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Abstract

Microfluidic biochips are being utilized for clini-
cal diagnostics, including COVID-19 testing, be-
cause they provide sample-to-result turnaround
at low cost. Recently, microelectrode-dot-array
(MEDA) biochips have been proposed to advance
microfluidics technology. A MEDA biochip ma-
nipulates droplets of nano/picoliter volumes to au-
tomatically execute biochemical protocols. Dur-
ing bioassay execution, droplets are transported
in parallel to achieve high-throughput outcomes.
However, a major concern associated with the use
of MEDA biochips is microelectrode degradation
over time. Recent work has shown that formu-
lating droplet transportation as a reinforcement-
learning (RL) problem enables the training of poli-
cies to capture the underlying health conditions of
microelectrodes and ensure reliable fluidic opera-
tions. However, the above RL-based approach suf-
fers from two key limitations: 1) it cannot be used
for concurrent transportation of multiple droplets;
2) it requires the availability of CCD cameras for
monitoring droplet movement. To overcome these
problems, we present a multi-agent reinforcement
learning (MARL) droplet-routing solution that
can be used for various sizes of MEDA biochips
with integrated sensors, and we demonstrate the
reliable execution of a serial-dilution bioassay
with the MARL droplet router on a fabricated
MEDA biochip. To facilitate further research, we
also present a simulation environment based on
the PettingZoo Gym Interface for MARL-guided
droplet-routing problems on MEDA biochips.
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1. Introduction
In recent years, we have seen progress on the use of deep
reinforcement learning (RL) to assist sequential decision-
making problems, such as games (Silver et al., 2017; Vinyals
et al., 2019; Brown & Sandholm, 2019), robotics (Gu et al.,
2017), autonomous driving (Sallab et al., 2017; Palanisamy,
2020; Wachi, 2019), quantitative trading strategies (Lee
et al., 2020), and healthcare systems (Manak et al., 2018;
Liang et al., 2020a). Many of these successful RL applica-
tions involve more than one agent or player, which naturally
leads to the setting of multi-agent RL (MARL). MARL ad-
dresses the decision-making problem for multiple agents
in a common environment, where each agent’s goal is to
optimize its own long-term reward by interacting with the
environment and other agents (Zhang et al., 2019). In this
paper, we demonstrate the application of MARL for droplet
control in microfluidic biochips based on the microelec-
trode dot-array (MEDA) platform. We show that because
the health condition of a biochip dynamically changes over
time, the modeling of parallel droplet control in MEDA
biochips as an MARL problem can ensure reliable bioassay
execution with high throughput.

1.1. MEDA Biochips

The rapid worldwide spread and impact of the COVID-
19 virus has created an urgent need for reliable, accurate,
and affordable testing on a massive scale. For example,
the National Institutes of Health (NIH) has launched the
Rapid Acceleration of Diagnostics (RADx) initiative to
develop and implement technologies for COVID-19 test-
ing (NIH, 2021a). One of the most promising technolo-
gies for realizing this goal is microfluidics. A microflu-
idic biochip manipulates tiny amounts of fluids to automati-
cally execute biochemical protocols for point-of-care clini-
cal diagnosis with high efficiency and fast sample-to-result
turnaround (Sun et al., 2020; Ganguli et al., 2020; Sheridan,
2020). Because of these characteristics, the RADx initia-
tive has awarded grants to several biomedical diagnostic
companies to develop microfluidic technologies that could
dramatically increase testing capacity and throughput (NIH,
2021b; Ouyang et al., 2020). Other applications of microflu-
idics include screening of newborn infants (Sista et al., 2020;
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Inc., 2021), drug discovery (Li et al., 2020), and clinical
diagnostics (Chou et al., 2015; Schmitz & Tang, 2018).

The MEDA biochip platform has been proposed in recent
years to further advance microfluidics technology (Lai et al.,
2015; Ho et al., 2016). A MEDA biochip is composed of a
two-dimensional microelectrode array that manipulates dis-
crete fluid droplets. MEDA biochips manipulate nanoliter
droplets using the principle of electrowetting-on-dielectric
(EWOD) (Pollack et al., 2000). When driven by a sequence
of control voltages, the microelectrode array can perform
fluidic operations, such as dispensing, mixing, and split-
ting (Wang et al., 2011; Zhong et al., 2020). Using MEDA
biochips, bioassay protocols are scaled down to droplet size
and executed through software-based control of nanoliter
droplets. 1

As microfluidic biochips are being used for critical point-of-
care diagnostics, reliability in these systems has become an
important focus of research (Zhong et al., 2020; Liang et al.,
2020b). It has been reported that the unit cells (i.e., elec-
trodes) of an EWOD biochip degrade over time (Verheijen
& Prins, 1999; Su et al., 2006; Xu & Chakrabarty, 2007a;
Drygiannakis et al., 2009). Electrode degradation results
from charge trapping in the dielectric insulator (Dong et al.,
2015); therefore, a degraded electrode cannot be observed
using a CCD camera. MEDA biochips, in particular, are
more susceptible to microelectrode degradation than other
EWOD biochips. This is because microelectrodes in MEDA
biochips are charged during not only droplet actuation, but
also during droplet sensing, i.e., a microelectrode in MEDA
biochips is charged more frequently than in other EWOD
biochips (Zhong et al., 2020). An example of microelectrode
degradation is shown in Figure 1 for a fabricated MEDA
biochip. Three droplets are present on the biochip, and one
of them is present over a group of degraded microelectrode.
In the next time slot, two groups of microelectrodes are
actuated to move two droplets. However, one of the two
fluidic operations fails because unwanted surface-tension
force is exerted by the degraded microelectrodes.

1.2. Motivation

To carry out a bioassay protocol with specified fluidic oper-
ations on a MEDA biochip, a synthesis tool is used generate
a schedule of fluidic operations (Chakrabarty et al., 2010;
Zhong et al., 2018). The operations are then mapped to
on-chip modules to perform the operations. Next, the re-
sultant droplet of one operation is used for the following
operation, and thus the droplet needs to be transported from
the previous module to the next. The problem of choosing
the microelectrode path associated with droplet transporta-
tion and droplet-mixing pathway is referred to as droplet

1A detailed description of MEDA biochips can be found in the
supplementary document.
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Figure 1. Droplet transportation fails because of microelectrode
degradation. (a) Three droplets are present on the electrode array.
Two groups of microelectrodes are actuated to move two droplets.
(b) After microelectrode actuation, the right droplet cannot be
moved to the desired location completely because it was present
over some degraded microelectrode; the left droplet is transported
to the desired location correctly.

routing. Many synthesis methods have been proposed
to accomplish high-throughput bioassay outcomes (Xu &
Chakrabarty, 2007b; Keszocze et al., 2017; Zhong et al.,
2018); these methods execute parallel droplet routing in
a limited microelectrode-array space. However, because
microelectrode degradation is not observable using a CCD
camera, these methods cannot ensure reliable droplet trans-
portation if the microelectrodes associated with the routing
path degrade over time.

A recent study showed that formulating droplet transporta-
tion as a single-agent reinforcement learning (RL) problem
enables the training of deep neural network policies to cap-
ture the underlying health conditions of the biochip and
provide dynamic adaptation based on sensing results and re-
liable fluidic operations (Liang et al., 2020a). However, the
above RL-based solution suffers from two key limitations.
First, the RL framework does not consider the practical sce-
nario of parallel droplet transportation, i.e., it assumes that
the environment is stationary. During the execution of a typ-
ical bioassay, it is often the case that multiple droplets must
be transported concurrently. However, the work in (Liang
et al., 2020a) modeled the droplet-transportation task as a
single-agent RL problem, and each agent acts on only one
droplet. Therefore, without knowing the routing strategies
of the other agents, the movement of one droplet can hinder
the routing of another droplet. An even more severe problem
is that, without “collaboratively” interacting with the other
droplet-routing agents, droplets can collide with each other,
resulting in bio-sample contamination and erroneous bioas-
say outcomes. Consider the example shown in Figure 2;
two droplets need to be transported concurrently to the des-
tinations. Because the agents that act on the two droplets do
not know (or did not learn) the subsequent actions from the
other agent, the two droplets can be contaminated during
transportation.

Another limitation of (Liang et al., 2020a) is that this frame-
work requires the integration of a CCD camera in the mi-
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Figure 2. Two droplets need to be transported to their correspond-
ing destinations on a DMFB. The solution in (Liang et al., 2020a)
will cause the droplets to be contaminated on their way to the
destinations.

crofluidic system to capture droplet locations in real time.
However, as microfluidic biochips are developed for point-
of-care and affordable clinical diagnostics, a portable mi-
crofluidic system may not allow for the integration of a CCD
camera for real-time sensing.

To address the above limitations, we present an MARL
framework for the parallel droplet-routing problem. The
framework assigns a droplet routing task to an RL agent, and
all the agents are modeled in a cooperative setting so that
they can accomplish routing tasks without blocking each
other. We also demonstrate the proposed MARL framework
on a fabricated MEDA biochip, where real-time sensing
is available using CMOS electronics integrated under each
microelectrode (Lai et al., 2015).

1.3. Paper Contributions

This work is the first attempt to apply MARL to emerging
microfluidic systems. The key contributions of this paper
are as follows.

• We formulate a novel framework for MARL-based
droplet routing on MEDA biochips. We discuss the
challenges involved with the formulation of parallel
droplet routing as an MARL task. In our framework,
the policy is first trained in a simulated MEDA envi-
ronment. The pre-trained policy is then loaded on the
controller associated with a MEDA biochip, and the
policy generates real-time droplet routing pathways.

• We demonstrate the routing scheme by executing a bio-
protocol on a fabricated MEDA biochip. We show that
the policy enables agents to learn to cooperate with
each other and generate reliable droplet routes for the
bioassays.

• We develop a MEDA simulator in PettingZoo Gym
environment (Terry et al., 2021). We open-source the
simulator to the RL community for future research2.

2https://github.com/tcliang-tw/meda-
env.git

2. Background
2.1. Multi-Agent Reinforcement Learning

MARL problems can be mathematically described
using Markov/Stochastic Games (MGs) (Shap-
ley, 1953). An MG is defined by a tuple
(N ,S, {Ai}i∈N ,P, {Ri}i∈N , {Oi}i∈N , γ), where
N = {1, ..., N} is the set of N > 1 agents; S is the
state space; Ai denotes the action space of agent i; a
probability function P : S × A → 4(S) describes the
transition probability from state st ∈ S to state st+1 ∈ S
given by a joint action a ∈ A; Oi is the observation by
agent i; Ri : S × A × S → R is the reward function
for agent i when it transitions from (st, a

i
t) to st+1; a

variable γ ∈ [0, 1] denotes the discount factor that trades
off between the immediate and future rewards.

At time t, each agent i ∈ N executes an action ait based
on the observation oit. The environment then transitions to
st+1 and rewards each agent i by Ri(st, at, st+1). The goal
of agent i is to find the best policy πi that will maximize
the total reward received from the environment from a start
state to an end state. The expected cumulative discounted
reward is expressed as U i(t) = E[

∑
t γ

t ·Ri(st, at, st+1)].
For continuous state and action spaces, this problem is in-
tractable, but recent advances in deep RL employ deep
neural networks to approximate the optimal policy (Silver
et al., 2017; Schulman et al., 2017; Oroojlooy & Hajinezhad,
2019; Zhang et al., 2020).

2.2. RL Algorithms

We briefly describe three deep reinforcement learning al-
gorithms that are used to evaluate our MARL framework;
these algorithms are temporal-difference (TD), on-policy
gradient descent, and off-policy actor-critic approaches.

2.2.1. DOUBLE DEEP Q-NETWORK

The deep Q-network (DQN) algorithm (Mnih et al., 2013)
is a TD method that uses a neural network to approximate
the state-action value function

Q(s, a) = max
π

E[
∞∑
0

γirt+i|st = s, at = a, π]

DQN relies on an experience replay dataset Dt =
{m1, ...,mt}, which stores the agent’s experiences mt =
(st; at; rt; st+1) to reduce correlations between observa-
tions. The experience consists of the current state st, the
action the agent took at, the reward it received rt, and the
next state after transition st+1. The learning update at each
iteration j uses a loss function based on the TD update:

Lj(θj) = Emk∼D[(r+γmaxa′Q(s′, a′; θ−)−Q(s, a; θj))
2]

https://github.com/tcliang-tw/meda-env.git
https://github.com/tcliang-tw/meda-env.git
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where θj and θ− are the parameters of the online Q-
networks and the target network, respective, and the experi-
ences mk are sampled uniformly from D. The parameters
of the target network are fixed for a number of iterations
while the online network Q(s, a; θj) is updated by gradient
descent. In partially observable environments, an agent can
only observe ot instead of the entire state st. The experience
replay is therefore updated as mt = (ot; at; rt; ot+1).

In DQN, the max operator uses the same values to select
an action and evaluate an action, which can lead to overop-
timistic value estimation (Hasselt, 2010). An improved
method named double DQN was proposed to mitigate this
problem (Van Hasselt et al., 2016). In double DQN, the loss
function at iteration j is updated as:
Lj(θj) = Emk∼D[(r+γQ(s′, argmaxa′Q(s′, a′; θj); θ

−)

−Q(s, a; θj))
2]

2.2.2. PROXIMAL POLICY OPTIMIZATION ALGORITHM

Proximal policy optimization (PPO) is an on-policy method
that improves gradient-descent stability without perfor-
mance collapse (Schulman et al., 2017). It updates policies
using the following equation:

θk+1 = argmax
θ

E
s,a∼πθk

[L(s, a, θk, θ)].

The update usually takes several steps of stochastic gradient
descent (SGD) to maximize the objective. Here, the loss
function L is defined as:

L(s, a, θk, θ) = min(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), g(ε, Aπθk (s, a)))

where A is an estimator of the advantage function, ε is a
hyperparameter, and

g(ε, A) =

{
(1 + ε)A if A ≥ 0

(1− ε)A if A < 0

2.2.3. ACTOR-CRITIC WITH EXPERIENCE REPLAY

Actor-critic with experience replay (ACER) is an off-policy
actor-critic model that increases the sample efficiency and
reduces the data correlation (Wang et al., 2017). Similar
to asynchronous advantage actor-critic (A3C) (Mnih et al.,
2016), ACER learns the value function by training multi-
ple actors in parallel. To obtain stability of the off-policy
estimator, ACER adopts a retrace Q-value estimation:

∆Qret(St, At) = γt
∏

1≤γ≤t

min(c,
π(Aτ |Sτ )

β(Aτ |Sτ )
)δt

where (π, β) is the target and behavior policy pair, δt is
the TD error, and c is a constant. In addition to a retrace
Q-value estimation, ACER uses importance sampling and a
trust region policy optimization (Schulman et al., 2015).

2.3. MARL Training Schemes

We consider three widely-used training schemes for our
MARL framework: centralized, concurrent, and parameter-
sharing (Gupta et al., 2017). We briefly describe how each
approach can be used with MARL.

Centralized: The centralized learning approach assumes a
joint model that receives all the observations and generates
the joint actions for all the agents. A drawback of this
approach is that it leads to an exponential growth in the
observation and actions spaces with the number of agents.

Concurrent: In concurrent learning, each agent learns its
own individual policy. Each independent policy maps an
agent’s private observation to an action. In the policy gra-
dient approach, this means optimizing multiple policies
simultaneously from the joint reward signal.

Parameter Sharing: Similar to concurrent learning, each
agent is assigned with a neural network policy. However,
in the parameter-sharing approach, all the agents share the
parameters of a single policy. This allows the policy to be
trained with the experiences of all agents simultaneously.
However, each agent is still able to act differently based on
the observation it receives.

2.4. Reward Structure

The concept of reward shaping (Ng et al., 1999) involves
modifying rewards to accelerate learning without chang-
ing the optimal policy and approximate Bayesian meth-
ods (Kolter & Ng, 2009). In centralized learning, the reward
cannot be decomposed into separate elements; this reward
structure is equivalent to the joint reward in a decentral-
ized partially observable Markov decision process (Spaan,
2012). However, in decentralized learning, an alternative
local reward representation can be derived and assigned to
each agent so that the reward assignment is in a more fine-
grained manner. The work in (Bagnell & Ng, 2005) showed
that such local information can help reduce the number of
samples required for learning.

3. Parallel Droplet Routing in MEDA
biochips using MARL

3.1. Formulation of Parallel Droplet Routing as MARL

We formulate the droplet-routing problem in MEDA
biochips as an MARL framework where agents are fully
cooperative. We consider a bioassay that is executed on a
MEDA biochip, wherein the droplet locations are captured
in real-time using the sensors integrated in the microelec-
trode cells (Li et al., 2017; Zhong et al., 2018). A controller,
typically a desktop, laptop, or an FPGA board, is connected
to the MEDA platform to shift the actuation bitstreams to
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Figure 3. The MARL framework for parallel droplet routing on MEDA biochips. (a) Real-time sensing results are captured from MEDA.
(b) Locations of the droplet are processed by the controller. The information is translated to arrays as the inputs for the RL agents. (c)
The RL agents choose a set of actions. (d) The controller actuates microelectrodes based on the actions. (e) The RL agents receive a
team-average reward.

MEDA and obtain the sensing results. The controller is also
loaded with all the droplet-routing tasks to implement the
actuation steps derived from bioasay synthesis (Lai et al.,
2015). After obtaining a sensing result, the controller trans-
lates the environment states into observations for the agents.
An agent can move a droplet to an adjacent location at
any given time step, and the agent’s goal is to transport
the droplet from a given start location to a given destina-
tion. Based on the actions, the controller actuates on-chip
droplets and observes the next state. The reward function
for each agent is based on the state-transition result after
an action is taken. Figure 3 provides an illustration of the
overall MEDA system using the MARL framework, where
two agents act on a MEDA environment.

Actions: At any time step, a droplet can be transported
to any one of the eight directions: north, northeast, east,
southeast, south, southwest, west, and northwest. The action
set is defined as A = {an, ane, ae, ase, as, asw, aw, anw},
where each element defines a direction that the droplet can
be moved to.

Observations: At any given time step, the state of the
MEDA-biochip is translated as RGB images, i.e., obser-
vation, for the agents. The resolution of the RGB image
is the number of microelectrodes in the MEDA. The mi-
croelectrodes that are under the droplet to be routed are
interpreted as blue pixels. The destination is defined as a set
of microelectrodes, and they are interpreted as green pixels.
During bioassay execution, multiple fluidic operations may
be carried out concurrently to achieve high throughput. If a
droplet is being transported while a concurrent mixing oper-
ation is also being carried out on the biochip, the electrodes
that are used for the mixing operation cannot be used for
droplet transportation to avoid undesirable contamination.
The microelectrodes that are occupied by all the other con-
current operations and droplets are interpreted as red pixels.
An example of RGB images is shown in Figure 3(b).

Rewards: We consider the cooperative setting for the
MARL framework (Guériau et al., 2015; Li & Conitzer,

2015; Zhang et al., 2018; Doan et al., 2019) because the
agents should not compete with each other to transport
droplets. We first compute an assessment value ri of an
agent i after state transition. Let Ri be defined as radius
(in terms of the number of microelectrodes) of droplet di

and ei,j be the microelectrode at the ith row and the jth

column of the MEDA. We assume that at time t, the cen-
ter of droplet di is located at ei,j , and its destination is
at ek,m. We define Di(t) as the distance of the droplet
from the destination on the MEDA biochip at time t, where
Di(t) =

√
(i− k)2 + (j −m)2. After an action ait is

taken, if Di(t + 1) < Ri, ri is assigned a positive value
of +1.0 because the droplet has reached the destination.
Otherwise, the assessment value is computed as follows:

ri =

{
−0.05 if Di(t+ 1) < Di(t)

−0.1 if Di(t+ 1) ≥ Di(t)

In the first case, the action leads to a state in which the
droplet is closer to the destination. In the second case,
the action results in the same state or even a worse state.
Therefore, we use a smaller value as the assessment value.
In this reward setting, to gain the maximum value in a game,
the agent is encouraged to take as few steps as possible to
reach the destination.

As all the agents take a combination of actions, a possible re-
sultant state is that droplets may get too close to each other,
which can lead to unintended merging and sample/reagent
contamination. To prevent this scenario, we also adjust the
assessment values for droplets that are too close to each
other. Assume that, after a joint set of actions is taken, the
resultant locations of two droplets di and dj are ed

i

a,b and

ed
j

c,d, respectively, and that the radii of the two droplets are
Ri and Rj , respectively. The distance of the two droplets
is computed as D(di, dj) =

√
(a− c)2 + (b− d)2. If

D(di, dj) ≤ 1.5× (Ri+Rj), the assessment values are ad-
justed as ri = ri − 0.8 and rj = rj − 0.8. In decentralized
learning, each agent i is rewarded by its own assessment
value ri; in centralized learning, we give each agent a team-
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Action Result Action Result
aN edi−R,j aS edi+R,j

aNE edi−R+1,j+R−1 aSW edi+R−1,j−R+1

aE edi,j+R aW edi,j−R
aSE edi+R−1,j+R−1 aNW edi−R+1,j−R+1

Table 1. The transition outcome for a given action.

average reward Ravg =
∑N
i=1 r

i

N .

3.2. MEDA Simulator: Training of MARL Agents

To train the agents, we developed a PettingZoo-Gym envi-
ronment named MEDA-Env to simulate a MEDA biochip.
The MEDA matrix consists of N × M microelectrodes,
where N and M are inputs to MEDA-Env. The actions,
observations, and rewards of MEDA-Env are the same as
the descriptions in Section 3.1. The transition model of
MEDA-Env is described as below.

Transition model: Assuming that the center of a droplet
d is located at ei,j , we denote the location of the droplet
as edi,j . The radius of the droplet (in terms of the number
of microelectrodes) is defined as R microelectrodes. The
transition outcomes associated with all the actions are shown
in Table 1. If the droplet is present at the boundary of the
MEDA and the action is toward the outside of the biochip,
the droplet will remain at the same location. For example, if
the droplet for which the radiusR = 2 is present at e2,2 and
the action is either aN or aW , the droplet remains at e2,2.

3.3. MARL Training

As shown in Figure 3, the RL agents are neural networks.
Each agent i observes images as inputs and chooses an ac-
tion ait ∈ A. The agent receives a reward value based on the
result of the previous joint actions. We used a simple but
effective CNN for each agent because the network needs to
be loaded on an affordable biochip platform. For example,
in (Willsey et al., 2019), the cyberphysical biochip system
includes only a quad-core 1.2 GHz ARMv7 processor with
1 GB RAM, and it does not contain a GPU; therefore, large
networks are not feasible in this application scenario. A
detailed description of the CNN can be found in the supple-
mentary document.

We consider fabricated MEDA biochips as test cases and
evaluate the effectiveness of RL-based adaptation using
arrays of size 30× 60 and 80× 60 (Lai et al., 2015)3. We
evaluated three RL algorithms, i.e. double DQN, PPO, and
ACER, described in Section 2 using three training schemes,
namely centralized, concurrent, and parameter sharing. The
training was executed on a Linux platform integrated with a
11 GB-memory GPU (Nvidia GeForce RTX 2080 Ti). The

3The supplementary document includes all the training pro-
cesses.

training processes using PPO take∼ 2 hours to converge for
decentralized learning, which is the fastest among the other
algorithms. Although it takes several hours to train a model
to perform as well as the offline method, the training process
only needs to be carried out once, and the trained model can
subsequently be used for all fabricated MEDA biochips. We
compare the MARL approaches with two baseline methods:
1) the single-agent RL framework in (Liang et al., 2020a)
and 2) a static (offline) routing method in (Keszocze et al.,
2017).

We illustrate training processes for the MEDA-Env that
contains 30 × 60 microelectrodes in Figure 4. For each
RL algorithm, we ran 18 simulations with random seeds;
the average performance of each algorithm is plotted as a
solid line, and the similar color region shows the interval
between its best performance and its worst performance.
For each training game of MEDA-Env, nrt random routing
tasks are generated, where 1 < nrt ≤ 3. A training epoch
contains 20, 000 timesteps. We first see that single-agent
RL (baseline 1) does not perform well because the agent
does not know how to collaborate with other agents. We
observe that double DQN does not converge in all training
schemes. In some cases, double DQN learned sub-optimal
policies first, and then the policy learned lower-reward expe-
riences, which results in converging to more passive policies.
The results are similar to MARL training in other environ-
ments (Jiang et al., 2020). We observe that PPO performs
well in centralized and concurrent learning, but it sometimes
cannot converge in parameter-sharing learning. This is be-
cause PPO is sensitive to initialization (Wang et al., 2019;
Lazaridis et al., 2020; Hsu et al., 2020). In addition, the PPO
update rule encourages the policy to exploit rewards that it
has already found over the training course. Therefore, if an
initial network policy is far from global optima, the policy
can be easily trapped in local minima. We also observe that
ACER is the most sample-efficient algorithm in decentral-
ized learning. However, ACER encounters scalability issues
in centralized learning, where reward becomes sparse in an
exponentially growing action space. As the action space
and observation space grow exponentially, the experiences
stored in the limited replay buffer become important for
ACER training. For centralized learning, our full training
results show that PPO can outperform ACER after 200 train-
ing epochs; the training results are similar to that obtained
in several Atari games (Fakoor et al., 2020).

We recorded a video of droplet routing by the MARL model
(PPO in centralized learning) for a 30× 60 MEDA during
training, and it can be found in (Liang et al., 2021). From
the video we see that, at first, the agents moved the droplets
randomly without knowing the right policy needed to reach
the destinations. In some games, the droplets got too close
such that unintended merging and contamination happened.
However, after 100K training games, the agents started to
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Figure 4. Training process corresponding to different RL algorithms and training schemes. Score is the total reward that the MARL agents
receive in a game. The performance is compared with two baseline methods: 1) a single-agent RL method (Liang et al., 2020a) and 2) a
static (offline) routing method in (Keszocze et al., 2017). (a, b, c) Results with at most 2 concurrent routing tasks. (d, e, f) Results with at
most 3 concurrent routing tasks.

“learn” from past experience. The agents started to keep safe
distances between each other. After 160K training games,
the agents could transport droplets to the corresponding
destinations using the shortest path for some of the routing
tasks. After 200K training games, the agents were able to
complete all the routing tasks using the shortest paths.

4. MARL Evaluation When Microelectrode
Degradation Occurs

We evaluate the performance of the models in a realistic sim-
ulation setting, where microelectrodes degrade over time.
We define a function dg(ei,j) that describes the degrada-
tion status of a microelectrode, where 0 ≤ dg(ei,j) ≤ 1.
If the microelectrode ei,j is healthy, dg(ei,j) = 1; if the
microelectrode ei,j has degraded, dg(ei,j) = 0. The study
in (Dong et al., 2015) showed that an electrode can only
be actuated up to 200 times before it is completely de-
graded. Therefore, we define a degradation factor τ , where
0.6 ≤ τ < 1, and the degradation function dg(ei,j) is de-
fined as dg(ei,j) = τ bn/50c, where n is the number of actua-
tions. Each microelectrode is randomly assigned a different
value of τ to simulate the variance of the microelectrode
degradation in the microelectrode array.

A Bernoulli random variable Xat is defined as the transition
outcome when droplet d takes an action at: when Xat = 1,
the transition is successful as the normal transition function
T (edi,j , at); when Xat = 0, the transition fails, and the
droplet remains at the same location. Suppose a droplet d
is present over m microelectrodes, and the set of these m

microelectrodes is S(d). The probability mass function of
Xi,j is defined as

P (Xi,j = 1) =

∑
ei,j∈S(d) dg(ei,j)

m

P (Xi,j = 0) = 1−
∑
ei,j∈S(d) dg(ei,j)

m

The training processes in Section 3.3 show that models in
concurrent schemes are more sample-efficient than the other
schemes. Therefore, we used the PPO and ACER models
that have been trained to achieve the same performance as
that of the baseline (Keszocze et al., 2017). Figure 5 shows
the simulation results when nrt = 2 and microelectrodes
in MEDA-Env degrade over time4. We observe that the
MARL model performs similar to the static (offline) method
when the biochip starts to degrade. This is because the
MARL model has been trained to perform as well as the
baseline in the healthy mode of MEDA-Env. After the
biochip is used for a while, we see that the performance of
the baseline method degrades because the baseline method
does not know which microelectrode is degraded and cannot
dynamically change the routing paths. On the other hand,
the MARL model “learns” the degradation process of the
biochip and alter the routing paths accordingly. Therefore,
the MARL model outperforms the baseline.

4Simulation results with three and four concurrent routing tasks
are provided in the supplementary document.
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(a) PPO (b) ACER
Figure 5. Comparison between the MARL agents and the baseline
method in degrade mode with at most 2 routing tasks in a game.

Figure 6. The steps involved in the serial-dilution bioassay.

5. Bioassay Execution on a Fabricated
Biochip

The MARL framework can be used for any bioassay. We
designed and executed a real-life bioassay, namely serial
dilution, on a fabricated MEDA biochip because this bench-
top bioassay requires large sample volumes and long exe-
cution time, and they are labor-intensive. Previous work
has shown the effectiveness of related bioassays on MEDA
biochips (Zhong et al., 2020). The executed bioassay con-
tains 49 routing tasks, and we used the trained MARL
droplet router to transport droplets.

5.1. Bioassay

Serial dilutions are widely used in experimental sciences,
including biochemistry, pharmacology, microbiology, and
physics (Ben-David & Davidson, 2014; Voller et al., 1976).
A serial-dilution bioassay is used to accurately create so-
lutions for experiments resulting in concentration curves
with a logarithmic scale. The steps of a serial-dilution bioas-
say are shown in Figure 6. The sample is first mixed with
the positive and negative reagents, and the reactions of the
mixtures are recorded. Next, the sample is diluted with the
buffer solution, and the diluted sample is mixed with the
positive and negative reagents. This procedure is repeated
until the sample is diluted to a desired concentration. The
serial-dilution bioassay is often used for drug development
such as in the case of antibiotics (Gullberg et al., 2011;
Negreanu et al., 2012).

(a)

(b)

Figure 7. (a) The fabricated MEDA biochip. (b) The experimental
setup.

5.2. Experimental Setup

We designed a 60× 80 MEDA biochip for the experiment
and fabricated the biochip using services at Taiwan Semi-
conductor Manufacturing Company (TSMC, 2021). The
chip micro-photo and setup for the demonstration are shown
in Figure 7. The chip has an area of 17.2 mm2, and it was
fabricated using a 0.35 µm standard CMOS process. The
chip was operated under 3.3 V at 1 KHz frequency. Reser-
voir modules are placed on the sides of the MEDA, and the
modules can dispense different reagent droplets.

Figure 7(b) illustrates an overview of the experimental setup.
The computer in the system is used to send actuation bit-
streams, read the real-time sensing results, and run the pre-
trained MARL model. For droplet location sensing, the
sensing results are extracted and processed using a digital
signal processing scheme (Lai et al., 2015).

5.3. Experimental Results

We executed the droplet transportation of the bioassay on
the fabricated MEDA biochip. Although there were a large
number (49) of routing tasks that needed to be carried out
on the MEDA, the MARL model was able to transport all
the droplets to the destinations. During transportation, the
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agents kept safe distances each other so that unintended
merging and contamination were avoided. We recorded the
MARL-controlled routing operations in a video; it can be
viewed in (Liang et al., 2021).

6. Conclusion
As digital microfluidic biochips are being adopted for point-
of-care diagnostics such as COVID-19 testing, it is impor-
tant to ensure that on-chip droplets are transported with a
high degree of parallelism and reliably. We have presented
a novel MARL framework for parallel droplet routing on
MEDA biochips. To train an MARL model without using
fabricated biochips, we have developed a PettingZoo-Gym
environment that can be used to train the MARL droplet
router for various MEDA sizes. The training process is
a one-time effort, and the trained model can be used for
many fabricated MEDA biochips. The experimental re-
sults showed that the MARL droplet router can reliably
transport multiple droplets without unintended fluidic con-
tamination. Our experimental results also showed that the
trained MARL model can adapt to a dynamic environment,
i.e., a degrading biochip, where microelectrodes degrade
over time. In addition, we have demonstrated that using the
MARL framework, a bio-protocol can run on a fabricated
MEDA biochip.

Acknowledgement
This research was supported in part by the National Science
Foundation under grants CCF-1702596 and ECCS-1914796,
and the Ministry of Science and Technology (MOST), Tai-
wan, under grants 108-2221-E-009-071-MY3 and 109-2221-
E-007-073-MY3.

References
Bagnell, D. and Ng, A. On local rewards and scaling dis-

tributed reinforcement learning. Proceedings of the Ad-
vances in Neural Information Processing Systems, 18:
91–98, 2005.

Ben-David, A. and Davidson, C. E. Estimation method for
serial dilution experiments. Journal of Microbiological
Methods, 107:214–221, 2014.

Brown, N. and Sandholm, T. Superhuman AI for multiplayer
poker. Science, 365(6456):885–890, 2019.

Chakrabarty, K., Fair, R. B., and Zeng, J. Design tools
for digital microfluidic biochips: Toward functional di-
versification and more than moore. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, 29(7):1001–1017, 2010.

Chou, W.-L., Lee, P.-Y., Yang, C.-L., Huang, W.-Y., and

Lin, Y.-S. Recent advances in applications of droplet
microfluidics. Micromachines, 6(9):1249–1271, 2015.

Doan, T. T., Maguluri, S. T., and Romberg, J. Finite-time
analysis of distributed TD(0) with linear function approx-
imation for multi-agent reinforcement learning. arXiv
preprint arXiv:1902.07393, 2019.

Dong, C., Chen, T., Gao, J., Jia, Y., Mak, P.-I., Vai, M.-I.,
and Martins, R. P. On the droplet velocity and electrode
lifetime of digital microfluidics: Voltage actuation tech-
niques and comparison. Microfluidics and Nanofluidics,
18(4):673–683, 2015.

Drygiannakis, A. I., Papathanasiou, A. G., and Boudouvis,
A. G. On the connection between dielectric breakdown
strength, trapping of charge, and contact angle saturation
in electrowetting. Langmuir, 25(1):147–152, 2009.

Fakoor, R., Chaudhari, P., and Smola, A. J. P3O: Policy-
on policy-off policy optimization. In Proceedings of
the Uncertainty in Artificial Intelligence, pp. 1017–1027.
PMLR, 2020.

Ganguli, A., Mostafa, A., Berger, J., Aydin, M. Y., Sun, F.,
Ramirez, S. A. S. d., Valera, E., Cunningham, B. T., King,
W. P., and Bashir, R. Rapid isothermal amplification and
portable detection system for SARS-CoV-2. Proceedings
of the National Academy of Sciences, 2020.

Gu, S., Holly, E., Lillicrap, T., and Levine, S. Deep rein-
forcement learning for robotic manipulation with asyn-
chronous off-policy updates. In Proceedings of the In-
ternational Conference on Robotics and Automation, pp.
3389–3396. IEEE, 2017.

Guériau, M., Billot, R., El Faouzi, N.-E., Hassas, S., and
Armetta, F. Multi-agent dynamic coupling for cooper-
ative vehicles modeling. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2015.

Gullberg, E., Cao, S., Berg, O. G., Ilbäck, C., Sandegren,
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Fully decentralized multi-agent reinforcement learning
with networked agents. arXiv preprint arXiv:1802.08757,
2018.
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