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In light of the first observation of the semileptonic decay BY — K ~u'v, by the LHCb Collaboration, we
revisit the determination of the Cabibbo-Kobayashi-Maskawa parameter |V ;| from exclusive semileptonic
B-meson decays. A controlled theoretical input on the Standard Model B — = and B, — K vector and
scalar form factors from Lattice QCD in the large g¢® region, in combination with experimental
measurements of the differential B — 7£v, and B? —» K ‘y*vﬂ branching ratio distributions, has allowed
us determine |V,,;,| = 3.86(11) x 1073 and |V ;| = 3.58(9) x 10~ from the analyses of the individual
decay channels, respectively, and |V,,;| = 3.68(5) x 1073 from a simultaneous analysis of both decays,
which is only a 1.4% error and differs by 1.8c with respect to the value from inclusive determinations
|Vl = 4.25(12)717(23) x 1073 Our results are based on the use of Padé approximants to the participating
form factors, highlighting the importance of the decay B, — Kuv, in complementing the traditional
B — nfv, one in the exclusive determination of |V,;| and allowing us to obtain, to the best of our
knowledge, the first correlated results for the B — 7 and B, — K vector and scalar form factors. We hope
that our study strengthens the case for precise measurements of the differential B, - KZv, decay rate with
a finer resolution of the ¢* bins, as it would definitely allow achieving more conclusive results for |V, |.

DOI: 10.1103/PhysRevD.104.114041

I. INTRODUCTION

The Cabibbo-Kobayashi-Maskawa (CKM) matrix
describes quark flavor-changing transitions in the
Standard Model (SM). The elements of the CKM matrix,
denoted by V;; for a transition of a j-type quark to a i-type
ones, are fundamental parameters of the SM, and knowl-
edge of their magnitude with high accuracy is absolutely
mandatory for precise SM tests. The CKM matrix is
unitary in the SM; i.e., it satisfies ) ; V;;Vj = 6, and
> i ViV = Gir- Violations of unitarity are evidence of
physics beyond the Standard Model (BSM). Each particular
matrix element can be determined from multiple processes,
and if the SM predictions do not imply identical values of
the particular element, that could also be a hint for non-SM
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physics. Of course, to unravel such BSM’s evidences
requires precision calculations of the SM.

There are many processes where one can test the CKM
matrix and extract its elements. Among them, purely leptonic
weak decays, e.g., P~ — ¢~ 0, with P={x,K,D,B}, offer
(in general) a theoretically clean environment for the deter-
mination of the CKM elements more advantageous than
the semileptonic ones,' where the decay rates depend on
hadronic information that is encoded in form factors. In
addition, both leptonic and semileptonic decays offer an
opportunity to test lepton flavor universality as £ can be e, y,
or 7. The current status of the magnitude of the CKM matrix
elements and future prospects for improving their determi-
nation can be found in the Particle Data Group [2] as well in
the Flavour Lattice Averaging Group (FLAG) report [1] (see
also Ref. [3]).

In this paper, we concentrate on |V, |, one of the least-
known CKM elements which governs the strength of
b — u transitions, and we consider only exclusive proc-
esses. Among the three possible B-meson leptonic channels

"The only hadronic input required in leptonic decays are the
decay constants of the decaying mesons, which are well calcu-
lated in Lattice QCD [1].
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to obtain exclusive determinations of |V,,|, the only
available experimental input comes from B — 7v,, since
the partial decay rates to ¢ and p have not been measured
yet. However, the averaged experimental measurements [1]
from BABAR, BR(B — 7v,) = 1.79(48) x 107, and Belle,
BR(B — tv,) = 0.91(22) x 107*, both coming from aver-
aging different z-reconstruction channels, do not agree well
and have large errors (about 25%). These measurements
yield |V ,|f5 =0.72(9) MeV and |V, |5 = 1.01(14) MeV
[1], respectively, which can be used to extract |V,,|
when combined with Lattice QCD predictions of the
B-meson decay constant fz. As an example, using fp =
192.0(4.3) MeV from a Ny =2+ 1 flavor gauge-field
ensemble [1], one gets |V,,| = 5.26(12)(73) x 1073 from
the BABAR measurement and |V,,;,| = 3.75(8)(47) x 1073
from the Belle one, where the first uncertainty comes from
the error in fp and the second one from experimental
considerations. The discrepancy between these two results
is manifest. This means, in practice, that a reliable
determination of |V,,;,| from leptonic decays will only be
possible with the new and more precise data expected from
Belle-II [4].

Currently, the most precise determination of |V ;| comes
from charmless semileptonic B-meson decays, using exclu-
sive or inclusive methods. Inclusive determinations rely on
the operator product expansion and perturbative QCD
applied to B — X,/v, observables, while the exclusive
one require knowledge of the participating form factors.
The most competitive exclusive determination of |V ;| is
obtained from the decay channel B — n£v,, which has
generally exhibited a tension with inclusive determinations
(see Ref. [3] for a history of the comparison). More
specifically, the experimental B — nfv, observable
depends upon know quantities, |V,,;|, that we would like
to determine, and the B — # form factors, that we need to
describe and extrapolate to g*> = 0 to obtain that |V,,|.
While QCD light-cone sum rules have been used to
calculate the value of the vector form factor at ¢> =0
with certain error [5], precise Lattice QCD simulations
are available in the energy region close to the maximum
momentum transfer to the leptons, 17 GeV? < ¢* <
26 GeV? from the HPQC Collaboration [6], the RBC
and UKQCD (RBC/UKQCD) Collaborations [7], and
the Fermilab Lattice and MILC (FNAL/MILC)
Collaborations [8]. Several representations have been
proposed for the form factor interpolation between these
two regimes, including dipolelike functions [9,10], the so
called z-expansion parametrizations [11,12], and more
recently Padé approximants [13]. These parametrizations
can be used to obtain |V,,| via a simultaneous fit of the
Lattice QCD form factor calculations and the partial
branching ratios experimental data [14-18]. The ¢?
dependence of the form factor is thus fixed at small g?
by data, which due to phase-space suppression have poor

access to the large-g® region, and at large ¢ by the Lattice
simulations, which has a larger uncertainty than the experi-
ment at small g> due to the extrapolation. The theoretical
uncertainties on the form factors were the dominant source
error in |V ;| until the 2015 FNAL/MILC results [8], which
brought the QCD error to the same level as the exper-
imental one. In the intermediate energy region around
g*> ~20 GeV?, both the experimental and Lattice QCD
errors are similar in size. This region is decisive for
determining |V,,| with precision and can be employed
to estimate the individual contributions from experimental
and Lattice data.

The semileptonic B, — KZv, also depends on the CKM
element |V, |. The only difference with respect to the decay
B — nfv, is thatin B, — KZv, the light spectator quark is
a strange quark instead of an up or down quark as in the
former process. The B, — K form factors have been
simulated on the Lattice by the HPQCD Collaboration
[19], the RBC/UKQCD Collaborations [7], the ALPHA
Collaboration [20], and more recently by the FNAL/MILC
Collaborations [21]. As in the B — nfv, case, these
calculations can be used to extract |V ;| when combined
with experimental measurements for B, — K£v,, which
can play an important role in reassessing the result and
addressing the current exclusive versus inclusive |V ;|
puzzle; while this discrepancy is unlikely to be due to
new physics [22], different strategies aimed at solving this
and other challenges in semileptonic B decays have arisen
[23]. Recently, the first experimental data on B, — Kfv,
became available by the LHCb Collaboration, which
measured the partial branching ratio distribution in two
regions of ¢ [24]. In our work, we use these data to
determine |V ;| and illustrate the potential of a combined
analysis of the decays B — n¢v, and B, — K¢v,. The
decay B, — KZv, is also expected to be studied at the
Belle-IT experiment [4], where the eTe™ collisions would
yield a cleaner environment than the LHC. Other processes
offering interesting information on |V,,;|, but not consid-
ered in our analysis, include the B,, [25] and the baryonic
A, = plu, decays [26,27].

This paper is structured as follows. The hadronic matrix
element and the participating vector and scalar form factors
are defined in Sec. II, where the differential decay dis-
tribution in terms of the latter is also given. In Sec. III, we
determine |V ;| and the corresponding form factor param-
eters from fits to the B — n¢v, and B; — Kuy, exper-
imental measurements on the differential branching ratio
distribution combined with the Lattice QCD theoretical
information on the form factors. In Secs. III A and III B, we
first perform individual studies of both decays separately,
and after that, in Sec. III C, we perform a simultaneous
analysis including all available experimental and theoreti-
cal information on both exclusive decays. The outputs of
our fits are then used in Sec. IV to calculate some
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interesting phenomenological observables such as total
decay rates, z-to-u ratio of differential decay rates, and
the forward-backward asymmetry. We close with an out-
look in Sec. V.

II. DECAY AMPLITUDE AND FORM FACTORS

In the SM, the amplitude for the exclusive semileptonic
decays B — nfv, is given by

GF Vub

iM= L, H", (1)

where G is the Fermi constant, and V,;, is the participating
element of the CKM matrix. In Eq. (1), the leptonic
currents have the structure

7*)v(pe). (2)

while the hadronic matrix element can be decomposed in
terms of allowed Lorentz structures and two form factors
encoding the hadronic information,

L,=u(p,)y,(l -

dl'(B = ntvy) _ GH|V P22 (m%, m2, ¢%)
dq? 128m3n’q?
w{ o = 2 Plra(aP) P+
where A(x,y,z) = (x +y — z)> —4xy is the Kallen func-

tion. For the decay B, — KZv,, the distribution is that of
Eq. (5) but replacing mp — mp ,m, — mg and the B — =
form factors by the B, — K ones.

The present best knowledge of the vector and scalar
B — 7 and B; — K form factors are obtained from Lattice
QCD calculations in the large-g> region, which are
then extrapolated to the full kinematic range, i.e.,
0 < ¢* < (mg —m,)?, using parametrizations based on
resonance-exchange ideas [28-31] or the z expansion
[12]. As shown in [13], these parametrizations are in a
form or another of a certain kind of Padé approximant,
which we use in this work. Here, we only briefly review
them, referring to Refs. [13,32] for further details.

Padé approximants (PA in what follows) to a given
function are ratios of two polynomials (with degrees M and
N, respectively),

Loai(@) ag+aig® + -
Yiobi(@®) T+big?+ -

+ ay(g*)"
+ by(g*)V

(6)

with coefficients determined after imposing a set of a
accuracy-through-order conditions with the function f(g?)
one wants to approximate,

PY(q*) =

H, = (n(p,)|ay,b|B(ps))

2 2
mp—m
= <p3+pﬂ—q73 5 ”) f+(q)
q u
2 2

+ 1B g Fold?), (3)

where g, = (pg — pz), = (p¢ + pu,), is the transferred
momentum to the dilepton pair. The ¢* functions f_ (¢?)
and fo(q®) are, respectively, the vector and scalar form
factors corresponding to the exchange of J” = 1~ and 0
particles in case there is a nonresonant background. These
two form factors satisfy a kinematical constraint,

f+(0) = £0(0), (4)

which eliminates the (spurious) pole at g*> = 0 in Eq. (3).
In terms of these form factors, the dilepton mass squared
distribution reads

ﬁy
q2

2
20 )3 m2. ¢?) (1

AT (5

- PY(q%)

f(a?) = O(g*)M L (7)

In our case, the key point is to realize that the form
factors £, (g?) are Stieltjes functions, which are functions
that can be represented by an integral form defined as [32]

f@%—AWd“%, ®)

1 —uq

where ¢(u) is any bounded and nondecreasing function.
By defining R = sy, = (mp + m,)?, or (mp_+ mg)* for
B, — Ktv,, identifying d¢p(u) = 'Imf 1/“ du, and making
the change of variables u = 1/s, Eq (8) returns a dis-
persive form factor representation,

1 fe Imf(s))
f(qz)—;/vm ds V@i 9)

where ¢° is the invariant mass of the lepton pair. Since
f(g?), and its imaginary part, is created by the vector
current, Imf (s) is a positive function [Imf(s) = zp(s) and
p(s) the spectral function]. The requirement of ¢(u) to be
nondecreasing is fulfilled, and the convergence of PA to
f(g?) is guaranteed.
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Whenever information on resonance contributions to
those form factors is available, for example, the position
of the resonance in the complex g plane, it can be easily
included in the definition of the PA by forcing the poles of
the approximant to lie exactly at the position of the
resonance. When the N poles are included in advance,
the PA is called Padé-Type T, while when K < N poles are
fixed and the rest N — K are left free, it is called the Partial-
Padé approximant, PYy_,. In the present case, where
B*(17) resonance is known and can be nicely parametrized
with the narrow-width approximation (the resonances lie in
the real axis), we also consider such PA extensions.

In the present work, we are going to use Padé theory
extensively to parametrize both B — 7 and B; — K vector
and scalar form factors in order to extrapolate the large-g>
region’s calculations obtained from Lattice QCD to the full
kinematic range and, in particular, at g> = 0. An advantage
of the Padé method in front of other parametrizations is the
monitoring of unitary violations. While the unitary con-
straint in z parametrizations is rather vague, with PA it is
crystal clear [13,33,34]; PA to Stieltjes functions are also
Stieltjes functions. All PA poles must be real. The presence
of complex-conjugated poles and/or zeros when approxi-
mating Stieltjes functions is a notorious violation of
convergence, possible only if unitary violation is present
in data (which is a non-Stieltjes property). We explore this
property in the present work which extends and thus
supersedes our previous attempt in Ref. [13].

IIL. |V,;,| DETERMINATIONS

A. Fits to the decay B — ntv,

We start performing fits to the B — nfv, differential
branching ratio distribution experimental measurements
combined with the B — z form factor Lattice QCD simu-
lated data. To that end, we minimize the following y>-like
function:

2 @ X %attice) 1
A b N <N data * N Lattice ' ( 0)

where N g, is the number of experimental points, Ny . the
number of the Lattice form factor ¢> points, and
N = Ngya + Niaice- The above definition ensures the y?
function with a smaller number of points is well represented
in y%_ and is not overridden by that with a larger number of
points. The individual y? functions in Eq. (10) are given by

13
2 _ data data—1 A data
Zdata—E A (COVij) AT,
ij=1

high
Aiata _ (ABz)dam_ 1302 /‘Ik dqzﬂz,
Aq” ) AgiJger dq

(11)

where

TABLE 1. Central values, uncertainties, and correlation matrix
for the B — 7z vector and scalar form factors, /5757 (g?), generated
at three representative values of g> from the FLAG results [1] and
used in our fits in Egs. (10) and (18).

Correlation matrix

fﬁﬂ gl[

q* Central
Form factor (GeV?) values 18 22 26 18 22
i 18 1.007(48) 1 0.615 0.129 0.586 0.151

22 1.967(52) 1 0.382 0.170 0.245

26 6.332(256) 1 0.306 0.221
Vi 18 0.413(25) 1 0.734

22 0.588(21) 1
and

5 . .

Matice = O, (15(q%) — PN (q?)),(Covitice)!

ij=1
x (f15°(a*) = PN (4%));- (13)

For the fit, we use the spectrum (and correlation) in 13
bins of ¢? (Ngya = 13) from the HFLAV group [35], which
results from the average of the four most precise measure-
ments of the differential B — #£v, decay rate from BABAR
[15,16] and Belle [17,18], the theoretical prediction of the
partial decay rate Eq. (5), and the B’-meson lifetime 7 0. For
the Lattice QCD information on the shape of the vector and

scalar form factors, contained in f1<(¢?) in Eq. (13), we

use the results from the FLLAG group [1], which are given in
their Table 41. However, these are presented as a formula,
resulting from fits to a z parametrization with five fit
parameters, rather than as synthetic data for several values
of g?. For our analysis, we have generated synthetic data at
three representative values of g¢> from their z fits. In
particular, we have generated, respectively, three and two
data points for the vector and scalar form factors
(Niatice = 5), which we gather in Table I and use in our fits.>

*Although synthetic data can be easily generated from the z-
parametrization results, choosing the number of points and the ¢>
leading to an optimal description of the form factors is not as
straightforward. In our case, we can generate five data points at
most, as it would be inconsistent to generate more synthetic data
than the independent coefficients of the z fit; if more are generated,
the resulting correlation matrix has zero eigenvalues, which implies
a noninvertible covariance matrix. We have checked that a z fit
with five parameters to the data given in Table I yields the results of
the Table 41 from FLAG [1]. In our opinion, it would be more
beneficial if the Lattice form factor calculations would be made
available at some representative ¢ values along with the corre-
sponding bin-to-bin correlation, apart from the parametrization
coefficients of the z fit, such that the results can be independently
parametrized without assumptions on the functional form of the
form factors.
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TABLE II.  Best fit values and uncertainties for the output quantities of our ;(%ﬂ fits, Eq. (10), for Padé sequences of types P} and PY.
Element of the P} sequence Element of the P} sequence
Parameter Py Pl P? P} P P} P} P3
|Vp] x 103 2.47(6) 3.66(10)  3.85(11) 3.86(11) 3.85(11) 3.88(11) 3.86(12) 3.86(12)
ag 0.398(7)  0.245(8)  0.253(8)  0.240(11) 0.246(7) 0.248(7) 0.244(7)  0.242(10)
aj x 103 e 7.9(4) 2.8(1.4) 8.1(3.3) —1.9(1.4) -3.509) —2.5(4.5)
ay x 10* 2. 4(6) -3.3(3.3) -1.7(8) -2.5(24)
aj x 10° 1.7(1.0) 0.2(9)
mp-(1-y pole(s) [GeV] 5.26 5.29 5.31 5.33 532&7.11 5.34 & 6.40 T T
ad x 10? —1.3(1) —-0.2(1) —-0.5(1) -0.4(1) —0.4(1) —-0.5(1) -0.5(1) —-0.5(1)
o+) pole [GeV] 5.17 5.72 5.45 543 5.47 5.39 5.38 5.38
Lo Naaa = 13] 157.07 12.64 11.51 11.92 10.76 11.87 10.80 10.90
X2 atice [N Lattice = 5] 18.19 5.15 1.72 0.67 1.53 0.75 0.42 0.34
(Fia + 1 attice)/d-0.1. 13.48 1.48 1.20 1.26 0.95 1.05 1.02 1.12

TABLEIIL  Best fit values and uncertainties for the output quantities of our 3, fits, Eq. (10), for Padé sequences of types T} and P},
Element of the 7} sequence Element of the P}’| sequence
Parameter (A T T} T} Py Pi, Pt Py,
|Vp| x 103 2.19(5) 3.55(9) 3.87(11) 3.85(11) 3.85(11) 3.87(11) 3.86(11) 3.85(11)
ag 0.445(6) 0.246(8) 0.256(7) 0.241(9) 0.245(7) 0.248(7) 0.247(8) 0.243(11)
af x 103 9.13) 1.5(1.2) 7.72.7) -1.3(9) —1.3(8) 3.5(11.4)
a2 x 10* 3.2(5) -2.7(2.3) —0.3(1.0) -1.9(3.3)
ajy x 10° 1.5(6) 0.9(2.0)
mpg-(1-) pole(s) (GeV) =5.325 =5325 =5325 =5325 =5325&7.03 =5325&6.64 =5325&646 =5.325&897
ad x 10? —1.9(1) —-0.4(1) -0.5(1) —0.4(1) —0.4(1) —-0.5(1) —0.4(1) —0.4(1)
mg-(o+y pole (GeV) 4.78 5.57 5.36 5.44 5.45 543 5.44 5.44
XataNaa = 13] 182.19  17.21 13.64 11.65 11.27 11.26 10.95 11.17
X atice N Lattice = 3] 41.05 11.53 1.93 0.78 1.57 1.04 1.15 0.92
(e + 1 aice)/d0.f. 1595 2.21 1.30 1.13 0.92 0.95 1.01 1.10

For the dominant vector form factor, we start fitting with
Padé sequences of the types P (g?) and P} (g*), where the
poles are left free to be ﬁtted, and we reach, respectively,
M =3 and M =2 as the best approximants with the
current data. The results of the fits for |V,,| and the fitted
coefficients are presented in Table II for the two Padé
sequences.3 In the table, the poles denoted by the symbol
are Froissart doublet poles.4 We also show the coefficients
of the P{(g*) approximants used for the description of the
scalar form factor, which provides an optimal description of

In the table, the element P3(q 2 is only shown for illustration.

“The element P3(q%) [also P3(g*)] has complex-conjugate
poles with an small imaginary which are paired up by a close by
zero in the numerator, thus becoming effectively a defect, also
called the Froissart doublet. These poles lie within the radius of
convergence, indicating a certain degree of unitarity violation in
the data [13], since their presence is forbidden when dealing with
Stieltjes functions.

the data.” The latter contains only two free parameters, a!

and the effective mp- o+ pole, as in our fits the constraint at
g* =0, ie., f57(0) = f5-7(0) [cf Eq. (4)], has been
implemented explicitly through af = a9. Had we fit with
sequences of the types TV (¢*) and P, (4?), where the
B*(17) pole is fixed to the PDG mass, Mg (1) =
5.325 GeV [2], we would have reached, respectively,
M =3 and M = 2 as the best approximants and obtained
the results collected in Table III. In Fig. 1 we provide a
graphical account of the convergence pattern for |V ;| and

ﬁ}’)”(O) resulting from the four types of sequences we have
considered. The stability observed for these quantities is
quite reassuring. The values obtained for the individual y?
functions, y%,, and 7 .- imply a good quality of the fits.

We have also tried a P3(g*) approximant for the scalar form
factor and found no impact on |V,,,]|.
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FIG. 1. Convergence pattern of the P} and P}" (upper panels) and T}/ and P}/, (lower panels) sequences for |V, | and f577(0)

resulting from our fits in Tables II and III.

Furthermore, we note that the approximants with two poles
yield excellent values for the quantity (y3,., 47 aice)/d-0-f.
In terms of the latter, our best fit® is obtained with a Pi,
approximant, which yields

Vol = 3.86(11) x 1073, (14)

although the values of |V,,| obtained with the other
approximants are almost identical as it can be seen in
the tables. For our best fit, P%,p the quoted uncertainty on
|Vl is 2.9% [cf. Eq. (14)], and we gather the resulting fit
parameters along with the correlation matrix in Table VIII
of the Appendix. Our |V,,| value in Eq. (14) is larger
and slightly more precise than the FNAL/MILC result,
|Vl =3.72(16) x 1073 [8], and the FLAG reported
value, |V,,| =3.73(14) x 107 [1]. The reason for that
is due to the adopted y? fit function in Eq. (10), which
we consider as more democratic. In addition, this

procedure has an impact on the comparison with respect
to |V ;| determinations from inclusive decays B — X, £vy,

®0ur best fit is defined as the last approximant of a given
sequence with all parameters different from zero at a one sigma
distance and with y?/d.o.f. closer to one.

V.| = 4.25(12)12(23) x 1073 [2], with which our values
differ by only 1.35¢. In Fig. 2, we show the differential
branching ratio distribution (left plot) and the outputs for
the vector and scalar form factors (right plot) resulting from
our preferred fit P .

Had we performed an analysis including only the vector
form factor Lattice data into the fit,7 we would have reached
M =2 and obtained the results shown in Table IV.* Note
that |V,,| in this fit, |V,;,| = 3.65(11) x 1073, shifts by
about ~1.3¢ downwards with respect to the value given in
Eq. (14), |V,,| = 3.86(11) x 1073, obtained with the scalar
form factor Lattice data taken into account. The origin of
this shift stems from the fact that the FLAG value for
f8=7(0) resulting from a standalone z fit to the vector form
factor, f8=7(0) = 0.288(87) [1], which is the most relevant
input for the extraction of |V,,|, shifts by about 1.2¢
upwards with respect to their z fits including the scalar form

"For this fit, we have taken the limit m, — 0 in Eq. (5) and
used the synthetic data from Table IX of the Appendix, which
have been generated from the FLAG standalone z fit to the vector
form factor given in Eq. (224) in [1].

As a matter of example, in this table, we only report P¥
approximants. Similar results and conclusions are obtained using
the other approximants considered in Tables II and III.
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FIG. 2. Left: averaged BABAR and Belle B — z£v differential branching ratio distribution (gray) [35] as compared to our P%,l result
(green) obtained in combined fits as presented in Table III. Right: output for the B — z vector (red) and scalar (blue) form factors.

factor, f8=7(0) = 0.139(90) [1], which is obtained with
the restriction f8=7(0) = f8=7(0). In this case, our |V ;|
value is found to be in line with the HFLAV result, |V ;| =
3.70(10)(12) x 1073 [35], obtained from z fits with the
vector form factor only; our central value is slightly smaller
due to the form adopted in Eq. (10).

B. Fits to the decay B, — K¢v,

For the determination of |V,| from the decay
B, - KZv,, we follow a strategy similar to that of the
previous section for B — n£v, using recent experimental
information on the decay spectrum together with the form
factors shape information from theory given by the Lattice
QCD Collaborations.

The RBC/UKQCD Lattice Collaboration provides its
results for both the vector and scalar form factors as
synthetic, correlated data at three representative g> values

TABLEIV. Best fit values, uncertainties, and correlation matrix
for the output quantities of our y%_ fits, Eq. (10), obtained from
the averaged B — n£v, BABAR and Belle experimental data [35]
in combination with the Lattice QCD vector form factor simu-
lations [36].

Element of the Padé sequence

Parameter PY Pl P2 P}
V.| x 10° 2.406) 3.56(9) 3.65(11) 3.66(11)
ag 0.409(6) 0.251(8) 0.256(8) 0.260(11)
al x10° 8.3(4) 5.8(1.4) 3.53.5)
aj x 10* 12(7)  3.5(3.3)
aj x 10° e e -6.6(9.4)
mp-(1-y pole [GeV] 5.28 5.31 5.33 5.32
X3l Ndaw = 13] 163.01 14.82  11.80 11.84
P atice N Lattice = 3] 580 0004  0.16 0.05
((3ua + Xaice)/d-0f. 1125 1.06 0.92 0.99

in Tables VI and IX of Ref. [7], while the FNAL/MILC
Lattice Collaboration presents theirs as a formula resulting
from fits to a z-expansion parametrization with eight fit
coefficients, which are given in Table X of Ref. [21]. For
our study, we have generated synthetic data of the latter at
four representative values of ¢> from their z fits. In
particular, we have generated four and three data points
for the vector and scalar form factors, respectively, which
we collect in Table V.” We next use these results, which can
be combined with the binned branching ratio LHCb
measurements, BR(B; - K~y tv,) =0.36(2)(3) x 10™* for
q*> <7 GeV? and BR(B,— K u*v,)=0.70(5)(6) x 10~
for ¢> > 7 GeV? [24], to determine |V ,,|.

The form of the y? function to be minimized, analogous
to that of Eq. (10) for B — x, is given by

Ve V4 2RB KQcD | A I%NAL MIL.
)(%_K—N( Lacy | ¥RBC/UKQCD / C>’ (15)
’ Ninco  NrecyukQep  NeNAL/MILC

where Nipcp = 2 is the number of experimental points,
while Ngpc/ukoep = 6 and Nenap mic = 7 are the num-
ber of the RBC/UKQCD and FNAL/MILC Lattice points,
respectively, and N = Nypycp + Nree/ukep + NVeNAL/MILC-
The first term in Eq. (15),

2
Xiuoy = Z(BR?xp - BRf-h)z/GzBRIe_xp,

i=1

(16)

contains the information of the LHCb experimental mea-
surements of the branching ratio in the (uncorrelated) low
and high ¢ regions, and BR;" is the measured branching

At most, we can generate seven data points, as it would be
inconsistent to generate more data than the independent coef-
ficients of the z fit; if more are generated, the resulting covariance
matrix is not invertible.

114041-7



GONZALEZ-SOLIS, MASJUAN, and ROJAS

PHYS. REV. D 104, 114041 (2021)

TABLE V. Central values, uncertainties, and correlation matrix for the B, — K vector and scalar form factors,
f ﬁ‘; K(qz), generated at four representative values of g> from the FNAL/MILC results [21] and used in our fits in

Egs. (15) and (18).

Correlation matrix

fﬁ.\-K fng
Form factor ¢ (GeV?) Central values 17 19 21 23 17 19 21
oK 17 0.9268(428) 1 09572 0.7571 0.3615 0.6943 0.6749  0.5862
19 1.2460(441) 1 0.9096  0.5890 0.5778 0.6214 0.6071
21 1.7530(516) 1 0.8653  0.3985 0.5057 0.5726
23 2.6593(820) 1 0.1885 0.3161  0.4235
fng 17 0.4219(196) 1 0.9499 0.7716
19 0.4991(153) 1 0.9267
21 0.5974(136) 1

TABLE VI. Best fit values and uncertainties for the output quantities of our )(%;r x fits, Eq. (15), for the various Padé
sequences. ‘

Padé element
Parameter P} P} T3 Py,
[V x 103 3.58(8) 3.6009) 3.58(8) 3.58(9)
ag 0.214(5) 0.214(5) 0.214(5) 0.214(5)
ai x10° 7.02(40) 1.12(65) 7.02(40) 6.70(5.40)
aj x 10* —0.55(23) 0.16(20) —0.50(14) —0.48(46)
aj x 10° 1.12(14) x 1.10(13) 1.04(96)
mp:(1-) pole(s) [GeV] 5.32 5.33 &6.83 =5.325 =5325&295
mpg-o+) pole [GeV] 5.70 5.69 5.70 5.70
Xiucn Niucy = 2] 0.14 0.20 0.14 0.15
;(ZRBC/UKQCD [Nrpc/ukoep = 6] 3.25 3.17 3.21 3.21
)(IZJNAL/MILC [NFNAL/MILC = 7] 489 500 495 494
(Xtreo T+ YR ukaep T AENaLmie)/d-0-f. 1.03 1.05 0.92 1.03

ratio and 0;’%’[ the corresponding uncertainty in the ith bin,
while the second and third terms include the theoretical
information on the form factors from Lattice through a y?
function of the form

NLauice
D () = o)), (Covliee)
ij=1

X (55(4%) = fo(4);-

X Iz,attice -
(17)

Table VI summarizes the best fit values for |V ;| and the
form factor parameters for the various Padé sequences.
These fits have been performed using a P? approximant for
the scalar form factor and taking the £57%(0) = £&7%(0)
restriction into account [cf. Eq. (4)], thus having the m - (0+2)

. 1
pole as the only free parameter in the scalar sector.

""We have also tried P} and P? approximants for the scalar
form factors and found that the fit parameters remain stable.

The values of the y? functions reported in the tables imply
a very good quality of the fits. For the single pole Padé
sequences P} and T}, we find the fits stabilize for M = 3,
and the obtained |V ;| value, |V,;,| = 3.58(8) x 1072, has
an uncertainty of 2.2%. For the sequences with two poles,
we reach P} and P and obtain |V,,| = 3.60(9) x 1073
and |V,,| = 3.58(9) x 1073, respectively, which is a 2.5%
error. As seen, the values for |V ;| obtained with the various
approximants are almost identical and carry uncertainties
that tend to be slightly smaller than those from B — #fv
[cf. Eq. (14)] due to the accurate B, — K Lattice form
factor predictions which dominate the fits."' In terms of the

quantity (¢fpcy + 1 2RBC/UKQCD +x %NAL/MILC)/ d.of., the

""Note that strange quarks are easier to deal with computa-
tionally in Lattice QCD than up and down quarks and generally
yield smaller errors [21].
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differential branching ratio distribution (gray) [24] as compared to our best fit result (purple)

obtained in combined fits as presented in Table VI; the two LHCb data points are placed in the middle of each bin and have been divided
by the bin width. Right: Output for the B, — K vector (brown) and scalar (magenta) form factors compared to the Lattice QCD data of

Ref. [7] and Table V.

approximants P} and P} | yield the best fits.'” These values
for |V ;| represent a shift of about (1.8 — 2)e downwards
with respect to the value |V,;,| = 3.86(11) x 107 deter-
mined from the decay B — #£v, [cf. Eq. (14)]. Despite the
differing results, we note that an important aspect to
improve the compatibility results for |V,,| is the binned
measurement of the B, — KZv, differential branching ratio
distribution and most importantly its low energy region,
which fixes the ¢ dependence of the form factors at low
energies. In this sense, the experimental information is
presently limited to the two LHCb experimental points,
which are rather thick for an accurate extraction of the
functional behavior of the form factors, especially at low
energies. Therefore, new and more precise measurements
of the decay rate with a thinner resolution of the ¢ bins will
definitely allow one obtain more conclusive results from
the B, —» KZv, decay.

A graphical account of our fit with the P?.l approximant
is presented in Fig. 3 for the differential branching ratio
distribution (left plot) and the output for the vector and
scalar form factors (right plot), while the resulting param-
eters and correlation matrix of this fit are given Table X of
the Appendix.

C. Combined fits to the decays B — #€v,
and B, - K¢v,

In the previous Secs. III A and III B, we have extracted
|V.»| and the corresponding form factor parameters from
individual fits to the decays B — #£v, and B, — K~ u'y,
experimental data combined with the Lattice QCD infor-
mation on the corresponding vector and scalar form factors.
In this section, we explore the potential of performing

"Note that the second pole of the approximant Pil is placed
far away from the origin, and it thus behaves as a P?.

simultaneous fits to all experimental and theoretical infor-
mation on both exclusive decays to determine |V, |. For
that, we proceed in a similar fashion as in the previous
cases, Egs. (10) and (15), and minimize the following y?
function,

2 2 2 2
)’ ()( BABAR+Belle , XFLAG , XLHCb , #RBC/UKQCD
Yy =N
NpapariBele Nrac  Nruco  Nrec/ukQep
X i C
FNAL/MIL
+7/>, (18)
NENAL/MILC

where the first two terms contain the information on the
decay B — n¢v, channel, while the three others include
that of the By — K~ u"v, channel, with Npipag:peie =
13,NrLac =5.Nruc» = 2. Nrec/ukqep =0, NenaLmic =7,
and N = NppparBete + NrLac + Nrucw + Nree/ukoep+
Nenarymic- This definition equally weights each data set
and prevents sets with a smaller data points, such as the
B, - K?v, spectra, from being dominated by sets with a
larger data points, such as the B — z£v, spectra.

As in the preceding sections, we have tried various
Padé sequences. Here, however, we only show our
results for |V,,| and the form factor parameters resulting
from the partial Padé sequence P’l‘ﬂ, which yielded the
best fit results in our previous individual analyses. We
reach M =2 and M = 3 for the B — 7 and B; — K vector
form factors, respectively. The resulting fit parameters
and the correlation matrix are presented in Table VII,"
which have been obtained taking into account the restric-

tions  f%7(0) = £§77(0) and  f27(0) = f57"(0)

PIn the table, we use ¢; to denote the Padé approximant fit
parameters of the B, — K form factors.
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TABLE VIL

Best fit values, uncertainties, and correlation matrix for the output quantities of our ;(2 fits, Eq. (18), obtained from a

combined fit to the averaged B — n£v, BABAR and Belle [35] and the B, — K~ ¢#"v, LHCb [24] experimental data in combination with
the Lattice QCD B — =z [1] and B; — K [7,21] vector and scalar form factors simulations.

Parameter Central value Correlation matrix

[Vl x 10° 3.68(5) 1-0.404 0.086 0.221 —0.185 0.082 —0.082 —0.610 —0.239 0.138 —0.150 0.203 —0.386
ag 0.255(5) 1 —-0.4320.500 —0.405 —0.745 —0.564 0.246 0.096 —0.056 0.061 —0.082 0.156
aj x 103 —1.36(60) 1 0.055-0.331 0.186 0.048 —0.053 —0.021 0.012 —-0.013 0.018 —0.033
ay x 104 —0.66(68) 1 -=0.957-0.750 —0.821 —0.135 —0.053 0.031 —0.033 0.045 —0.085
mpg-(1-) pole(s) (GeV) = 5.325 & 6.24 0.685 0.775 0.113 0.044 —-0.026 0.028 —0.038 0.071
a(l) x 107 —0.46(6) 1 0.962 —0.050 —0.020 0.011 —0.012 0.017 —0.032
mpg-(o+) pole(s) (GeV) 5.45 1 0.050 0.020 —0.011 0.012 —0.017 0.032
e 0.211(3) 1 —=0.052 0.095 —0.046 0.030 0.765
cf % 103 4.96(2.32) 1 =0.975 0.968 —0.992 -0.121
cy X 10* —-0.37(26) 1 —=0.994 0989 0.185
€3 % 10° 0.81(43) 1 -0.990-0.115
mp-(1-y pole(s) (GeV) = 5.325 & 12.13 1 0.088
mpg-(o+) pole(s) (GeV) 5.69 1

simultaneously. The value for the quantity (y3,paz+ et +

XFLAG +)(%HCb +)(2RBC/UKQCD +1123NAL/MILC)/d'O‘f' =1.08
indicates a good quality of the fit. The resulting value for
|V.| from the combined analysis is found to be

V| = 3.68(5) x 1072, (19)

which is only a 1.4% error.

We would like to note, on the one hand, that our |V |
result in Eq. (19) corresponds to the most precise deter-
mination of |V ;| to date and that this value is shifted about
1.46 downwards with respect to |V,,| = 3.86(11) x 1073
extracted from B — #£v, alone (cf. Table II) and about 1o
upwards with respect to |V,;| = 3.58(9) x 10~ obtained
from the individual analysis of the B, — KZv, channel
(cf. Table VI). On the other hand, our determination is far
more precise than both the leptonic B — wv,, |V,,| =
4.01(9)(63) x 107 [1], and the inclusive, |V,,|=
4.25(12)1]3(23) x 1073 [2], determinations and that the
tension between our |V, result in Eq. (19) and the latter is
of about 1.85."* The results given in Table VII correspond,
to the best of our knowledge, to the first correlated results
between the B — 7 and B, — K form factors, which can
serve as guidance for those Lattice collaborations that
are planning to make available the full theoretical corre-
lation between form factors for different process in their
final results [21]. The results of the combined fit are plotted
in Fig. 4 for the differential B — #n¢v, (left plot) and
B, — K~ u*v, (right plot) branching ratio distributions and

“Here, 3.4¢ if the inclusive determination |V,,| =
4.32(12)7]2 x 1073 [37] is considered instead, and 1.5¢ with
respect to the preliminary value |V,;,| = 4.06(9)(16)(15) x 1073
in [38].

in Fig. 5 for the corresponding vector and scalar form
factors. Concerning the form factor values at g> = 0, we
obtain

B (0) = 0.255(5), A5(0) =0211(3),  (20)

which can be compared with the following output values:
B7,(0) = 0.253(11) [8] and f35(0) = o.135(50) [21]

from the FNAL/MILC Lattice Collaborations; (%% (0) =
0.26200% [39] and f%5(0) = 0.3010¢% [401, f 5(0) =
0.301(23) and f2(0) = 0.336(23) [41], and fB”(O)
0.252100s [5] from light-cone sum rules; f57(0) =

£26(0) = 0.2650% £ 0.02 from perturbative QCD [42];
and f%{(0) = 0.284(14) from relativistic quark model
[43]. See also the predictions for fﬁ’fO(O) of Refs. [44-46]
obtained using another framework of light-cone sum rules.
Finally, in Fig. 6, we present results for the quantity

25

RAG) = g = . (21)

w1th 1 = +,0, which provides a measure of SU(3) break-
ing."” As seen, while the results for R, (¢?) (cyan) and
RO( 2) (purple) are similar at low energies (¢*> <5 GeV?),
Ry(q?) is larger than R, (g°) at higher energies, and the
deviations from unity are consistent with the simple
counting (m; —my)/Agcp ~ 20%.

BIn the SU(3) limit, i.e., my = my, the B —> 7 and B, » K
form factors should be identical [47].
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obtained in combined fits as presented in Table VII.
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(purple) [cf. Eq. (21)] using our determinations of the B — «
and B, — K vector and scalar form factors from Table VII.
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Lattice QCD data for the B — 7 (left plot) and B, — K (right plot) vector and scalar form factors compared to our best fit results

IV. PHENOMENOLOGICAL APPLICATIONS

As a benefit of our results of Table VII, we provide
calculations for different phenomenological observables
such as total decay rates, ratio of z-to-u differential decay
rates or the forward-backward asymmetry, and its normal-
ized version.

Integrating the differential decay rates [cf. Eq. (5)] over
the kinematically allowed ¢ ranges and dividing by |V, |%,
we obtain

T(B — muw,)/|V.f> = 6.90(16) ps™'. (22)
(B = ntv,)/|Vw|? = 4.55(9) ps~!, (23)
[(B, — Kuy,)/ |V = 531(13) ps™!,  (24)
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FIG. 7. Standard Model ratio of differential z-to-u decay rates,
Eq. (26), using our determinations of the B — z and By, - K
vector and scalar form factors from Table VII.

L(B; = Kzv,)/|Vip|? =3.70(8) ps™.  (25)

with errors of only about 2%.
The 7-to-ug>-dependent ratio of differential decay rates,

T/u o dF(B(s) - ”(K)Ty‘r)/dqz
Rt = a5, = wRpfag >0

and its integrated form,

(mg s _mzr(K))2

D Y dg*dlU(B(,) = n(K)tw,)/dq?

RI[(K) o (mB(:) —m,[(,())2 5 ’
I, dq*dl’(B s — n(K)uv,)/dgq

"

. (27)

can be used for precise Standard Model test that is
independent of |V, |. Figure 7 shows our predictions for
Egq. (26) using our B — v, and B; — Kuv, form factor
outputs from Table VII, while our numerical predictions for
Eq. (27) are found to be

RY* = 0.660(5), (28)
RY* = 0.697(3), (29)

which are only 1% error. These values are found to be in
agreement with, but more precise than, RY* = 0.69(19)
and RY* =0.77(12) from Ref. [7] and R = 0.77(6)
from Ref. [21].16

Concerning the forward-backward asymmetry, Agp, it is
a quantity sensitive to the mass of the final-state charged
lepton and its theoretical expression is given by

®In [21], the value RY* =0.836(34) is reported, which
corresponds to taking m? as the lower limit of integration in
the denominator of Eq. (27).

B(J)—ﬂr(K)fv,»

A (g

?)
FB
1 0 d’T'(B K)¢
< ([ - [ acono, ET B = )
0 -1 dg*dcos b,

G2V, 2 2\2
= SelWwl ()
32mmp q

2

x5 b, = ml Relf () o)) (30)

where 6, is the angle between the charged lepton and the
B(;-meson momenta in the g* rest frame. In Fig. 8,
we show our predictions for Agp using our best fit results
from VII. Integrating over the corresponding kinematic ¢*
ranges and diving by |V, |?, we obtain

(mp=m;)? =y -
[ dp Al @)Vl = 003(0) ps, 31

2
"

2
3

(mlf_mﬂ)z
/ P AB™ () |Vl = 116(3) ps~',  (32)

(mp,—my)* SKuv _
/ : dq? Ay " (47)/|V.w|? = 0.0255(6) ps~,

(33)

2
T

(ms,\-—mﬂz S Kt _
/ AP E () |Vl = 0.99(2) ps~!, (34)

with errors of about 3%. While these values are in general
agreement with, but more precise than, those in Ref. [7],
our results show a difference of about 1.5¢ with [21]; see
also Ref. [48] for recent calculations of these observables.
Finally, the normalized forward-backward asymmetry,

=B, —n(K)¢
AF(B) " W(qz)
b ageagy g
= . (33

(m

2 2
B6) " Maix)
fn% 9 a0 dg*dl' (B = n(K)tvy)/dg?
is an interesting observable as it is independent of |V ,;|.
Our predictions are shown in Fig. 9, whereas integrating
Eq. (35) over the allowed ¢* ranges we find

ABZ = 0.0049(1), (36)

ABomw — 0255(1), (37)
ADoK —0.0048(1), (38)
AD=K™ — 0.2684(9), (39)
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(right), using our fit results from Table VII.
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FIG. 9. Predictions for the normalized forward-backward asymmetry, Eq. (35), for B — zuv and B; — Kuv (left) and B — nrv and

B, — Krv (right), using our fit results from Table VIL

with errors of about 2% and 1% for u and z, respectively.
While these values are found to be in agreement with
Ref. [7], our results are more precise. With respect to [21],

our results differ by about ~1.6-2.1¢ for A% ™" and
ABSK respectively.
V. OUTLOOK

In this work, we have explored the role of the decay
B, - K?v, in complementing the traditional channel B —
ntv, in the determination of the CKM element |V;,|. The
motivation of this study is the first reported measurement
of the branching ratio of the decay B, — K~ u"v, by the
LHCb Collaboration [24], making this analysis of timely
interest.

Our analysis has been based on the method of Padé
approximants to the corresponding form factors and pro-
ceeded in three steps. First, we used the most precise
measurements of the differential B — n£v, branching ratio
distribution given by BABAR and Belle, along with the

Lattice QCD calculations of the B — =z vector and scalar
form factors, to extract |V,,;,| from a combined fit which
makes use of both information sets in a democratic way.
As a result of this exercise, we have obtained |V ;| =
3.86(11) x 107 [cf. Eq. (14)], together with the form
factor parameters and their correlation matrix collected
in Table VIII of the Appendix. We note that our result
for |V,,| differs only by about 1.35c with the deter-
mination from inclusive decays B — X vy, |V,| =
4.25(12)+13(23) x 1073 [21," confirming the trend of
obtaining higher values of |V,,| from recent exclusive
B — nfv, determinations [49,50]. Second, we have deter-
mined |V,,| from the decay B; — Kfv, performing
combined fits to the experimental LHCb data and
Lattice input on the B; — K form factors. Our fits yield
|Vup| = 3.58(9) x 1072 and the form factor parameters and

""Here, 1.2¢ with respect to the preliminary value [V =
4.06(9)(16)(15) x 1073 [38].
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their correlation matrix given in Table VI. This is a relevant
result, as the central |V, | value from B; - K¢v, suffers a
shift of about 1.9¢ downwards with respect to the one
obtained from B — nfv,, thus increasing the difference
with respect to the determination from inclusive decays to
2.16. We traced back this difference to the impact of
existing experimental data used in each channel; Lattice
input in form factors in both channels tend to yield values
for |V,,| around 3.6 x 10~ while experimental data seem
to prefer higher values of around |V,,| = 3.9(9) x 1073.
Since experimental data for the B, — K is scarce, that
channel is dominated by Lattice input thus confronting the
B — 7z one. Third, and last, we have performed a simulta-
neous analysis to all available experimental and Lattice
QCD information on both B — z£v, and B, = K~ u*y,
decays. The resulting fit yields |V,;,| = 3.68(5) x 1073,
which is a 1.4% error and differs by only 1.8¢ from the
inclusive value. We note that in the application of Padé
approximants to experimental data, only a few elements
of the Padé sequence can be reached due to the limited
precision of the data, which would introduce a systematical
uncertainty. In order to have an estimate of this error, one
can take the difference of central values of the element
where we have stopped the sequence and the preceding
one. Our best fits are achieved with Padé sequences with
two poles, for which the systematic error is negligible due
to the fast convergence of the sequences (cf. Table III and
Fig. 1); other procedures would introduce systematic errors
rather ad hoc.

The process of performing a combined fit to both decays
also tests for their compatibility, and the result is a |V ;|
that stays ~lo away from the |V ;| results extracted from
the individual decay modes. In this sense, more precise
measurements of the differential B, - K£v, decay distri-
bution with a finer resolution of the g> bins will help
achieve more conclusive results. Our value is presented and
compared with other determinations using different meth-
ods and fitted data sets in Fig. 10. As seen, our value is the
most precise to date. The coefficients of the Padé approx-
imants for the B — z and B; — K form factors are given in
Table VII together with their correlation matrix. The latter
represents, to the best of our knowledge, the first correlated
results for these form factors. As a benefit of our analysis,
in Sec. IV, we have calculated different phenomenological
observables such as total decay rates, ratio of z-to-u
differential decay rates or the forward-backward asymme-
try, and its normalized version, with an accuracy of few %.

On the experimental side, the decay B, — Kfv, is
expected to be studied at the Belle-II experiment [4],
which due to the e e~ collisions offers a cleaner environ-
ment than the LHCb. Belle II will collect a large numbers
of B;-meson pairs and, although measurements of the
B, - KZv, rates are not expected to reach the experimen-
tal accuracy of their results for B — zfv, [54], more
precise measurements will clearly help improve the

T T T

B — 7r€1/'
Biswas et.al. 2021 ——
Leljak et.al. 2021 (LCSR) —.
FLAG 2019 ——
HFLAV 2019 Vi
Dingfelder et.al. 2016 —
FNAL/MILC 2015 —
RBC/UKQCD 2015 =
Imsong et.al. 2015 (LCSR) ——8——
Padé Approximants 2018 —O—
This work ——

By, — K(lv [this work] —e—

B — wlv + By — K/(v [this work] @

B — wlv (LCSR) +--- £ ———-

B — ptv (LCSR) ro———- ——— - -

Ay — puv ———

25 3.0 35 4.0

|Vub| X 103

FIG. 10. Status of |V,,| determinations from exclusive B —
nfv, decays (red squares) including Biswas et al. [49], Leljak
et al. [50], FLAG 2019 [1], HFLAV 2019 [37], Dingfelder and
Mannel [51], FNAL/MILC 2015 [8], RBC/UKQCD [7], Imsong
etal. [52], Padé approximants [13], and this work (black circle),
from B; — K?¢v, (this work, purple circle), from a combination
of B — nfv, and B; - K¢v, decays (this work, green circle),
from B — w/v, (upward blue triangle), and B — pfv, (down-
ward orange triangle) [53], and from A;, — puv, (gray diamond)
LHCb [26].

determination of |V,;,|. On the Lattice front, there are
plans to reduce the contributions from the dominant sources
of statistical [7] and systematic [21,55] uncertainties in
upcoming form factor calculations, as well as making the
full correlation matrix between the B — 7 and B, — K
form factors available [21,56]. These, and other improve-
ments, will allow one to obtain form factors with percent
level precision and hence allow for exclusive |V, | deter-
minations with improved precision.

ACKNOWLEDGMENTS

The work of S. G-S. has been supported in part by the
National Science Foundation under Grant No. PHY-
2013184 and the U.S. Department of Energy under
Grant No. DE-FGO02-87ER40365. P.M. and C.R. have
received funding from the Spanish Ministry of Science and
Innovation (Grant No. PID2020-112965 GB-I00/AEl/
10.13039/501100011033) and from the Agency for
Management of University and Research Grants of the
Government of Catalonia (Project SGR 1069).

114041-14



PADE APPROXIMANTS TO B — nfv, ...

PHYS. REV. D 104, 114041 (2021)

APPENDIX: FIT RESULTS AND FORM FACTOR SIMULATIONS

TABLE VIII. Best fit values, uncertainties, and correlation matrix for the output quantities of our best ;(%ﬂ fit,
Eq. (10), obtained with the Padé element P, (cf. Table III).

Parameter Central value Correlation matrix

[V x 103 3.86(11) 1 -0.571 0.035 0.324  -0.251 0.139 —0.121
ag 0.247(8) 1 -0.374  0.341 -0.298 —-0.719 -0.473
ai x10° -1.3(8) 1 0.028  —0.297 0.220 0.105
ay x 104 —-0.3(1.0) 1 —-0.958 —0.681 —0.795
mp«(1-) pole(s) (GeV)  =15.325&6.46 1 0.633 0.747
ad x 10? -0.4(1) 1 0.943
mp-(o+) pole(s) (GeV) 5.44 1

TABLE IX. Central values, errors, and correlation matrix for the B — 7z vector form factor, f (¢*), generated at
three representative values of ¢> from the FLAG [1] results and used in our fits in Table V.

Correlation matrix

I

Form factor q* (GeV?) Central values 18 22 26

Vi 18 1.102(44) 1 0.757 0.563
22 1.964(54) 1 0.400
26 5.848(226) 1

TABLE X. Best fit values, uncertainties, and correlation matrix for the output quantities of our best ;{%S ¢ fit,
Eq. (15), obtained with the Padé element P?‘, (cf. Table VI).

Parameter Central value Correlation matrix

V.| x 103 3.58(9) 1 -0.674 -0.332 0.168 —0.254 0.306 —0.445
ag 0.214(5) 1 0.035 0.056 0.004 —0.028 0.784
af x 10° 6.70(5.40) 1 —0.945 0.982 —-0.997 -0.061
aj x 10* —0.48(46) 1 —0.988 0.963 0.149
aj x 10° 1.04(96) 1 -0.992 -0.077
mp-(1-) pole(s) (GeV)  =15.325&29.5 1 0.037
mp-o+y pole(s) (GeV) 5.70 1
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