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mBART: Multidimensional Monotone BART∗

Hugh A. Chipman†, Edward I. George‡,
Robert E. McCulloch§ and Thomas S. Shively¶

Abstract. For the discovery of regression relationships between Y and a large set
of p potential predictors x1, . . . , xp, the flexible nonparametric nature of BART
(Bayesian Additive Regression Trees) allows for a much richer set of possibilities
than restrictive parametric approaches. However, subject matter considerations
sometimes warrant a minimal assumption of monotonicity in at least some of
the predictors. For such contexts, we introduce mBART, a constrained version of
BART that can flexibly incorporate monotonicity in any predesignated subset of
predictors using a multivariate basis of monotone trees, while avoiding the fur-
ther confines of a full parametric form. For such monotone relationships, mBART
provides (i) function estimates that are smoother and more interpretable, (ii)
better out-of-sample predictive performance, and (iii) less post-data uncertainty.
While many key aspects of the unconstrained BART model carry over directly to
mBART, the introduction of monotonicity constraints necessitates a fundamental
rethinking of how the model is implemented. In particular, the original BART
Markov Chain Monte Carlo algorithm relied on a conditional conjugacy that is
no longer available in a monotonically constrained space. Various simulated and
real examples demonstrate the wide ranging potential of mBART.
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1 Introduction

Suppose one would like to learn how Y depends on a vector of potential predictors
x = (x1, . . . , xp) when no information is available about the form of the relationship.
In the absence of such prior information, the Bayesian nonparametric approach BART
(Bayesian Additive Regression Trees) can quickly discover the nature of this relation-
ship; see Chipman, George, and McCulloch (2010), hereafter CGM10. More precisely,
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based only on the assumption that

Y = f(x) + ε, ε ∼ N(0,σ2), (1.1)

BART can quickly obtain full posterior inference for the unknown regression function,

f(x) = E(Y | x) (1.2)

and the unknown variance σ2. BART also provides predictive inference as well as model-
free variable selection and interaction detection, see Chipman, George, and McCulloch
(2013), Bleich et al. (2014), and Kapelner and Bleich (2016). Frequentist theoretical
support for the attractive empirical performance of BART has been recently developed
in Ročková and van der Pas (2020) and Ročková and Saha (2019), and for a kernel-
smoothed variant of BART in Linero and Yang (2018). For an excellent overview of
BART and many of its recent related developments, see Hill, Linero and Murray (2020)
and the references therein.

While the assumption free nature of BART is particularly valuable when a trustable
parametric form is unavailable, subject matter considerations sometimes warrant a min-
imal prior assumption of monotonicity in at least some of the predictors in x. For ex-
ample, in one of our subsequent illustrative data sets, Y is the price of a used car and
the x predictors include its age and mileage. All other things being equal, a prior as-
sumption here that older cars as well as higher mileage cars sell for less on average,
is compelling. Many other contexts where such prior monotonicity assumptions arise
naturally, such as dose-response function estimation in epidemiology or market demand
function estimation in economics, can be found in the references below. To harness such
monotonicity information, the main goal of this paper is the introduction of monotone
BART (hereafter mBART), a constrained version of BART that restricts attention to
regression functions f that are monotone in any predesignated subset of the components
of x, while leaving the remaining components unconstrained.

In the now rich literature on monotone function estimation, also known as isotonic
regression, a wide variety of approaches have been proposed and applied both from the
frequentist and Bayesian points of view. Including constrained nonparametric maximum
likelihood, spline modeling, Gaussian processes and projection-based methods among
others, see for example, Barlow et al. (1972), Mammen (1991), Lavine and Mockus
(1995), Ramsay (1998), Holmes and Heard (2003), Neelon and Dunson (2004), Kong
and Eubank (2006), Cai and Dunson (2007), Chernozhukov, Fernandez-Val and Gali-
chon (2009), Shively, Sager and Walker (2009), Meyer, Hackstadt and Hoeting (2011),
Shively, Walker and Damien (2011), Saarela and Arjas (2011), Lin and Dunson (2014),
Chen and Samworth (2016), Wang and Berger (2016), Lenk and Choi (2017), Wang
and Welch (2018), Lin, St.Thomas, Piegorsch, Scott and Carvalho (2019), Westling,
van der Laan and Carone (2020) and the many references therein. In contrast to all
these approaches, mBART is built on an easily constrained sum-of-trees approximation
of f , composed of simple multivariate basis elements that can adaptively incorporate
numerous predictors as well as their interactions. Inheriting the attractive properties
of BART, mBART can quickly detect low dimensional signals in high dimensional re-
gression settings with a rapidly mixing MCMC implementation that generates fully
Bayesian uncertainty quantification as its output.
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The extension of BART to our monotonically constrained setting essentially requires
two basic innovations. First, it is necessary to develop general constraints for regression
tree functions to be monotone in any predesignated set of coordinates. Under these
constraints, the monotonicity of the full sum-of-trees approximation follows directly.
The second innovation requires a new approach for MCMC posterior computation.
Whereas the original BART formulation allowed straightforward marginalization over
regression tree parameters exploiting conditionally conjugate priors, the constrained
trees formulation requires a more nuanced approach because complete conjugacy is no
longer available.

The outline of the paper is as follows. In Section 2, we describe in detail the con-
strained sum-of-trees model used for monotone function estimation. Section 3 discusses
the regularization prior for the constrained model while Section 4 describes the new
MCMC algorithm required to implement mBART. Section 5 provides three simulated
and two real data examples which illustrate the potential inferential improvements that
mBART offers. Section 6 contains some concluding discussion.

2 A Monotone Sum-of-Trees Model

The essence of BART is a sum-of-trees model approximation of the relationship between
y and x in (1.1);

Y =
m∑

j=1

g(x; Tj , Mj) + ε, ε ∼ N(0,σ2), (2.1)

where each Tj is a binary regression tree with a set Mj of associated terminal node
constants µij , and g(x; Tj , Mj) is the function which assigns µij ∈ Mj to x according
to the sequence of decision rules in Tj . These decision rules are binary partitions of
the predictor space of the form {x ≤ a} vs {x > a} where the splitting value a is in
the range of x. (A clarifying example of how g works appears in Figure 1 below and is
described later in this section). When m = 1, (2.1) reduces to the single tree model used
by Chipman, George, and McCulloch (1998), hereafter CGM98, for Bayesian CART.

Under (2.1), E(Y | x) is the sum, over trees T1, . . . , Tm, of all the terminal node µij ’s
assigned to x by the g(x; Tj , Mj)’s. As the µij can take any values it is easy to see that
the sum-of-trees model (2.1) is a flexible representation capable of representing a wide
class of functions from Rn to R, especially when the number of trees m is large. Com-
posed of simple functions from Rp to R, namely the g(x; Tj , Mj), the multivariate step
function nature of each tree component greatly facilitates the simple additive imposition
of monotone constraints in multiple selected dimensions as described below. In this way,
the sum-of-trees representation is much more manageable than a multivariate monotone
representation with more complicated basis elements such as multidimensional wavelets
or splines, which are often successfully used to more efficiently estimate smooth regres-
sion surfaces in low dimensions. Lastly, because each tree function g is invariant to
monotone transformations of x (with their splitting values), predictor standardization
choices are not needed for mBART applications.
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Figure 1: A bivariate, monotone regression tree T with 6 terminal nodes. Intermediate nodes
are labeled with their splitting rules. Terminal nodes (bottom leaf nodes) are labeled with their
node number. Below each terminal node is the value of µ ∈ M assigned to x by g(x; T, M).

Key to the construction of mBART are the conditions under which the underlying
sum-of-trees function

∑m
j=1 g(x; Tj , Mj) will satisfy the following precise definition of a

multivariate monotone function.

Definition: For a subset S of the coordinates of x ∈ Rn, a function f : Rn → R is
said to be monotone in S if for each xi ∈ S and all values of x, f satisfies

f(x1, . . . , xi + δ, . . . , xp) ≥ f(x1, . . . , xi, . . . , xp), (2.2)

for all δ > 0 (f is nondecreasing), or for all δ < 0 (f is nonincreasing).

Clearly, a sum-of-trees function will be monotone in S whenever each of the compo-
nent trees is monotone in S. Thus it suffices to focus on the conditions for a single tree
function g(x; T, M) to be monotone in S. As we’ll see, this will only entail providing con-
straints on the set of terminal node constants M ; constraints determined by the tree T .

We illustrate these concepts with the bivariate monotone tree function in Figure 1.
This tree has six terminal nodes, labeled 4, 10, 11, 12, 13, and 7. The labels follow
the standard tree node labeling scheme where the top node is labeled 1 and any non-
terminal node with label j has a left child with label 2j and a right child with label
2j + 1. Beginning at the top node, each x = (x1, x2) is assigned to subsequent nodes
according to the sequence of splitting rules it meets. This continues until x reaches a
terminal node where g(x; T, M) assigns the designated value of µ from the set M . For
example, with this choice of (T, M), g(x; T, M) = 3 when x = (.6, .4).

Alternative views of the function in Figure 1 are depicted in Figure 2. On the left,
Figure 2 shows the partitions of the x space induced by T . The terminal node regions,
R4, R10, R11, R12, R13, R7, correspond to the six similarly labeled terminal nodes of T .
On the right, Figure 2 shows g(x; T, M) as a simple step function which assigns a level
µ ∈ M to each terminal node region. From this view, it is clear that for any x = (x1, x2),
moving x to (x1 + δ, x2) or to (x1, x2 + δ) cannot decrease g for δ > 0. Thus, in the
sense of our definition, this g(x; T, M) is monotone in both x1 and x2.
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Figure 2: Two alternative views of the bivariate single tree model in Figure 1. On the left, the
six regions R4, R10, R11, R12, R13, R7, corresponding to the terminal nodes 4,10,11,12,13,7.
On the right, the levels of the regions assigned by the step function g(x; T, M).

Figure 3: A monotone, univariate tree function g(x; T, M).

To see the essence of what is needed to guarantee the monotonicity of a tree function,
consider the very simple case of a monotone g(x; T, M) when T is a function of x = x1

only, as depicted in Figure 3. Each level region of g corresponds to a terminal node
region in x1 space, which is simply an interval whenever g is a univariate function.
For each such region, consider the adjoining region with larger values of x1, which we
refer to as an above-neighbor region, and the adjoining region with smaller values of
x1, which we refer to as a below-neighbor region. End regions will only have single
neighboring regions. To guarantee (nondecreasing) monotonicity, it suffices to constrain
the µ level assigned to each terminal node region to be not greater than the µ level of
its above-neighbor region, and not less than the µ level of its below-neighbor region.

To apply these notions to a bivariate tree function g(x; T, M) as depicted in Fig-
ures 1 and 2, we will simply say that rectangular regions are neighboring if they have
boundaries which are adjoining in any of the coordinates. Furthermore, a region Rk

will be called an above-neighbor of a region Rk∗ if the lower adjoining boundary of
Rk is the upper adjoining boundary of Rk∗ . A below-neighbor is defined similarly. For
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example, in Figure 2, R7 is an above-neighbor of R10, R11 and R13; and R10 and R12

are below-neighbors of R13.

Note that R4 and R13 are not neighbors. We will say the R4 and R13 are separated
because the x2 upper boundary of R4 is less than the x2 lower boundary of R13. For a
small enough step size δ, it is impossible to get from R4 to R13 by changing any xi by
δ so that the mean level of one does not constrain the mean level of the other.

To make these definitions precise for a d-dimensional tree T (a function of x =
(x1, . . . , xd)), we note that each terminal node region of T will be a rectangular region
of the form

Rk = {x : xi ∈ [Lik, Uik), i = 1, . . . , d}, (2.3)

where the interval [Lik, Uik) for each xi is determined by the sequence of splitting rules
leading to Rk.

We say that Rk is separated from Rk∗ if Uik < Lik∗ or Lik > Uik∗ for some i. In
Figure 2, R13 is separated from R4 and R11.

If Rk and Rk∗ are not separated, Rk will be said to be an above-neighbor of Rk∗ if
Lik = Uik∗ for some i, and it will be said to be a below-neighbor of Rk∗ if Uik = Lik∗

for some i. Note that any terminal node region may have several above-neighbor and
below-neighbor regions. R13 has below neighbors R10 and R12 and above neighbor R7.

The constraints on the µ levels under which g(x; T, M) will be monotone are now
straightforward to state.

Constraint Conditions for Tree Monotonicity : A tree function g(x; T, M) will be
monotone in coordinate xi if the µ level of each of its terminal node regions is

(a) not greater than the minimum level of all of its above-neighbor regions in the xi

direction, and

(b) not less than the maximum level of all of its below-neighbor regions in the xi

direction.

The function g will be monotone in S if the neighboring regions satisfy (a) and (b)
for all the coordinates in S (rather than all coordinates).

As we’ll see in subsequent sections, an attractive feature of these conditions is that
they dovetail perfectly with the nature of our iterative MCMC simulation calculations.
At each step there, we simulate one terminal node level at time conditionally on all the
other node levels, so imposing the constraints is straightforward. This avoids the need
to simultaneously constrain all the levels across all trees at once.

3 A Constrained Regularization Prior

The mBART model specification is completed by putting a constrained regularization
prior on the parameters, (T1, M1), . . . , (Tm, Mm) and σ, of the sum-of-trees model (2.1).
Essentially a modification of the original BART prior formulation to accommodate
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monotone constraints in a predesignated subset S of the coordinates of x, we follow
CGM10 and proceed by restricting attention to priors of the form

p((T1, M1), . . . , (Tm, Mm),σ) =




∏

j

p(Mj | Tj) p(Tj)



 p(σ), (3.1)

where the tree components (T1, M1), . . . , (Tm, Mm) are apriori independent of each other
and of σ.

As discussed in the previous section, a sum-of-trees function
∑m

j=1 g(x; Tj , Mj) is
guaranteed to be monotone in S whenever each of the trees g(x; Tj , Mj) is monotone
for each xi in S in the sense of (2.2). Thus, it suffices to restrict the support of p(Mj | Tj)
to µij values which satisfy the Monotonicity Constraints (a) and (b) from Section 2. For
this purpose, let C be the set of all (T, M) which satisfy these monotonicity constraints,
namely

C = {(T, M) : g(x; T, M) is monotone for each xi ∈ S}. (3.2)

These constraints are then incorporated into the prior by constraining the CGM10
BART independence form p(Mj | Tj) =

∏
i p(µij | Tj) to have support only over C,

p(Mj | Tj) ∝




bj∏

i=1

p(µij | Tj)



 χC(Tj , Mj). (3.3)

Here bj is the number of bottom (terminal) nodes of Tj , and χC(·) = 1 on C and = 0
otherwise. The effect of this prior is to directly constrain the support of the posterior
distribution to those sum-of-tree functions comprised only of components in C.

In the next three subsections we discuss the choice of priors p(Tj), p(σ), and
p(µij | Tj). These will have the same form as in CGM10, but in some cases the mono-
tonicity constraint will motivate modifications for our recommended hyperparameter
settings.

3.1 Calibrating the Tj Prior

The tree prior p(Tj) is specified by three aspects: (i) the probability of a node having
children at depth d (= 0, 1, 2, . . .) is

α(1 + d)−β , α ∈ (0, 1),β ∈ [0,∞), (3.4)

(ii) the uniform distribution over available predictors for splitting rule assignment at
each interior node, and (iii) the uniform distribution on the discrete set of available
splitting values for the assigned predictor at each interior node. This last choice has the
appeal of invariance under monotone transformations of the predictors.

Because we want the regularization prior to keep the individual tree components
small, especially when m is set to be large, we typically recommend the defaults α = .95
and β = 2 in (3.4) in the unconstrained case. With this choice, simulation of tree
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skeletons directly from (i) shows us that trees with 1, 2, 3, 4, and ≥ 5 terminal nodes
will receive prior probabilities of about 0.05, 0.55, 0.28, 0.09, and 0.03, respectively.

Discussion of the choice of α and β in the constrained case is deferred to the end of
Section 4.3 since our choices are motivated by details of the Markov Chain Monte Carlo
algorithm for posterior computation.

3.2 Calibrating the σ Prior

For p(σ), we use the (conditionally) conjugate inverse chi-square distribution σ2 ∼
ν λ/χ2

ν . To guide the specification of the hyperparameters ν and λ, we recommend a
data-informed approach to assign substantial probability to the entire region of plausible
σ values while avoiding overconcentration and overdispersion. This entails calibrating
the prior degrees of freedom ν and scale λ using a “rough data-based overestimate” σ̂
of σ.

The two natural choices for σ̂ are (1) the “naive” specification, in which we take σ̂ to
be the sample standard deviation of Y (or some fraction of it), or (2) the “linear model”
specification, in which we take σ̂ as the residual standard deviation from a least squares
linear regression of Y on the original x’s. We then pick a value of ν between 3 and 10 to
get an appropriate shape, and a value of λ so that the qth quantile of the prior on σ is
located at σ̂, that is P (σ < σ̂) = q. We consider values of q such as 0.75, 0.90 or 0.99 to
center the distribution below σ̂. For automatic use, we recommend the default setting
(ν, q) = (3, 0.90) which tends to avoid extremes. Alternatively, the values of (ν, q) may
be chosen by cross-validation from a range of reasonable choices. This choice is exactly
as in CGM10.

An advantage of this data-informed approach to the calibration of p(σ) is that it
allows for semi-automatic “off-the-shelf” implementations with selected tuning param-
eters. However, an expert with reliable prior information could use this same scheme
but with σ̂ obtained as a subjective estimate of a selected qth quantile of σ, thereby
avoiding any need to use the data for this purpose.

3.3 Calibrating the Mj | Tj Prior

For the choice of p(µij | Tj) in (3.3), we adopt normal densities as used in BART, but
now with different prior variance choices depending on whether or not µij is constrained
by the set C in (3.2). For µij unconstrained by C, we use a N(µµ,σ2

µ) prior so that

p(µij | Tj) = φµµ,σµ , (3.5)

the normal density with mean µµ and variance σ2
µ. However for µij constrained by C,

we use a N(µµ, c2σ2
µ) prior with the choice c2 = π

π−1 ≈ 1.4669 so that

p(µij | Tj) = φµµ,cσµ . (3.6)

To motivate the increased variance choice in (3.6), consider a simple tree with just
two terminal node means µ1 and µ2 constrained to satisfy µ1 ≤ µ2. Under (3.6) with
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this constraint, the joint distribution of µ1 and µ2 is

p(µ1, µ2) ∝ φµµ,cσµ(µ1)φµµ,cσµ(µ2)χ{µ1≤µ2}(µ1, µ2). (3.7)

Integrating each of µ1 and µ2 out from p(µ1, µ2), yields the marginal distributions of
µ1 and µ2,

p(µ1) ∝ φµµ,cσµ(µ1)Φµµ,cσµ(−µ1), (3.8)

p(µ2) ∝ φµµ,cσµ(µ1)Φµµ,cσµ(µ2). (3.9)

These are skew normal distributions which, when c2 = π
π−1 , have the same variances

σ2
µ and respective means µµ − σµ/

√
π − 1 and µµ + σµ/

√
π − 1, Azzalini (1985). That

the prior variances of the constrained means µ1 and µ2 match the prior variances of
the unconstrained means in (3.5), helps to balance the prior effects across predictors
and facilitates the calibrated specification of σµ described below. Of course, it will be
occasionally the case that some means µij may be further constrained when they occur
deeper down the tree, thereby further reducing their prior variance. Although additional
small prior adjustments can be considered for such cases, we view them as relatively
unimportant because the vast majority of BART trees will be small with at most one or
two constraints. Thus, we adopt the prior (3.6) for any µij which becomes constrained.

To guide the specification of the hyperparameters µµ and σµ, we use the same
informal empirical Bayes strategy in CGM10. Based on the idea that that E(Y | x) is
very likely between ymin and ymax, the observed minimum and maximum of Y , we
want to choose µµ and σµ so that the induced prior on E(Y | x) assigns substantial
probability to the interval (ymin, ymax). By using the observed ymin and ymax, we aim
to ensure that the implicit prior for E(Y | x) is in the right “ballpark”, thereby avoiding
prior-data conflict.

In the unconstrained case where each value of E(Y | x) is the sum of m iid µij ’s
under the sum-of-trees model, the induced prior on E(Y | x) under (3.5) is exactly
N(mµµ, mσ2

µ). Let us argue now that when monotone constraints are introduced,
N(mµµ, mσ2

µ) still holds up as a useful approximation to the induced prior on E(Y | x).
To begin with, for each value of x, let g(x; Tj , Mj) = µxj , the mean assigned to x by
the jth tree Tj . Then, under the sum-of-trees model, E(Y | x) =

∑m
j=1 µxj is the sum of

m independent means since the µxj ’s are independent across trees. Using central limit
theorem considerations, this sum of small random effects will be approximately normal,
at least for the central part of the distribution. The means of all the random effects will
be centered around µµ, (the constrained µij ’s will have pairwise offsetting biases), and
so the mean of E(Y | x) will be approximately µµ. Finally, since the marginal variance
for all µxj ’s is at least approximately σ2

µ, the variance of E(Y | x) will be approximately
mσ2

µ.

Proceeding as in CGM10, we thus choose µµ and σµ so that mµµ−k
√

mσµ = ymin

and mµµ + k
√

mσµ = ymax for some preselected value of k. This is conveniently
implemented by first shifting and rescaling Y so that the observed transformed y values
range from ymin = −0.5 to ymax = 0.5, and then setting µµ = 0 and σµ = 0.5/k

√
m.

Using k = 2, for example, would yield a 95% prior probability that E(Y | x) over the
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range of x is in the interval (ymin, ymax), thereby assigning substantial probability to
the entire region of plausible values of E(Y | x) while avoiding overconcentration and
overdispersion. As k and/or the number of trees m is increased, this prior will become
tighter, thus limiting the effect of the individual tree components of (2.1) by keeping the
µij values small. We have found that values of k between 1 and 3 yield good results, and
we recommend k = 2 as an automatic default choice, the same default recommendation
for BART. Alternatively, the value of k may be chosen by cross-validation from a range
of reasonable choices.

Just as for the calibration of p(σ) above, an advantage of this data-informed ap-
proach to the calibration of p(µij | Tj) is that it allows for semi-automatic “off-the-shelf”
implementations with selected tuning parameters. Here too, however, an expert with
reliable prior information could use this same scheme with a subjective estimate of an
interval which will contain E(Y | x) over the range of x with high probability, thereby
completely avoiding the need to use the data for this purpose. We illustrate how this
can be carried out with real expert input in the stock return application in Section 5.5.

3.4 The Choice of m

Again as in BART, we treat m as a fixed tuning constant to be chosen by the user. For
prediction, we have found that mBART performs well with values of at least m = 50.
For variable selection, values as small as m = 10 are often effective.

4 MCMC Simulation of the Constrained Posterior

4.1 Bayesian Backfitting of Constrained Regression Trees

Let y be the n × 1 vector of independent observations of Y from (2.1). All post-data
information for Bayesian inference about any aspects of the unknowns, (T1, M1), . . . ,
(Tm, Mm), σ and future values of Y , is captured by the full posterior distribution

p((T1, M1), . . . , (Tm, Mm),σ | y). (4.1)

Since all inference is conditional on the predictor x values, we suppress them in the no-
tation. This posterior is proportional to the product of the likelihood p(y | (T1, M1), . . . ,
(Tm, Mm),σ), which is the product of normal likelihoods based on (2.1), and the con-
strained regularization prior p((T1, M1), . . . , (Tm, Mm),σ) described in Section 3.

To extract information from (4.1), which is generally intractable, we propose an
MCMC backfitting algorithm that simulates a sequence of draws, k = 1, . . . , K,

(T1, M1)
(k), . . . , (Tm, Mm)(k),σ(k) (4.2)

that is converging in distribution to (4.1) as K → ∞.

Beginning with a set of initial values of ((T1, M1)(0), . . . , (Tm, Mm)(0),σ(0)), the
outer loop of this algorithm proceeds as in CGM10 by simulating a sequence of transi-
tions (Tj , Mj)(k) → (Tj , Mj)(k+1), for j = 1, . . . , m, σ(k) → σ(k+1). The (Tj , Mj)(k) →
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(Tj , Mj)(k+1) transition is obtained by using a Metropolis-Hastings (MH) algorithm to
simulate a single transition of a Markov chain with stable distribution

p((Tj , Mj) | r(k)
j ,σ(k)), (4.3)

for j = 1, . . . , m, where

r(k)
j ≡ y −

∑

j′<j

g(x; Tj′ , Mj′)
(k+1) −

∑

j′>j

g(x; Tj′ , Mj′)
(k) (4.4)

is the n-vector of partial residuals based on a fit that excludes the most current simulated
values of Tj′ , Mj′ for j′ .= j. A full iteration of the algorithm is then completed by
simulating the draw of σ(k+1) from the full conditional

σ | (T1, M1)
(k+1), . . . , (Tm, Mm)(k+1), y. (4.5)

Because conditioning the distribution of (Tj , Mj) on r(k)
j and σ(k) in (4.3) is equivalent

to conditioning on the excluded values of (Tj′ , Mj′), σ(k) and y, this algorithm is an
instance of MH within a Gibbs sampler.

4.2 A New Localized Metropolis-Hastings Algorithm

To accommodate the constrained nature of the prior (3.3), we now introduce a new
localized MH algorithm for the simulation of (Tj , Mj)(k) → (Tj , Mj)(k+1) as single
transitions of a Markov chain converging to the (possibly constrained) posterior (4.3).
For simplicity of notation, let us denote a generic instance of these moves by (T 0, M0) →
(T 1, M1). Dropping σ(k) from (4.3) since it is fixed throughout this move, and dropping
all the remaining subscripts and superscripts, the target posterior distribution can be
expressed as

p(T, M | r) = p(r | T, M)p(M | T )p(T )/p(r), (4.6)

where its components are as follows.

First, p(r | T, M) is the normal likelihood which would correspond to an observation
of r = g(x; T, M) + ε, where ε ∼ Nn(0,σ2I). Assuming M = (µ1, . . . , µb), and letting ri

be the vector of components of r assigned to µi by T , this likelihood is of the form

p(r | T, M) =
b∏

i=1

p(ri | µi), (4.7)

where
p(ri | µi) ∝

∏

j

exp(−(rij − µi)
2/2σ2). (4.8)

The prior of M | T given by (3.3) is of the form

p(M | T ) ∝
[

b∏

i=1

p(µi | T )

]
χC(T, M), (4.9)
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where p(µi | T ) = φµµ,σµ(µi) from (3.5) if µi is unconstrained by χC , and p(µi | T ) =
φµµ,cσµ(µi) from (3.6) if µi is constrained by χC . The tree prior p(T ) described in
Section 3.1 is the same form used for unconstrained BART. Finally, the intractable
marginal p(r), which would in principle be obtained by summing and integrating over
T and M , will fortunately play no role in our algorithm.

In unconstrained CART and BART, CGM98 and CGM10 used the following two
step Metropolis-Hastings (MH) procedure for the simulation of (T 0, M0) → (T 1, M1).
First, a proposal T ∗ was generated with probability q(T 0 → T ∗). Letting q(T ∗ → T 0)
be the probability of the reversed step, the move T 1 = T ∗ was then accepted with
probability

α = min

{
q(T ∗ → T 0)

q(T 0 → T ∗)

p(T ∗ | r)
p(T 0 | r) , 1

}

= min

{
q(T ∗ → T 0)

q(T 0 → T ∗)

p(r | T ∗)

p(r | T 0)

p(T ∗)

p(T 0)
, 1

}
. (4.10)

If accepted, any part of M1 with a new ancestry under M1 is simulated from inde-
pendent normals since p(M | T 1, r) just consists of b independent normals given the
independence and conditional conjugacy of our prior (which is (4.9) without the mono-
tonicity constraint χC(T, M)) and the conditional data independence (4.7). Otherwise
(T 1, M1) is set equal to (T 0, M0).

In the constrained case, the basic algorithm is the same except that with the mono-
tonicity constraint in (4.9), the µi in M are dependent. Hence, when we make local
moves involving a few of the µi we must be careful to condition on the remaining ele-
ments. In addition, computations must be done numerically since we lose the conditional
conjugacy. The moves in mBART only operate on one or two of the µ values at a time
so that the appropriate conditional integrals can easily be done numerically.

We consider localized proposals (T 0, M0) → (T ∗, M∗) under which M0 and M∗

differ only by those µ’s which have different ancestries under T 0 and T ∗. Letting µsame

be the part of M0 with the same ancestry under T 0 and T ∗, we restrict attention to
proposals for which M0 = (µsame, µold) and M∗ = (µsame, µnew), where µold is the part
of M0 that will be replaced by µnew in M∗. It will also be convenient in what follows
to let rold be the components of the data r assigned to µold by T 0, rnew to be the
components assigned to µnew by T ∗, and rsame to be the components assigned to the
identical components of µsame by both T 0 and T ∗.

For example, suppose we begin with a proposal T 0 → T ∗ that randomly chooses
between a birth step and death step, and that T ∗ was obtained by a birth step, which
entails adding two child nodes at a randomly chosen terminal node of T 0. This move
is illustrated in Figure 4 where M0 = (µ1, µ2, µ0) and M∗ = (µ1, µ2, µL, µR), so that
µsame = (µ1, µ2) to which rsame = (r1, r2) is assigned, µold = µ0 to which rold = r0 is
assigned, and µnew = (µL, µR) to which rnew = (rL, rR) is assigned. Note that the set
of observations in (rL, rR) is just the division of the set of observations in r0 defined by
the decision rule associated with node 7 in the tree T ∗.
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Figure 4: A typical birth step starting at (T 0, M0) and proposing (T ∗, M∗). T 0 includes the
nodes 1,2,3,6,7. T ∗ includes the nodes 1,2,3,6,7,14,15. Here µsame = (µ1, µ2). Our MH step
proceeds conditionally on µsame and the associated ancestral parts of the tree structures T 0

and T ∗, nodes 1,2,3,6. Our proposal generates the candidate rule associated with node 7 in T ∗.
Conditional on all these elements, we integrate out µ0 or (µL, µR) subject to the constraints
implied by the conditioning elements. Note that the proposal for the node 7 rule does not
depend on µsame , it only depends on the tree structures.

The key is to then proceed conditionally on µsame and the tree ancestry associated
with it. In Figure 4, we condition on µsame = (µ1, µ2) and the ancestral tree structure
given by nodes (1, 2, 3, 6) including the decision rules associated with the interior nodes
1 and 3. To keep the notation clean, we will use µsame as a conditioning variable in our
expressions below and the reader must make a mental note to include the associated
tree ancestry as conditioning information.

Conditionally on µsame, our Metropolis procedure is as follows. First, a proposal
T ∗ is generated with probability q(T 0 → T ∗), using the same CGM98 proposal used in
unconstrained CART and BART. Letting q(T ∗ → T 0) be the probability of the reversed
step, the move T 1 = T ∗ is then accepted with probability

α = min

{
q(T ∗ → T 0)

q(T 0 → T ∗)

p(T ∗ | µsame, r)

p(T 0 | µsame, r)
, 1

}

= min

{
q(T ∗ → T 0)

q(T 0 → T ∗)

p(T ∗ | µsame, rnew)

p(T 0 | µsame, rold)
, 1

}

= min

{
q(T ∗ → T 0)

q(T 0 → T ∗)

p(rnew | T ∗, µsame)

p(rold | T 0, µsame)

p(T ∗)

p(T 0)
, 1

}
. (4.11)

The difference between (4.10) and (4.11) is that we condition on µsame throughout and
explicitly note that the rsame part of r does not matter. In going from the first line
above to the second we have used the fact that, conditional on µsame, rsame gives the
same multiplicative contribution to the top and bottom of the acceptance ratio so that
it cancels out leaving only terms depending on rnew and rold. To go from the second line
above to the third we will compute the required rnew and rold marginals numerically as
detailed in Section 4.3 below. Note also that in the BART prior, T and M are dependent
only through the dimension of M so p(T ∗) / p(T 0) is the same as in the unconstrained
case.
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If T 1 = T ∗ is accepted, µnew is then simulated from p(µnew | T 1, µsame, r) =
p(µnew | T 1, µsame, rnew) and M1 is set equal to (µsame, µnew). Otherwise (T 1, M1) is
set equal to (T 0, M0).

4.3 Implementation of the Localized MH Algorithm

The implementation of our localized MH algorithm requires the evaluation of
p(rnew | T ∗, µsame) and p(rold | T 0, µsame) for the α calculation in (4.11), and the simu-
lation from p(µnew | T 1, µsame, rnew). Although these can all be done quickly and easily
in the unconstrained cases, a different approach is needed for constrained cases. This
approach, which we now describe, relies crucially on the reduced computational require-
ments for the localized MH algorithm when T 0 → T ∗ is restricted to local moves at a
single node.

For the moment, consider the birth move described in Section 4.2 and illustrated
in Figure 4. In this case, µnew = (µL, µR) with corresponding rnew = (rL, rR) and
µold = µ0 with corresponding r0. Thus, to perform this move, it is necessary to compute
p(rL, rR | T ∗, µsame) and p(r0 | T 0, µsame) for the computation of α in (4.11), and to
simulate (µL, µR) from p(µL, µR | rL, rR, T ∗, µsame) when T 1 = T ∗ is selected. For the
corresponding death step, we would need to simulate µ0 from p(µ0 | r0, T 0, µsame). When
these means are unconstrained, these calculations can be done quickly with closed form
expressions and the simulations by routine methods so we focus here on the constrained
case.

Let us begin with the calculation of

p(rL, rR | T ∗, µsame) =

∫
p(rL | µL) p(rR | µR) p(µL, µR | T ∗, µsame) dµL dµR, (4.12)

where

p(µL, µR | T ∗, µsame) = φµµ,cσµ(µL)φµµ,cσµ(µR)χC(µL, µR) / d∗ (4.13)

and d∗ is the normalizing constant. The determination of χC(µL, µR) is discussed in
Section 2; it is the set (µL, µR, µsame) which results in a monotonic function. Note that
C is of the form C = {(µL, µR) : a ≤ µL ≤ µR ≤ b} with a, b (possibly −∞ and/or ∞)
determined by the conditioning on T ∗ and µsame. In particular, note that C depends
on µsame but we have suppressed this in the notation for the sake of simplicity.

Closed forms for (4.12) and the norming constant d∗ are unavailable. However, since
the integrals are only two-dimensional, it is straightforward to compute them numeri-
cally. To use a very simple approach, we approximate them by summing over a grid of
(µL, µR) values. We choose a grid of equally spaced µ values and then let G be the set
of (µL, µR) where both µL and µR belong to the grid.

Then, our approximate integrals are

p̃(rL, rR | T ∗, µsame) =
∑

(µL,µR)∈G∩C

p(rL | µL) p(rR | µR) p̃(µL, µR | T ∗, µsame), (4.14)
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where
p̃(µL, µR | T ∗, µsame) = φµµ,cσµ(µL)φµµ,cσµ(µR) / d̃∗ (4.15)

with
d̃∗ =

∑

(µL,µR)∈G∩C

φµµ,cσµ(µL)φµµ,cσµ(µR). (4.16)

Note that we do not include “∆µ” terms (the difference between adjacent grid values)
in our integral approximations since they cancel out.

If T 1 = T ∗ is accepted, the simulation of (µL, µR) proceeds by sampling from the
probability distribution over G ∩ C given by

p̃(µL, µR | rL, rR, T ∗, µsame) =
p(rL | µL) p(rR | µR) p̃(µL, µR | T ∗, µsame)

p̃(rL, rR | T ∗, µsame)
. (4.17)

Note that d̃∗ cancels in (4.17) so that we are just renormalizing

p(rL | µL) p(rR | µR)φµµ,cσµ(µL)φµµ,cσµ(µR)

to sum to one on G ∩ C.

For the calculation of

p(r0 | T 0, µsame) =

∫
p(r0 | µ0) p(µ0 | T 0, µsame) dµ0, (4.18)

where
p(µ0 | T 0, µsame) = φµµ,cσµ(µ0)χC(µ0) / d0 (4.19)

and d0 is the normalizing constant with the constraint set of the form C = {(µ0) : a ≤
µ0 ≤ b}, similar griding can be done to obtain a discrete approximation d̃0 of d0 and a
constrained posterior sample of µ0. Again, C implicitly depends on T 0 and µsame. The
grid here would be just one-dimensional.

Computations for the reverse death move would proceed similarly. Local moves for
T 0 → T ∗ beyond birth and death moves may also be similarly applied, as long as
µold and µnew are each at most two dimensional since beyond two dimensions, grids
become computationally demanding. For example, T 0 → T ∗ obtained by changing a
splitting rule whose children are terminal nodes would fall into this category. In all our
examples, we use birth/death moves and draws of a single µ component given T and
all the remaining elements of M .

The approach outlined above for birth/death moves involves two bivariate integrals
and two univariate integrals which we approximate with two sums over a bivariate
grid and two sums over a univariate grid. In practice, we reduce the computational
burden by letting d̃∗ and d̃0 equal one and then compensating for this omission with an
adjustment of our T prior. For example, in a birth move, setting the d’s to one ignores a
factor d̃0 / d̃∗ in our ratio. Note that from (4.13) d∗ is just the constrained integral of the
product of two univariate normal densities. Without the constraint, the integral would
be one. The more our monotonicity constraint limits the integral (through χC(µL, µR)),
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the smaller d∗ is. Similarly, d0 is a constrained univariate integral. However, in a birth
step, d∗ is typically more constrained than d0. Hence, d̃0 / d̃∗ is a ratio depending on
T 0 and T ∗ which we expect to be greater than one. Note that d0 only depends on T 0

and d∗ only depends on T ∗ (that is, not on µsame).

We compensate for the omission of d̃∗ and d̃0 by letting α = .25 and β = .8 rather
than using standard BART default values of α = .95 and β = 2. With α = .25 and
β = .8, p(T ∗)/p(T 0) is larger mimicking the effect of the omitted d ratio. We have found
that with these choices we get tree sizes comparable to those obtained in unconstrained
BART. The values α = .25 and β = .8 are used in all our examples.

Finally, we should comment on the additional cost in time introduced by using the
numerical approximation with the localized MH algorithm for constrained predictors,
instead of the usual conjugate MH algorithm for unconstrained predictors. We have
found for example that with a 20 × 20 grid size (which yields excellent results for each
two-dimensional numerical approximation), the time per MCMC iteration is about 5
times slower for each constrained predictor as compared to the time per iteration for each
unconstrained predictor. Note that with only a small number of constrained predictors
in mixed monotonicity settings, this increased burden will be relatively small, and will
not affect the speed of handling any other unconstrained predictors under consideration.

5 Examples

In this section, we illustrate and compare the performance of mBART with related
methods on three simulated and two real examples. For the real examples, where the true
regression function is unknown, we include the standard linear model in the comparisons.
In all cases we use default priors for mBART and BART, but remind the reader that
for best out-of-sample results, it may be wise to consider the use of cross-validation to
tune the prior choice as illustrated in CGM10.

Throughout the examples, the “fit” of BART or mBART at a given x refers to the
posterior mean of f(x) estimated by averaging the f draws evaluated at x. The 95%
credible intervals used to gauge the posterior uncertainty about f(x) are obtained simply
as the intervals between the upper and lower 2.5% quantiles of these f draws at x. Just
as for BART, the uncertainty intervals for mBART will be seen to behave sensibly, for
example, by widening where there is less data and for x values far from the data.

5.1 The Smoothing Effectiveness of mBART

We begin with a visual illustration of the performance of mBART relative to simpler
Bayesian tree model approaches on n = 200 independent simulated observations from
the simple two-dimensional predictor model

Y = x1 x2 + ε, ε ∼ N(0,σ2), (5.1)

where x1, x2 ∼ Uniform(0,1). The mean function f(x1, x2) = x1 x2, displayed in Fig-
ure 5a, is smoothly monotone over the (0,1) range of the x’s.
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Figure 5: Estimating f(x1, x2). From left to right: the true f , a single tree model, a monotone
single tree model, BART and mBART.

The remaining plots in Figure 5 display successive estimates of the f surface ob-
tained by a single tree model (Bayesian CART), a monotone constrained single tree
model, BART and mBART. The fit of the single tree model in Figure 5b is reason-
able, but there are aspects of the fit which violate monotonicity. The fit of the single
monotone constrained tree in Figure 5c is better and more representative of the true f .
The unconstrained ordinary BART fit in Figure 5d is much better, but not monotone.
Finally, the correctly constrained mBART fit in Figure 5e is much smoother, a notice-
able improvement over all. These comparisons highlight the smoothing effect of both
summing many trees and of constraining them to be monotone. This same effect would
of course occur in higher dimensions with many x’s, but would not allow for such a
simple revealing visual illustration.

5.2 Comparing Fits and Credible Regions of BART and mBART

To facilitate simple visual comparisons of the fits and credible regions obtained by
BART and mBART, we continue with a one-dimensional example. For this purpose,
we simulated 200 replications of n = 100 independent observations from the single
predictor, monotone increasing model

Y = x3 + ε, ε ∼ N(0,σ2), (5.2)

with σ = 0.1 at x values uniformly sampled from [−1,1].

For a typical one of these data sets, Figure 6 displays the fits and 95% pointwise cred-
ible intervals for BART on the left and mBART based on a nondecreasing monotonicity
assumption on the right. The improvement of mBART over BART is immediately ap-
parent. mBART is far smoother and faithful to f , with tighter credibility intervals
reflecting a reduction of uncertainty, even more so nearer the center of the data where
f is flatter. Adding only the prior information that f is monotone increasing appears
to have substantially improved inference.

Supporting the persistence of the mBART improvements seen in Figure 6, the aver-
age in-sample root mean square error of the mBART fits was 34.8% smaller than that
of the BART fits, and the average width of the mBART 95% credible intervals was
40.3% smaller than the mBART intervals, over all 200 data replications. Furthermore,
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Figure 6: Comparing BART and mBART inferences for a monotone one-dimensional
example f(x) = x3. The mBART fits are better throughout and the 95% pointwise
intervals for f(x) are tighter.

the average coverage of f(x) was 94.1% for the mBART intervals and 96.1% by the
BART intervals, supporting the practical reliability of these intervals in terms of their
frequentist calibration.

We should emphasize here that despite the potential improvements that mBART
offers, the validity of mBART inferences in practice will rest on the validity of the
monotonicity assumptions, which themselves would presumably be based on compelling
subject matter considerations. A data analyst who observed only the data in Figure 6,
could at best conclude from the comparison of BART with mBART that an assumption
of monotonicity was plausible. Fortunately, in settings with more pronounced violations
of monotonicity, comparisons of BART with mBART can readily reveal that mBART
should be avoided. To illustrate this point, we simulated another n = 100 independent
observations as above, but this time with an underlying quadratic function Y = x2 + ε.
For this data, Figure 7 displays the fits and 95% pointwise credible intervals for BART
on the left and mBART based on a nondecreasing monotonicity assumption on the
right. Comparison of BART and mBART here clearly reveals the implausibility of the
monotonicity assumption and the obvious superiority of BART. Such comparisons can
be made in higher dimensional settings with versions of the conditional view plots used
in Sections 5.4 and 5.5.

5.3 Improving the RMSE with Monotone Regularization

We next turn to a comparison of the out-of-sample predictive performance of BART
and mBART for data simulated from the five predictor model

Y = x1x
2
2 + x3x

3
4 + x5 + ε, ε ∼ N(0,σ2),

where x1, . . . , x5 iid ∼ Uniform(0,1). The mean function here f(x) = x1x2
2 + x3x3

4 + x5

is monotonic over the (0,1) range of all the components of x = (x1, . . . , x5).
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Figure 7: Comparing BART and mBART inferences for a non-monotone one-
dimensional example f(x) = x2. Comparison reveals the obvious lack of monotonicity
of the function.

For this setup, we replicated data for five values of the error standard deviation,
σ = 0.2, 0.5, 0.7, 1.0, 2.0, to explore how rapidly the predictive performance of BART and
mBART would degrade as the signal-to-noise ratio decreased. As we will see, for small
σ, there is little difference in the performance as BART is able to infer the function with
very little error. However, as σ increases, the additional information that the function
is monotonic becomes more and more useful as mBART outperforms BART by larger
and larger amounts.

For each value of σ we simulated 200 data sets, each with 500 in-sample (training)
observations and 1,000 out-of-sample (test) observations. For the training data, we drew
x and y, while for the test data we only drew x. For each simulated data set, we computed

the BART to MBART ratio of their out-of-sample RMSE=
√

1
1000

∑1000
i=1 (f(xi)−f̂(xi))2

estimates, where f is the true function, f̂(xi) is the posterior mean, and the xi are the
test x vectors.

These RMSE ratio results are displayed in Figure 8. Each boxplot depicts the 200
RMSE ratio values at each of the five levels of σ. For the smallest value of σ both meth-
ods give similar results. But as σ increases, mBART increasingly outperforms BART by
greater amounts. Intuitively, the monotone constraint encourages mBART to disregard
variation which runs counter to the prescribed monotonicity. This shape constrained
regularization leads to improved predictions and guards against overfitting irrelevant
variation when the monotonicity constraints are justified. This improvement becomes
more and more pronounced as the signal-to-noise ratio decreases. Indeed, the average
of the RMSE ratios was 1.01, 1.08, 1.23, 1.47, 1.93 at σ = 0.2, 0.5, 0.7, 1.0, 2.0, respec-
tively.

At each value of σ, we also evaluated the out-of-sample performance of the 95%
credible intervals obtained by BART and mBART on each our 200 simulated data sets.
Table 1 reports the average interval width and frequentist coverage of f(x) over the
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Figure 8: Out-of-sample RMSE ratio comparisons of BART and mBART.

σ 0.2 0.5 0.7 1.0 2.0

Width BART 0.44 0.81 1.06 1.46 2.79
Width mBART 0.27 0.46 0.56 0.71 1.17

Coverage BART 98.8% 99.1% 99.3% 99.4% 99.6%
Coverage mBART 90.1% 90.3% 92.8% 95.7% 97.9%

Table 1: Average width and coverage of BART and mBART 95% credible intervals.

1,000 out-of-sample values. The average width of the mBART intervals is dramatically
smaller, increasingly so as σ increases. The average coverage of the BART intervals
at around 99% is higher than the 95% credibility levels, whereas the coverage of the
mBART intervals increases from 90.1% to 97.9% as σ increases. For practical purposes,
these calibrations support good reliability, especially when σ is larger and the mBART
improvement is most valuable.

5.4 Used Car Prices

For our first real example, our data consists of 1,000 observations and y is the sale price
of a used Mercedes car. Our explanatory x variables are: (i) the mileage on the car
(mileage), (ii) the year of the car (year) (iii) feature count (featureCount) and (iv)
has the car had just one owner (1 if yes, 0 if no) (isOneOwner). Conditionally on the
other variables, we assumed that on average, a car with higher mileage would sell for
less, a newer car would sell for more, a car with just one owner would sell for more,
and a car with higher feature count would sell for less. To conveniently characterize
all of these expected relationships as monotone increasing, we multiplied mileage and
featureCount by −1.

Before proceeding with mBART, we ran an ordinary multiple linear regression which
produced the following output. We see that all the signs are positive and featureCount
is “significant”. It turns out we misunderstood the nature of this variable as will be
discussed. Nevertheless, we left featureCount in the presented analysis as “adding a
variable by accident” is a realistic possibility, and one which mBART turns out to handle



H. A. Chipman, E. I. George, R. E. McCulloch, and T. S. Shively 535

nicely.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.427e+06 1.732e+05 -31.334 < 2e-16 ***
mileage 1.529e-01 8.353e-03 18.301 < 2e-16 ***
year 2.726e+03 8.613e+01 31.648 < 2e-16 ***
featureCount 3.263e+01 9.751e+00 3.346 0.000851 ***
isOneOwner 1.324e+03 6.761e+02 1.959 0.050442 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7492 on 995 degrees of freedom
Multiple R-squared: 0.8351,Adjusted R-squared: 0.8344
F-statistic: 1260 on 4 and 995 DF, p-value: < 2.2e-16

Figure 9 displays aspects of the inference from the linear model, BART, and mBART.
The top left panel plots the BART MCMC draws of σ, the top right panel plots the
mBART MCMC draws of σ, and in each plot the estimate of σ from the linear regression
is indicated by a horizontal solid line. Both BART and mBART quickly burn-in to σ
values much smaller than the least squares estimate indicating much tighter fits. The
monotonicity constraint renders slightly larger σ draws. The bottom left panel, which
plots the BART fits versus the mBART fits, shows them to be quite similar. In contrast,
the bottom right panel, which plots the linear fits versus the mBART fits, shows clear
differences between the two.

Figure 9: Car price example. Top row: σ draws from BART (left panel), σ draws from
mBART (right panel). Solid horizontal line at least squares estimate of σ. Bottom row:
BART versus mBART (left panel), and linear fits versus mBART (right panel).

Figure 10 displays the estimated conditional effects for the four variables in x,
mileage, year, featureCount and isOneOwner. To visualize the conditional effects
from the BART/mBART fits we construct x vectors such that the x coordinate of in-
terest varies while the others are held fixed. In each panel, we see the estimate of f(x)
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with the year values of x indicated on the horizontal axis. The various curves in the
figure correspond to different fixed levels of the other three variables in x. We picked a
grid of values for each variable and then constructed a design matrix composed of all
possible combinations. To keep the plots readable, we conditioned on a random sample
of these value combinations, and held them fixed as we varied the variable of interest,
so that not all possible curves are plotted in each panel.

Although the conditional effects of mileage and year in Figure 10 are similar for
BART and mBART, the mBART fits are smoother and everywhere monotonic, while
the BART fits exhibit slight dips. Fundamental is the observed monotonicity of all the
conditional effects, reflecting mBART’s ability to impose monotonicity in a multivariate
setting. For featureCount, the difference between the BART and mBART conditional
effect plots is quite striking. The monotonic constraint forces a flatlining of the mBART
estimates, dramatically indicating the absence of an effect, in sharp contrast to the
very significant t-value of 3.346 in the R multiple regression output. After obtaining
these results, we checked back with the source of the data and found that we had
misunderstood the variable featureCount and in fact, there was no reason to expect
it to be predictive of the car prices! It measured web activity of a shopper and not
features of the actual car. Together, the plots in Figure 10 indicate that from a practical
standpoint, only mileage and year matter as price predictors here.

Figure 10: Car price example. Conditional effects of mileage, year, featureCount and
isOneOwner, in rows from left to right, for BART (top panels) and mBART (bottom
panels).

Figure 11 plots the bivariate fitted surface for expected price as a function of mileage
and year for fixed values of featureCount and isOneOwner. The BART fit is on the
left and the mBART fit is on the right. While similar, the mBART fit is smoother,
and far more appealing. When presenting results to non-statisticians, the implausible
non-monotonic behavior can be very confusing.

We conducted a simple out-of-sample experiment to check for over-fitting: 200 times
we randomly selected 75% of the data to be in-sample and predicted the remaining 25%
of the y values given their x values using linear regression, BART, and mBART. For
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Figure 11: Car price example. Bivariate plot of fitted price vs mileage and year. BART
(left panel), mBART (right panel). Recall that mileage and year have been multiplied
by −1, so the fitted price surface is descreasing as actual mileage and actual year are
increased.

Figure 12: Car price example. Out-of-sample RMSE ratios. mBART and BART are
superior to linear, while mBART is modestly better than BART.

each repetition, we evaluated the RMSE ratios of mBART to linear, and of mBART to
BART. Boxplots of these ratios for the 200 repetitions are displayed in Figure 12. Both
mBART and BART are dramatically better than the linear predictions, while mBART
provides a more modest improvement over BART.

5.5 The Stock Returns Example

An important and heavily studied problem in Finance is the predictability of stock
market returns. Can we measure characteristics of a firm (x) that can help us predict a
future return (y)? The data are monthly and the x’s are measured the previous month
so that the relationship being studied is predictive. Our y is actually excess return, the
difference between the return for a firm and the average return for firms that month.
While still very useful in practice, predicting the excess return is easier than predicting
the whole return.

Often in predictability studies, predictive models are fit for each month and then
rolling windows of months are considered. For this example, we focus on fitting models
for the returns of n = 1,531 firms for the single month December 1981, (picked randomly
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from a much larger data set of 594 months), to compare mBART with BART and linear
regression. Since the modeling is done for each month, it makes sense to focus on a
particular month to see how different approaches might work. Note that the predictive
models uncovered here are descriptive rather than reflective of the actual averaging
rolling fit predictive mechanism used in practice.

We used four predictive variables in x. logme: market equity (logged), r1: previous
return, gpat: gross profitability ((sales minus cost of goods sold) / total assets), and
logag: growth in total assets (logged). Remember, x is lagged. Although log transfor-
mations of predictors are unnecessary for BART and mBART, these transformations
facilitate comparisons with linear regression.

For convenience, we multiplied logme, r1 and logag by −1 to obtain all monotone
increasing relationships in the following multiple linear regression:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.028895 0.010052 2.875 0.00410 **
logme 0.004461 0.001626 2.744 0.00614 **
r1 0.063310 0.020397 3.104 0.00195 **
gpat 0.035634 0.007428 4.797 1.77e-06 ***
logag 0.080160 0.010715 7.481 1.24e-13 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.07285 on 1526 degrees of freedom
Multiple R-squared: 0.05767,Adjusted R-squared: 0.0552
F-statistic: 23.35 on 4 and 1526 DF, p-value: < 2.2e-16

The monotonicity implications of this regression are supported by intuition and
subject matter theory. First, the monotonicity for logged market equity logme is strongly
motivated, as it is widely believed that larger firms are less risky and hence generate
lower returns. Although one might think a high previous return r1 would lead to a
high current return (giving a negative sign in the regression since we multiplied by
−1), a tendency for “short term reversals” has been found in the literature. That gross
profitability gpat should be positively related to returns as in the regression makes
intuitive sense. Finally, the monotonicity of the logged growth in total assets logag effect
is less clear and, indeed, the sign of the regression coefficient can vary from month to
month. However, financial theory suggests that if we interpret our x’s as representative
of underlying factors, we would still expect the effect to be monotonic across a set of
firms within a given month.

The R2 in the multiple regression is less than 6%, indicating a very low signal to noise
ratio. Bias-variance considerations suggest that only the simplest models can be used
to predict since fitting complex models with such a low signal is prone to overfitting.
This gives us a strong motivation for examining the fit of mBART. As we will see,
mBART allows us to be more flexible than a simple linear approach without running
the overfitting risks associated with an unconstrained fit given the low signal.

Figure 13 displays fits from BART, mBART, and a linear regression (using the
same layout as in our previous examples). The top left plot shows the sequence of σ
draws from the BART fit, while the top right plot shows the sequence of σ draws from
mBART. In each plot, a solid horizontal line is drawn at the least squares estimate of σ.
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Figure 13: Returns example. Top row: σ draws from BART (left panel), σ draws from
mBART (right panel). Solid horizontal line at least squares estimate of σ. Bottom row:
BART versus mBART (left panel) and linear fits versus mBART (right panel).

The σ draws from the BART fit tend to be smaller than the least squares estimate while
the least squares estimate is right at the center of the mBART fits. The monotonicity
constraint has pulled the BART fit back so that overall, it is more comparable to the
linear fit. The lower left panel of Figure 13 plots the BART fits versus the mBART fits
and the lower right panel plots the linear fits versus the mBART fits. Given the very
low signal, it is notable that all three methods pick up similar fits. However, in contrast
to Figure 9, the mBART fit here appears to be more like the linear fit than the BART
fit.

Figure 14 displays the conditional effects using the same construction and format as
in Figure 10 for our car price example. The contrast between the BART and mBART
fits here is quite dramatic. The mBART fits are much smoother and monotone. They
are close to linear (especially for r1), but there is an evident suggestion of nonlinearity
in places for three of the variables.

Figure 15 plots the fitted cross section of expected returns against r1 and logme.
The unconstrained BART fit seems quite absurd while the mBART fit suggests some
nonlinearity and interaction, but also leaves open the possibility that it is close enough
to linear for prediction purposes given the high noise level.

To evaluate out-of-sample predictability, we performed a “stylized” out-of-sample
experiment as in the previous used cars example. That is, we randomly selected 75%
of the data to be in-sample and predicted the remaining 25% of the data using linear
regression, BART, and mBART, and repeated this 200 times. We call this “stylized”
because it is unrealistic to be interested in using the returns from 75% of the firms
to predict the rest. However, this gives a sense for how the procedures work in our
particular month. For each repetition, we evaluated the RMSE ratios of mBART to
linear, of BART to linear and of mBART to BART. Boxplots of these three ratios for
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Figure 14: Returns example. Conditional effects of logme, r1, gpat and logag, in rows
from left to right, for BART (top panels) and mBART (bottom panels).

Figure 15: Returns example. Bivariate plot of fitted expected return vs. logme and r1.
BART (left panel), mBART (right panel).

the 200 repetitions are displayed in Figure 16. In contrast to Figure 12, we see that
here mBART and the linear fit yield very similar results, while BART is now somewhat
worse, suggesting a tendency towards overfitting. Given the very low signal-to-noise
ratio, the regularizing monotonicity constraint of mBART has helped to keep it from
fitting variation in the wrong direction.

A key point here is that if you want to consider something more flexible than linear,
and interpret the fits on a monthly basis, mBART can give plausible nonlinear results
while being predictively equivalent to linear. At the very least, when monotonicity is
a reasonable assumption, we can think of mBART as a convenient “halfway house”
between the very flexible ensemble method BART and the inflexible linear method.

Finally, as discussed in Sections 3.2 and 3.3, an advantage of the BART and mBART
prior specification schemes is their allowance for subjective calibration. In the results
presented so far we have used the default, data-based prior which yields f(x) ∼ N(0, .22)
in the unconstrained case with a corresponding prior 95% interval of [−.4,.4]. Here
f(x) is the expected return over a single month on a particular firm described by the
attributes in x.
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Figure 16: Returns example. Out-of-sample RMSE ratios. mBART is comparable to
linear, while BART is worse than mBART and linear.

However, it seems implausible that the information in x would suggest an expected
return of 40% in a single month. Given the weak signal-to-noise ratio in this data, it is
likely that the variance of the default prior has been overinflated to cover the range of
observed returns, which has been widened by the excessive noise. As an alternative we
chose the informative prior with f(x) ∼ N(0, .052) for the unconstrained case, which
gives the 95% interval [−.1,.1] for the expected return. While still quite a wide range for
the return over a single month, plus or minus 10% seems within the realm of plausible
predictability. Note that for the implementation of mBART, we inflate both the default
and the informative priors as described in Section 3.3 to account for the monotone
constraints.

It is interesting to compare the predictive performance of mBART and BART un-
der the default priors with their counterparts, denoted mBARTp and BARTp, under
these subjectively tuned priors. Figure 17 displays RMSE ratio boxplots of mBART,
mBARTp, BART and BARTp all relative to linear, over the 200 repetitions from the
Figure 12 evaluations. It is interesting that the subjective input has modestly improved
mBART and more substantially improved BART, suggesting that BART flexibility ren-
ders it more sensitive to prior calibration.

6 Discussion

In multiple regression problems where the functional form of E[Y | x] is unknown, sub-
ject matter considerations may at least warrant an assumption that E[Y | x] is monotone
in one or more of the predictors in x. mBART is tailor-made for such problems. Inher-
iting the multidimensional nonparametric modeling flexibility of BART, mBART can
at the same time restrict attention to forms for E[Y | x] which are monotonic in any
predesignated subset of predictors. By taking advantage of the additional monotonicity
information, this constrained version of BART results in improved estimates and tighter
credibility intervals as is illustrated throughout our examples. These improvements are
particularly pronounced in low signal-to-noise contexts.
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Figure 17: Returns example. RMSE ratio boxplots of mBART, mBARTp, BART and
BARTp all relative to linear.

However, as we emphasized at the end of Section 5.2, these benefits of mBART
over BART will rest on the validity of the monotonicity assumptions for which mBART
was designed. When such monotonicity assumptions are in doubt, it will be safer to
rely on BART. However, this raises some interesting directions for further research.
As we also saw in Section 5.2, it will always be useful to compare the output from
BART and mBART to judge the plausibility of any monotonicity assumptions. But
even when monotonicity seems plausible, more formal testing procedures such as Bayes
factors would be valuable to have. We plan to report on such developments in future
work.

Further important future research directions include the development of theory for
mBART. For example, in the spirit of Salomond (2014), the added assumption of mono-
tonicity would seem to allow for improved rates of posterior contraction and other re-
finements of the theoretical results in Ročková and van der Pas (2020), Ročková and
Saha (2019) and Linero and Yang (2018) mentioned earlier.

Finally, it would also be enlightening to investigate empirical and theoretical com-
parisons of mBART with the many monotonic alternatives proposed in the references
listed in Section 1. Particularly interesting would be the comparison with methods that
project unconstrained estimators into monotone spaces, in contrast to mBART which
directly constrains the mean regression function to begin with.

Code for mBART is publicly available at: https://github.com/remcc/mBART_shlib
with an R package in the subdirectory mBART. To install directly in R you can use

>library(remotes)

>install github(”remcc/mBART shlib/mBART”,ref=”main”)

You need to install the R packages remotes and Rcpp. On a Mac you also need to install
the Xcode. On Windows you need to install the Rtools which you can download from
the CRAN R for Windows download page.

https://github.com/remcc/mBART_shlib
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