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Abstract. The Cahn-Hilliard-Navier-Stokes (CHNS) equations represent the fundamental building
blocks of hydrodynamic phase-field models for multiphase fluid flow dynamics. Due to the coupling
between the Navier-Stokes equation and the Cahn-Hilliard equation, the CHNS system is non-trivial
to solve numerically. Traditionally, a numerical extrapolation for the coupling terms is used. How-
ever, such brute-force extrapolation usually destroys the intrinsic thermodynamic structures of this
CHNS system. This paper proposes a new strategy to reformulate the CHNS system into a constraint
gradient flow formation. Under the new formulation, the reversible and irreversible structures are
clearly revealed. This guides us to propose operator splitting schemes that have several advanta-
geous properties. First of all, the proposed schemes lead to several decoupled systems in smaller
sizes to be solved at each time marching step. This significantly reduces computational costs. Sec-
ondly, the proposed schemes still guarantee the thermodynamic laws of the CHNS system at the dis-
crete level. In addition, unlike the recently populated IEQ or SAV approach using auxiliary variables,
our resulting energy laws are formulated in the original variables. This is a significant improvement,
as the modified energy laws with auxiliary variables sometimes deviate from the original energy
law. Our proposed framework lays a foundation for designing decoupled and energy stable numer-
ical algorithms for hydrodynamic phase-field models. Furthermore, various numerical algorithms
can be obtained given different splitting steps, making this framework rather general. The proposed
numerical algorithms are implemented. Their second-order temporal and spatial accuracy are ver-
ified numerically. Some numerical examples and benchmark problems are calculated to verify the
effectiveness of the proposed schemes.
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1 Background

Multiphase interfacial problems are ubiquitous in nature and industrial processes. As one of the
most widely used approaches, phase field methods/models have been broadly utilized in various
fields to investigate interfacial problems [1–3, 5, 10, 29, 33, 34, 47]. The phase-field method’s major ad-
vantage is that the evolving interface is captured intrinsically instead of explicitly like other interface
tracking methods. This dramatically simplifies the modeling and computational processes. Mainly,
one needs to introduce phase-field variables that could either be the volume fractions or labels for
the phases. Then continuous partial differential equations (PDEs) are proposed in the computational
domain. Once the PDEs are solved, the interfaces will be retrieved through level sets of the phase vari-
ables. The phase-field models are also known as diffuse interface models since an artificial diffuse in-
terface is usually introduced to regularize the phase variables, which are the PDEs’ solutions [9]. Due
to its simplicity in the theoretical formulation and numerical implementation, the phase-field method
has been widely used in the fields where multiple material phases are involved [7, 24, 30, 40, 41, 50].
The velocity fields shall be considered when the material systems are fluids since the interactions be-
tween kinetics energy and free energy are not ignorable. Thus, the hydrodynamic equations for fluid
flows will be proposed along with the phase-field equations for the phase variables. The well-known
Cahn-Hilliard-Navier-Stokes equations are the fundamental system for the hydrodynamic phase-field
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models [4, 6, 21, 31]. It has been widely used to investigate interfacial problems for the incompressible
fluid mixture.

Consider the domain W and time t 2 (0,T], and denote WT = W⇥(0,T]. In this paper, we use
f2 [�1,1] as the phase variable, with f= 1 to label one phase, f=�1 to label the other phase, and
f=0 representing the interface. The total energy of the two phase fluid-mixture system E include the
Helmholtz free energy F and the kinetic energy E, i.e.

E(u,f)=F(f)+E(u), F(f)=
Z

W
g
⇣ #

2
|rf|2+ 1

#
f (f)

⌘
dx, E(u)=

Z

W

r

2
|u|2dx. (1.1)

where g is the surface tension between the two fluid phases, # is an artificial parameter controlling
the interfacial thickness. f (f) is the bulk free energy for the two phase material. u the volume-
averaged velocity, and r is the volume-averaged density. In this paper, we assume the fluid mixture is
incompressible, and both phases have the same density. The double-well potential

f (f)=
1
4
(f2�1)2 (1.2)

will be used as the bulk potential in the rest of this paper. Other cases, such as the Flory-Huggins bulk
potential [13, 22], could be treated similarly with our proposed algorithms in this paper.

Then, the Cahn-Hilliard-Navier-Stokes (CHNS) equations are formulated as [4, 6, 21, 31]
8
>>>>>><

>>>>>>:

r
⇣

∂tu+u·ru
⌘
=�rp+hr2u�frµ, (x,t)2WT,

r·u=0, (x,t)2WT,

∂tf+r·(uf)=r·(M(f)rµ), (x,t)2WT,

µ=�g#Df+ g
# f 0(f), (x,t)2WT,

(1.3)

where h is the viscosity parameter, M(f)�0 is the mobility operator, p is the hydrodynamic pressure,
and µ = dF

df is the chemical potential. The boundary conditions are not unique. In this paper, if not
otherwise specified, we focus on the following physical boundary conditions:

u(x,t)=0, rµ(x,t)·n=0, rf(x,t)·n=0, (x,t)2∂W⇥(0,T], (1.4)

with n the outward normal vector at the boundary. The CHNS system in (1.3)-(1.4) is known to satisfy
the second law of thermodynamics [4, 6, 21, 31], with the energy dissipation rate calculated as

dE
dt

=�
Z

W

⇣
|
q

M(f)rµ|2+h|ru|2
⌘

dx. (1.5)

One principle in developing numerical algorithms for solving the CHNS system is to guarantee that
the numerical solutions also satisfy the energy law in (1.5). A numerical scheme that satisfies the
monotone property of the energy is known as an energy stable scheme or energy-law-preserving
scheme [11]. In an energy-stable scheme, the energy of the system remains bounded (non-increasing)
at any time step regardless of the time step size, cf. (1.5). Therefore energy-stable schemes allow large
time marching while preserving accuracy and stability, which is essential in solving stiff systems such
as the CHNS system [35].

Given the significant role it played in the phase-field models, the CHNS system has drawn a con-
siderable amount of attention. Many seminal works have been published investigating different as-
pects. Here we briefly review some relevant results in numerical analysis. There are several pieces
of existing works on fully discrete schemes for the hydrodynamic phase-field model or its simplified
versions [8, 20, 21, 42], all of them are either only first-order in time or nonlinear. In comparison, our
decoupled schemes can be more efficient in implementation and computational costs. Han and Wang
introduce a second-order velocity projection method for the CHNS system in [21]. The resulted nu-
merical scheme is second-order accurate in time. This is one of the earliest works to introduce second-
order numerical algorithms for the CHNS system while preserving energy stability. Later Gong et al.
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manage to improve the scheme by using the energy quadratization (EQ) idea, such that only linear sys-
tems need to be solved at each time step [15]. Another linear and energy stable scheme is introduced
in [6], where a stabilized leap-frog type time-marching strategy is adapted. However, the velocity
field and phase variables have to be solved simultaneously in all the schemes just mentioned. This
requires either a Newton iteration method or a fixed-point iteration method. This drawback shall not
be ignored since the solution’s existence, and uniqueness for the iteration method usually have sub-
stantial requirements on the time step, making the unconditional stability of the original numerical
algorithms less appealing. We also note that some second-order (linear) energy stable schemes have
been developed for thermodynamic phase-field equations in recent years [12,14,18,26,37], which may
potentially be applicable to hydrodynamic phase-field models.

Due to the coupling between the hydrodynamic equation and the phase-field equation, it is desir-
able to develop accurate and efficient numerical algorithms that can decouple the two equations. It is
preferred that, in each time marching step, only a smaller size of problems shall be solved sequentially.
This is the primary motivation of this paper. Seeking decoupled numerical algorithms that can solve
the velocity field u and phase variable f independently has been an active research topic. One ap-
proach is to treat the velocity u explicitly in the Cahn-Hilliard equation, cf. [23,28]. As is shown in [23],
the energy law is preserved under a CFL condition. Minjeaud realized that a first-order relaxation on
the velocity field could uncouple the velocity field and phase variable such that decoupled numerical
algorithms for triphasic Cahn-Hilliard-Navier-Stoke model can be developed [31]. This idea has been
further populated to investigate various hydrodynamic phase field models [25, 38, 46, 49], for which
one can get a linearly decoupled scheme such that the velocity field, phase variable, and pressure can
be solved sequentially. Each of the sub-problems is an elliptic-type equation so that fast and efficient
solvers can be applied. But due to the unavoidable first-order modification on the velocity field, the
accuracy is restricted to first-order, which is not much attractive for practical application. In parallel,
the idea of the scalar auxiliary variable (SAV) has been used to decouple the phase field and hydrody-
namic systems [27, 44], from which second-order decoupled schemes could be developed. However,
such strategies usually introduce new variables so that discrete energy laws are modified using the
auxiliary variables, making the connections with the energy law with original variables less clear.

In this paper, we come up with a novel approach to overcome all these difficulties mentioned
above. Mainly, we propose an elegant strategy to develop decoupled and energy stable numerical
algorithms for the CHNS system in a confined geometry subject to physical boundary conditions.
We first reformulate the CHNS system into a constraint gradient flow system. This reformulation
provides insights into the numerical algorithm design. With the constraint gradient flow formation,
we propose several variants of second-order operator splitting schemes. All the schemes uncouple the
velocity field and phase variables so that only smaller systems need to be solved in each time marching
step. Besides the efficiency, all the schemes are rigorously shown to be energy stable, i.e., satisfy the
discrete energy law. We emphasize that our proposed schemes hold the discrete energy laws in the
original variables, which differs from the EQ or SAV approaches [37, 45].

The rest of the paper is organized as follows. We first reformulate the CHNS system into a con-
straint gradient flow formulation in Section 2. Then we discretize the space with a second-order finite
difference on staggered grids in Section 3. Afterward, we introduce the second-order splitting tech-
niques to design second-order accurate in time and decoupled numerical algorithms for solving the
CHNS system in Section 4. The energy stable property of the proposed schemes is also rigorously
proved. Then, in Section 5, we present the convergence tests and several benchmark problems. The
numerical results highlight the effectiveness of our proposed decoupled numerical schemes. In the
end, we give a brief conclusion.

2 Model Reformulation of CHNS equations

2.1 Some notations

First of all, we illustrate the reformation of the incompressible CHNS system. Notice the pressure
p in (1.3) is a Lagrangian multiplier to enforce the in-compressibility of the velocity field u. With this
in mind, we can reformulate the CHNS system into a constraint gradient flow form that will guide us
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in designing decoupled numerical algorithms.
Consider a regular domain W in d dimension. For any f ,g2 [L2(W)]d, we denote the inner product

and induced L2 norm as

( f ,g)=
Z

W

d

Â
i=1

figidx, k f k=
q
( f , f ). (2.1)

Follow the notations in [17, 32]. Let Pu be a functional space defined by

Pu =
n

u(x,t) : u2 [L2(W)]d; r·u=0 in W, u=0 on ∂W
o

. (2.2)

The divergence free projection operator Pu : [L2(W)]d !Pu is defined as

Pu(a)=

8
<

:
a�rp, in W/∂W,

0 on ∂W,
(2.3)

where p satisfies a Poisson equation with a Neumann-type boundary condition, as shown below
8
<

:
Dp=r·a, in W,
∂p
∂n =a·n, on ∂W.

With the projection operator Pu in (2.3), we denote the constraint variational derivative of the kinetic
energy E in (1.1) with respect to the velocity field as

dE
du

=Pu
∂E
∂u

. (2.4)

Next, we illustrate the reformulation of the convection term in the Navier-Stokes equation. We
introduce the skew-symmetric form for the nonlinear convection term as

B(v,u)=
1
2

h
v·ru+r·(vu)

i
. (2.5)

It induces a trilinear form b defined as [21]

b(v,u,w)=
⇣

B(v,u),w
⌘
=

1
2

h⇣
v·ru,w

⌘
�
⇣

v·rw,u
⌘i

, 8u,v,w2H1
0(W), (2.6)

which has the property b(v,u,u)=0, 8u,v2H1
0(W).

Remark 2.1. The reformulation of the skew-symmetric form B(v,u) for the convection term is not
unique. An alternative skew-symmetric form is B(v,u)=(v·r)u+ 1

2 (r·v)u.

2.2 Model reformulation

Given r·u= 0, we have the property B(u,u)=u·ru. The incompressible CHNS system in (1.3)
can be rewritten as

r(∂tu+B(u,u))=�rp+hDu�frµ. (2.7)

With the constraint variation in (2.4) and reformulation of the convection term in (2.5), we rewrite
the CHNS equation in (1.3) as a constraint gradient flow form

L∂tY=G dE
dY

, L=

2

4r 0

0 1

3

5, Y=

2

4u

f

3

5, G=

0

@bD•�B(u,•) �fr•

�r·(•f) r·(M(f)r•)

1

A, (2.8)

with proper boundary conditions and initial values. Here dE
du :=Pu

∂E
∂u is defined using the projection

operator as shown in (2.4). G is called the mobility operator.
Remark 2.2. This constraint gradient flow reformulation is not limited to the Cahn-Hilliard-Navier-
Stokes system. Other thermodynamic consistent hydrodynamic models could be reformulated simi-
larly. We will not elaborate on it due to space limitations.
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2.3 Splitting strategies for the mobility operator G

The mobility operator G can be splitting as two parts: G :=Ga+Gs. One splitting instance is defined
as

Ga =

0

@ 0 �fr•

�r·(•f) 0

1

A, Gs =

0

@hD•�B(u,•) 0

0 r·(M(f)r•)

1

A. (2.9)

Here Ga controls the reversible dynamics, representing the energy exchanges between the kinetic en-
ergy and the Helmholtz free energy, and Gs controls the irreversible dynamics, representing the energy
dissipation.

The splitting of the mobility operator G=Ga+Gs is not unique. Different splitting strategies will
lead to different numerical algorithms, which will be elaborated in later sections. In particular, we
introduce an alternative splitting as below

Ga =

0

@ 0 �fr•

�r·(•f) r·(M(f)r•)

1

A, Gs =

0

@hD•�B(u,•) 0

0 0

1

A. (2.10)

3 Spatial Discretization on Staggered Grids

In this section, we present the spatial discretization of the CHNS system in (1.3) with physical
boundary conditions in (1.4).

3.1 Notations for spatial discretization

To simplify the presentation, we introduce some finite difference notations for spatial discretiza-
tion. Although these notations can also be found in [8,15,36,42,43], we summarize them in this section
to make this paper reader-friendly.

We consider a rectangular spatial domain W=[0,Lx]⇥[0,Ly] with Lx and Ly two positive numbers.
The domain is discretized into uniform rectangular meshes with mesh size hx =

Lx
Nx

and hy =
Ly
Ny

. Here
Nx and Ny are two positive integers. We define the following 1D sets for grid points

Ex ={xi+ 1
2
|i=0,1,.. .,Nx}, Cx ={xi|i=1,2,.. .,Nx}, Cx ={xi|i=0,1,.. .,Nx+1},

Ey ={yj+ 1
2
|j=0,1,.. .,Ny}, Cy ={yj|j=1,2,.. .,Ny}, Cy ={yj|j=0,1,.. .,Ny+1},

where xl =(l� 1
2 )hx, yl =(l� 1

2 )hy, and l can take on either integer or half-integer values. Ex is called a
uniform partition of [0,Lx] of size Nx, and its elements are called edge-centered points. The elements
of Cx and Cx are called cell-centered points. The two points belonging to Cx\Cx are called ghost points.
Analogously, the set Ey is a uniform partition of [0,Ly] of size Ny, called edge-centered points, and Cy
and Cy contain the cell-centered points of the interval [0,Ly].

We define the following discrete function spaces

Cx⇥y ={f : Cx⇥Cy !R}, Cx⇥y ={f : Cx⇥Cy !R}, Cx⇥y ={f : Cx⇥Cy !R},
Cx⇥y ={f : Cx⇥Cy !R}, E ew

x⇥y ={u : Ex⇥Cy !R}, E ew
x⇥y ={u : Ex⇥Cy !R},

Ens
x⇥y ={v : Cx⇥Ey !R}, Ens

x⇥y ={v : Cx⇥Ey !R}, Vx⇥y ={ f : Ex⇥Ey !R}.

Throughout this paper, we denote the cell-centered, edge-centered and vertex-centered discrete
functions as follows:

cell centered functions: f,y,µ2Cx⇥y[Cx⇥y[Cx⇥y[Cx⇥y,
east west edge centered functions: u,r2E ew

x⇥y[E ew
x⇥y,

north south edge centered functions: v,w2Ens
x⇥y[Ens

x⇥y,
vertex centered functions: f ,g2Vx⇥y.
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We define the discrete function spaces with homogeneous Dirichlet boundary conditions as fol-
lows:

E ew0
x⇥y ={u2E ew

x⇥y[E ew
x⇥y

��u 1
2 ,j =uNx+ 1

2 ,j =0, j=1,2,.. .,Ny},

E ew0
x⇥y ={u2E ew

x⇥y
��u 1

2 ,j =uNx+ 1
2 ,j =0, j=0,1,.. .,Ny+1},

Ens0
x⇥y ={v2Ens

x⇥y[Ens
x⇥y

��vi, 1
2
=vi,Ny+ 1

2
=0, i=1,2,.. .,Nx},

Ens0
x⇥y ={v2Ens

x⇥y
��vi, 1

2
=vi,Ny+ 1

2
=0, i=0,1,.. .,Nx+1},

V ew0
x⇥y ={ f 2Vx⇥y

�� f 1
2 ,j+ 1

2
= fNx+ 1

2 ,j+ 1
2
=0, j=0,1,.. .,Ny},

Vns0
x⇥y ={ f 2Vx⇥y

�� fi+ 1
2 , 1

2
= fi+ 1

2 ,Ny+ 1
2
=0, i=0,1,.. .,Nx},

V0
x⇥y =V ew0

x⇥y\Vns0
x⇥y.

Note that E ew0
x⇥y⇢E ew0

x⇥y and Ens0
x⇥y⇢Ens0

x⇥y. The east-west-edge-to-center average and difference operators
are defined as ax, dx :E ew

x⇥y[Vx⇥y !Cx⇥y[Ens
x⇥y in component-wise forms:

axui,j =
1
2
(ui+ 1

2 ,j+ui� 1
2 ,j), dxui,j =

1
hx

(ui+ 1
2 ,j�ui� 1

2 ,j), axu,dxu2Cx⇥y,

ax fi,j+ 1
2
=

1
2
( fi+ 1

2 ,j+ 1
2
+ fi� 1

2 ,j+ 1
2
), dx fi,j+ 1

2
=

1
hx

( fi+ 1
2 ,j+ 1

2
� fi� 1

2 ,j+ 1
2
), ax f ,dx f 2Ens

x⇥y.

The north-south-edge-to-center average and difference operators are defined as ay, dy :Ens
x⇥y[Vx⇥y !

Cx⇥y[E ew
x⇥y in component-wise forms:

ayvi,j =
1
2
(vi,j+ 1

2
+vi,j� 1

2
), dyvi,j =

1
hy

(vi,j+ 1
2
�vi,j� 1

2
), ayv,dyv2Cx⇥y,

ay fi+ 1
2 ,j =

1
2
( fi+ 1

2 ,j+ 1
2
+ fi+ 1

2 ,j� 1
2
), dy fi+ 1

2 ,j =
1
hy

( fi+ 1
2 ,j+ 1

2
� fi+ 1

2 ,j� 1
2
), ay f ,dy f 2E ew

x⇥y.

The center-to-east-west-edge average and difference operators are defined as Ax, Dx : Cx⇥y[Ens
x⇥y !

E ew
x⇥y[Vx⇥y in component-wise forms:

Axfi+ 1
2 ,j =

1
2
(fi+1,j+fi,j), Dxfi+ 1

2 ,j =
1
hx

(fi+1,j�fi,j), Axf,Dxf2E ew
x⇥y,

Axvi+ 1
2 ,j+ 1

2
=

1
2
(vi+1,j+ 1

2
+vi,j+ 1

2
), Dxvi+ 1

2 ,j+ 1
2
=

1
hx

(vi+1,j+ 1
2
�vi,j+ 1

2
), Axv,Dxv2Vx⇥y.

The center-to-north-south-edge average and difference operators are defined as Ay, Dy :Cx⇥y[E ew
x⇥y!

Ens
x⇥y[Vx⇥y in component-wise forms:

Ayfi,j+ 1
2
=

1
2
(fi,j+1+fi,j), Dyfi,j+ 1

2
=

1
hy

(fi,j+1�fi,j), Ayf,Dyf2Ens
x⇥y,

Ayui+ 1
2 ,j+ 1

2
=

1
2
(ui+ 1

2 ,j+1+ui+ 1
2 ,j), Dyui+ 1

2 ,j+ 1
2
=

1
hy

(ui+ 1
2 ,j+1�ui+ 1

2 ,j), Ayu,Dyu2Vx⇥y.

The discrete Laplacian operator Dh :Cx⇥y !Cx⇥y is defined as

Dhf=dx(Dxf)+dy(Dyf).

We discretize the physical variables that satisfy Neumann boundary conditions at the cell-center
and the ones that satisfy Dirichlet boundary conditions at the edge-center. So, the cell-centered func-
tions f,µ2Cx⇥y satisfy homogeneous Neumann boundary conditions if and only if

f0,j =f1,j, fNx ,j =fNx+1,j, µ0,j =µ1,j, µNx ,j =µNx+1,j, j=1,2,.. .,Ny, (3.1)
fi,0=fi,1, fi,Ny =fi,Ny+1, µi,0=µi,1, µi,Ny =µi,Ny+1, i=0,1,.. .,Nx+1. (3.2)
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The velocity u=(u,v) (for u2E ew
x⇥y, v2Ens

x⇥y) satisfies the no-slip (Dirichlet) boundary conditions
u|W =0 if and only if

u 1
2 ,j =uNx+ 1

2 ,j =0, j=1,2,.. .,Ny, (3.3)

Ayui+ 1
2 , 1

2
=Ayui+ 1

2 ,Ny+ 1
2
=0, i=0,1,.. .,Nx, (3.4)

vi, 1
2
=vi,Ny+ 1

2
=0, i=1,2,.. .,Nx, (3.5)

Axv 1
2 ,j+ 1

2
=AxvNx+ 1

2 ,j+ 1
2
=0, j=0,1,.. .,Ny. (3.6)

It is easy to show that

Dxf,Dxµ,u2E ew0
x⇥y, Dyf,Dyµ,v2Ens0

x⇥y, Ayu,Axv2V0
x⇥y, Dyu2V ew0

x⇥y, Dxv2Vns0
x⇥y. (3.7)

Based on the above definitions, we define the following discrete 2D weighted inner-products:

(f,y)2=hxhy

Nx

Â
i=1

Ny

Â
j=1

fi,jyi,j,

[u,r]ew =(ax(ur),1)2, [v,w]ns =(ay(vw),1)2, h f ,givc =
�
ax
�
ay( f g)

�
,1
�

2 ,

and the corresponding discrete norms:

kfk2=(f,f)
1
2
2 , kukew =[u,u]

1
2
ew, kvkns =[v,v]

1
2
ns, k f kvc = h f , f i

1
2
vc.

Specially, we have

[u,r]ew =hxhy

Nx�1

Â
i=1

Ny

Â
j=1

ui+ 1
2 ,jri+ 1

2 ,j, if u2E ew0
x⇥y,

[v,w]ns =hxhy

Nx

Â
i=1

Ny�1

Â
j=1

vi,j+ 1
2
wi,j+ 1

2
, if v2Ens0

x⇥y,

h f ,givc =hxhy

Nx�1

Â
i=1

Ny�1

Â
j=1

fi+ 1
2 ,j+ 1

2
gi+ 1

2 ,j+ 1
2
, if f 2V0

x⇥y.

For the edge-centered function u=(u,v), u2E ew
x⇥y,v2Ens

x⇥y and the cell-centered function f2Cx⇥y, we
define the following norms

kuk2 :=
q
kuk2

ew+kvk2
ns, krfk2 :=

q
kDxfk2

ew+kDyfk2
ns.

Next, we introduce some useful lemmas [15].

Lemma 3.1. For f2Cx⇥y, u2E ew0
x⇥y, v2Ens0

x⇥y, there exist the following identities:

[Axf,u]ew =(f,axu)2, [Dxf,u]ew+(f,dxu)2=0, (3.8)
[Ayf,v]ns =(f,ayv)2, [Dyf,v]ns+(f,dyv)2=0. (3.9)

Lemma 3.2. For f 2V0
x⇥y, u2E ew

x⇥y, v2Ens
x⇥y, there exists the identities:

h f ,Ayuivc =[ay f ,u]ew, h f ,Dyuivc+[dy f ,u]ew =0, (3.10)
h f ,Axvivc =[ax f ,v]ns, h f ,Dxvivc+[dx f ,v]ns =0. (3.11)

Lemma 3.3. For f 2Vx⇥y, u2E ew
x⇥y, v2Ens

x⇥y and Ayu,Axv2V0
x⇥y, there exist the identities:

h f ,Dyuivc+[dy f ,u]ew =0, (3.12)
h f ,Dxvivc+[dx f ,v]ns =0. (3.13)



8

3.2 Spatial discretization

With the notation above, we are ready to explain the spatial discretization of the CHNS on stag-
gered grids. To write it in a clear manner, we write the spatial discretization in the following compo-
nent form

r∂tu+
r

2

⇣
u∂xu+∂x(uu)+v∂yu+∂y(vu)

⌘
=�∂x p+h∂x∂xu�f∂xµ, (3.14a)

r∂tv+
r

2

⇣
u∂xv+∂x(uv)+v∂yv+∂y(vv)

⌘
=�∂y p+h∂y∂yv�f∂yµ, (3.14b)

∂xu+∂yv=0, (3.14c)

∂tf+∂x(fu)+∂y(fv)=∂x

⇣
M(f)∂xµ

⌘
+∂y

⇣
M(f)∂yµ

⌘
, (3.14d)

µ=�g#Df+
g

#
f 0(f), (3.14e)

where u=(u,v). Then, we apply the finite difference spatial discretization on a staggered grid on the
system (3.14).

Scheme 3.1 (Semi-discrete Scheme). Applying staggered-grid finite differences in space to the system
(3.14) with boundary conditions (1.4), we obtain a semi-discrete scheme as follows:

n
r

d
dt

u+
r

2

⇣
uDx(axu)+Ax

�
dx(uu)

�
+ay(AxvDyu)+dy(AyuAxv)

⌘
(3.15a)

=�Dx p+hDxdxu�AxfDxµ
o

i+ 1
2 ,j

,

n
r

d
dt

v+
r

2

⇣
ax(AyuDxv)+dx

�
AyuAxv

�
+vDy(ayv)+Ay

�
dy(vv)

�⌘
(3.15b)

=�Dy p++hDydyv�AyfDyµ
o

i,j+ 1
2

,
n

dxu+dyv=0
o

i,j
, (3.15c)

n d
dt

f+dx(Axfu)+dy(Ayfv)=dx
�

M(Axf)Dxµ
�
+dy

�
M(Ayf)Dyµ

�o

i,j
, (3.15d)

n
µ=�g#Dhf+

g

#
f 0(f)

o

i,j
, (3.15e)

where u,v,f,µ satisfy the discrete boundary conditions (3.1)-(3.6), and i = 1,.. .,Nx�1, j= 1,.. .,Ny for
Eq. (3.15a), i=1,.. .,Nx, j=1,.. .,Ny�1 for Eq. (3.15b), i=1,.. .,Nx, j=1,.. .,Ny for Eqs. (3.15c)-(3.15e).

We can easily show that the semi-discrete scheme 3.1 has the following two properties.

Theorem 3.1. The semi-discrete scheme 3.1 preserves the discrete mass conservation law given by

d
dt
(f,1)2=0. (3.16)

Proof. This can be easily verified. In fact, we can compute the discrete inner product of (3.15d) with
constant function 1, and use (3.7) and Lemma 3.1. Then, this leads us to (3.16).

Theorem 3.2. The semi-discrete scheme 3.1 preserves the discrete energy dissipation law

d
dt

Eh+
⇣

h,(dxu)2+(dyv)2
⌘

2
+
⇥
M(Axf),(Dxµ)2⇤

ew+
⇥
M(Ayf),(Dyµ)2⇤

ns =0, (3.17)

where Eh is the discrete energy functional defined as

Eh =
1
2
kuk2

2+
g#

2
krfk2

2+
g

#
( f (f),1)2. (3.18)
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Proof. Noticing that u2E ew0
x⇥y and using Lemma 3.1, we have

⇥
uDx(axu)+Ax

�
dx(uu)

�
,u
⇤

ew =�
�
axu,dx(uu)

�
2+(dx(uu),axu)2=0. (3.19)

Eq. (3.7) implies that u2 E ew0
x⇥y, v2 Ens0

x⇥y, and thus AxvDyu,AyuAxv2V0
x⇥y. According to Lemma 3.2,

we then have
h

ay(AxvDyu)+dy(AyuAxv),u
i

ew
= hAxvDyu,Ayuivc�hAyuAxv,Dyuivc =0. (3.20)

Similarly, we can deduce
h

ax(AyuDxv)+dx
�

AyuAxv
�
,v
i

ns
=0,

h
vDy(ayv)+Ay

�
dy(vv)

�
,v2

i

ns
=0, (3.21)

[Dx p,u]ew+[Dy p,v]ns =�(p,dxu+dyv)2=0, (3.22)
h
hDx

�
dxu

�
,u
i

ew
+
h
hDy

�
dyv

�
,v
i

ns
=�

⇣
h,(dxu)2+(dyv)2

⌘

2
, (3.23)

[AxfDxµ,u]ew+[AyfDyµ,v]ns =�
�
µ,dx(Axfu)+dy(Ayfv)

�
2, (3.24)

⇣
dx
�

M(Axf)Dxµ
�
+dy

�
M(Ayf)Dyµ

�
,µ
⌘

2
=

�
⇥
M(Axf),(Dxµ)2⇤

ew�
⇥
M(Ayf),(Dyµ)2⇤

ns. (3.25)

Computing the discrete inner product of (3.15a), (3.15b) and (3.15d) with u, v and µ, respectively, and
using (3.19)-(3.25), we have

[u,ut]ew+[v,vt]ns+(µ,ft)2=

�
⇣

h,(dxu)2+(dyv)2
⌘

2
�
⇥
M(Axf),(Dxµ)2⇤

ew�
⇥
M(Ayf),(Dyµ)2⇤

ns. (3.26)

In addition, it is not hard to calculate

d
dt

Eh =[u,ut]ew+[v,vt]ns+g#([Dxf,Dxft]ew+[Dyf,Dyft]ns)+(
g

#
f (f),ft)2

=[u,ut]ew+[v,vt]ns�(g#Dhf,ft)2+(
g

#
f (f),ft)2

=[u,ut]ew+[v,vt]ns+(µ,ft)2.

Adding the two equations above will lead us to (3.17). This completes the proof.

4 Decoupled Time Discretization

With the semi-discrete scheme 3.1, we are ready to introduce the temporal discretization. Notice
the fact the spatial discretization and temporal discretization are independent. To simply our nota-
tions, we apply the temporal discretization directly on the continuous CHNS system (1.3), instead
of on the semi-discrete scheme in (3.15a)-(3.15e). However, we emphasize by using the same time
discretization on the semi-discrete scheme 3.1, the full discrete scheme will be immediately obtained.

4.1 Notations for temporal discretization

First of all, we introduce some notations for temporal discretization. Consider the time domain
t2 [0,T]. We discretize it into equally distanced intervals 0= t0< t1< t2< ···< tN =T, with dt= T

N , and
ti = idt, i=0,1,2··· ,N. Furthermore, we introduce the notations:

fn+ 1
2 =

1
2
(fn+1+fn), f

n+ 1
2 =

1
2
(3fn�fn�1), (4.1)

f
n+ 1

4 =
5
4

fn� 1
4

fn�1, f
n+ 3

4 =
7
4

fn� 3
4

fn�1, (4.2)

ũn+ 1
2 =

1
2
(3un�un�1), un+ 1

4 =
5
4

un� 1
4

un�1, un+ 3
4 =

7
4

un� 3
4

un�1. (4.3)
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Recall the bulk potential f (f) in (1.2). For the semi-implicit discretization of f 0(f) :=f3�f in the
interval [tn,tn+1], we denote it as d f

d(fn,fn+1) . In this paper, we use the classical difference quotient

d f
d(fn,fn+1)

=
h (fn)2+(fn+1)2

2
�1

ifn+fn+1

2
. (4.4)

It has the property that

f (fn+1)� f (fn)=(fn+1�fn)
d f

d(fn,fn+1)
. (4.5)

The property in (4.5) is a rather strong requirement. In general, we could require a weaker property

f (fn+1)� f (fn) (fn+1�fn)
d f

d(fn,fn+1)
. (4.6)

The advantage of the choice in (4.4) is that the requirement in (4.5) is automatically satisfied. Mean-
while, the major disadvantage is that it is nonlinear, such that each time step, a nonlinear problem has
to be solved.

Remark 4.1. The choice of d f
d(fn,fn+1) is not unique. If we can assume maxf2R | f 0(f)|  L, with L a

constant, we can utilize the semi-implicit stabilized discretization to linearize it as

d f
d(fn,fn+1)

= f 0(
3
2

fn� 1
2

fn�1)�AdtD(fn+1�fn)+B(fn+1�2fn+fn�1), (4.7)

where A and B are stabilization constants [39]. It can be shown that the scheme will be energy stable,
given A and B is big enough. Or as a simple case, we may use the linearized approximation

d f
d(fn,fn+1)

= f 0(
3
2

fn� 1
2

fn�1)+Cdt(fn+1�fn), (4.8)

with C a stabilization constant. The possible choices in (4.4), (4.7) and (4.8) all have their advantages
and disadvantages. One can even further simplify this by introducing auxiliary variables to result in
linear systems [48]. However, the major focus of this paper is to design decoupled numerical schemes
such that the CHNS system can be easily solved.

4.2 First-order decoupled schemes

With the reformulation (2.8) in mind, we start with first-order decoupled schemes. Utilizing the
classical first-order operator splitting method for the mobility operator G, we have the following result.

Scheme 4.1 (Generic First-order Operator Splitting Scheme). To solve the CHNS system of (2.8) in the
time interval [tn,tn+1], we use the first-order operator splitting method for G :=G1+G2. Then each time
marching step will require the following three sub-steps.

• Step 1: In the interval [tn,tn+1], solve the problem

L∂tY=G1
dE
dY

, with Y(t= tn)=Yn,

and get Y?=Y(t= tn+1).

• Step 2: In the interval [tn,tn+1], solve the problem

L∂tY=G2
dE
dY

with Y(t= tn)=Y?,

and get Yn+1=Y(t= tn+1).

Apply (2.10) with G1 =Ga and G2 =Gs to the first-order scheme 4.1, we get the following specified
scheme for the CHNS system.
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Scheme 4.2. To solve the CHNS system in [tn,tn+1], we use the following two steps to obtain (un+1,fn+1)
given (un,fn).

• Step 1, in [tn,tn+1], solve (u⇤,fn+1) from

u⇤�un

dt
=�rp�fnrµn+1, (4.9a)

r·u⇤=0, (4.9b)

fn+1�fn

dt
+r·(u⇤fn)=r·(M(fn)rµn+1), (4.9c)

µn+1=g#Dfn+1+
g

#

d f
d(fn,fn+1)

, (4.9d)

u⇤=0, rfn+1 ·n=0, rµn+1 ·n=0, on ∂W. (4.9e)

• Step 2, in [tn,tn+1], solve un+1 from

un+1�u⇤
dt

+B(un,un+1)=�rp+hDun+1, (4.10a)

r·un+1=0, (4.10b)
u⇤=0, on ∂W. (4.10c)

Theorem 4.1. The scheme 4.2 is energy stable, in the sense that

E(un+1,fn+1)�E(unm,fn)�dt
h
krun+1k2+k

q
M(fn)rµn+1k2

i
, (4.11)

where the energy is defined as

E(u,f)=E(u)+F(f), E(u)=
Z

W

r

2
|u|2dx, F(f)=g

Z

W

#

2
|rf|2+ 1

#
f (f)dx.

The proof is similar to those in the second-order schemes. Thus we omit the details for brevity.
Notice using different splitting techniques for the mobility operator G will lead to a different class of
numerical algorithms.
Remark 4.2. If we reduce the incompressibility constraint in (4.9b), and use velocity projection for
(4.10), the resulted scheme will be

• Step 1, in [tn,tn+1], solve

u⇤�un

dt
=�fnrµn+1, (4.12a)

f⇤�fn

dt
+r·(u⇤fn)=r·(M(fn)rµn+1), (4.12b)

µn+1=g#Dfn+1+
g

#

d f
d(fn,f⇤)

, (4.12c)

rfn+1 ·n=0, rµn+1 ·n=0, on ∂W. (4.12d)

• Step 2, in [tn,tn+1], solve

un+1�u⇤
dt

+B(un,un+1)=�rpn+hDun+1, (4.13a)

u⇤=0, on ∂W. (4.13b)

• Step 3, solve

un+1�u⇤
dt

=�(rpn+1�rpn), (4.14a)

r·un+1=0, (4.14b)

rpn+1 ·n=0, on ∂W. (4.14c)
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Notice that Step 1 can be further simplified by eliminating u⇤ in (4.12). This reduced scheme is equiv-
alent to the decoupled scheme discussed in [31, 38]. In other words, the decoupled schemes in [31, 38]
can be treated as a special case of first-order operator splitting schemes.

4.3 Second-order decoupled schemes

Next, we focus on developing second-order decoupled schemes for the CHNS system. Specifically,
we apply second-order operator splitting techniques to the reformulated model in (2.8).
Scheme 4.3 (Generic Second-order Operator Splitting Scheme). To solve the CHNS system of (2.8) in
the time interval [tn,tn+1], we use the (second-order) Strang-Marchuk operator splitting method for
G :=G1+G2. Then each time marching step will require the following three sub-steps.

• Step 1: In the interval [tn,tn+ 1
2
] , solve the problem

L∂tY=G1
dE
dY

, with Y(t= tn)=Yn,

and get Y?=Y(t= tn+ 1
2
).

• Step 2: In the interval [tn,tn+1], solve the problem

L∂tY=G2
dE
dY

with Y(t= tn)=Y?,

and get Y??=Y(t= tn+1).

• Step 3: In the interval [tn+ 1
2
,tn+1], solve the problem

L∂tY=G1
dE
dY

, with Y(t= tn+ 1
2
)=Y??.

and get Yn+1=Y(tn+1).

The scheme above is a second-order operator splitting algorithm. Given specific operators G :=
G1+G2, the proposed scheme 4.3 can be specified. In the rest of this section, we will discuss several
variants of decoupled numerical schemes.

4.3.1 Second-order decoupled time-marching scheme for the CHNS model

If we plug the mobility operator splitting formula (2.9) into the general scheme 4.3, we obtain the
second-order numerical schemes below.
Scheme 4.4. Given (un,fn), (un�1,fn�1) and un ·n=0, we can obtain (un+1,fn+1) in the following three
steps:

• Step 1: in [tn,tn+ 1
2
], we solve (u?,f?) via the following two decoupled sub-steps.

– Step 1.1: solve u? via

r
u?�un

dt/2
+B(ūn+ 1

4 ,
u?+un

2
)=�rp+hD

u?+un

2
, (4.15a)

r· u?+un

2
=0, (4.15b)

u?=0, on ∂W. (4.15c)

– Step 1.2: solve f? via

f?�fn

dt/2
=r(M(f

n+ 1
4 )rµn+ 1

4 ), (4.16a)

µn+ 1
4 =�g#

2
(Df?+Dfn)+

g

#

d f
d(fn,f?)

, (4.16b)

rµn+ 1
4 ·n=0, rf? ·n=0, on ∂W. (4.16c)
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• Step 2, In [tn,tn+1], we solve (u??,f??) via two sub-steps.

– Step 2.1, Solve (f??,p) via the following system

1
dt
(f??�f?)+r·(u?f

n+ 1
2 )=r·( dt

2r
(f

n+ 1
2 )2rµn+ 1

2 )+
dt
2r

r·(fn+ 1
2 rp), (4.17a)

µn+ 1
2 =�g#

2
(Df??+Df?)+

g

#

d f
d(f?,f??)

, (4.17b)

�Dp�r·(fn+ 1
2 rµn+ 1

2 )=0, (4.17c)

rµn+ 1
2 ·n=0, rf?? ·n=0, rp·n=0, on ∂W. (4.17d)

– Step 2.2, Update u?? via

u??=u?�
dt
r
(rp+f

n+ 1
2 rµn+ 1

2 ), (4.18)

with µn+ 1
2 defined in (4.17).

• Step 3, In [tn+ 1
2
,tn+1], we solve (un+1,fn+1) via the following decoupled two sub-steps.

– Step 3.1, Solve un+1 via

r
un+1�u??

dt/2
+B(ūn+ 3

4 ,
un+1+u??

2
)=�rp+hD

u??+un+1

2
, (4.19a)

r· un+1+u??

2
=0, (4.19b)

un+1=0, on ∂W. (4.19c)

– Step 3.2, Solve fn+1 via

fn+1�f??

dt/2
=r·(M(f

n+ 3
4 )rµn+ 3

4 ), (4.20a)

µn+ 3
4 =�g#

2
(Dfn+1+Df??)+

g

#

d f
d(f??,fn+1)

, (4.20b)

rµn+ 3
4 ·n=0, rfn+1 ·n=0, on ∂W. (4.20c)

The scheme above is second-order accurate in time. Moreover, in each step, only problems with
smaller sizes need to be solved. Here are several remarks.
Remark 4.3. Step 2 in (4.17)-(4.18) comes from the problem

r
u??�u?

dt
=�rp�f̄n+ 1

2 rµn+ 1
2 , (4.21a)

µn+ 1
2 =�g#

2
(Df??+Df?)+

g

#

d f
d(f?,f??)

, (4.21b)

r· u??+u?

2
=0, (4.21c)

f??�f?

dt
=�r·(u??+u?

2
f̄n+ 1

2 ), (4.21d)

rµn+ 1
2 ·n=0, rf?? ·n=0, u??=0, on ∂W. (4.21e)

Notice u?? and f?? can be decoupled, by realizing the following equality

u??+u?

2
=u?�

dt
2r

(rp+f
n+ 1

2 rµn+ 1
2 ).

Then we rewrite the problem in Step 2 as two decoupled sub-steps in (4.17)-(4.18). The coupled system
of (f??,p) is significantly reduced compared with the original coupled CHNS system in (1.3).
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Remark 4.4. Furthermore, we can even relax the in-compressibility constraint in Step 2. Then the
problem of (4.21) in Step 2 is reduced to

8
>>>>>><

>>>>>>:

r u??�u?
dt =�f̄n+ 1

2 rµn+ 1
2 ,

µn+ 1
2 =�g#

2 (Df??+Df?)+
g
#

d f
d(f?,f??)

,
f??�f?

dt =�r·(u??+u?
2 f̄n+ 1

2 ),

rµn+ 1
2 ·n=0, rf?? ·n=0, u??=0, on ∂W.

(4.22)

Hence, Step 2 can be solved by the following two sub-steps:

• Step 2.1, solve f?? via
8
>>><

>>>:

1
dt (f??�f?)+r·(u?f

n+ 1
2 )=r·( dt

2r (f
n+ 1

2 )2rµn+ 1
2 ),

µn+ 1
2 =�g#

2 (Df??+Df?)+
g
#

d f
d(f?,f??)

,

rµn+ 1
2 ·n=0, rf?? ·n=0, on ∂W.

(4.23)

• Step 2.2, update u?? via

u??=u?�
dt
r

f
n+ 1

2 rµn+ 1
2 . (4.24)

Since scheme 4.4 is already easy to solve, we don’t attempt this relaxation strategy in this paper. Inter-
ested readers are encouraged to explore it further.

Theorem 4.1 (Energy Stability). The proposed scheme 4.4 is energy stable, in the sense that

E(un+1,fn+1)�E(un,fn)�dt
2

h
hkru?+un

2
k2+hkrun+1+u??

2
k2

+k
q

M(f
n+ 1

4 )rµn+ 1
4 k2+k

q
M(f

n+ 3
4 )rµn+ 3

4 k2
i
, (4.25)

where the energy is defined as

E(u,f)=E(u)+F(f), E(u)=
Z

W

r

2
|u|2dx, F(f)=g

Z

W

#

2
|rf|2+ 1

#
f (f)dx. (4.26)

Proof. If we take inner product of (4.15a) with dt
2

u?+un

2 and apply the boundary conditions in (4.15c),
we will have

E(u?)�E(un)=�dt
2
(

u?+un

2
,rp)� dt

2
hkru?+un

2
k2. (4.27)

If we take inner product of (4.15b) with dt
2 p, we have

dt
2
(p,r· u?+un

2
)=0. (4.28)

Then, adding the two equations in (4.27) and (4.28) above, we get

E(u?)�E(un)=�dt
2

hkru?+un

2
k2, (4.29)

by noticing the boundary condition (4.15c) and un ·n=0.
Similarly, if we take inner product of (4.16a) with dt

2 µn+ 1
4 , and inner product of (4.16b) with f?�fn,

apply the boundary condition in (4.16c), and use the constraint (4.5), we have

F(f?)�F(fn)=�dt
2
k
q

M(f
n+ 1

4 )rµn+ 1
4 k2. (4.30)
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The two equations above give us

E(u?,f?)�E(un,fn)=�dt
2

h
hkru?+un

2
k2+k

q
M(f

n+ 1
4 )rµn+ 1

4 k2
i
. (4.31)

Given that (4.17)-(4.18) is equivalent to (4.21). We take inner product of (4.21a) with dt u??+u?
2 , inner

product of (4.21b) with (f??�f?), inner product of (4.21c) with p and inner product of (4.21d) with
dtµn+ 1

2 , and utilize the boundary conditions in (4.21e), we will get

E(u??,f??)�E(u?,f?)=0. (4.32)

In a similar manner, we take inner product of (4.19a) with dt
2

un+1+u??
2 , (4.19b) with p, we will get

E(un+1)�E(u??)=�dt
2

hkrun+1+u??

2
k2. (4.33)

And if we take inner product of (4.20a) with dt
2 µn+ 3

4 and (4.20b) with fn+1�f??, we will obtain

F(fn+1)�F(f??)=�dt
2
k
q

M(f
n+ 3

4 )rµn+ 3
4 k2. (4.34)

Adding (4.33) and (4.34), we have

E(un+1,fn+1)�E(u??,f??)=�dt
2

h
hkrun+1+u??

2
k2+k

q
M(f

n+ 3
4 )rµn+ 3

4 k2
i
. (4.35)

Overall, if we add the three equations in (4.31), (4.32) and (4.35) together, the discrete energy law
is obtained as

E(un+1,fn+1)�E(un,fn)�dt
2

h
hkru?+un

2
k2+hkrun+1+u??

2
k2

+k
q

M(f
n+ 1

4 )rµn+ 1
4 k2+k

q
M(f

n+ 3
4 )rµn+ 3

4 k2
i
. (4.36)

4.3.2 An alternative second-order decoupled numerical scheme based on a different operator split-
ting strategy

In the meanwhile, if we plug in the splitting operators defined in (2.10), we obtain the following
second-order operator splitting scheme.
Scheme 4.5. Given (un,fn), (un�1,fn�1) and un ·n=0, we can obtain (un+1,fn+1) in the following three
steps:

• Step 1: In [tn,tn+ 1
2
], we set f?=fn, and solve u? via

r
u?�un

dt/2
+B(ūn+ 1

4 ,
u?+un

2
)=�rp+hD

u?+un

2
, (4.37a)

r· u?+un

2
=0, (4.37b)

u?=0, on ∂W. (4.37c)

• Step 2, In [tn,tn+1], we solve (u??,f??) via the following two sub-steps.

– Step 2.1, Solve (f??,p) via the following system
1
dt
(f??�f?)+r·(u?f

n+ 1
2 )= (4.38a)

r·((M(f
n+ 1

2 )+
dt
2r

(f
n+ 1

2 )2)rµn+ 1
2 )+

dt
2r

r·(fn+ 1
2 rp),

µn+ 1
2 =�g#

2
(Df??+Df?)+

g

#

d f
d(f?,f??)

, (4.38b)

�Dp�r·(fn+ 1
2 rµn+ 1

2 )=0, (4.38c)

rµn+ 1
2 ·n=0, rfn+1 ·n=0, rp·n=0, on ∂W. (4.38d)
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– Step 2.2, Update u?? via

u??=u?�
dt
r
(rp+f

n+ 1
2 rµn+ 1

2 ). (4.39)

• Step 3, In [tn+ 1
2
,tn+1], we set fn+1=f??, and solve un+1 via

r
un+1�u??

dt/2
+B(ūn+ 3

4 ,
un+1+u??

2
)=�rp+hD

u??+un+1

2
, (4.40a)

r·un+1=0, (4.40b)

un+1=0, on ∂W. (4.40c)

The scheme 4.5 is computationally efficient than the scheme 4.4 since the phase-field equation only
needs to be solved once. In the scheme 4.4, the phase-field equations have to be solved three times.

Remark 4.5. Notice that (4.38)-(4.39) is derived from the problem

r
u??�u?

dt
=�rp�f̄n+ 1

2 rµn+ 1
2 , (4.41a)

r·u??=0, (4.41b)
f??�f?

dt
=�r·(u??+u?

2
f̄n+ 1

2 )+r·(M(f
n+ 1

2 )rµn+ 1
2 ), (4.41c)

µn+ 1
2 =�g#

2
(Df??+Df?)+

g

#

d f
d(f?,f??)

, (4.41d)

rµn+ 1
2 ·n=0, rf?? ·n=0, u??=0, on ∂W. (4.41e)

Remark 4.6. Similarly, as discussed in Remark 4.4, we can introduce relaxation in Step 2. As a minor
modification, we do not necessarily need to restrict the in-compressibility during the operator split-
ting. With that in mind, we can obtain a relaxed version of Step 2 such that a simplified numerical
scheme can be proposed. This idea will not be further elaborated due to space limitations.

Theorem 4.2. The proposed scheme 4.5 is energy stable, in the sense that

E(un+1,fn+1)�E(un,fn)

� dt
2

h
hkru?+un

2
k2+hkrun+1+u??

2
k2+2k

q
M(f

n+ 1
2 )rµn+ 1

2 k2
i
, (4.42)

where the energy is defined as

E(u,f)=E(u)+F(f), E(u)=
Z

W

r

2
|u|2dx, F(f)=g

Z

W

#

2
|rf|2+ 1

#
f (f)dx. (4.43)

Hence the scheme is energy stable with the total energy E(un+1,fn+1) non-increasing in time.

Proof. The proof is similar to the proof in Theorem 4.1. Here we only show the major steps. If we take
inner product of (4.37a) with dt

2
u?+un

2 , we will have

E(u?)�E(un)=�dt
2
(rp,

u?+un

2
)� dt

2
hkru?+un

2
k2. (4.44)

If we take the inner product of (4.37b) with dt
2 p, we have

dt
2
(p,r· u?+un

2
)=0. (4.45)

Adding the equations (4.44) and (4.45) above, we get

E(u?)�E(un)=�dt
2

hkru?+un

2
k2. (4.46)
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Given the notations f?=fn, (4.46) is equivalent to

E(u?,f?)�E(un,fn)=�dt
2

hkru?+un

2
k2. (4.47)

Similarly, if we take inner product of (4.41a) with dt u??+u?
2 , we will have

E(u??)�E(u?)=�dt
2
(

u??+u?

2
,rp)�dt(

u??+u?

2
,fn+ 1

2 rµn+ 1
2 ). (4.48)

If we take inner product of (4.41b) with dt
2 p, we have

dt
2
(p,r· u??+u?

2
)=0. (4.49)

If we take inner product of (4.41c) with dtµn+ 1
2 , and (4.41d) with dt(f??�f?), we have

F(f??)�F(f?)=�dt(r·(u??+u?

2
f

n+ 1
2 ),µn+ 1

2 )�dtk
q

M(f
n+ 1

2 )rµn+ 1
2 k2. (4.50)

Adding the equations (4.48), (4.49) and (4.50) above, we have

E(u??,f??)�E(u?,f?)=�dtk
q

M(f
n+ 1

2 )rµn+ 1
2 k2. (4.51)

Similarly, for Step 3, if we take inner product of (4.40a) with dt
2

un+1+u??
2 , and take inner product of

(4.40b) with dp, we have

E(un+1,fn+1)�E(u??,f??)=�dt
2

hkrun+1+u??

2
k2. (4.52)

Adding the equations (4.47), (4.51) and (4.52) together, we finally obtain the energy dissipation law

E(un+1,fn+1)�E(un,fn)

� dt
2

h
hkru?+un

2
k2+hkrun+1+u??

2
k2+2k

q
M(f

n+ 1
2 )rµn+ 1

2 k2
i
. (4.53)

4.4 Strategies to solve the Navier-Stokes equation

In the previous sub-sections, we introduce schemes that decouple the velocity fields and the phase
variables. This sub-section further discusses how the Navier-Stoke portion in Step 1 and Step 3 of
the proposed schemes can be solved effectively. Recall the Crank-Nicolson (CN) type scheme for the
Navier-Stokes equation

8
<

:
r un+1�un

dt +rB(un+ 1
2 ,un+ 1

2 )=�rpn+ 1
2 +hDun+ 1

2 + f n+ 1
2 ,

r·un+ 1
2 =0.

(4.54)

Here f is the external force term. This paper introduces two strategies: (1) the preconditioner method;
(2) the velocity projection method.

4.4.1 Projection method as a preconditioner for the Naver-Stokes equation

First of all, we discuss the precondition strategy. Notice pn+ 1
2 is a Lagrangian multiplier, so it is not

advisable to do time marching for p, saying pn+ 1
2 = 1

2 (pn+pn+1). Instead, we treat pn+ 1
2 as a variable

and solve it directly. Therefore, the Navier-Stokes portion in (4.54) can be written as
2

4
2r
dt �hD+rBn+1 r

r· 0

3

5

0

@ un+ 1
2

pn+ 1
2

1

A=

2

4
2r
dt +rBn 0

0 0

3

5

0

@ un

0

1

A+

2

4 f n+ 1
2

0

3

5. (4.55)
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Here Bn+1 and Bn are generic notations to represent the implicit and explicit parts in the convection
operator B(un+ 1

2 ,un+ 1
2 ). To solve the system above, one need an efficient preconditioner. In this paper,

we utilize the idea in [16] for solving scheme 4.4 and scheme 4.5. Here we briefly explain how the
preconditioner can be constructed.

Recall the decoupled projection scheme for the Navier-Stokes equation in two steps:

• Step 1, solve the intermediate velocity field via

2r
ũn+ 1

2 �un

dt
+rB(un+ 1

2 ,ũn+ 1
2 )=hDũn+ 1

2 + f n+ 1
2 , (4.56)

where ũn+ 1
2 = 1

2 (ũ
n+1+un).

• Step 2, solve the velocity field via the projection

2r un+ 1
2 �ũn+ 1

2
dt =�ry,

r·un+1=0.
(4.57)

We can further rewrite (4.56) as
2

4
2r
dt �hD+rBn+1 0

0 I

3

5

0

@ ũn+ 1
2

0

1

A=

2

4
2r
dt +rBn 0

0 0

3

5

0

@ un

0

1

A+

2

4 f n+ 1
2

0

3

5, (4.58)

For (4.57), it can be decomposed into

�Dy=�2r

dt
r·ũn+ 1

2 , (4.59a)

un+ 1
2 = ũn+ 1

2 � dt
2r

ry, (4.59b)

rpn+ 1
2 =ry� dt

r

h

2
Dry. (4.59c)

Then the corresponding operator forms are given as
2

4 I 0

0 �D

3

5

0

@ ũn+ 1
2

y

1

A=

2

4 I 0

� 2r
dt r· � r

dt

3

5

0

@ ũn+ 1
2

0

1

A, (4.60a)

0

@ un+1

pn+ 1
2

1

A=

2

4 I � dt
2rr

0 I� dt
r

h
2 D

3

5

0

@ ũn+1

y

1

A. (4.60b)

Therefore, the two-step procedure (4.56)-(4.57) can be written in an operator form as

A

0

@ un+ 1
2

pn+ 1
2

1

A=

2

4
2r
dt +rBn 0

0 0

3

5

0

@ un

0

1

A+

2

4 f n+ 1
2

0

3

5. (4.61)

with the inverse of the linear operator given by

A�1=

2

4 I � dt
2rr

0 I� dt
r

h
2 D

3

5

2

4 I 0

0 �D�1

3

5

2

4 I 0

� 2r
dt r· � r

dt

3

5

2

4

⇣
2r
dt �hD+rBn+1

⌘�1
0

0 I

3

5. (4.62)

In other words, the operator in (4.62) is a good preconditioner. Since the inverse of Bn+1 is non-
trivial, we use the following operator

2

4 I � dt
2rr

0 I� dt
r

h
2 D

3

5

2

4 I 0

0 �D�1

3

5

2

4 I 0

� 2r
dt r· � r

dt

3

5

2

4

⇣
2r
dt �hD

⌘�1
0

0 I

3

5. (4.63)

as the preconditioner for solving the Navier-Stokes equations in Step 1 and Step 3 of schemes 4.4 and
4.5. And it turns out to be effective numerically.
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4.4.2 Velocity projection to decouple the Navier-Stokes equation

In our second approach, we can further decouple the velocity and pressure fields in Step 1 and Step
3 of schemes 4.4 and 4.5, using the classical velocity projection method. The energy stability still holds.
Specifically, for the CN scheme of the NS equation, we can introduce the projection strategy by solving
several Poisson-type equations sequentially. The corresponding energy law can also be derived. The
equation (4.54) can be approximated by the following two steps with second-order accuracy.

• Step 1: solve the intermediate velocity field

r
ũn+1�un

dt
+rB(un+ 1

2 ,ũn+ 1
2 )=�rpn+hDũn+ 1

2 + f n+ 1
2 . (4.64)

• Step 2: update the velocity field

r
dt (u

n+1�ũn+1)=� 1
2r(pn+1�pn).

r·un+1=0.
(4.65)

This leads to a new variant of second-order decoupled numerical schemes for the CHNS system.

Scheme 4.6. Given (un,fn) and (un�1,fn�1), we can obtain (un+1,fn+1) in the following three steps:

• Step 1: in [tn,tn+ 1
2
], we set f?=fn and solve u? via the following three sub-steps.

– Step 1.1, get ũ? from

r
ũ?�un

dt/2
+B(ūn+ 1

4 ,
u?+un

2
)=�rpn+hD

ũ?+un

2
, (4.66a)

ũ?=0, on ∂W. (4.66b)

– Step 1.2, get p? from

Dp?=
4r

dt
r·ũ?+Dpn, (4.67a)

rp? ·n=0, on ∂W. (4.67b)

– Step 1.3, get u? from

u?= ũ?�
dt
4r

r(p?�pn). (4.68)

• Step 2, in [tn,tn+1], we solve (u??,f??) via two sub-steps.

– Step 2.1, solve (f??,p) via the following system

f??�f?

dt
+r·(u?f

n+ 1
2 )=r·((M(f

n+ 1
2 )+

dt(fn+ 1
2 )2

2r
)rµn+ 1

2 )+r·(dtfn+ 1
2

2r
rp), (4.69a)

µn+ 1
2 =�g#

2
(Df??+Df?)+

g

#

d f
d(f?,f??)

, (4.69b)

�Dp�r·(fn+ 1
2 rµn+ 1

2 )=0, (4.69c)

rµn+ 3
4 ·n=0, rf?? ·n=0, rp·n=0, on ∂W. (4.69d)

– Step 2.2, update u?? via

u??=u?�
dt
r
(rp+f

n+ 1
2 rµn+ 1

2 ). (4.70)

• Step 3, in [tn+ 1
2
,tn+1], we set fn+1=f??, and solve un+1 via the follow three sub-steps.
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– Step 3.1, get ũn+1 from

r
ũn+1�u??

dt/2
+B(ūn+ 3

4 ,
ũn+1+u??

2
)=�rp?+hD

u??+ũn+1

2
, (4.71a)

ũn+1=0 on ∂W. (4.71b)

– Step 3.2, get pn+1 from

Dpn+1=
4r

dt
r·ũn+1+Dp?, (4.72a)

rpn+1 ·n=0, on ∂W. (4.72b)

– Step 3.3, get un+1 from

un+1= ũn+1� dt
4r

r(pn+1�p?). (4.73)

Remark 4.7. Note the decoupled steps in (4.67a)-(4.68) are from the general scheme

r

dt/2
(u?�ũ?)=�1

2
(rp?�rpn). (4.74)

Similarly, the steps in (4.72a)-(4.73) are from the general scheme

r

dt/2
(un+1�ũ??)=�1

2
(rpn+1�rp?). (4.75)

Remark 4.8. We further comment on Step 2. Based on the operator splitting strategy, in [tn,tn+1], we
solve (u??,f??) via

r
u??�u?

dt
=�rp�f̄n+ 1

2 rµn+ 1
2 , (4.76a)

µn+ 1
2 =�g#

2
(Df??+Df?)+

g

#

d f
d(f?,f??)

, (4.76b)

r· u??+u?

2
=0, (4.76c)

f??�f?

dt
=�r·(u??+u?

2
f̄n+ 1

2 )+r·(M(f
n+ 1

2 )rµn+ 1
2 ), (4.76d)

rµn+ 1
2 ·n=0, rf?? ·n=0, u??=0, on ∂W. (4.76e)

Decoupling the velocity field from the phase variables, we can simplify (4.76) into the equations (4.69)-
(4.70).

Besides, we still have the energy stability of this scheme as below.

Theorem 4.3. The decoupled scheme 4.6 is energy stable in the sense that

Ê(un+1,pn+1,fn+1)�Ê(un,pn,fn)

� dt
2

h
hkru?+un

2
k2+hkrun+1+u??

2
k2+2k

q
M(f

n+ 1
2 )rµn+ 1

2 k2
i
, (4.77)

where the modified energy is defined as Ê(u,p,f)=E(u)+ Ẽ(rp)+F(f), with the three terms specified as

E(u)=
Z

W

r

2
|u|2dx, Ẽ(rp)=

Z

W

dt2

32r
|rp|2dx, F(f)=g

Z

W

#

2
|rf|2+ 1

#
f (f)dx. (4.78)

Proof. Since the proof of this theorem is a little different from the proofs of the other two theorems in
previous sections, we will illustrate the details. First of all, we take the inner product of (4.66a) with
dt
2

ũ?+un

2 , we obtain

r

2
(kũ?k2�kunk2)=�dt

2
(rpn,

ũ?+un

2
)� dt

2
hkr ũ?+un

2
k2. (4.79)
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If we take the inner product of (4.74) with dtu?, we have

r

2
(ku?k2�kũ?k2+ku?�ũ?k2)=0. (4.80)

We can rewrite (4.74) as

r

dt/2
(u?+un�2

un+ũ?

2
)+

1
2
(rp?�rpn)=0. (4.81)

and test it with dt2

8r rpn. It yields

�dt
2
(

ũ?+un

2
,rpn)+

dt2

32r
(krp?k2�krpnk2�kr(p?�pn)k2)=0. (4.82)

Taking the inner product of (4.74) with itself, we have

dt2

32r
kr(p?�pn)k2� r

2
ku?�ũ?k2=0. (4.83)

Adding the equations (4.79),(4.80), (4.82) and (4.83) together will give us

(
r

2
ku?k2+

dt2

32r
krp?k2)�(

r

2
kunk2+

dt2

32r
krpnk2)=�dt

2
hkr ũ?+un

2
k2. (4.84)

Take inner product of (4.76a) with dt u??+u?
2 , we have

r

2
(ku??k2�ku?k2)=�dt(

u??+u?

2
f

n+ 1
2 rµn+ 1

2 ). (4.85)

If we take inner product of (4.76c) with dtµn+ 1
2 , and (4.76d) with dt(f??�f?), we have

F(f??)�F(f?)=�dt(r·(u??+u?

2
f

n+ 1
2 ),µn+ 1

2 )�dtk
q

M(f
n+ 1

2 )rµn+ 1
2 k2. (4.86)

Adding the equations (4.85) and (4.86) above, we have

r

2
(ku??k2�ku?k2)+F(f??)�F(f?)=�dtk

q
M(f

n+ 1
2 )rµn+ 1

2 k2. (4.87)

Similarly, from (4.71a)-(4.72b), we will obtain

(
r

2
kun+1]k2+

dt2

32r
krpn+1]k2)�(

r

2
ku??k2+

dt2

32r
krp?k2)=�dt

2
hkr ũn+1+u??

2
k2. (4.88)

Adding the equations (4.84), (4.87) and (4.88), it lead to

(
r

2
kun+1k2+

dt2

32r
krpn+1]k2+F(fn+1))�(

r

2
kunk2+

dt2

32r
krpnk2+F(fn))

=�dt
2

h
hkr ũn+1+u??

2
k2+hkr ũ??+un

2
k2+k

q
M(f

n+ 1
2 )rµn+ 1

2 k2
i
. (4.89)

Remark 4.9. We note that the modified free energy Ê is a second-order perturbation of the original
energy. This type of perturbation is preferred than the modified free energy with auxiliary variables
since its errors are explicitly written as Ẽ(rp), which is O(dt2).
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4.5 A completely decoupled scheme based on Strang splitting and pressure correction

In this section, we combine the idea of Strang splitting with that of pressure correction to design a
time-split method in which the velocity field, the pressure, and the phase field variable are computed
independent of each other. This leads to a new variant of second-order decoupled numerical schemes
for the CHNS system in (1.3)-(1.4).

Scheme 4.7. Given (un,pn,fn) and (un�1,fn�1), we obtain (un+1,pn+1,fn+1) in the following three
steps:

• Step 1: in [tn,tn+ 1
2
], we solve for the intermediate variables (f?,u?,p?) via

– Step 1.1, solve for f? via the following system

1
dt/2

(f?�fn)+r·(unf
n+ 1

4 )=r·( dt
4r

(f
n+ 1

4 )2rµn+ 1
4 )+

dt
4r

r·(fn+ 1
4 rpn), (4.90a)

µn+ 1
4 =�g#

2
(Df?+Dfn)+

g

#

d f
d(fn,f?)

, (4.90b)

rµn+ 1
4 ·n=0, rf? ·n=0, on ∂W. (4.90c)

– Step 1.2, solve for q from the Poisson equation

�Dq�r·(fn+ 1
4 rµn+ 1

4 )=0, (4.91a)
rq·n=0, on ∂W (4.91b)

– Step 1.3, update (u?,p?) via

u?=un� dt
2r

(rq+f
n+ 1

4 rµn+ 1
4 ), (4.92a)

p?=2q�pn. (4.92b)

• Step 2: in [tn,tn+1], we solve for (u??,f??) via two sub-steps.

– Step 2.1: solve for u?? via

r
u??�u?

dt
+B(un+ 1

2 ,
u??+u?

2
)=hD

u??+u?

2
, (4.93a)

u??=0, on ∂W. (4.93b)

– Step 2.2: solve for f?? via

f??�f?

dt
=r·(M(f

n+ 1
2 )rµn+ 1

2 ), (4.94a)

µn+ 1
2 =�g#

2
(Df??+Df?)+

d f
d(f?,f??)

, (4.94b)

rµn+ 1
2 ·n=0, rf?? ·n=0, on ∂W. (4.94c)

• Step 3, in [tn+ 1
2
,tn+1], we solve for (un+1,pn+1,fn+1) via the follow three sub-steps.

– Step 3.1, solve for fn+1 via the following system

1
dt/2

(fn+1�f??)+r·(u??f
n+ 3

4 )=r·( dt
4r

(f
n+ 3

4 )2rµn+ 3
4 )+

dt
4r

r·(fn+ 3
4 rp?), (4.95a)

µn+ 3
4 =�g#

2
(Df??+Dfn+1)+

g

#

d f
d(f??,fn+1)

, (4.95b)

rµn+ 3
4 ·n=0, rfn+1 ·n=0, on ∂W. (4.95c)
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– Step 3.2, solve for q from the Poisson equation

�Dq�r·(fn+ 3
4 rµn+ 3

4 )=0, (4.96a)
rq·n=0, on ∂W (4.96b)

– Step 3.3, update (un+1,pn+1) via

un+1=u??�
dt
2r

(rq+f
n+ 3

4 rµn+ 3
4 ), (4.97a)

pn+1=2q�p?. (4.97b)

Similarly, by introducing another intermediate velocity

ũ?=un� dt
2r

(rpn+f
n+ 1

4 rµn+ 1
4 ), (4.98)

the scheme (4.90)–(4.92) can be equivalently written as

1
dt/2

(f?�fn)+r·( ũ?+un

2
f

n+ 1
4 )=0, (4.99a)

µn+ 1
4 =�g#

2
(Df?+Dfn)+

g

#

d f
d(fn,f?)

, (4.99b)

r
u?�un

dt/2
+

1
2
(rpn+rp?)=�f

n+ 1
4 rµn+ 1

4 , r·u?=0, (4.99c)

rµn+ 1
4 ·n=0, rf? ·n=0, u? ·n=0, on ∂W. (4.99d)

Likewise, the scheme (4.95)–(4.97) can be similarly expressed in an equivalent form.
The fully decoupled time-marching scheme satisfies an energy law.

Theorem 4.4. The decoupled scheme 4.7 is energy stable in the sense that

Ê(un+1,pn+1,fn+1)�Ê(un,pn,fn)=�dt
h
hkru??+u?

2
k2+k

q
M(f

n+ 1
2 )rµn+ 1

2 k2
i
, (4.100)

where the modified energy is defined as Ê(u,p,f)=E(u)+ Ẽ(rp)+F(f), with the three terms specified as

E(u)=
Z

W

r

2
|u|2dx, Ẽ(rp)=

Z

W

dt2

32r
|rp|2dx, F(f)=g

Z

W

#

2
|rf|2+ 1

#
f (f)dx. (4.101)

Proof. The proof is largely the same as the proof for Theorem 4.3. We omit the details for brevity.

5 Numerical Results

The central finite difference on staggered grids for the spatial discretization and the operator split-
ting finite difference method in uniform time meshes for the temporal discretization are independent.
Thus, the full discrete schemes for the CHNS system can be easily obtained by literately combine the
spatial discretization in Section 3 and temporal discretization in Section 4. Here we won’t elaborate on
the details for simplicity. In this section, we conduct several numerical experiments with the proposed
schemes.

5.1 Time step refinement tests

First of all, we verify that the proposed numerical algorithms are second-order in time indeed.
Consider a square domain W= [0,Lx]⇥[0,Ly] with Lx = Ly = 1. We fix the parameters r= 1, h = 1.0,
M=0.01, #=0.01, g=0.01. The initial profiles are chosen as

u(t=0)=0, f(t=0)= tanh
R�

q
(x�0.5Lx)2+2⇤(y�0.5Ly)2

2#
, with R=0.2.
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Figure 5.1: Temporal mesh refinement test for scheme 4.4. Here both the L2
errors and L•

errors using di↵erent time step

sizes are shown. We observe that the scheme 4.4 provides 2nd-order temporal accuracy.

Figure 5.2: Temporal mesh refinement test for scheme 4.5. Here both the L2
errors and L•

errors using di↵erent time step

sizes are shown. We observe that the scheme 4.5 provides 2nd-order temporal accuracy.

We use the meshes Nx = Ny = 128, and numerical solutions with various time steps are calculated.
Since the true solution is unknown, we calculate the errors at T= 0.2 as the differences between two
numerical solutions with adjacent time step sizes. The three proposed numerical schemes 4.4, 4.5, 4.6
are tested with the numerical results summarized in Figure 5.1, 5.2 and 5.3, respectively. It can be
easily seen that all the three proposed schemes reach second-order accuracy in time when the time
step is small.

In addition, it seems that the three schemes provide similar numerical results and accuracy, given
they are using the same time steps. This is no surprise since the three schemes only differ slightly,
and the major numerical errors resulted from these three schemes are due to the operator splitting.
Acknowledging this fact, we use scheme 4.6 for all numerical simulations in the rest of this paper.

5.2 Spatial mesh refinement test

Next, we conduct the spatial mesh refinement test for the scheme 4.6. We use the same parame-
ters and initial conditions as the examples above, and we use a fine time step dt= 10�4 to eliminate
the possible effects of temporal errors on the spatial mesh tests. Various mesh sizes Nx = Ny = N,
with N = 64⇥(2k+1), k= 0,1,2,3,4,5,6, are used. Given that we are using staggered grids for spatial

Figure 5.3: Temporal mesh refinement test for scheme 4.6. Here both the L2
errors and L•

errors using di↵erent time step

sizes are shown. We observe that the scheme 4.6 provides 2nd-order temporal accuracy.
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discretization, these mesh grids choices would ensure all the cases have numerical solutions on the
coarse grid N = 64. So the errors between adjacent numerical solutions on the coarse grid N = 64 at
T = 0.2 are calculated. The results are summarized in Table 5.1, where we observe a second-order
spatial convergence.

Table 5.1: Spatial mesh refinement test

f u v

N L2�error Order L2�error Order L2�error Order

64 � � � � � �

192 0.6397 � 0.001381 � 0.001549 �

320 0.02646 2.63 0.0001007 2.09 0.00007986 2.43

448 0.007039 2.06 0.00002719 2.05 0.00002159 2.04

576 0.002867 2.02 0.00001111 2.02 0.000008827 2.02

704 0.001445 2.01 0.000005610 2.01 0.000004457 2.01

832 0.0008289 2.01 0.000003222 2.01 0.000002560 2.01

5.3 Bubbles merging driven by surface tension

Next, we conduct several numerical simulations on the merging of the two bubbles that is driven
by surface tension. We follow the similar set up as in [19]. Consider the domain W= [0,Lx]⇥[0,Ly],
with Lx =Ly =1. The initial conditions are provided as u(x,y,t=0)=0, and

f(x,y,t=0)=1�tanh
�r+

p
(x�xa)2+(y�ya)2

2#
�tanh

�r+
p
(x�xb)2+(y�yb)2

2#
.

with xa = 0.5Lx� rp
2
, ya = 0.5Ly+ rp

2
, xb = 0.5Lx+ rp

2
, yb = 0.5Ly� rp

2
, r = 0.15. The parameters are

chosen as r=1, M=0.01, g=0.01, #=0.01, and we use uniform meshes Nx =Ny =128 and dt=10�3.
The numerical results with viscosity h=0.01 are shown in Figure 5.4, where the profiles of the phase
variable f at various times are shown. It can be observed that the two drops merge into a single drop.

As a comparison, we present another simulation with the same parameters and other settings,
except a smaller viscosity h=0.001. The profiles of the phase variables at the same times as the previ-
ous example are summarized in Figure 5.5. Though the two bubbles eventually merged into a single
one and the round drop reaches a steady state, the dynamics between Figure 5.4 and 5.5 are dramat-
ically different. Mainly, when the viscosity is small, the effect of inertia is not negligible anymore. In
Figure 5.5, we observe that the drop squeezed and then stretched, showing back-and-forth damping
oscillations (due to the exchanges between the kinetic energy and the Helmholtz free energy). And
it eventually stabilizes as a round drop. In other words, the hydrodynamics or the Navier-Stokes
equation shall not be ignored when the inertia has noticeable effects on the dynamics.

To further compare the dynamics for the two cases above, we also visualize the velocity fields for
both cases, with the results summarized in Figure 5.6. It can be shown that the kinetic energy is high
for the case with smaller viscosity, and the kinetic energy shows oscillating and damping dynamics
(by noticing the magnitude of the velocity field is decreasing with time).

Meanwhile, as a double-verification of the energy stable property of our proposed scheme 4.6,
the energy evolution with time for both cases are summarized in Figure 5.7. We can observe that the
energy is dissipating in time for both cases. The one with smaller viscosity is dissipating slower, which
is reasonable, as the dissipation rate is proportional to the viscosity as shown in 1.5.
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(a) f at t=0,0.2,0.4,0.8,1.0

(b) f at t=1.2,1.5,2,3,3.2

(c) f at t=3.4,4.6,4.8,5,10

Figure 5.4: The dynamics of bubble merging under hydrodynamic environment with viscosity h=0.01. In this figure, the profiles

of the phase variable f are shown at time t=0, 0.2, 0.4, 0.8, 1.0, 1.2, 1.5, 2.0, 3.0, 3.2, 3.4, 4.6, 4.8, 5 and 10.
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(a) f at t=0,0.2,0.4,0.8,1.0

(b) f at t=1.2,1.5,2,3,3.2

(c) f at t=3.4,4.6,4.8,5,10

Figure 5.5: The dynamics of bubble merging under hydrodynamic environment with viscosity h = 0.001. In this figure, the

profiles of the phase variable f are shown at di↵erent times.

(a) Velocity field for Figure 5.4 at time t=1,2,5

(b) Velocity field for Figure 5.5 at time t=1,2,5

Figure 5.6: Visualization of the velocity field for the dynamics in Figure 5.4 and 5.5. (a) the velocity field for Figure 5.4; (b)

the velocity field for Figure 5.5.
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(a) Energy evolution for Figure 5.4 (b) Energy evolution for Figure 5.5

Figure 5.7: The time evolution of the energy in log-log scale.

5.4 Coarsening

Next, we investigate the coarsening dynamics under hydrodynamics environments. We use the
domain W= [0,Lx]⇥[0,Ly] with Lx = 1, Ly = 2. The parameters are picked as r= 1, h = 1.0, M= 0.01,
#=0.01. To solve the problem, we use uniform meshes with Nx=128 and Ny=256 and dt=10�3. And
we pick different values for the surface tension g. Set a random initial condition for the phase variable
f(x,y,t=0)=0.9( y

Ly
�0.5)+0.001⇤rand(�1,1), and u(x,y,t=0)=0. The numerical results with g=0.1

and g=0.01 are summarized in Figure 5.8. We observe that when the volume fraction of two phases
is similar, saying in the middle of the domain, spinodal decomposition takes more effect. Meanwhile,
when the volume fractions of each phase differ dramatically, the nucleation takes more effect.

Furthermore, the velocity fields for both cases are shown in Figure 5.9. We observe that the velocity
field has a larger magnitude at the regions that are changing rapidly, which means the hydrodynamics
(kinetic energy) is interacting with the surface tension (Helmholtz free energy).

Meanwhile, the energy evolution for both cases are summarized in Figure 5.10. We observe that
the coarsening dynamics changes faster when the surface tension is high. This is agreeable with the
energy dissipation rate in (1.5).

5.5 Ostwald ripening under hydrodynamics

In this example, we study the Ostwald ripening dynamics driven by the CHNS system. In par-
ticular, we are interested in how energy evolves under topological changes. We consider the domain
W = [0,Lx]⇥[0,Ly] with Lx = Ly = 1. We set the initial velocity as zero and the initial profile of f as
seven drops in various radii, a shown in Figure 5.11. We fix the parameters M = 0.01, # = 0.01 and
r=1. Then we pick different viscosity h. The scheme 4.6 is used for this simulation with dt=10�3. The
energy evolutions are summarized in Figure 5.11, where the Ostwald ripening dynamics take place.
We observe that the energy changes rapidly when topological changes are happening.

5.6 Lid-driven cavity

In the last example, we simulate the lid-driven cavity problem using the CHNS system. The do-
main is set up as W = [0,Lx]⇥[0,Ly] with Lx = Ly = 1, with shear on the top. This is related with
the zero Dirichlet boundary condition for the velocity at the boundary, except at y = Ly for which
we propose u|y=Ly = (1,0). We choose the initial condition for the phase variable f(x,y,t = 0) =

tanh R�
p

(x�0.5Lx)2+(y�0.5Ly)2

2# , with R=0.15. The boundary condition for the phase variable f remains
the same. We use the following parameters r=1, h=1, M=0.01, #=0.01 and we use various surface
tension parameter g. We use mesh sizes Nx=Ny=128 and dt=10�3. The profiles of f at various times
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(a) f at t=0.1,0.5,1,2,6.5 for the case g=0.1

(b) f at t=0.1,0.5,1,2,6.5 for the case g=0.01

Figure 5.8: Time evolution of phase variables with di↵erent surface tension. In (a) the profiles of f at various times are shown

for the case g=0.1; (b) the profiles of f at various times are shown for the case g=0.01.

(a) velocity field at t=2,6.5 for Figure 5.8(a) (b) velocity field at t=2,6.5 for Figure 5.8(b)

Figure 5.9: Velocity field for the coarsening dynamics in Figure 5.8.
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(a) Energy evolution for Figure 5.8(a) (b) Energy evolution for Figure 5.8(b)

Figure 5.10: The time evolution of the energy for the coarsening dynamics in Figure 5.8.

(a) Energy evolution with h=1

(b) Energy evolution with h=10�3

Figure 5.11: The time evolution of the energy under topology changes for the phase variables. In this figure, we use di↵erent

viscosity parameter h with the rest parameters fixed: (a) the profiles of f at t= 0,5,15,25,30,35 are shown for h = 1; (b) the

profiles of f at t=0,5,25,30,35,40 are shown for h=10�3
.
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(a) f at t=0,1,2,3

(b) f at t=5,8,10,11

Figure 5.12: drop moving in a lid-driven cavity flow. In this figure, the profiles of the phase variable f are various times are

shown. The drop is driven by the lid-driven cavity flow.

are summarized in Figure 5.12. We observe that our proposed numerical algorithms can accurately
solve the Cahn-Hilliard-Navier-Stokes system to investigate complicated two-phase fluid flow.

6 Conclusion

How to design decoupled numerical algorithms for the well-known Cahn-Hilliard-Navier-Stokes
(CHNS) system has been a long-standing problem. Many attempts are documented in published lit-
erature. So far, first-order decoupled and energy stable schemes for the CHNS system are widely
available. Some recent attempts on designing second-order decoupled schemes using the SAV strat-
egy also showing promising results. However, the schemes resulted from the SAV strategy only pre-
serve a modified energy law, where the discrete laws are formulated using the auxiliary variables. Its
connection with the discrete energy law using the original variables is not clear.

In this paper, we develop a class of second-order decoupled numerical schemes for the CHNS sys-
tem that are energy stable. Our idea is based on reformulating the CHNS system into a constraint
gradient flow form such that the operator splitting techniques can be utilized without destroying the
discrete energy laws. With this idea, we propose several variants of decoupled and second-order nu-
merical algorithms. All of them are shown to be energy stable. They are efficient since only problems
with smaller sizes shall be solved at every time step, instead of solving a fully-coupled system. Their
accuracy and effectiveness are verified numerically. Meanwhile, the idea introduced in this paper is
not limited to decoupling the Navier-Stokes equation and the Cahn-Hilliard equation. It is widely
applicable to a variety of hydrodynamics phase-field models. Its extensions to other coupled thermo-
dynamic and hydrodynamic models will be pursued in our later research.
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