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Abstract

We propose a novel second–order BDF time stepping method of variable time step sizes

combined with a classical residual-based stabilized finite element spatial discretization

using the Streameline-Upwind Petrov-Galerkin (SUPG)/pressure stabilization Petrov-

Galerkin (PSPG)/grad-div stabilization for solving the phase–field model for two–phase

incompressible flow of di↵erent densities and viscosities in the advection dominated regime.

In the case of uniform time step size and without extra stabilization, the scheme is shown

to satisfy a discrete energy law. Benchmark test of the Rayleigh–Taylor instability un-

der high Reynolds number and Péclect number demonstrates that the scheme captures

details of the instability comparable to results in the literature by schemes based on

sharp-interface models.

Keywords— Cahn-Hilliard-Navier-Stokes; two-phase incompressible flow; energy law

preserving; stabilized finite element method

1. Introduction

Phase field fluid models play increasingly important roles in the study of multiphase

flows, owing to their flexibility in modeling multi-physics, the ease of capturing moving

boundaries in numerical simulations, and the built-in physical mechanism (chemical dif-

fusion) allowing smooth topological changes of interfaces, cf. [3, 47] for some applications

of phase field fluid models. In this work, we focus on solving numerically the two-phase

incompressible flow problem of variable densities and viscosities using the thermodynami-

cally consistent Cahn-Hilliard phase-field model proposed by Abels et al. [1], see also [42].

Compared to the quasi-incompressible two-phase flow model developed by Lowengrub and

Truskinovsky [55], volume-averaged velocity is adopted in this model hence the velocity

field of the mixture remains solenoidal.
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A major challenge in solving phase field fluid models is the sti↵ness associated with

the di↵usive interface (sharp transition of field variables in thin layers). Energy-law

preserving hence unconditionally stable time marching schemes are desired for solving

these systems so that sti↵ness can be resolved adaptively without su↵ering from a severe

CFL constraint. Many approaches have been proposed in recent years, including the

convex-concave splitting method [20, 21, 59, 25], the stabilized linear approach [62], the

Invariant Energy Quadratization (IEQ) method [30, 68, 67, 26], and the Scalar Auxiliary

Variable (SAV) approach [60, 61]. Applications of these methods to phase field fluid

models can be found in [46, 36, 23, 34, 63, 33, 19, 72, 32, 27] among many others.

There are several numerical methods for solving the phase field model for incompress-

ible two-phase flow of variable densities. In [31] a first-order energy-law preserving scheme

is developed in which the Cahn-Hilliard solver is decoupled from the Navier-Stokes solver

via a fractional step method, see also [63]. A second-order accurate, coupled, energy-law

preserving linear scheme is proposed in [27] based on the Crank-Nicolson method and

the IEQ approach. In this second-order accurate method, periodic boundary condition is

necessary for establishing energy stability of the fully discrete scheme since the scheme uti-

lizes a scaled velocity variable in the Crank-Nicolson discretization. Separately, a totally

decoupled, second-order accurate, unconditionally stable numerical method is constructed

in [69]. The key idea in this method is the introduction of two SAVs: one for linearizing

the Cahn-Hilliard solver, the other one for canceling out the explicitly discretized non-

linear terms in the energy estimate. The method is computationally e�cient since the

only nonlinear equation involved is a low order polynomial for a scalar variable, and the

coe�cient matrices are precomputable. We point out that linear versions of the method

in [69] can be readily derived by using variants of the SAV approach recently developed

in [70, 66, 49]. It should be noted that despite the unconditional stability of these SAV-

based schemes the time step size needs to be relatively small for meaningful numerical

simulations in the case of large Péclet number and constant mobility. One possible expla-

nation for it is that the CFL condition might be still necessary in the advection-dominated

regime due to explicit treatment of the advection terms in these schemes.

In this article we aim to solve the incompressible two–phase flow model of variable

densities in the advection-dominated regime (large Péclet number and Reynolds number)

with a degenerate mobility function. The degenerate mobility function implies that the

order parameter remains in its physical bounds, which is essential for two–phase flows

of arbitrary densities and viscosities. Moreover, thanks to the degenerate mobility, the

un-physical e↵ect of bulk di↵usion for two–phase flows is reduced/delayed to a large time

scale [16, 48]. Solving the Cahn-Hilliard equation with a degenerate mobility function

is very challenging [8]. Indeed, our numerical tests have shown that with a degenerate

mobility function the SAV variable of the decoupled scheme in [66] deviates significantly

from its true value, regardless of smallness of the time step size, which in turn contributes

to an order one consistency error to the modified PDEs. A second challenge is that in
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the advection-dominated regime the di↵usive interface behaves much like a viscous shock.

It is known that traditional high-order methods can produce spurious oscillations near

di↵usive interfaces (analogous to the Gibbs phenomenon) which can pollute the numerical

solution beyond the sharp transition layers, cf. [24]. To address these challenges we

propose a second-order BDF time-stepping method of variable time step size e↵ected with

SUPG/PSPG/grad-div stabilized continuous finite elements for the spatial discretization.

The scheme with uniform time step size and without extra stabilization is shown to satisfy

a discrete energy law. Extensive benchmark simulations of the Rayleigh-Taylor instability

under high Reynolds number and Péclet number show that the scheme captures details

of the instability comparable to those by sharp interface model-based numerical methods.

In particuler, the numerical results demonstrate that the stabilized scheme is more robust

than the plain Galerkin method without extra stabilization in the high Reynolds number

and Péclect number regime.

We will not pursue convergence analysis/error estimates of the proposed numerical

schemes, but verify convergence through numerical experiments in this article. Conver-

gence analysis for the Cahn-Hilliard-Navier-Stokes (Darcy) equations can be found in

[18, 19, 10, 54, 9]. In addition, there have been many developments on BDF2/BDF3

methods for various gradient flow models, cf. [65, 12, 22, 13, 56, 35].

The rest of the article is organized as follows: in Sec. 2 we introduce the model, present

the time-stepping method and the spatial discretization; numerical results are reported

in Sec. 3; we conclude in Sec. 4 with a brief summary and some further discussions.

2. The model and discretization

2.1. The model

We consider the following thermodynamically consistent Cahn-Hilliard phase-field

model of Abels et al. [1] for incompressible two-phase flow in the domain ⌦ ⇢ Rd,

d = 2, 3:

@t(⇢(�)u) +r · (u⌦ (⇢(�)u+ J)) +rp�r ·
�
2⌘(�)D(u)

�
+ �̃✏r · (r�⌦r�) = f ,

(1a)

r · u = 0,

(1b)

@t�+r · (�u)�r · (M(�)rµ) = 0,

(1c)

µ� �̃

✏
(F 0(�)� ✏24�) = 0,

(1d)

J� ⇢1 � ⇢2
2

M(�)rµ = 0.

(1e)
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Here

⇢(�) :=
⇢1 + ⇢2

2
+
⇢2 � ⇢1

2
�

is the density with � being an order parameter related to the concentration of the fluids

and ⇢j > 0 being the specific (constant) density of fluid j = 1, 2, u is the mean velocity,

p is the pressure, D(u) = 1
2(ru+ruT ), f is the source term,

⌘(�) :=
⌘1 + ⌘2

2
+
⌘2 � ⌘1

2
�

is the viscosity of the mixture with ⌘j > 0 being the specific (constant) viscosity of fluid

j = 1, 2,

�̃ :=
3

2
p
2
�

is the scaled surface tension with � being the physical surface tension, ✏ > 0 is a (small)

parameter related to the thickness of the interfacial region, M(�) is the mobility function,

µ is the chemical potential, F (�) is the free energy density, and J is the relative flux

related to di↵usion of the components. In this work, we consider the following double

well potential for the free energy density, and a degenerate mobility:

F (�) :=
(�2 � 1)2

4
, M(�) := �(�2 � 1)2, (1f)

where � is the mobility coe�cient. Another popular choice for the mobility function is

M(�) = �(1� �2). The qualitative behavior of the solution may strongly depend on the

degeneracy order of the mobility function, as suggested by recent study in [57, 16, 17].

In this article we will utilize the model both in its dimensional form as in (1) and its

dimensionless form with Pe the di↵usional Péclet number (measure of advection over

chemical di↵usion) and Re the classical Reynolds number. We refer to [55, 45] for details

of the non-dimensionalization.

We close this system with the following initial and boundary conditions

u = 0, on @⌦⇥ (0, T ) (2a)

r� · n = rµ · n = 0, on @⌦⇥ (0, T ) (2b)

(u,�)|t=0 = (u0,�0), in ⌦. (2c)

Here n denotes the unit outer normal vector of the boundary @⌦. It can be shown that

the system (1) under the above boundary conditions satisfies the following energy law:

d

dt
Etot(u,�) = �

Z

⌦

2⌫(�)D(u) : D(u) dx�
Z

⌦

M(�)|rµ|2 dx +
Z

⌦

f · u dx, (3)

where the total energy Etot is defined as

Etot(u,�) =

Z

⌦

1

2
⇢(�)|u|2 dx +

Z

⌦

e�
✏

�
F (�) +

✏2

2
|r�|2

�
dx.
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Here we focus on the no-slip no penetration boundary condition (2a) so that the energy

identity (3) holds. Other boundary conditions such as outflow or open boundary condi-

tions can be treated using the recently developed generalized Positive Auxiliary Variable

approach for maintaining energy stability. We refer to [53] for details.

By introducing the following modified pressure

P := p+
e�
✏

✓
F (�) +

1

2
✏2|r�|2

◆
� �µ, (4)

the momentum equation (1a) can be reformulated as

@t(⇢(�)u) +r · (u⌦ (⇢(�)u+ J)) +rP �r ·
�
2⌘(�)D(u)

�
+ �rµ = f , (5)

By the definition of the density, the relative flux in (1e), and equation (1c), we have

@t⇢(�) +r · (⇢(�)u+ J) = 0.

Follow the idea in [28], we multiply the above identity with 1
2u and subtract from the

momentum equation (5) to get

@t(⇢(�)u) +r · (u⌦ (⇢(�)u+ J)) +rP �r ·
�
2⌘(�)D(u)

�
+ �rµ

�1

2
u (@t⇢(�) +r · (⇢(�)u+ J)) = f ,

which can be simplified as

p
⇢(�)@t(

p
⇢(�)u) +

✓
r · (u⌦ (⇢(�)u+ J))� 1

2
ur · (⇢(�)u+ J)

◆

+rP �r ·
�
2⌘(�)D(u)

�
+ �rµ = f . (6)

It is clear that the equation (6), combined with equations (1b)–(1e) is mathematically

equivalent to the original system (1).

Remark 2.1 (On energy stability). The energy identity (3) can be directly obtained by
a standard variational approach, where one multiply the equations (6), (1b), (1c), and
(1d), with test functions u, P , µ, and @t�, respectively, add up the resulting terms, and
then integrate over the domain ⌦. Hence, a Galerkin finite element spatial discretization
for the equations (6), and (1b)–(1e) is expected to preserve this energy identity in the
semi-discrete (continuous in time) case.

To obtain a linear, fully discrete energy stable scheme for the model (1), we follow the

recent scalar auxiliary variable (SAV) approach [61, 50] by introducing a scalar variable

that only depends on time t:

dU

dt
=

1

2

Z

⌦

r(�)
@�

@t
dx, (7a)
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U(0) =

sZ

⌦

⇣
F (�(0))� s

2
�(0)2

⌘
dx +B, (7b)

where

r(�) =
F 0(�)� s�rR

⌦

⇣
F (�)� s

2�
2
⌘
dx +B

, (7c)

and s > 0 is a user-defined stabilization parameter, B is a positive constant such that U

is well-defined. Note that we immediately have

U(t) =

sZ

⌦

⇣
F (�)� s

2
�2
⌘
dx +B.

With the help of the scalar variable U(t), we rewrite the system (6), (1b)–(1e) as follows:

p
⇢(�)@t(

p
⇢(�)u) +r · (u⌦ (⇢(�)u+ J))� 1

2
ur · (⇢(�)u+ J) + �rµ

+rP �r ·
�
2⌘(�)D(u)

�
= f , (8a)

r · u = 0, (8b)

@t�+r · (�u)�r · (M(�)rµ) = 0, (8c)

µ� �̃

✏
(Ur(�) + s�� ✏24�) = 0, (8d)

J� ⇢1 � ⇢2
2

M(�)rµ = 0. (8e)

It is clear that the system (7)–(8) with boundary conditions (2) is equivalent to the

original system (1) with boundary conditions (2). In particular, the following energy

stability result holds:

d

dt
eEtot = �

Z

⌦

2⌫(�)D(u) : D(u) dx�
Z

⌦

M(�)|rµ|2 dx +
Z

⌦

f · u dx, (9)

where the modified total energy

eEtot :=

Z

⌦

1

2
⇢(�)|u|2 dx +

Z

⌦

e�
✏

�s
2
�2 +

✏2

2
|r�|2

�
dx+

e�
✏
U2.

Note that this modified energy is related to the original one by the identity eEtot =

Etot(u,�) +
e�
✏B. Our numerical scheme is a discretization of the the modified system

(7)–(8), which preserve a discrete version of the modified energy identity (9). In the

discrete level, the modified energy may not be directly related to the original energy

Etot(u,�), which could be a shortcoming of the proposed scheme that is common to all

SAV based methods.
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2.2. The time-marching scheme

Phenomena associated with Cahn-Hilliard phase field fluid models often involve mul-

tiple time and spatial scales. Adaptive time-stepping is an important tool for e�cient

simulation of these phenomena, especially when long-time simulation is of interest, cf.

[71, 31, 14, 51, 52] for development in this direction. In this subsection, we discretize

the system (7)–(8) in time using the (variable step-size) second-order BDF2 method with

Adam-Bashforth extrapolations to arrive at a second-order, unconditionally energy stable

(for the modified energy), and linearly coupled time-discretization scheme. A similar BDF

scheme of variable steps has been applied to solving the Cahn-Hilliard equation in [11].

Let U0,u0,�0, µ0 be the initial data, and let 0 = t0 < t1 < t2 < · · · < tN = T be a

discretization of the time interval [0, T ], with a variable time step size �tj := tj � tj�1.

For any j � 1, we denote the di↵erence operator

�t 
j :=

8
<

:

( 1 �  0)/�t1 if j = 1,

wj
2 

j + wj
1 

j�1 + wj
0 

j�2, if j � 2,
(10a)

and the extrapolations

e j :=

8
<

:

 0 if j = 1,

ej1 
j�1 + ej0 

j�2, if j � 2,
(10b)

where the (second-order) weights for j � 2 are

wj
2 =

�tj�1 + 2�tj

(�tj�1 +�tj)�tj
, wj

1 = ��tj�1 +�tj

�tj�1�tj
, wj

0 =
�tj

�tj�1(�tj�1 +�tj)
, (10c)

ej1 = 1 +
�tj

�tj�1
, ej0 = � �tj

�tj�1
. (10d)

Without loss of generality, we further set e 0 :=  0.

Now our temporal discretization for the system (7)–(8) reads as follows: for any j � 1,

find the solution U j,uj,�j, µj, P j such that

�tU
j � 1

2

Z

⌦

r(e�j)�t�
j dx = 0, (11a)

q
⇢(e�j)�t(

q
⇢(e�j)uj) +rP j �r ·

�
2⌘(e�j)D(uj)

�

+r ·
⇣
uj ⌦ (⇢(e�j)euj + eJj)

⌘
� 1

2
uj r · (⇢(e�j)euj + eJj) + e�jrµj = f j, (11b)

r · uj = 0, (11c)

�t�
j +r · (e�juj)�r · (M(e�j)rµj) = 0, (11d)

µj � �̃

✏
(U jr(e�j) + s�j � ✏24�j) = 0, (11e)
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where

eJj =
⇢1 � ⇢2

2
M(e�j)reµj, (11f)

and the di↵erence operator term in equation (11b) is

�t(
q
⇢(e�j)uj) =

8
><

>:

(
q
⇢(e�1)u1 � wj

1

q
⇢(e�0)u0)/�t1 if j = 1,

wj
2

q
⇢(e�j)uj + wj

1

q
⇢(e�j�1)uj�1 + wj

0

q
⇢(e�j�2)uj�2 if j � 2.

(11g)

It is clear that the above scheme is a fully coupled linear method. Moreover, when the

time step size does not change over time, the following unconditional modified energy

stability result holds.

Theorem 2.1 (Unconditional energy stability). Assume the time step size �tj = �t for
all j = 1, 2, · · · , N , and assume the source term f = 0, then the following equality holds
for the scheme (11) for j � 2:

eEj
tot � eEj�1

tot = ��t

Z

⌦

⇣
2⌘(e�j)D(uj) : D(uj) +M(e�j)|rµj|2

⌘
dx� Nj, (12a)

where the modified energy at time tj is given as

eEj
tot :=

1

4

⇣Z

⌦

⇢(e�j)|uj|2 dx +
Z

⌦

e�
✏

�
s(�j)2 + ✏2|r�j|2

�
dx +

2e�
✏
(U j)2

⌘
(12b)

+
1

4

⇣Z

⌦

����2
q
⇢(e�j)uj �

q
⇢(e�j�1)uj�1

����
2

dx +
2e�
✏
(2U j � U j�1)2

⌘

+
1

4

Z

⌦

e�
✏

�
s(2�j � �j�1)2 + ✏2|r(2�j � �j�1)|2

�
dx,

and the non-negative numerical dissipation term is given as

Nj :=
1

4

Z

⌦

����
q
⇢(e�j)uj � 2

q
⇢(e�j�1)uj�1 +

q
⇢(e�j�2)uj�2

����
2

dx (12c)

+
e�
4✏
(U j � 2U j�1 + U j�2)2

+
1

4

Z

⌦

e�
✏

�
s(�j � 2�j�1 + �j�2)2 + ✏2|r(�j � 2�j�1 + �j�2)|2

�
dx.

Proof. Multiplying the equations (11a) with test function 2e�
✏ U

j, and multiplying the equa-
tions (11b), (11c), (11d), (11e), (11f) with test functions uj, P j, µj,��t�j, respectively,
adding the resulting terms, integrating over the domain ⌦ and apply integration-by-parts,
we get

2e�
✏
(�tU

j)U j +

Z

⌦

✓
�t(
q
⇢(e�j)uj)

◆q
⇢(e�j)uj +

�̃

✏

�
s�j�t�

j + ✏2r�j · �t(r�j)
�
dx

8



= �
Z

⌦

⇣
2⌘(e�j)D(uj) : D(uj) +M(e�j)|rµj|2

⌘
dx, (13)

where we specifically mention that the integral of the coupling terms e�jrµj · uj and
r · (e�juj)µj cancels out due to integration by parts and the boundary condition (2a).

Note that for the constant time step case we have �t�j = 1
2�t(3 

j � 4 j�1 +  j�2) for
j � 2. Elementary calculation yields that

(�t 
j) j =

1

4�t

⇣ �
| j|2 + |2 j �  j�1|2

�
�
�
| j�1|2 + |2 j�1 �  j�2|2

�
+ | j � 2 j�1 +  j�2|2

⌘
.

Combining the above identity with the equality (13), we immediately obtain the energy
identity (12a). This completes the proof.

Remark 2.2 (On energy stability for variable time stepping). We are not able to give
a rigorous proof of energy stability of the scheme (11) for the more general variable time
step-size case. For an energy identity it is necessary to multiply the variable time-step
BDF2 method (10a) by the di↵erence 'j�'j�1, which works for the Cahn-Hilliard equation
since it is a H�1 gradient flow, cf. [11]. However, one has to test the advective Cahn-
Hilliard equation (11d) with µj in order to cancel out advection term in the Cahn-Hilliard
equation with the capillarity term in the fluid equations in the energy estimate.

Remark 2.3 (On decoupled scheme and energy stability). It is generally di�cult to
construct second-order linear decoupled energy stable schemes for variable density CHNS
models due to the nonlinear coupling of phase-field and flow variables. Recently there are
some interesting work to construct decoupled energy stable schemes [69, 66] for CHNS
models. The work [69] modified the scalar variable to be the square root of the sum of
the kinetic energy and the potential free energy, instead of only the potential free energy
considered in our work. As a result, the modified energy stability result in [69, Theorem
2.1], which does not contain the “true” kinetic energy, is weaker than ours in Theorem
2.1.

Let us discuss more details on the recent work [66]. We focus on the application of the
key idea in [66] to our model (7) and (8). It introduces another auxiliary scalar variable
Q(t) to deal with the nonlinear (coupling/convection) terms, which satisfy the following
ODE:

dQ

dt
=

Z

⌦

✓
r · (u⌦ (⇢(�)u+ J))� 1

2
ur · (⇢(�)u+ J) + �rµ

◆
· u dx

+

Z

⌦

r · (�u)µdx,

with Q(0) = 1. It is straightforward to verify that the right hand side of the above equation
is identically zero as long as u ·n = J ·n = 0 on the boundary @⌦, which is termed as the
zero-energy-contribution property in [66]. Hence, Q(t) ⌘ 1 for all time. The author in
[66] then modified the equations (8a) and (8c) by multiplying the nonlinear terms therein
with Q(t) = 1. A linear decoupled scheme can be then constructed by treating the field

9



variables in the (Q-weighted) nonlinear terms in (8a) and (8c) explicitly and treating Q
implicitly as follows:

q
⇢(e�j)�t(

q
⇢(e�j)uj) +rP j �r ·

�
2⌘(e�j)D(uj)

�

+Qj

✓
r ·
⇣
euj ⌦ (⇢(e�j)euj + eJj)

⌘
� 1

2
euj r · (⇢(e�j)euj + eJj) + e�jreµj

◆
= 0,

�t�
j +Qjr · (e�jeuj)�r · (M(e�j)rµj) = 0.

We can show that the resulting time discretization, which we call the Q-scheme, is a lin-
early decoupled scheme that is unconditionally energy stable for a slightly di↵erent modified
energy. While the Q-scheme works reasonably well for the constant mobility case, we ob-
serve robustness issues of the Q-scheme when the mobility coe�cient is degenerate. In
particular, our preliminary numerical experiments with the Q-scheme for a CHNS model
with degenerate mobility (the numerical example in Section 3.3) for the rising bubble
benchmark problem [41] show that the Q value quickly diminishes to a value close to zero
no matter how small the time step size �t is chosen, which leads to an O(1) constancy
error as Q needs to stay around 1 for accuracy of the scheme. This phenomenon is very
surprising, which we do not have a good explanation. We will investigate on the issue in
more details in our future work.

Finally, we remark that a simple practice to decouple the scheme (11) is to treat the
convection term explicitly in equation (11d) by replacing uj by euj. Due to the explicit con-
vection treatment in (11d), stability is expected to hold under a CFL condition. Although
we do not have a rigorous proof of energy stability of this decoupled scheme, ample numer-
ical experiments (not reported here for simplicity) show that taking �t = 0.1h/vmax where
vmax is the maximum velocity magnitude is usually enough to obtain a stable simulation.

2.3. Spatial discretization

In this subsection, we introduce the classical finite element discretization for the time-

discrete system (11) using a mixed finite element method for the velocity and pressure

variables and a continuous Galerkin method for the phase-field variables � and µ. Due to

the Galerkin formulation, it is trivial to show that the energy stability result of Theorem

2.1 naturally carries over to this fully discrete setting.

It is a common practice to introduce stabilized methods for convection-di↵usion type

problems with a strong convection e↵ect. Here we use the classical SUPG (residual-based)

stabilization for the phase-field equation and the SUPG/PSPG/grad-div stabilization for

the flow equations; see [38, 7, 37, 39, 5, 2, 40, 15] for more details on stabilized methods.

To this end, let Th := {T} be a conforming simplicial triangulation of the domain ⌦,

and let Eh = {F} be the collection of facets (edges in 2D, faces in 3D) of Th. We set h to

be the maximum mesh size of Th. Given a simplex element S ⇢ Rd, d = 1, 2, 3, we denote

Pm(S) as the space of polynomials of degree at most m on the element S. We denote

(·, ·)⌦ as the L2-inner product on the domain ⌦, and k · k⌦ as the L2-norm. We introduce

the following continuous finite element spaces:

Xk
h := {w 2 H1(⌦) : w|T 2 Pk(T ), 8T 2 Th}, (14a)
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Yk
h :=

(
v 2 [H1

0 (⌦)]
d : v|T 2

(
[P1(T )]d � [{bT}]d if k = 1,

[Pk(T )]d if k � 2,
8T 2 Th

)
, (14b)

where bT 2 Pd(T ) is the bubble polynomial that vanishes on the element boundary @T .

Note that the velocity and pressure pair Y1
h ⇥X1

h is the mini element [4], while the pair

Yk
h ⇥Xk�1

h , for k � 2 is the Taylor-Hood element [64].

2.3.1. The plain Galerkin method

Given a polynomial degree k � 1, let u0
h,�

0
h, µ

0
h 2 Yk

h ⇥Xk
h ⇥Xk

h be the interpolation

of the initial data u0,�0, and

µ0 =
�̃

✏
(F 0(�0)� ✏24�0),

respectively, and let U0
h be given according to the initial data (7b). For any j � 1, the

plain Galerkin method finds approximations (U j
h,u

j
h, P

j
h ,�

j
h, µ

j
h) 2 R⇥Yk

h⇥Xkp
h ⇥Xk

h⇥Xk
h

where kp := max{k � 1, 1} such that

�tU
j
h �

1

2

⇣
r(e�j

h), �t�
j
h

⌘

⌦
= 0, (15a)

✓q
⇢(e�j

h)�t(
q
⇢(e�j

h)u
j
h),vh

◆

⌦

�
�
P j
h ,r · vh

�
⌦
+
⇣
2⌘(e�j)D(uj

h),D(u
j
h)
⌘

⌦

�1

2

⇣
uj
h ⌦ (⇢(e�j

h)eu
j
h +

eJj
h),rvh

⌘

⌦
+

1

2

⇣
rvh ⌦

⇣
⇢(e�j

h)eu
j
h +

eJj
h

⌘
,uj

h

⌘

⌦

+
⇣
e�j
hrµj

h,vh

⌘

⌦
= (f ,v)⌦ ,

(15b)
�
r · uj

h, qh
�
⌦
= 0, (15c)

�
�t�

j
h, ⇠h

�
⌦
�
⇣
e�j
hu

j
h,r⇠h

⌘

⌦
+
⇣
M(e�j

h)rµj
h,r⇠h

⌘

⌦
= 0, (15d)

� ✏

e�
�
µj
h, h

�
⌦
+ U j

h

⇣
r(e�j

h), h

⌘

⌦
+
�
s�j

h, h

�
⌦
+ ✏2

�
r�j

h,r h

�
⌦
= 0, (15e)

for all (vh, qh, ⇠h, h) 2 Yk
h ⇥Xkp

h ⇥Xk
h ⇥Xk

h , where

eJj
h :=

⇢1 � ⇢2
2

M(e�j
h)reµ

j
h. (15f)

It is clear from the proof of Theorem 2.1 that the unconditional modified energy stability

result of Theorem 2.1 carries over to this fully discrete setting.

2.3.2. The stabilized method

For convection dominated flow problems, it is beneficial to introduce extra stabiliza-

tion to the plain Galerkin method (15) to suppress numerical oscillations due to strong

convection. Here we introduce a classical (residual-based) SUPG-type stabilization for

the phase-field equation (15d), and the SUPG/PSPG/grad-div stabilization for the flow

11



equations (15b)–(15c). More advanced stabilization techniques like the variational mul-

tiscale method [5] can also be used. Denoting the following (linearized) residual terms:

rju :=
q
⇢(e�j

h)�t(
q
⇢(e�j

h)u
j
h) +rP j

h �r ·
�
2⌘(e�j

h)D(u
j
h)
�

+r ·
⇣
uj
h ⌦ (⇢(e�j

h)eu
j
h +

eJj
h)
⌘
� 1

2
uj
h r · (⇢(e�j

h)eu
j
h +

eJj
h) +

e�j
hrµj

h � f jh, (16a)

rjp :=r · uj
h, (16b)

rj� :=�t�
j
h + eu

j
h ·r�

j
h �r · (M(e�j

h)rµj
h), (16c)

the proposed stabilized method adds to the plain Galerkin method (15) with the following

(linear) residual-based stabilization term:

Bs

�
(uj

h, P
j
h ,�

j
h, µ

j
h), (vh, qh, h, ⇠h)

�
:=
X

T2Th

Z

T

⌧ jSUPS

 
euj
h ·rvh +

rqh + e�j
hr⇠h

⇢(e�j
h)

!
· rju dx

+
X

T2Th

Z

T

⇢(e�j
h)⌫

j
LSIC (r · vh) · rjp dx

+
X

T2Th

Z

T

⇢(e�j
h)⌧

j
SUPS

�
euj
h ·r⇠h

�
· rj� dx, (17a)

where the stabilization parameters ⌧ jSUPS and ⌫
j
LSIC are given by the following formulas, see

e.g. [6, Chapter 2] and [43, Chapter 5/8] for discussions on the choice of the stabilization

parameters:

⌧SUPS :=

0

@ 4

(�tj)2
+ euj

h ·Geu
j
h + CI

 
⌘(e�j

h)

⇢(e�j
h)

!2

G : G

1

A
�1/2

, (17b)

⌫LSIC := (trG ⌧SUPS)
�1, (17c)

where CI is the inverse estimate constant taken to be CI = 3, and trG =
Pd

i=1 Gii is the

trace of the element metric tensorG = F�TF�1 with F being the element Jacobian matrix.

Here we briefly comment on the role of each term on the right hand side of equation (17a).

The first term is a stabilization for the momentum equation (8a), which contains the SUPG

term, with test function euj
h ·rvh, that stabilizes dominating convection, the PSPG term,

with test function rqh/⇢(e�j
h), that stabilizes the potential violation of discrete inf-sup

condition for the velocity-pressure finite element pair, and the additional stabilization

term with test function e�j
hr⇠h/⇢(e�

j
h) that stabilizes dominated surface tension e↵ects.

The second term is the grad-div stabilization term for the mass conservation equation (8b),

which gives additional control on the violation of the mass conservation for the velocity-

pressure finite element pair. And the last term is the SUPG term for the convective Cahn-

Hilliard equation (8c) that again stabilizes dominating convection. Hence, the stabilized

12



method seeks approximations (U j
h,u

j
h, P

j
h ,�

j
h, µ

j
h) 2 R⇥Yk

h ⇥Xkp
h ⇥Xk

h ⇥Xk
h such that

Bg

�
(U j

h,u
j
h, P

j
h ,�

j
h, µ

j
h), (vh, qh, h, ⇠h)

�

+Bs

�
(uj

h, P
j
h ,�

j
h, µ

j
h), (vh, qh, h, ⇠h)

�
= (f j,v)⌦, (18)

for all (vh, qh, ⇠h, h) 2 Yk
h ⇥ Xkp

h ⇥ Xk
h ⇥ Xk

h , where Bg(·, ·) is the collection of the left

hand side terms in the plain Galerkin method (15). Due to the additional stabilization

terms, it is well-known that the velocity/pressure pair for the stabilized method (18) does

not need to satisfy the inf-sup condition, and a popular choice is to use equal-order finite

element spaces for both quantities; see, e.g., [5]. However, in this work we still stick with

the inf-sup stable spaces used for the plain Galerkin method to facilitate a fair comparison

between the two methods.

We note particularly that the stabilized method (18) is still a linear scheme. More

interestingly, we find that the linear system for the stabilized method is easier to solve

than that for the plain Galerkin method (15) due to the e↵ect of the stabilization terms,

when a sparse direct solver is used. However, we are not able to establish the same

energy stability result in Theorem 2.1 for the stabilized method. We suggest to add the

stabilization terms when the flow has a large Reynolds number and/or a large Péclet

number. In particular, numerical evidence for the Rayleigh-Taylor instability problem

in Section 3.4 below showed that the plain Galerkin method performs surprisingly well

for Reynolds number Re = 1000 and Péclet number Pe = 10000, while the stabilized

method outperform the plain Galerkin method both in terms of the solution resolution

and computational time when the Reynolds number is increased to Re = 5000, where the

flow is strongly convection dominated.

3. Numerical results

In this section, we present several numerical results for the proposed schemes (15) and

(18). In all the simulations, we take s = B0 = 0 in the SAV model (7b), and use a sparse

direct solver to solve the linear system problems. The NGSolve software [58] is used for

the simulation.

3.1. Accuracy test

We use the method of manufactured solutions to test the spatial and temporal accuracy

of the scheme. In particular, we consider the model (1) with a source term f� in the

equation (1c) on a unit square domain, and take the source terms f� and f in (1a) such

that the exact solution is given as follows:

�(t, x) = cos(⇡t) cos(⇡x) cos(⇡y),

µ(t, x) =
e�
✏�1

(F 0(�(t, x))� ✏4�(t, x)),

u(t, x) = (�@y�(t, x), @x�(t, x))

13



with the stream function �(t, x) = cos(⇡t) (x(1� x)y(1� y))2 Furthermore, we take ⇢1 =

1, ⇢2 = 3, ⌘1 = ⌘2 = 0.01, e� = 0.1, ✏ = 0.1, and � = 0.01. The final time is taken to

be T = 0.4, and we use a uniform time step size �t = h(k+1)/2 with polynomial degree

k = 1 or k = 2. The history of convergence of the L2-norm errors in �h, µh, and uh at the

final time T = 0.4 on a sequence of uniform square meshes are recorded in Table 1 and

Table 2, respectively, for the plain Galerkin method (15) and the stabilized method (18),

respectively. For these two tables, we find that the errors for both methods are similar on

the same mesh. Moreover, we observe optimal convergence order of k + 1 in the velocity

field uh and phase-field variable �h for both methods. In particular, this indicates the

expected second-order temporal accuracy of the proposed temporal discretization.

ku� uhk k�� �hk kµ� µhk
k 1/h T/�t Error Order Error Order Error Order

10 4 2.734e-02 – 4.940e-03 – 6.328e-04 –
1 20 8 6.622e-03 2.046 7.019e-04 2.815 1.708e-04 1.889

40 16 1.607e-03 2.043 1.836e-04 1.935 4.386e-05 1.962
80 32 3.951e-04 2.024 6.088e-05 1.592 1.099e-05 1.996
10 13 2.477e-03 – 1.793e-04 – 4.325e-05 –

2 20 36 3.102e-04 2.997 3.726e-05 2.267 4.684e-06 3.207
40 101 3.889e-05 2.996 5.433e-06 2.778 5.573e-07 3.071
80 286 4.857e-06 3.001 7.555e-07 2.846 6.852e-08 3.024

Table 1: History of convergence of the L2
-errors for the plain Galerkin method (15).

ku� uhk k�� �hk kµ� µhk
k 1/h T/�t Error Order Error Order Error Order

10 4 2.727e-02 – 4.940e-03 – 6.841e-04 –
1 20 8 6.616e-03 2.043 6.928e-04 2.834 1.893e-04 1.853

40 16 1.606e-03 2.042 1.793e-04 1.950 4.708e-05 2.008
80 32 3.951e-04 2.024 6.035e-05 1.571 1.154e-05 2.029
10 13 2.473e-03 – 1.684e-04 – 5.425e-05 –

2 20 36 3.100e-04 2.996 3.697e-05 2.188 5.497e-06 3.303
40 101 3.889e-05 2.995 5.428e-06 2.768 5.913e-07 3.217
80 286 4.858e-06 3.001 7.555e-07 2.845 6.985e-08 3.081

Table 2: History of convergence of the L2
-errors for the stabilized method (18).

3.2. Energy stability test

In this example, we confirm numerically the energy stability result in Theorem 2.1 for

the plain Galerkin method (15). We use the same modeling parameters as in the previous
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example, but ignore the source terms f and f� therein. The initial condition is taken to

be

�0(x, y) = cos(4⇡x) cos(4⇡y),

u0(x, y) = (�@y�0(x, y), @x�0(x, y)),

with �0(x, y) = 16 (x(1� x)y(1� y))2 We take final time T = 40. The plain Galerkin

method (15) on a uniform triangular mesh with mesh size h = 0.05 and uniform time

stepping with time step size �t = 0.05 is used for the simulation.

For this problem, Theorem 2.1 indicates that following (modified) energy stability

result for the numerical results of our method:

eEj
h � eEj�1

h  ��tDissjh,

where

eEj
h :=

1

4

����
q
⇢(e�j

h)u
j
h

����
2

⌦

+
1

4

����2
q
⇢(e�j

h)u
j
h �

q
⇢(e�j�1

h )uj�1
h

����
2

⌦

+
1

4
e�✏kr�j

hk
2
⌦ +

1

4
e�✏kr(2�j

h � �j�1
h )k2⌦ +

e�
2✏

�
(U j

h)
2 + (2U j

h � U j�1
h )2

�

is the modified total energy, and

Dissjh :=

����
q

2⌘(e�j
h)Duj

h

����
2

⌦

+

����
q
M(e�j

h)rµj
h

����
2

⌦

is the physical dissipation rate at time tj. The above result is numerically confirmed in

Figure 1, where we plot the evolution of the modified energy along with the true energy

Ej
h :=

1

4

����
q
⇢(e�j

h)u
j
h

����
2

⌦

+
1

4

����2
q
⇢(e�j

h)u
j
h �

q
⇢(e�j�1

h )uj�1
h

����
2

⌦

+
1

4
e�✏kr�j

hk
2
⌦ +

1

4
e�✏kr(2�j

h � �j�1
h )k2⌦ +

e�
2✏

Z

⌦

(F (�j
h) + F (2�j

h � �j�1
h )) dx

and the evolution of the dissipation rates. In particular, from Figure 1 we observe that

that the modified total energy eEh and the true energy Eh are on top of each other, and

the dissipation rates
eEj�1
h � eEj

h
�t and Dissjh are on top of each other.

3.3. Rising bubble

We consider the rising bubble benchmark problem proposed in [41]. The test setup is

extensively described in [41]. The domain [0, 1]⇥ [0, 2] is filled with fluid 1 (� ⇡ 1) except

for a circular bubble, which consists of fluid 2 (� ⇡ �1). The initial bubble has a radius

of 0.25 with its center at (0.5, 0.5). The gravitational source term f = ⇢(0,�0.98) is used

in the momentum equation (8a). Following [41], we consider the following two test cases:

Case 1: ⇢1 = 100, ⇢2 = 1000, ⌘1 = 1, ⌘2 = 10, � = 24.5,
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Figure 1: Evolution of energies and dissipation rates for the plain Galerkin method (15) on a uniform

triangular mesh with mesh size h = 0.05 and uniform time step size �t = 0.05. (For interpretation of

the colors in this figure, the reader is referred to the web version of this article.)

Case 2: ⇢1 = 1, ⇢2 = 1000, ⌘1 = 0.1, ⌘2 = 10, � = 1.96.

We take the final time of simulation to be t = 3. For Case 1, the bubble reaches a

stable bubble ellipsoidal shape; for Case 2, it develops a more non-convex shape and thin

filaments, which may or may not break, due to a decreased surface tension and larger

density ratio [41].

Due to symmetry of the problem, we run the simulation only on the half domain

⌦ = [0, 0.5] ⇥ [0, 2]. As for the boundary conditions, we use a homogeneous Neumann

boundary condition (2b) for the phase-field variables � and µ, and no slip velocity bound-

ary condition on the horizontal boundaries and free slip velocity boundary condition on

the vertical boundaries. We take the interface thickness ✏ to be either 0.01 or 0.005.

Based on preliminary numerical experiments, it was observed that taking the mobility

coe�cient � 2
�

✏
20� ,

✏
5�

�
in (1f) leads to a fairly good agreement of our simulation results

with reference data provided in [41]. We use � = ✏
10� for our simulation results reported

in this subsection. Furthermore, the initial condition for � is taken to be a hyperbolic

tangent:

�0(x, y) = tanh

✓
r � 0.25p

2✏

◆
, r =

p
(x� 0.5)2 + (y � 0.5)2,

while the initial condition for velocity is zero.

For each ✏, we consider a triangular mesh that is locally refined on the sub-region

⌦1 := [0.15, 0.5] ⇥ [0.2 ⇥ 1.4], where the mesh size is h = 1.6✏ on ⌦1 and h = 6.4✏ on

⌦\⌦1, see an illustration in Figure 2. We apply the plain Galerkin method (15) with

polynomial degree k = 2 on these meshes and take uniform time step size �t = 4⇥ 10�3

or �t = 2 ⇥ 10�3 when ✏ = 0.01, and �t = 2 ⇥ 10�3 or �t = 1 ⇥ 10�3 when ✏ = 0.005.

Contour plots of the phase field variable �h for the two cases at final time t = 3 using

✏ = 0.005 and �t = 1⇥ 10�3 are shown in Figure 2 (c) and (d). We observe the expected

stable ellipsoidal bubble for Case 1, and the non-convex shape with filaments for Case 2.

In particular, our simulation results in a break of the bubble filaments for Case 2.
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(a) (b) (c) (d)

Figure 2: Computational meshes and contour of �h at time t = 3. (a): The mesh with 2278 vertices for

✏ = 0.01. (b): The mesh with 8442 vertices for ✏ = 0.005. (c) Contour of �h at t = 3 for Case 1 using

✏ = 0.005 and �t = 0.002 (red color: � = 1, blue color: � = �1). (d) Contour of �h at t = 3 for Case 2

using ✏ = 0.005 and �t = 0.002. (For interpretation of the colors in this figure, the reader is referred to

the web version of this article.)

We compute the following three benchmark quantities and compare them with refer-

ence values from group 3 in [41], which solves the sharp interface model using an arbitrary

Euler-Lagrangian finite element method within the MooNMD software [44]:

• Center of mass

yc =

R
�<0 y dxR
�<0 1 dx

,

where y is the vertical coordinate.
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• Circularity:

c =
perimeter of area-equivalent circle

perimeter of bubble
=

2
qR

�<0 ⇡ dxR
�=0 1 ds

.

• Rise velocity:

Vc =

R
�<0 v dxR
�<0 1 dx

where v is the vertical component of the velocity u.

Figure 3 shows the evolution of these benchmark quantities over time for Case 1.

We observe an excellent agreement with reference data for the center of mass and rising

velocity for all four simulation results. We also have a very good agreement with reference

data for the circularity, where an improved agreement is observed for t > 1.5 when we

decrease interface thickness ✏ from 0.01 to 0.005.

Figure 3: Center of mass (left), circularity (middle), and rising velocity (right) over time for Case 1.

Reference data is taken from group 3 of [41]. (For interpretation of the colors in this figure, the reader is

referred to the web version of this article.)

Figure 4 shows the evolution of these benchmark quantities over time for Case 2. We

observe an excellent agreement with the reference data for all the three quantities up to

time t = 1.5. The results for the center of mass for t 2 [1.5, 3] also matches well with the

reference data. Meanwhile, we observe a better match of the circularity with the reference

data for t 2 [1.5, 3] when decreasing ✏ from 0.01 to 0.005. Finally, for the rising velocity,

we observe a better match with the reference data for t 2 [1.5, 2] when decreasing ✏ from

0.01 to 0.005.

3.4. Rayleigh-Taylor instability

The Rayleigh-Taylor instability is a two-phase instability which occurs whenever two

fluids of di↵erent density are accelerated against each other. We consider a similar setting

as in [29]. This problem consists of two layers of fluid initially at rest in the gravity

field in the domain ⌦ = [0, 1/2] ⇥ [�2, 2]. The initial position of the perturbed interface

is ⌘(x) = �0.1 cos(2⇡x). The heavy fluid is above and the density ratio is 3 (⇢1 = 1,

⇢2 = 3). The viscosity in both fluids is taken to be ⌘1 = ⌘2 =
p
2/Re, where Re is
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Figure 4: Center of mass (left), circularity (middle), and rising velocity (right) over time for Case 2.

Reference data is taken from group 3 of [41]. (For interpretation of the colors in this figure, the reader is

referred to the web version of this article.)

the Reynolds number. The (initial) transition between the two fluids is regularized by

hyperbolic tangent:

�(t = 0) = tanh

✓
1p
2✏
(y + 0.1 cos(2⇡x))

◆
.

We consider the gravitational source term f = ⇢(0,�g) with g = 2. The other modeling

parameters are given as follows:

e� = 10�4, Re 2 {1000, 5000}, ✏ 2 {0.01, 0.005}, � = ✏.

The final time of simulation is t = 2.5. We note that the Reynolds number is defined

as Re = ⇢1Ud/⌘1 which varies according to the viscosity ⌘1 =
p
2/Re, cf. [29], with

the characteristic velocity U = d1/2/g1/2. Note also the di↵usional Peclet number Pe =
⇢1Ud
�e� =

p
2⇥104

✏ , cf. [55]. Hence this numerical experiment is set up in the advection

dominated regime.

For each ✏, we consider a triangular mesh that is locally refined on the sub-region

⌦1 := [0, 0.5] ⇥ [�1.25 ⇥ 0.75], where the mesh size is h0 = 1.6✏ on ⌦1 and is 4h0 on

⌦\⌦1, see an illustration in Figure 5. For the case with Re = 1000, we apply the plain

Galerkin method (15) with polynomial degree k = 2 and take a variable time step size

�tn = cfl h0/vnmax with the CFL number cfl = 0.1, where vnmax is the estimated maximum

velocity magnitude at time tn. For the case with Re = 5000, we apply both the plain

Galerkin method (15) and the stabilized method (18) with polynomial degree k = 2, and

take a variable time step size �tn = cfl h0/vnmax, where we reduce the CFL number to be

cfl = 0.05. We note that for the case with Re = 5000, using cfl = 0.1 leads to low quality

solutions with large numerical oscillations for both methods. We mention that the locally

refined mesh is about half the size of a uniformly refined mesh with mesh size h = h0,

and the total number of time steps is also about half of a uniform time stepping with step

size �t = cfl h0/vmax where vmax ⇡ 2.5 is the estimated maximum velocity magnitude

for all time t 2 [0, 2.5]. The quality of numerical results for each scheme on the locally

refined mesh with variable time stepping is observed to be qualitatively similar to the same

method on a uniform mesh with mesh size h0 and uniform time stepping�t = cfl h0/vmax,

with the former being at least 25% cheaper to computer.
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Figure 5: (90-degree rotated) computational mesh for ✏ = 0.01 (4658 triangular elements).

The time evolution of the contour of the phase-field variable �h for Re = 1000 (for

the plain Galerkin method) is plotted in Figure 6 at times 1, 1.5, 1.75, 2, 2.25, 2.5. We

observe that the solutions on the two meshes are consistent in that they show similar

structures and di↵er only in fine details at large time. In particular, no visible numerical

oscillation is observed for this case.

The time evolutions of the contour of the phase-field variable �h for Re = 5000 for both

methods for ✏ = 0.01 on the coarse mesh and for ✏ = 0.005 on the fine mesh, respectively,

are plotted in Figure 7, and Figure 8, respectively. From these figures, we observe that (1)

both the plain Galerkin method and the stabilized method produce qualitatively similar

results on the same mesh, (2) the solution for the plain Galerkin method show visible

numerical oscillations (the shaded area) near the two-phase interface especially on the

coarse mesh in the top row of Figure 7, while no visible numerical oscillations are observed

the stabilized method, (3) the solutions on the two meshes for both schemes are consistent

in that they show similar structures and di↵er only in fine details at large time and consist

in the development of structures within the main vortex that are more complex on the fine

mesh than on the coarse one. Moreover, we point out that the computational cost of the

sparse direct linear system solver per time step is about 12 seconds for the plain Galerkin

method , and about 7.4 seconds for the stabilized method on the fine mesh. Hence, the

stabilized method outperform the plain Galerkin method both in terms of solution quality

and computational cost in this case.

Finally, we note that all these results are qualitatively similar to the results in [29],

where a stabilized projection FEM was used to solve the variable density flow without

surface tension e↵ects.

4. Conclusion and discussions

In this article we propose a second–order BDF time-stepping method of variable time

step size combined with the SUPG/PSPG/grad-div stabilized finite elements for solving

an incompressible two-phase flow model of variable densities in the advection dominated

regime. We show that the scheme preserves the underlying energy law of the model when

uniform time step size is utilized without additional stabilization. Numerical results

confirm the accuracy and stability of the scheme. Moreover, the benchmark of Rayleigh-

Taylor instability in the advection dominated regime demonstrate that our scheme well

captures the details of the instability.
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Figure 6: Re = 1000. Contour of the Rayleigh-Taylor instability problem on the subdomain [0, 0.5] ⇥
[�1.25, 0.75] at time t = 1, 1.5, 1.75, 2.0, 2.25, 2.5 (from left to right) for the plain Galerkin method (15)

with polynomial degree k = 2. Top: ✏ = 0.01 on a triangular mesh with 4658 elements. Bottom: ✏ = 0.005
on a triangular mesh with 18560 elements. (For interpretation of the colors in this figure, the reader is

referred to the web version of this article.)

In spite of the e�ciency and unconditional stability of the SAV-based decoupled nu-

merical schemes in the di↵usion dominated regime (see Remark 2.3), these methods do

not seem to perform well in the advection dominated regime with a degenerate mobility

function. This issue warrants further investigation.

In future work, we would like to develop an unconditionally energy stable divergence-

free hybridizable discontinuous Galerkin scheme for solving the phase field model (1)

where the velocity approximation is solenoidal for all time, by combining the proposed
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Figure 7: Re = 5000. Contour of the Rayleigh-Taylor instability problem on the subdomain [0, 0.5] ⇥
[�1.25, 0.75] at time t = 1, 1.5, 1.75, 2.0, 2.25, 2.5 (from left to right). for ✏ = 0.01 on a triangular mesh

with 4658 elements. Top row: the plain Galerkin method (15) with polynomial degree k = 2. Bottom

row: the stabilized method (18) with polynomial degree k = 2. (For interpretation of the colors in this

figure, the reader is referred to the web version of this article.)

temporal discretization in this work and the spatial discretization in [24].
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Figure 8: Re = 5000. Contour of the Rayleigh-Taylor instability problem on the subdomain [0, 0.5] ⇥
[�1.25, 0.75] at time t = 1, 1.5, 1.75, 2.0, 2.25, 2.5 (from left to right) for ✏ = 0.005 on a triangular mesh

with 18560 elements. Top row: the plain Galerkin method (15) with polynomial degree k = 2. Bottom

row: the stabilized method (18) with polynomial degree k = 2. (For interpretation of the colors in this

figure, the reader is referred to the web version of this article.)
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