconditional stability of the SAV-based decoupled nu-
merical schemes in the diffusion dominated regime (see Remark 2.3), these methods do
not seem to perform well in the advection dominated regime with a degenerate mobility
function. This issue warrants further investigation.

In future work, we would like to develop an unconditionally energy stable divergence-
free hybridizable discontinuous Galerkin scheme for solving the phase field model (1)
where the velocity approximation is solenoidal for all time, by combining the proposed
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Figure 7: Re = 5000. Contour of the Rayleigh-Taylor instability problem on the subdomain [0,0.5] x
[-1.25,0.75] at time ¢t = 1,1.5,1.75,2.0,2.25,2.5 (from left to right). for ¢ = 0.01 on a triangular mesh
with 4658 elements. Top row: the plain Galerkin method (15) with polynomial degree k = 2. Bottom
row: the stabilized method (18) with polynomial degree k = 2. (For interpretation of the colors in this
figure, the reader is referred to the web version of this article.)

temporal discretization in this work and the spatial discretization in [24].
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Figure 8: Re = 5000. Contour of the Rayleigh-Taylor instability problem on the subdomain [0,0.5] x
[—1.25,0.75] at time t = 1,1.5,1.75,2.0,2.25,2.5 (from left to right) for e = 0.005 on a triangular mesh
with 18560 elements. Top row: the plain Galerkin method (15) with polynomial degree k = 2. Bottom
row: the stabilized method (18) with polynomial degree k = 2. (For interpretation of the colors in this
figure, the reader is referred to the web version of this article.)

References

[1] Helmut Abels, Harald Garcke, and Giinther Griin. Thermodynamically consistent,
frame indifferent diffuse interface models for incompressible two-phase flows with
different densities. Math. Models Methods Appl. Sci., 22(3):1150013, 40, 2012.

[2] N. Ahmed, T. Chacén R., V. John, and S. Rubino. A review of variational multiscale

23



[10]

[11]

[12]

methods for the simulation of turbulent incompressible flows. Arch. Comput. Methods
Eng., 24(1):115-164, 2017.

D. M. Anderson, G. B. McFadden, and A. A. Wheeler. Diffuse-interface methods in
fluid mechanics. In Annual review of fluid mechanics, Vol. 30, volume 30 of Annu.
Rev. Fluid Mech., pages 139-165. Annual Reviews, Palo Alto, CA, 1998.

D. N. Arnold, F. Brezzi, and M. Fortin. A stable finite element for the Stokes
equations. Calcolo, 21(4):337-344 (1985), 1984.

Y. Bazilevs, V. M. Calo, J. A. Cottrell, T. J. R. Hughes, A. Reali, and G. Scovazzi.
Variational multiscale residual-based turbulence modeling for large eddy simulation
of incompressible flows. Comput. Methods Appl. Mech. Engrg., 197(1-4):173-201,
2007.

Y. Bazilevs, K. Takizawa, and T. E. Tezduyar. Computational Fluid—Structure In-
teraction: Methods and Applications. John Wiley & Sons, Ltd, 2013.

A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formula-
tions for convection dominated flows with particular emphasis on the incompressible
Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg., 32(1-3):199-259,
1982. FENOMECH ”81, Part I (Stuttgart, 1981).

Hector D. Ceniceros and Carlos J. Garcia-Cervera. A new approach for the numerical

solution of diffusion equations with variable and degenerate mobility. J. Comput.
Phys., 246:1-10, 2013.

Wenbin Chen, Wengiang Feng, Yuan Liu, Cheng Wang, and Steven M. Wise. A sec-
ond order energy stable scheme for the Cahn-Hilliard-Hele-Shaw equations. Discrete
Contin. Dyn. Syst. Ser. B, 24(1):149-182, 2019.

Wenbin Chen, Yuan Liu, Cheng Wang, and Steven M. Wise. Convergence analysis
of a fully discrete finite difference scheme for the Cahn-Hilliard-Hele-Shaw equation.
Math. Comp., 85(301):2231-2257, 2016.

Wenbin Chen, Xiaoming Wang, Yue Yan, and Zhuying Zhang. A second order BDF
numerical scheme with variable steps for the Cahn-Hilliard equation. SIAM J. Nu-
mer. Anal., 57(1):495-525, 2019.

Kelong Cheng, Wenqgiang Feng, Cheng Wang, and Steven M. Wise. An energy stable
fourth order finite difference scheme for the Cahn-Hilliard equation. J. Comput. Appl.
Math., 362:574-595, 2019.

24



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[22]

23]

Kelong Cheng, Cheng Wang, and Steven M. Wise. An energy stable BDF2 Fourier
pseudo-spectral numerical scheme for the square phase field crystal equation. Com-
mun. Comput. Phys., 26(5):1335-1364, 2019.

Xinyu Cheng, Dong Li, Keith Promislow, and Brian Wetton. Asymptotic behaviour
of time stepping methods for phase field models. J. Sci. Comput., 86(3):Paper No.
32, 34, 2021.

R. Codina, S. Badia, J. Baiges, and J. Principe. Variational Multiscale Methods in
Computational Fluid Dynamics. In E. Stein, R. De Borst, and T. J. R. Hughes,

editors, Encyclopedia of Computational Mechanics Second Edition, Part 1 Fluids.
John Wiley & Sons, 2018.

Shibin Dai and Qiang Du. Coarsening mechanism for systems governed by the
Cahn-Hilliard equation with degenerate diffusion mobility. Multiscale Model. Simul.,
12(4):1870-1889, 2014.

Shibin Dai and Qiang Du. Weak solutions for the Cahn-Hilliard equation with de-
generate mobility. Arch. Ration. Mech. Anal., 219(3):1161-1184, 2016.

Amanda E. Diegel, Xiaobing H. Feng, and Steven M. Wise. Analysis of a mixed finite
element method for a Cahn-Hilliard-Darcy-Stokes system. SIAM J. Numer. Anal.,
53(1):127-152, 2015.

Amanda E. Diegel, Cheng Wang, Xiaoming Wang, and Steven M. Wise. Convergence
analysis and error estimates for a second order accurate finite element method for
the Cahn-Hilliard-Navier-Stokes system. Numer. Math., 137(3):495-534, 2017.

C. M. Elliott and A. M. Stuart. The global dynamics of discrete semilinear parabolic
equations. SIAM J. Numer. Anal., 30(6):1622-1663, 1993.

David J. Eyre. Unconditionally gradient stable time marching the Cahn-Hilliard
equation. In Computational and mathematical models of microstructural evolution
(San Francisco, CA, 1998), volume 529 of Mater. Res. Soc. Sympos. Proc., pages
39-46. MRS, Warrendale, PA, 1998.

Wengiang Feng, Cheng Wang, Steven M. Wise, and Zhengru Zhang. A second-
order energy stable backward differentiation formula method for the epitaxial thin
film equation with slope selection. Numer. Methods Partial Differential Equations,

34(6):1975-2007, 2018.

Xiaobing Feng and Steven Wise. Analysis of a Darcy-Cahn-Hilliard diffuse interface
model for the Hele-Shaw flow and its fully discrete finite element approximation.
SIAM J. Numer. Anal., 50(3):1320-1343, 2012.

25



[24]

[25]

[26]

[27]

[28]

[29]

[30]

[33]

[34]

Guosheng Fu. A divergence-free HDG scheme for the Cahn-Hilliard phase-field model
for two-phase incompressible flow. J. Comput. Phys., 419:109671, 16, 2020.

Karl Glasner and Saulo Orizaga. Improving the accuracy of convexity splitting meth-
ods for gradient flow equations. J. Comput. Phys., 315:52—64, 2016.

Yuezheng Gong, Jia Zhao, and Qi Wang. Arbitrarily high-order linear energy stable
schemes for gradient flow models. J. Comput. Phys., 419:109610, 20, 2020.

Yuezheng Gong, Jia Zhao, Xiaogang Yang, and Qi Wang. Fully discrete second-order
linear schemes for hydrodynamic phase field models of binary viscous fluid flows with
variable densities. SIAM J. Sci. Comput., 40(1):B138-B167, 2018.

J.-L. Guermond and L. Quartapelle. A projection FEM for variable density incom-
pressible flows. J. Comput. Phys., 165(1):167-188, 2000.

J.-L. Guermond and L. Quartapelle. A projection FEM for variable density incom-
pressible flows. J. Comput. Phys., 165(1):167—188, 2000.

F. Guillén-Gonzalez and G. Tierra. On linear schemes for a Cahn-Hilliard diffuse
interface model. J. Comput. Phys., 234:140-171, 2013.

Francisco Guillén-Gonzalez and Giordano Tierra. Splitting schemes for a Navier-
Stokes-Cahn-Hilliard model for two fluids with different densities. J. Comput. Math.,
32(6):643-664, 2014.

Z. Guo, P. Lin, J. Lowengrub, and S. M. Wise. Mass conservative and energy stable
finite difference methods for the quasi-incompressible Navier-Stokes-Cahn-Hilliard
system: primitive variable and projection-type schemes. Comput. Methods Appl.
Mech. Engrg., 326:144-174, 2017.

Daozhi Han. A decoupled unconditionally stable numerical scheme for the Cahn-
Hilliard-Hele-Shaw system. J. Sci. Comput., 66(3):1102-1121, 2016.

Daozhi Han and Xiaoming Wang. A second order in time, uniquely solvable, un-
conditionally stable numerical scheme for Cahn—Hilliard—Navier—Stokes equation. J.
Comput. Phys., 290:139-156, 2015.

Yonghong Hao, Qiumei Huang, and Cheng Wang. A third order BDF energy stable
linear scheme for the no-slope-selection thin film model. Commun. Comput. Phys.,
29(3):905-929, 2021.

Qiaolin He, Roland Glowinski, and Xiao-Ping Wang. A least-squares/finite element
method for the numerical solution of the Navier-Stokes-Cahn-Hilliard system mod-
eling the motion of the contact line. J. Comput. Phys., 230(12):4991-5009, 2011.

26



[37]

[38]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

T. J. R. Hughes. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann
formulation, subgrid scale models, bubbles and the origins of stabilized methods.
Comput. Methods Appl. Mech. Engrg., 127(1-4):387-401, 1995.

T. J. R. Hughes and A. Brooks. A multidimensional upwind scheme with no crosswind
diffusion. In Finite element methods for convection dominated flows (Papers, Winter
Ann. Meeting Amer. Soc. Mech. Engrs., New York, 1979), volume 34 of AMD, pages
19-35. Amer. Soc. Mech. Engrs. (ASME), New York, 1979.

T. J. R. Hughes, G. R. Feijoo, L. Mazzei, and J.-B. Quincy. The variational multiscale
method—a paradigm for computational mechanics. Comput. Methods Appl. Mech.
Engrg., 166(1-2):3-24, 1998.

T. J. R. Hughes, G. Scovazzi, and L. P. Franca. Multiscale and Stabilized Methods. In
E. Stein, R. De Borst, and T. J. R. Hughes, editors, Encyclopedia of Computational
Mechanics Second Edition, Part 1 Fluids. John Wiley & Sons, 2018.

S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan, and L. To-
biska. Quantitative benchmark computations of two-dimensional bubble dynamics.
Internat. J. Numer. Methods Fluids, 60(11):1259-1288, 2009.

Jie Jiang, Yinghua Li, and Chun Liu. Two-phase incompressible flows with variable
density: an energetic variational approach. Discrete Contin. Dyn. Syst., 37(6):3243—
3284, 2017.

V. John. Finite element methods for incompressible flow problems, volume 51 of
Springer Series in Computational Mathematics. Springer, Cham, 2016.

V. John and G. Matthies. MooNMD—a program package based on mapped finite
element methods. Comput. Vis. Sci., 6(2-3):163-169, 2004.

V. V. Khatavkar, P. D. Anderson, P. C. Duineveld, and H. E. H. Meijer. Diffuse-
interface modelling of droplet impact. J. Fluid Mech., 581:97-127, 2007.

Junseok Kim, Kyungkeun Kang, and John Lowengrub. Conservative multigrid meth-
ods for Cahn-Hilliard fluids. J. Comput. Phys., 193(2):511-543, 2004.

Andrea G. Lamorgese, Dafne Molin, and Roberto Mauri. Phase field approach to
multiphase flow modeling. Milan J. Math., 79(2):597-642, 2011.

Alpha Albert Lee, Andreas Miinch, and Endre Siili. Sharp-interface limits of the
Cahn-Hilliard equation with degenerate mobility. STAM J. Appl. Math., 76(2):433—
456, 2016.

27



[49]

[50]

[51]

[52]

[53]

[57]

[58]

Shen Jie Li, Xiaoli and Zhengguang Liu. New sav-pressure correction methods for
the navier-stokes equations: Stability and error analysis. Math. Comp., 2021.

X. Li and J. Shen. On a SAV-MAC scheme for the Cahn-Hilliard-Navier-Stokes
phase-field model and its error analysis for the corresponding Cahn-Hilliard-Stokes
case. Math. Models Methods Appl. Sci., 30(12):2263-2297, 2020.

Yibao Li, Yongho Choi, and Junseok Kim. Computationally efficient adaptive time
step method for the Cahn-Hilliard equation. Comput. Math. Appl., 73(8):1855-1864,
2017.

Hong-lin Liao, Tao Tang, and Tao Zhou. A second-order and nonuniform time-
stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equa-
tions. J. Comput. Phys., 414:109473, 16, 2020.

Lianlei Lin, Xiaoyu Liu, and Suchuan Dong. A gPAV-based unconditionally energy-
stable scheme for incompressible flows with outflow /open boundaries. Comput. Meth-
ods Appl. Mech. Engrg., 365:112969, 38, 2020.

Yuan Liu, Wenbin Chen, Cheng Wang, and Steven M. Wise. Error analysis of a
mixed finite element method for a Cahn-Hilliard-Hele-Shaw system. Numer. Math.,
135(3):679-709, 2017.

J. Lowengrub and L. Truskinovsky. Quasi-incompressible Cahn-Hilliard fluids
and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.,
454(1978):2617-2654, 1998.

Xiangjun Meng, Zhonghua Qiao, Cheng Wang, and Zhengru Zhang. Artificial reg-
ularization parameter analysis for the no-slope-selection epitaxial thin film model.
CSIAM Transactions on Applied Mathematics, 1(3):441-462, 2020.

Giulio Schimperna and Sergey Zelik. Existence of solutions and separation from
singularities for a class of fourth order degenerate parabolic equations. Trans. Amer.
Math. Soc., 365(7):3799-3829, 2013.

J. Schoberl. C++411 Implementation of Finite Elements in NGSolve, 2014. ASC
Report 30/2014, Institute for Analysis and Scientific Computing, Vienna University
of Technology.

Jie Shen, Cheng Wang, Xiaoming Wang, and Steven M. Wise. Second-order convex
splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application
to thin film epitaxy. SIAM J. Numer. Anal., 50(1):105-125, 2012.

Jie Shen, Jie Xu, and Jiang Yang. The scalar auxiliary variable (SAV) approach for
gradient flows. J. Comput. Phys., 353:407-416, 2018.

28



[61]

[62]

[63]

[67]

[68]

Jie Shen, Jie Xu, and Jiang Yang. A new class of efficient and robust energy stable
schemes for gradient flows. SIAM Rev., 61(3):474-506, 2019.

Jie Shen and Xiaofeng Yang. Numerical approximations of Allen-Cahn and Cahn-
Hilliard equations. Discrete Contin. Dyn. Syst., 28(4):1669-1691, 2010.

Jie Shen and Xiaofeng Yang. Decoupled, energy stable schemes for phase-field models
of two-phase incompressible flows. SIAM J. Numer. Anal., 53(1):279-296, 2015.

C. Taylor and P. Hood. A numerical solution of the Navier-Stokes equations using
the finite element technique. Internat. J. Comput. & Fluids, 1(1):73-100, 1973.

Yue Yan, Wenbin Chen, Cheng Wang, and Steven M. Wise. A second-order energy
stable BDF numerical scheme for the Cahn-Hilliard equation. Commun. Comput.
Phys., 23(2):572-602, 2018.

Xiaofeng Yang. A novel fully-decoupled, second-order and energy stable numeri-
cal scheme of the conserved Allen-Cahn type flow-coupled binary surfactant model.
Comput. Methods Appl. Mech. Engrg., 373:113502, 2021.

Xiaofeng Yang and Lili Ju. Linear and unconditionally energy stable schemes for
the binary fluid-surfactant phase field model. Comput. Methods Appl. Mech. Engrg.,
318:1005-1029, 2017.

Xiaofeng Yang, Jia Zhao, and Qi Wang. Numerical approximations for the molecular
beam epitaxial growth model based on the invariant energy quadratization method.
J. Comput. Phys., 333:104-127, 2017.

Zhiguo Yang and Suchuan Dong. An unconditionally energy-stable scheme based on
an implicit auxiliary energy variable for incompressible two-phase flows with differ-
ent densities involving only precomputable coefficient matrices. J. Comput. Phys.,
393:229-257, 2019.

Zhiguo Yang and Suchuan Dong. A roadmap for discretely energy-stable schemes
for dissipative systems based on a generalized auxiliary variable with guaranteed
positivity. J. Comput. Phys., 404:109121, 46, 2020.

Zhengru Zhang and Zhonghua Qiao. An adaptive time-stepping strategy for the
Cahn-Hilliard equation. Commun. Comput. Phys., 11(4):1261-1278, 2012.

Jia Zhao, Xiaofeng Yang, Yuezheng Gong, and Qi Wang. A novel linear second order
unconditionally energy stable scheme for a hydrodynamic Q-tensor model of liquid
crystals. Comput. Methods Appl. Mech. Engrg., 318:803-825, 2017.

29



