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1. Introduction

In 1979, several methods appeared to solve the basic problem of finding a zero of the sum of two maximally
monotone operators in a real Hilbert space (Lions and Mercier [37], Mercier [38], Passty [43]). Over the past
40 years, increasingly complex inclusion problems and solution techniques have been considered (Bot and Hen-
drich [10], Briceno-Arias and Combettes [14], Bricefio-Arias and Davis [17], Bui and Combettes [19], Combettes
[23], Combettes and Eckstein [25], Eckstein [29], Johnstone and Eckstein [34], Tseng [53]) to address concrete prob-
lems in fields as diverse as game theory (Attouch et al. [2], Bricefio-Arias and Combettes [15], Yi and Pavel [56]),
evolution inclusions (Attouch et al. [3]), traffic equilibrium (Attouch et al. [3], Fukushima [31]), domain decompo-
sition (Attouch et al. [4]), machine learning (Bach et al. [6], Briceno-Arias et al. [12]), image recovery (Banert et al.
[7], Bot and Hendrich [11], Bricefio-Arias et al. [16], Hintermdiller and Stadler [33]), mean field games (Bricefio-
Arias et al. [18]), convex programming (Combettes [24], Li and Yuan [36]), statistics (Combettes and Miiller [26],
Yan and Bien [55]), neural networks (Combettes and Pesquet [27]), signal processing (Combettes and Wajs [28]),
partial differential equations (Ghoussoub [32]), tensor completion (Mizoguchi and Yamada [39]), and optimal
transport (Papadakis et al. [42]). In our view, two challenging issues in the field of monotone operator splitting al-
gorithms are the following:

e A number of independent monotone inclusion models coexist with various assumptions on the operators and
different types of operation among these operators. At the same time, as will be seen in Section 4, they are not suffi-
ciently general to cover important applications.

e Most algorithms do not allow asynchrony and impose that all the operators be activated at each iteration. They
can therefore not handle efficiently modern large-scale problems. The only methods that are asynchronous and
block-iterative are limited to specific scenarios (Combettes and Eckstein [25], Eckstein [29], Johnstone and Eckstein
[34]), and they do not cover inclusion models such as that of Combettes [23].

In an attempt to bring together and extend the application scope of the wide variety of unrelated models
that coexist in the literature, we propose the following multivariate formulation that involves a mix of set-
valued, cocoercive, and Lipschitzian monotone operators, as well as various monotonicity-preserving opera-
tions among them.
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Problem 1. Let (H,;);; and (Gi)ex be finite families of real Hilbert spaces with Hilbert direct sums H = @ e H;
and G = ®Dex Gr. Denote by x = (x;),; a generic element in H. For every i €I and every ke K, let s; € H;, let
7 € G, and suppose that the following are satisfied:

[a] A;: H; — 2™ is maximally monotone, C; : H; — H; is cocoercive with constant af €]0, + oo, Q; : H; — H; is
monotone and Lipschitzian with constant af €[0, + o[, and R; : H — H;.

[b] By : Gk — 2% ig maximally monotone, Ii;( : Gk — Gy is cocoercive with constant f; €]0, + oo, and B,f G — Gr
is monotone and Lipschitzian with constant 8, € [0, + oo[.

[c] Dy : Gy — 29 is maximally monotone, Dj, : Gy — Gy is cocoercive with constant o} €]0, + co[, and D,f 1 G — G
is monotone and Lipschitzian with constant &; € [0, + co].

[d] Ly : Hi — Gy is linear and bounded.
In addition, it is assumed that

[e] R: H — H : x — (Rix),¢; is monotone and Lipschitzian with constant x € [0, + oof.
The objective is to solve the primal problem

find ¥ € H such that (VZ € I) S: € Aix; + Cix; + Qifj +R;x

+ > Li| (By + By + Bf)O (Dy’ + Di + Df))
keK

2 L% - rk)) 1)

jel
and the associated dual problem
find o* € G such that (3x € H)(Vi € I)(Vk € K)
S: - Z L;ﬁ; € Aix; + Cix; + Q[.Xj + Rix
jeK (2)
Uy € (By + B + BY)O (Dy + Dy + D,f))(z Lijx; — rk).
jel

Our highly structured model involves three basic monotonicity preserving operations, namely addition, com-
position with linear operators, and parallel sum. It extends the state-of-the-art model of Combettes [23], where
the simpler form

keK

(Viel) sieAxi+QXi+ >, L;,.((B;j 0Dy
jel

> Lg% — rk)) 3)

of the system in (1) was investigated (see Attouch et al. [3] and Combettes and Eckstein [25] for special cases). In an
increasing number of applications, the sets I and K can be sizable. To handle such large-scale problems, it is critical
to implement block-iterative solution algorithms, in which only subgroups of the operators involved in the problem
need to be activated at each iteration. In addition, it is desirable that the algorithm be asynchronous in the sense
that, at any iteration, it has the ability to incorporate the result of calculations initiated at earlier iterations. Such
methods have been proposed for special cases of Problem 1: first in Combettes and Eckstein [25] for the system

find ¥ € M such that (Viel) s; € Axi+ >, LBy D) Lgxi — rell, 4)
keK jel
and then in Eckstein [29] for the inclusion (we omit the subscript 1):
find X € H such that 0€ > Ly(By(LX)), 5)
keK

and more recently in Johnstone and Eckstein [34] for the inclusion

find ¥ € H such that 0 € AX + Qx + > | Li((By' + BL)(LyX)). (6)
keK
It is clear that the formulations (4) and (6) are not interdependent. Furthermore, as we shall see in Section 4,
many applications of interest are not covered by either of them. From both a theoretical and a practical view-
point, it is therefore important to unify and extend these approaches. To achieve this goal, we propose to design
an algorithm for solving the general Problem 1 which possesses simultaneously the following features:
@ It has the ability to process all the operators individually and exploit their specific attributes, for example, set-
valuedness, cocoercivity, Lipschitz continuity, and linearity.
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@ It is block-iterative in the sense that it does not need to activate all the operators at each iteration, but only a
subgroup of them.

@ It is asynchronous.

@ Each set-valued monotone operator is scaled by its own, iteration-dependent, parameter.

® It does not require any knowledge of the norms of the linear operators involved in the model.

Let us observe that the method of Combettes and Eckstein [25] has features @—®, but it is restricted to (4). Like-
wise, the method of Johnstone and Eckstein [34] has features ®-®, but it is restricted to (6).

Solving the intricate Problem 1 with the requirement ® does not seem possible with existing tools. The pres-
ence of requirements @-® further complicates this task. In particular, the Kuhn-Tucker approach initiated in
Bricefio-Arias and Combettes [14]—and further developed in Alotaibi et al. [1], Bot and Hendrich [10], Comb-
ettes [23], Combettes and Eckstein [25], and Johnstone and Eckstein [34, 35]—relies on finding a zero of an opera-
tor acting on the primal-dual space H @ G. However, in the context of Problem 1, this primal-dual space is too
small to achieve full splitting in the sense that each operator is used individually. To circumvent this difficulty,
we propose a novel splitting strategy that consists of recasting the problem as that of finding a zero of a saddle
operator acting on the bigger space H®GD GD G. This is done in Section 2, where we define the saddle form of
Problem 1, study its properties, and propose outer approximation principles to solve it. In Section 3, the main
asynchronous block-iterative algorithm is presented, and we establish its weak convergence under mild condi-
tions on the frequency at which the operators are selected. We also present a strongly convergent variant. The
specializations to variational inequalities and multivariate minimization are discussed in Section 4, along with
several applications. The appendix contains auxiliary results.

Notation. The notation used in this paper is standard and follows Bauschke and Combettes [9], to which one
can refer for background and complements on monotone operators and convex analysis. Let /C be a real Hilbert
space. The symbols (- | -) and || - || denote the scalar product of K and the associated norm, respectively. The ex-
pressions x, — x and x,, — x denote, respectively, the weak and the strong convergence of a sequence (x;,),,cy t0 X
in K, and 2 denotes the family of all subsets of K. Let A:K—2X The graph of A is
graA={(x,x)e LxK|x €Ax}, the set of zeros of A is zerA={x€K | 0€Ax}, the inverse of A is
A1 K =28 x> {xe K | x* € Ax}, and the resolvent of A is J4 = (Id +A)™, where Id is the identity operator
on KC. Furthermore, A is monotone if

(V(x,x")egra A)(V(y,y)egraA) (x—y|x'—y) =0, (7)
and it is maximally monotone if, for every (x,x*) € K X K,

(x,x)egraA < (Y(y,y)egraA) (x—ylx'—y") > 0. (8)

If A is maximally monotone, then J4 is a single-valued operator defined on K. The parallel sum of B: K — 2~
and D:K —2" is BOD=(B+D™")"". An operator C:K — K is cocoercive with constant a €0, + co[ if
(VxeK)(VyeK) (x—y|Cx—Cy) = af|Cx - Cy||2. We denote by I'y(K) the class of lower semicontinuous convex
functions f : £ — ]—oo, + o] such that dom f = {x € K | f(x) <+co} # 0. Let f € To(K). The conjugate of f is the
function I'o(KC)a f* : x* - sup, . ({(x|x*) — f(x)) and the subdifferential of f is the maximally monotone operator
I :K—-2 x> {x ek | (Vyek)(y—x|x)+f(x) <f(y)}. In addition, epif is the epigraph of f. For every
x € K, the unique minimizer of f + (1/2)|| - —x|]* is denoted by Proxx. We have prox; = Jo- Given h € T'y(K), the infi-
mal convolution of fand h is fOh: K — [—oo, + 0o : x b inf e (f(y) + h(x —y)); the infimal convolution fTI /1 is
exact if the infimum is achieved everywhere, in which case we write f& k. Now let (K;),¢; be a finite family of real
Hilbert spaces and, for every i €, let f; : K; =] — 00, 4+ c0]. Then

@fi:Klz@Ki—>]—oo,+oo]:xl—>2fi(xi). )

i€l i€l icl
The partial derivative of a differentiable function ® : K — R relative to K; is denoted by V;O. Finally, let C be a
nonempty convex subset of /C. A point x € C belongs to the strong relative interior of C, in symbols x € sri C, if
Uiel0,+0o[A(C = x) is a closed vector subspace of K. If C is closed, the projection operator onto it is denoted by
proj- and the normal cone operator of C is the maximally monotone operator

{xe K| sup(C-x|x)<0}, if xeC

Ne:K—-28:x— (10)
0, otherwise.
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2. The Saddle Form of Problem 1

A classical Lagrangian setting for convex minimization is the following. Given real Hilbert spaces H and G,
feTo(H), g €To(9), and a bounded linear operator L : H — G, consider the primal problem

miI}CiErSize f(x)+g(Lx) (11)

together with its Fenchel-Rockafellar dual (Rockafellar [47])
mir;ggize f (L) + (). (12)
The primal-dual pair (11)=(12) can be analyzed through the lens of Rockafellar’s saddle formalism (Rockafellar
[49, 50]) as follows. Set h: HBG — ]—o0, + o0]: (x,y) = f(x) + g(y) and U: HDG — G: (x,y) — Lx —y, and note

that U : G > HDG: v - (L'v", —v"). Then, upon defining K = H® G and introducing the variable z = (x,y) € K,
(11) is equivalent to

minimize h(z) (13)
zelC, Uz=0
and (12) to
miningﬁze n(=Uv). (14)
vE

The Lagrangian associated with (13) is (see Rockafellar [51, example 4] or Bauschke and Combettes [9, proposi-
tion 19.21])

L:KDOG—]—o00, + 0]
h Uz|v*), if zedomh;
(z,v*)|—>{ (z) +(Uz|vY), if ze .om (15)
+o0, otherwise,
and the associated saddle operator (Rockafellar [49, 50]) is the maximally monotone operator
S:KBG— 289 (2,0) - 9L(,v")(z2) X A(—L(z,)) (") = Oh(z) + U'v*) x {-Uz}. (16)

As shown in Rockafellar [49], a zero (z,7") of 8 is a saddle point of £, and it has the property that z solves (13)
and 7" solves (14). Thus, going back to the original Fenchel-Rockafellar pair (11)—(12), we learn that, if (x,,7") is
a zero of the saddle operator

8 HBGHG— 2999 . (x,y,0") k> (If(x) + L'0*) X (dg(y) — v") X {~Lx +y}, (17)

then x solves (11) and 7" solves (12). As shown in Combettes [24, section 4.5], a suitable splitting of 8§ leads to an
implementable algorithm to solve (11)-(12).

A generalization of Fenchel-Rockafellar duality to monotone inclusions was proposed in Pennanen [44] and
Robinson [46] and further extended in Combettes [23]. Given maximally monotone operators A : H — 2’ and
B:G — 29, and a bounded linear operator L : H — G, the primal problem

find X¥ € H such that 0 € Ax + L*(B(LX)) (18)
is paired with the dual problem
find 7* € G such that 0 € —~L(A™'(~L'7")) + B'o". (19)
Following the same pattern as that described above, let us consider the saddle operator
S:HB®GDG — 2"P999: (x,y,0") = (Ax + L'v") X (By —v") x {~Lx +y}. (20)

It is readily shown that, if (X,7/,7") is a zero of 8, then X solves (18) and 7" solves (19). We call the problem of find-
ing a zero of 8 the saddle form of (18)—(19). We now introduce a saddle operator for the general Problem 1.

Definition 1. In the setting of Problem 1, let X = H® GO GD G. The saddle operator associated with Problem 1 is
S: X —2X%: (xy,z,0)—

(X (—S;-e +Aix; + Cix; + Q{x,‘ +Rix + Z L};-U;;), X(B]?/yk + B;(yk + B,{yk - U;;),
i€l keK keK

X(D{'zk + Diz + D,fzk -7;), X {rk + Y+ 2z — Z Lkixi}), (21)
keK keK iel
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and the saddle form of Problem 1 is to
find X € X such that 0 € 8x. (22)

Next, we establish some properties of the saddle operator as well as connections with Problem 1.

Proposition 1. Consider the setting of Problem 1 and Definition 1. Let P be the set of solutions to (1), let & be the set of
solutions to (2), and let

Z= {(f,ﬁ*) EHDG ‘ (Vl (S I)(Vk S K) S: - Z L]*lﬁ; e Aix; +Cx; + Qiyi +Rix and
jeK

> Ly — 1 € (B + By + BY) "0} + (D}’ + Dj + Df)_lﬁz} (23)
jel
be the associated Kuhn-Tucker set. Then the following hold:
(i) 8 is maximally monotone.

ii) zer 8 is closed and convex.
iii) Suppose that X = (x,y,z,0") € zer 8. Then (X,0") € ZC P X D.
V)P #£0 = zer8+0 = Z+ 0= P +0.
v) Suppose that one of the following holds:

[a] I is a singleton.

[b] For every k € K, (By" + B; + BY) O (Dy" + Dj + DY) is at most single-valued.

[c] For every k € K, (Dy’ + Dj; + D,f)_1 is strictly monotone.

[d] I C K, the operators ((By + Bj + B,f)D (D¢ +Di + D,f))keK\, are at most single-valued, and (Vi€ I)(Vkel) k #i

Py

= Lki = 0
Then P +0 = Z +0.
Proof. Define
AZH—)ZH :xk—>Rx+XI(A,~x,~+C,~x,~+Qixi)
1€
B:G—2%:yi—> é(B,f‘yk + Bk + Biyy)
. Gg. n c 4
D:G—?2 .z|—>k>e§<(Dkzk+Dkzk+Dkzk) (24)
L:HHQ:xH(ZLkz‘xi)
iel _—
s = (s7)ig and 1 = (Fe)gex-
Then the adjoint of L is
L':GoH:v—|> L] - (25)
keK iel
Hence, in view of (21) and (24),
$: X —2%: (%y,z,0) = (-s"+Ax+ L'v") X (By —v") X (Dz—v") X {r—Lx +y + z}. (26)
(i): Let us introduce the operators
P:X—2%:(x,y,z20")  (—s' + Ax) X By x Dz x {r} 2
W:X—-X:(x,y,2z7)— (L'v, —v, —v*, —Lx+y + 2).

Using Problem 1[a]-[c], we derive from Bauschke and Combettes [9, example 20.31 and corollaries 20.28 and 25.5(i)]
that, for every i € I and every k € K, the operators A; + C; + Q;, By’ + B + Blf, and D + D; + D,f are maximally mono-
tone. At the same time, Problem 1[e] and Bauschke and Combettes [9, corollary 20.28] entail that R is maximally
monotone. Therefore, it results from (24), Bauschke and Combettes [9, proposition 20.23 and corollary 25.5(i)], and
(27) that P is maximally monotone. However, since Problem 1[d] and (27) imply that W is linear and bounded with
W' = —W, Bauschke and Combettes [9, example 20.35] asserts that W is maximally monotone. Hence, in view of
Bauschke and Combettes [9, corollary 25.5(i)], we infer from (26)—(27) that 8 = P + W is maximally monotone.
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(ii): This follows from (i) and Bauschke and Combettes [9, proposition 23.39].
(iii): Using (24) and (25), we deduce from (23) that

Z={(x,v)eHDG|s —Lv' €Ax and Lx—reB'v'+D 'v"} (28)
and from (2) that
9 ={veG| —re-LA(s"-Lv)+B v +D v’} (29)

Suppose that (x,v*) € Z. Then it follows from (28) that x € A™!(s* — L*v*) and, in turn, that —r€ —Lx + B 'v*+
D™ 'v* c —-L(A™'(s* = L'v")) + B'v" + D™'v*. Thus v* € @ by (29). In addition, (23) implies that

(VkeK) v € ((By +Bi+Bf) O (Dy + Dy + D)) D Ligx; — rk) (30)
jel

and, therefore, that
(VZ € I) S; € Aix; +Cix; + iji + Rix + Z L;iv};
keK
C A,-x,- + C,‘Xl‘ + Q,-x,- + Rix

+ > Lu| (By + By + Bf) O (D" + Dj + Df))
keK

D Ligxi— rk)). (31)
jel
Hence, x € 2. To summarize, we have shown that Zc 2 x 9. It remains to show that (¥,7") € Z. Since 0 € 8X,
we deduce from (26) that s*—L0" € Ax, Lx—r=y +z, 06 By — 7", and 0 € Dz —7". Therefore, Lx —r € B 'v* +
D~'%" and (28) thus yields (¥,7%) € Z.

(iv): The implication zer 8 # 0 = % # 0 follows from (iii). Next, we derive from (29) and (28) that

PD+0 = (Fo'€G) -re-LAYs"~L7"))+B 5"+ D 'o"
= (3A@,X)eGOH) —re-Lx+B 5" +D'%" and x€ A !(s' - L'7")
= AFXT)eHDG) s—L'T €A% and L¥x—reB 5" +D 7"
= Z+0. (32)

However, (iii) asserts that zer 8 # ) = Z # 0. Therefore, it remains to show that Z # 0 = zer 8§ # (0. Towards this
end, suppose that (¥,7°) € Z. Then, by (28), s — L'0* € AX and Lx —r € B"'o* + D™'7". Hence, 0 € —s* + Ax + L'7",
and there exists (7,Z) € GG such that ¥ € B™'7", z € D™'%", and LX — r = § + Z. We thus deduce that 0 € By — 7",
0Dz -7", and r— LX + i + z = 0. Consequently, (26) implies that (¥,¥,z,7") € zer 8.
(v): In view of (iv), it suffices to establish that # # 0 = & # 0. Suppose thatx € 2.
[a]: Suppose that I = {1}. We then infer from (1) that there exists 7" € G such that
{S; € A1x1+Cix1 + Qlfl +Rix + ZL%?};

keK (33)

(Vk € K) T € (By + B{ + BY) O (D’ + Dj + D)) (Lia X1 — 7).

Therefore, by (2), 7" € 9.
[b]: Set (Vk € K) 7 = ((By' + By + B{) ) (Dy’ + Di + D}))(Xe1LigX; — 1v)- Then 7" solves (2).
[c] = [b]: See Combettes [23, section 4].
[d]: Let i € I. It results from our assumption that

S; S Aifi + Cifi + Qifi-i- Rif + L*(((Blm + B; + Bf)D (D;ﬁ + Df + Df))(Luf, — 7’,‘))

> Lg%~ Tk))- (34)

+ > L;;,.(((B,:” +Bj +By) 0 (D{' + Dg + Dy))
jel

keK\I

Thus, there exists 7; € G; such that 7} € (B + B; + BY) 1 (D" + D¢ + DY))(L;x; — r;) and that

st €AX; +CX+ QX+ RX+ LT + D L,;.(((B;j +B; +B) 0O (Dy + Di + D,f))(z Lyx; — rk)). (35)
keK\I jel
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As a result, upon setting

(Vke K\I) o, = ((B{ + Bj + B{) 0 (D}’ + D + DY))

> Lix; - rk), (36)

jel

we conclude thatv" e . O

Remark 1. Some noteworthy observations about Proposition 1 are the following.

(i) The Kuhn-Tucker set (23) extends to Problem 1 the corresponding notion introduced for some special cases in
Alotaibi et al. [1], Briceno-Arias and Combettes [14], and Combettes and Eckstein [25].

(ii) In connection with Proposition 1(v), we note that the implication # # 0 = Z # 0 is implicitly used in Comb-
ettes and Eckstein [25, theorems 13 and 15], where one requires Z #  but merely assumes % # 0. However, this im-
plication is not true in general (a similar oversight is found in Alotaibi et al. [1], Pesquet and Repetti [45], and
Rosasco et al. [52]). Indeed, consider as a special case of (1), the problem of solving the system

(37)
0 € By(x1 +x3) — Ba(x1 — x2)

{0 € By (x1 +x2) + Bo(x1 — x2)
in the Euclidean plane R?. Then, by choosing B; = {0}_1 and B, =1, we obtain # ={(x1, —x1) | x1 € R}, whereas
Z=0.

(iii) As stated in Proposition 1(iii), any Kuhn-Tucker point is a solution to (1)-(2). In the simpler setting consid-
ered in Combettes and Eckstein [25], a splitting algorithm was devised for finding such a point. However, in the
more general context of Problem 1, there does not seem to exist a path from the Kuhn-Tucker formalism in H® G
to an algorithm that is fully split in the sense of @. This motivates our approach, which seeks a zero of the saddle
operator 8 defined on the bigger space X and, thereby, offers more flexibility.

(iv) Special cases of Problem 1 can be found in Alotaibi et al. [1], Combettes and Eckstein [25], and Johnstone and
Eckstein [34, 35], where they were solved by algorithms that proceed by outer approximation of the Kuhn-Tucker
set in H © G. In those special cases, Algorithm 1 below does not reduce to those of Alotaibi et al. [1], Combettes and
Eckstein [25], and Johnstone and Eckstein [34, 35] since it operates by outer approximation of the set of zeros of the
saddle operator 8 in the bigger space X.

The following operators will induce a decomposition of the saddle operator that will lead to a splitting algo-
rithm which complies with our requirements ®-6.

Definition 2. In the setting of Definition 1, set

iel

M:X—2%: (x,y,209 |—>(X

-7 + Aix; + Qix; + Rix + Z L,*a-UZ), k)g((B;’j‘yk + Bly, —v}),
€

keK
I{)E%(D,j”zk +Diz — ), k>§< {rk + Yk + 2z — % Lkixi} ) (38)
and
C:X = X: (5,,2,0) > ((Coxdier, Biyiker (Dizi)ierc O (39)

Proposition 2. In the setting of Problem 1 and of Definitions 1 and 2, the following hold:
(i)S=M+C.
(ii) M is maximally monotone.
(iii) Set a = min{a} B0} }ier kex- Then the following hold:
(a) C is a-cocoercive.
(b) Let (p,p*) € gra Mand q € X. Then zer 8§ C {x eX| {(x-p|lp*+Cqg)< (4a)_1||p - q||2}.

Proof.
(i): Clear from (21), (38), and (39).
(ii): This is a special case of Proposition 1(i), where, for every i € I and every k € K, C;= 0 and B; = D;, = 0.
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(ili)(a): Take x = (x,y,z,v*) and y = (a, b, ¢, w") in X. By (39) and Problem 1[a]-[c],
(x—y|Cx—Cy) = > (x;—a;|Cix; — Cias) + >, ((yx — bi| By — Bb) + (z — c | Djzi — Djcx))

iel keK
> > adl|Cixi — Cail* + > (BEIIByx — Bibyl* + §lIDjzx — Dierl?)
i€l keK
> a>|ICixi— Cail” + a> (1B — Byl + IDjzx — Dieel )
i€l keK
= a/|Cx - Cy|*. (40)

(iii)(b): Suppose that z € zer 8. We deduce from (i) that —Cz € Mz and from our assumption that p* € Mp. Hence,
(ii) implies that (z— p|p* + Cz) < 0. Thus, we infer from (iii)(a) and the Cauchy-Schwarz inequality that

(z-plp"+Cq)=(z—p|p"+Cz)-(z-q[Cz—-Cq) +(p—-q|Cz—-Cq)
< —allCz-Cq|f* +|lp—q| [[Cz - Cq]
2
= (4a)™"lIp - all* ~|2va)lp - all - ValiCz - Cal
< (o) Mp-al?, (41)
which establishes the claim. O

Next, we solve the saddle form (22) of Problem 1 via successive projections onto the outer approximations con-
structed in Proposition 2(iii)(b).

Proposition 3. Consider the setting of Problem 1 and of Definitions 1 and 2, and suppose that zer 8 # (. Set
a =min{a; B0 e ke, let Xo € X, let € € ]0,1[, and iterate

forn=0,1,...

(P, P;) €graM; q,€X;

t,=p; +Caq,;

Ay = (X =P, [t — () P, — a,lI%;

if Ay>0 (42)
An€le,2—¢];
Xus1 = X — (A A /€D

else

an+1 = X

Then the following hold:
(i) (Vz € zer 8)(Vn €N) [[x41 — 2] < [jx, — 2]}

(ﬁ) ZneN”an - xn||2 < +o00.

(iii) Suppose that ('), is bounded. Then lim A,, < 0.
(iv) Suppose that X, —p,, — 0,p,, —q, — 0, and t, — 0. Then (X,), .y converges weakly to a point in zer 8.

Proof. (i) and (ii): Proposition 1(ii) and our assumption ensure that zer 8 is a nonempty closed convex subset of
X. Now, for every n €N, set n, = (4a)”'||p, — q,|I* + (p, |t;) and H, = {xeX | (x|t;)< n,}. On the one hand, ac-
cording to Proposition 2(iii)(b), (Vn € N) zer § C H,. On the other hand, (42) gives (Vn € N) A, = (X, |t;) —n,. Al-
together, (42) is an instantiation of (A.3). The claims thus follow from Lemma A.4(i) and (ii).

(iii): Set p = sup, lIt,l|. For every n €N, if A, >0, then (42) yields A, = A;lllt;H (X1 = Xol| < €7l |Xo1 — Xl
otherwise, A, < 0= &1 u|[X,+1 — X,,||. We therefore invoke (ii) to get lim A, < lim e~ p||X,,41 — X,,|| = 0.

(iv): Let x€ X, let (k,),y be a strictly increasing sequence in N, and suppose that x;, — X. Then p, =
(Px, — Xk,) + Xk, — X. In addition, (42) and Proposition 2(i) imply that (py P} + CPx,)ey lies in gra (M +C) = gra 8.
We also note that, since C 1is (1/a)-Lipschitzian by Proposition 2(iii)(a), (42) yields |[|p} +Cp,ll=
It — Ca, +Cp,lI< It +]ICp, — Ca,ll < |It, |l +|lp, — d.ll/a — 0. Altogether, since 8§ is maximally monotone by
Proposition 1(i), Bauschke and Combettes [9, proposition 20.38(ii)] yields x € zer 8. In turn, Lemma A 4(iii) guar-
antees that (X,),ey converges weakly to a point in zer 8. O
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The next outer approximation scheme is a variant of the previous one that guarantees strong convergence to a
specific zero of the saddle operator.

Proposition 4. Consider the setting of Problem 1 and of Definitions 1 and 2, and suppose that zer 8 # 0. Define
5:]0, + 00[x]0, + 0o[x R X R — R?
(1,A/7), if p=0;
(A, 1,6, x) =13 0,(A+ x)/7), if p#0 and xA > p; where p=1c— x> (43)
(1-=xA/p,cA/p), if p#0 and xA<p,
set v = min{a;,B,0; }ies ke, and let Xo € X. Iterate
forn=0,1,...
(P.,P;) EgraM;q, €X;
t, =p, +Ca,;
A= Xy =Py 1t,) = (42) I, — a,lF%;
if A,>0
T = 15 ¢ = %0 = Xall%; X = (X0 = Xul);
(K, An) = E(An, T, Gy X
X1 = (1 = K,)X0 + KXy — Aut;

(44)

else

|_xn+1 =Xy

Then the following hold:
(i) (Vn € N) [Ix, = Xoll < [Xn41 = Xoll < [Iproj,e, gXo = Xoll-
(ﬁ) ZneN”erl - anz < too.

(iii) Suppose that ('), is bounded. Then lim A, < 0.
(iv) Suppose that X, —p, — 0, p, — 4, — 0, and t, — 0. Then X, — proj,,, gXo.

Proof. Set (VneN) 1, = (4a)"||p, - q,/* +{p,|t,) and H, = {xeX | (x|t,)<n,}. As seen in the proof of
Proposition 3, zer 8 is a nonempty closed convex subset of X and, for every n € N, zer 8§ C H,, and A, = (x,,|t},) — 1,,.
This and (43) make (44) an instance of (A.4).

(i) and (ii): Apply Lemma A.5(i) and (ii).

(iii): Set pt = sup, |It;||. Take n € N. Suppose that A, > 0. Then, by construction of H, proj; X, =X, — (An/ ||t;||2)t;.
This implies that A, = |t} ||[[projy X» — Xull < pllprojy X — Xul|. Next, suppose that A, < 0. Then x, € H,, and therefore

A, <0= ,u||pr0anXn — X,||. Altogether, (Vn e N) A, < yllproanxn — X;||. Consequently, Lemma A 5(ii) yields lim A, < 0.

(iv): Follow the same procedure as in the proof of Proposition 3(iv), invoking Lemma A .5(iii) instead of Lemma
AA(i). O

3. Asynchronous Block-Iterative Outer Approximation Methods
We exploit the saddle form of Problem 1 described in Definition 1 to obtain splitting algorithms with features
@®-®. Let us comment on the impact of requirements @-@.

@ For every i €  and every k € K, each single-valued operator C;, Q;, R;, B, B,{, Dy, D,f, and L;; must be activated
individually via a forward step, whereas each of the set-valued operators A;, By, and D}’ must be activated individ-
ually via a backward resolvent step.

@ At iteration 1, only operators indexed by subgroups I, C I and K, C K of indices need to be involved in the
sense that the results of their evaluations are incorporated. This considerably reduces the computational load com-
pared to standard methods, which require the use of all the operators at every iteration. Assumption 2 below regu-
lates the frequency at which the indices should be chosen over time.

@ When an operator is involved at iteration #, its evaluation can be made at a point based on data available at an
earlier iteration. This makes it possible to initiate a computation at a given iteration and incorporate its result at a
later time. Assumption 3 below controls the lag allowed in the process of using past data.
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@ Assumption 1 below describes the range allowed for the various scaling parameters in terms of the cocoerciv-
ity and Lipschitz constants of the operators.

Assumption 1. In the setting of Problem 1, set & = min{ay, B}, O; }icr kex, let 0 €]0, + oo[ and ¢ €]0, 1[ be such that

o>1/(4a) and 1/e> max{af +x+o0, ﬁlf +0,6 +0}i61keK, (45)

and suppose that the following are satisfied:
[a] Foreveryi€landeveryn €N, y, €|, 1/(al + x +0)].
[b] For every k € Kand everyn €N, y, € [, 1/(ﬁ,f +0)], vin € e, 1/(6£ +0)],and oy, € [€,1/¢€].
[c] For everyiel, x;o € Hy; for every k € K, {yk,o,zkfo,v;zro} C Gy.

Assumption 2. I and K are finite sets, P € N, (I,),e are nonempty subsets of I, and (Ky,),c are nonempty subsets of K
such that

n+P n+P
Iy=1, Ko=K, and (VneN) | JI;=1 and | JK;=K. (46)
j=n j=n

Assumption 3. I and K are finite sets, T € N, and, for every i € I and every k € K, (11,(n)) ;e and (wi(n)),,en are sequences
in Nsuch that (Vn e Ny n—T< mi(n) < nandn—T < wi(n) < n.

Our first algorithm is patterned after the abstract geometric outer approximation principle described in
Proposition 3. As before, bold letters denote product space elements, for example, x,, = (X;,);e; € H.

Algorithm 1. Consider the setting of Problem 1 and suppose that Assumptions 1-3 are in force. Let (A,),cy be a
sequence in [¢,2 — €] and iterate

forn=0,1,...

for every i € I,
l;n = Qixirﬁi(”) + Rixni(”) + Z Lkivli,ni(n)’.
keK
Ain = ])’i,ni(,,)Ai(xiﬂx(”) + yi,ni(n)(s; - l;,n - Cixi,ﬂi(ﬂ)));
* a1 * .
iy = yi,ni(n)(xi,ni(n) - ai,n) - lz‘,n + Qiai,nr

2
_51’,11 = “ai,n - xi,n;(n)” ’
for every i € I\I,,

Ain = Aip-1; 3, = 05,15 Ein = Ein-1;
for every k € K,
“Z,n = U;,mk(n) - Bgyk,ﬂ)k(”);
wz,n = Uli,mk(n) - Dizkr“)k(n);
bkr” = ]!’lk,mk(n)B;/(N (yk,wk(”) + Hk,wk(n)(uz,n - Biyk,wk(n))); (47)
i = Jup 0Dy Feantn) + Vi) @iy = DiZic,n));
Cn = 0. k,wk(m( Z;J LiixXi o, (m) = Ykaon(n) = Zkaon) = T | + Uk oy
1€
T = Moty W) = D) + U + Bbion — €
B = Vi) @hg) = Bion) + W, + Didien = € 5
Men = bin = Vi + din = Zk o, 55

Cn =Tk + by +din — O Liatlin;
- iel

for every k € K\K,

bkr" = bk,n—l; dkr” = dk/”—l; e;,n = elz,n—l; q;;,n = qz,n—l; tly;,n = tlt,n—l’.

nk,n = nk,n—l; Cxn =T+ bk,n + dk,n - Z Lkiai,n;
- iel
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for everyiel

* ok X * %,
Lpi,n - ui,n + R’“” + Z Lkiek,n’
keK

- —<4a>1(2 > n) S s )
iel keK iel

+ > (Win — bin |Gk ) + (2o = din | 1,0 + Cein | O, — €0
keK

if Ay>0

0, = AnAn/

qk,n

S+

i€l keK
for every i € I

Xin+l = Xin — an;,n"
for every k€ K

2 (12 2
P+ 11, IP + el ));

Yin+1 = Yien — an};n; Zkn+1 = Zkn — Gnt};n; Uz,,ﬁl = Uli,n - 6nek,n;
else
for everyiel
Xin+1 = Xiny
for every k € K
Yin+1 = Yinr Zkn+l = Zins U}i’nﬂ = UZ,W

The convergence properties of Algorithm 1 are laid out in the following theorem.

Theorem 1. Consider the setting of Al%orithm 1 and suppose that the dual problem (2) has a solution. Then the following hold:

(i) Letiel Then 3, cnllXins1 — Xin||” < +o00.

.. 2 2 * * 2
(ii) Let k € K. Then 3, enllYinir = Yanll” < +00, 3 enllzi 1 — zkull™ < 400, and 3, o104 — 0x ,ll7 < +o00.

(ili) Let i € I and k € K. Then x;,, — a;p — 0, Yy — by — 0, 2y — diy — 0, and Vin =€ — 0.

(iv) There exist a solution X to (1) and a solution v" to (2) such that, for every i € I and every k € K, x;,, — X;, a;,, — X;, and

Upn — Uy In addition, (x,0") is a Kuhn-Tucker point of Problem 1 in the sense of (23).

Proof. We use the notation of Definitions 1 and 2. We first observe that zer 8 # 0 by virtue of Proposition 1(iv).
Next, let us verify that (47) is a special case of (42). For every i € I, denote by 9,(n1) the most recent iteration pre-
ceding an iteration n at which the results of the evaluations of the operators A;, C;, Q;, and R; were incorporated,

and by 9;(n) the iteration at which the corresponding calculations were initiated, that is,
Si(n)=max{jeN|j<n and i€} and ¥;(n)=m(3:(n)).

Similarly, we define

(VkeK)(VneN) g(n)=max{jeN|j<n and keK;} and g,(n) = w(g,(n)).

By virtue of (47),

(Vl € I)(Vn € N) Ain = ai,§[(ﬂ)’ u;n = u:,g,‘(n)’ ‘5[,71 = éi,gz(”)’
and likewise
bin = bg, e den = iz Min = Mg, n)

*

(Vk e K)(Vn E N) * £ * * *
Cn = g, Ton = Tz, ton = teg,in)-

To proceed further, set
Xy = (Xn, Y,y Zn, 0})
P, = (au,by,dye))
(VneN) {p;,=p;, = (Cixis,0m)ier 9 = Bilk g,00)keks By = (Dizk g, m) Jkeks €n)
a4y, = ((x3,9,00)ier Wi, 0,00) Jkekr (Zr 0,0 ek (€ 1 ke)
t = 4.t en).

(48)

(49)

(50)

(51)

(52)
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For every i€l and every n €N, it follows from (50), (48), (47), and Bauschke and Combettes [9, proposition
23.2(ii)] that

Ay = CiXig,m) = ;5,0 ~ Gy 5,
= Vim0 K@) = %500 ~ s~ Cim@ion) + Q5,00
€—s; + Ai“i,@(n) + Qf”z‘,&(n)
=—5;+Aitin + Qiflin (53)
and, therefore, that

p:,n - Cixi,si(") = a;,n - Cixi,si(") +Rian + Z LZieZ,n

keK
€ =S} + Aittin + Qi + Ridn + D Lisey - (54)
keK
Analogously, we invoke (51), (49), and (47) to obtain
(VkeK)(VneN) q;, = BiYio,on € Bi bin + Bibin — €, (55)
and
(VkeK)(VneN) t;, — Dz, € Df'din + Didy — € - (56)
In addition, (47) states that
(Vke K)(VneN) e, =1 +biy +din— O Liitlin- (57)

iel
Hence, using (52) and (38), we deduce that (p,,,p;},),.ey lies in gra M. Next, it results from (52) and (39) that (Vn € N)
t, = p;, + Cq,. Moreover, for every n € N, (47)—(52) entail that

Z Ei,n + Z nk,n = Z éz‘,§,(n) + % nk@k(”)
€

iel keK iel

2 2 2
=2 19, 5,00 = X mmpll” + kZI; (||bk,§k(n) ~ Yea@mll” + 1k3,00 = Zk @l )
€

iel
= 3 i = xislP + 3 1Bk = Vi o0ll + ln = 2 00%)
iel keK
= llp, — a,l (58)
and, in turn, that
Ay = <xn_pn|t;>_(4a)_1”pn _qn”2~ (59)
To sum up, (47) is an instantiation of (42). Therefore, Proposition 3(ii) asserts that
Z (X1 — xn||2 < +o00. (60)
neN

(i) and (ii): These follow from (60) and (52).
(iii) and (iv): Proposition 3(i) implies that (X,),y is bounded. It therefore results from (52) that

n)nens W)nens (Zu)pen, and (v)),en are bounded. (61)

Hence, (51), (47), (49), and Assumption 1[b] ensure that

(Vke€K) (€} ,)nen = (Gk,gk(n)(z LyixXi g, (n) = Yk,o,(n) — Zh,0,(m) — rk) + UZ,Qk(n)) is bounded. (62)
iel neN

Next, we deduce from (61) and Problem 1[e] that
(Viel) (Rixg,m))uen is bounded. (63)

In turn, it follows from (47), (61), the fact that (Q;);c; and (C;),; are Lipschitzian, and Assumption 1[a] that

(Viel) (x,,sl(n)+yilsi(n)(s;—1;,§i(n)—cixi,s,(,,)))neN is bounded. (64)
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An inspection of (50), (47), (48), and Lemma A.1 reveals that
(V€D @iners = (Tyyos(Koom + Vi[5 =~ C""f/sf(”))))nm is bounded. (65)
Hence, we infer from (50), (47), (61), and Assumption 1[a] that
(Viel) (a;,)uen is bounded. (66)
Accordingly, by (47), (61), and Assumption 1[b],
(Vk € K) (yk,@k(n) + Uy Qk(n)(uz@(n) - Bl{éyk’gk(n)))nel\! is bounded. (67)
Therefore, (51), (47), (49), and Lemma A.1 imply that
(Vk € K)  (bxn)pen = (] g B (yk,gk(n) + Qk(n)(u};@k(n) - Bliyk’g"(n))))neN is bounded. (68)
Thus, (51), (47), (61), (62), and Assumption 1[b] yield
(4,)nen is bounded. (69)
Likewise,
(dn)yeny and (t)),ey are bounded. (70)
We deduce from (57), (68), (70), and (65) that
(en),en 1s bounded. (71)
On the other hand, (47), (66), (65), Problem 1[e], and (62) imply that
(P nen is bounded. (72)
Hence, we infer from (52) and (69)—(71) that (t,),,cy is bounded. Consequently, (59) and Proposition 3(iii) yield
Tim (%, — P, |t,) — (40) " [Ip,, - @, ") = im A, < 0. (73)
Let L and W be as in (24) and (27). For every n € N, set
(VZ € I) Ei,n = )/;éi(”)ld - Q,'
(VkeK) Fi, = ‘u;;)k(n)ld —B{, Gi,= v,;})k(n)Id -Df (74)
En X - X: (x/ Y,z ZJ*) [ ((Ei,nxi)ielf (Fk,nyk)keK/ (Gk,nzk)keK/ (O_]:,z;k(n)UZ)keK)
and
Xy = ((xz’,Si(n))z‘elz (]/k,gk(n))keK/ (Zk,@k(n))keK/ (UZ,@k(n))keK)
v; =E.x, - E,p,, w;, =Wp, — Wx,
r, = (Rian = Rixy);e1, 0,0,0), ?:1 = ((Ria, — RixS,(n))ieI/ 0,0,0) (75)
b= ((_Z L;in,si(”)) ’ (U}Z’@k(”))kEK/ (UZ'Pk(’7))keK' (Z Lt = Yhan = Zk'gk(n)) )
keK iel i€l keK
In view of Problem 1[a]-[c] and Assumption 1[a] and [b], we deduce from Lemma A.2 that
(VneN) the operators (E;,),;; are (x + o) -strongly monotone 76)
the operators (Fy,)iex and (Giu)rex are o-strongly monotone,
and from (74) that there exists « €]0, + co[ such that
the operators (E,),oy are x-Lipschitzian. (77)
It results from (50), (47), (48), and (74) that
(Viel)(VneN) a;, = a:,§i(n)
— (41 -1
= (Vz-,n,.(5,.(n>>xi,n,-<5,-<n>> - Qixi,m&(n))) - (yi,n,-(§,-(n))ai,§i(") - Qi“z;&(n)) ~ R 5y ~ %; LV (5,0
(78)

* £
= EinX; 8,(n) — Einflin — Rixg,n)— > LV 9,(n)
keK
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and, therefore, that

(Viel)(VneN) p;,=a;, +Ria, + ZLliieli,n
keK

= Ei,ﬂxi,si(‘ﬂ) - Ei/”ai/n +Ria, — Rixsi(n) - Z LZivz,Si(n) + Z Lliieli,n'
keK keK

At the same time, (51), (47), (49), and (74) entail that

(VkeK)(VneN) 4;,=qi50m

_ -1 4 -1 L * %
= (F‘k,wk@k(n))yk,mk@k(n)) - Bkyk,wk@(n))) - (F‘k,wk@k(n))bk@k(n) - Bkbk,ﬁk(n)) T Vhwn(@,(n) ~ g, (n)

= Fk,n]/k,gk(n) - Fk,nbk,n + vz,gk(n) - e;,n
and that

(Vke K)(VneN) ., = GiuZi g — Grndin + Vi ) — €
Furthermore, we derive from (51), (47), and (49) that

_ 1 s IR
(Vke K)(VneN) 1= 0y (0 Vhko,0n ~ Tk, (m)Chn ~ Yhgn) ~ Zhg(m) + ZI] Lkixi,g (n)
1€

and, in turn, from (57) that

_ -1 * -1 *
(Vke K)(V €N)  exn = 0% g, () Uk g,m) ~ Tk (m)Chn ~ Yk (n) ~ Zhoy(m)
+> Lyixi g (n) + bin + dign — > Liitiipn-

icl el
Altogether, it follows from (52), (79)—(81), (83), (74), (75), (27), and (25) that
(VneN) t =ExXx,—E,p,+r, +I, +Wp,.
Next, in view of (60), (48), (49), and Assumptions 2 and 3, we learn from Lemma A.3 that
X3,(n) = %n — 0, Xy () —%n — 0, and Uy~ 0 — 0

*

(VieI)(Vk e K) {
@k(”)

Yo ~Yn =0, 2y =20 — 0, and v} ()~} — 0.

Thus, (75), (27), (25), and (24) yield
I, +Wx, — 0,
while Problem 1[e] gives
(Viel) |Rxs,m — Rixall < xllxs,0n) — xull — 0.
On the other hand, we infer from (77), (75), and (85) that
IExX — EnXull| < x]IX,; = Xyull — 0.
Combining (84), (75), and (86)—(88), we obtain
t — (v, +r,+w,) =1, + Wx, +E,X, - E,x, +T, -, — 0.
Now set

(VTl € N) an = (xn/ynrzn/ e:l)

(79)

(80)

(82)

(83)

(84)

(85)

(86)

(87)

(89)

(90)
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Then (,,),ey is bounded by virtue of (61) and (62). On the one hand, (52), (62), (65), (68), and (70) imply that
(P,)en is bounded. On the other hand, (52) and (85) give

an -9, 0. (91)
Therefore, appealing to the Cauchy-Schwarz inequality, we obtain

|<pn - anlan - qn>| < (Sup ||pm” + sup ”amH)”an - qn” -0 (92)
meN meN
and, by (89),
[(Xp = P, [t — (v, + 1, + W) | < (sup (1%l + sup IIPmII)IItZ — (v, +1,+wW,)[[— 0. (93)
meN meN

However, since W' = —W by (27), it results from (75) that (Vn € N) (x,, — p,, |w},) = 0. Thus, by (73) and (91)—(93),
0> lim ((x, - p, It,) = (42) ' lp,, — a,I*)
=Tim (X, = P |V, + 1, + W) + (X, = P, |8, = (v}, + 1, + ;) = (4a) "' [Ip,, — q, ")
=Tim ((x, = p, |V}, + 1) — (4a) " (Ip,, — Q,II* + 2(P, = A, |G — A, +11d,, = 1)
=lim ((x, = p, |V, +1,) - (40)"'llp, - G, ["). (94)

On the other hand, we deduce from (75), (52), (74), (76), Assumption 1[b], the Cauchy-Schwarz inequality,
Problem 1[e], and (90) that, for every n € N,

X = Py [V, + 1) — () p,, — G,
= <x77 - pn | Enxn - Enpn) + <x77 - pn | r;;) - (4a)_1”pn - anHz
= Z <xi,n —din |Ei,nxi,n - Ei,nui,n> + Z <yk,n - bk,n |Fk,n]/k,n - Fk,nbk,n>

iel keK
+ Z <Zk,n - dk,n | Gk,nzk,n - Gk,ndk,n> + Z O']:j;k(n)Hv}i,n - ez,nllz
keK keK

+ (%, = a,| Ra, — Rx,)) - (4a) " [Ip,, — Q,I°
> (x +0)llxy = aull® + ally, = ball* + ollz, — dul®
+ [0}, - &I = llxy — aul| IRa, — R, || - (4) ' [lp,, — QI
> (¢ +0)llxn = anll® + ally, = ball* + llzn -l
+ el[v], — €, I* = xlbxn = anl* = (42) ' lIp, — Gl
= (07— (4a) ) (lxn = anll® +1ly,, = bull +llz0 = dul) + ell0], - €. (95)
Hence, since 0 > 1/(4a) by (45), taking the limit superior in (95) and invoking (94) yields
x,—a,—0,y,-b,—0, z,-d,—0, and v, ¢, —0, (96)

which establishes (iii). In turn, (52) and (77) force

X, =P, — 0 and [[E;x, —E.p,l < «lx.—p,ll — 0, 97)
and (85) thus yields p,, — g, — 0. Furthermore, we infer from (75), (96), and Problem 1[e] that
7,17 = IR, — R, |* < xllan — x4|* — 0. (98)
Altogether, it follows from (75), (89), (97), and (98) that
t =t —(v,+r,+w,)) +(E.,x, —E,p,) +W(p, —x,) +r, = 0. (99)

Hence, Proposition 3(iv) guarantees that there exists X = (¥,y,z,7") € zer 8 such that x, — X. This and (96) imply
that, for every i € I and every k € K, x;,, — X;, 4, — X;, and Ve — 0. Finally, Proposition 1(iii) asserts that (x,7")
lies in the set of Kuhn-Tucker points (23), that ¥ solves (1), and that 7" solves (2). O

Some infinite-dimensional applications require strong convergence of the iterates; see, for example, Attouch
et al. [3, 4]. This will be guaranteed by the following variant of Algorithm 1, which hinges on the principle out-
lined in Proposition 4.
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Algorithm 2. Consider the setting of Problem 1, define E as in (43), and suppose that Assumptions 1-3 are in
force. Iterate

forn=0,1,...
for every i € I,
lzn = QiXiny(n) + Rixrym) + Z LZiUZ,ni(n);
keK

Aipn = ]y,,ni(,,)Ai (xf,ﬂi(ﬂ) + Vi,rz,(n)(szr - l;,n - Cixfrﬂi(”)));
a;,n = y;;‘(n)(xi,m(n) — i) — l:n + Qiftin;
éi,n = ”ai,n - xi,m(n)llz;
for every i € I\I,
Ain = Ain-1, a;n = azn_y' gi,n = ‘Si,n—l;
for every k € K,
”Z,n = U;,mk(n) - B}fyk,wk(n);
Wi = U yn) ~ DkZhaontn)s
bk,n = ]pk,wk(y,)B,’\,” (yk,wk(”) + Hk,wk(n)(uz,n - Biyk,wk(")));
dk,n = ]vk,mk(,,,D,’(” (Zk,a)k(n) + Vk,wk(n)(w]i,n - D}izk,wk(n)));

€ = Okawy(n) Z LiixXi opn) = Yieworn) = Zkarm) = Tk | + Uk i ny?
i€l

i = By Wkt = bin) + 1, + Bibiy — € 5
Bon = Vewntn) Zhortn) = din) + Wy, + Didin = € 5
Nen = Bin = Vel + 1dkn = Zeao, ol

Lein = 1% + biw + diw — > Liittin;

iel

for every k € K\K,

bk,n = bk,n—l} dk,n = dk,n—1; 6};,, = e,*m_l,‘ q,’;n = q,*m_l ; t,’;n = t,’;n_l ;
_T]k,n = nk,n—l; Ckn =Tk + bk,n + dk,n - Z Lkiai,n;
iel
for every i€l
[P = @+ Rit + > el (100)
keK
,1 "
Ay = —(40) (Z éi/" + Z nk,n) + Z <xi,n —in |P,-,n>
iel keK iel
+ D3 (Win = bin 1G5 ) + Zin = dion | 5,,) + e 105, — €5.,))5
keK
if A, >0
112 % 2 % 2 2
Tn = Dol + 25 ol + 1 I + el
iel keK
2
¢ =2 lIxio = xiull
iel 5 s R
+ >3 (ko = Yinll* + llzk0 = zenll” + 10} — 07 ,I°);
keK
Xn = Z <xi,0 — Xin p:n>
iel
+ Z((yk,o = Yieu |G ) {20 = Ziou [ £, + € | 0o — 0,0
keK

(Kn/ An) = E(Anl TnsCns Xn);
for every i € |
|21 = (1= K0)xi0 + KXo — AP s
for every k € K
Yin+1 = (1 - Kn)yk,o + Knlkn — A”q;;,n;
Zkn+l = (1 - Kn)zk,O + KnZkn — Ant;;/n}
| L0 = (1- KH)U;;O + K, — Anins

else
for every i € 1

Xin+1l = Xin,
for every k € K
Vil = Yins Zknal = Zkns Vg paq = Vg
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Theorem 2. Consider the setting of Algorithm 2 and suppose that the dual problem (2) has a solution. Then the following
hold:
(i) Letiel Then >, cnllxine1 — x,4,n||2 < 400.

. 2 2 * 112
(11) Let k € K. Then ZneNHyk,nH - yk,n” <+too, ZneN“Zk,nH - Zk,n” < +oo, and ZneN”vk,nH - z]k,n” < +oo.
(ili) Let i € I and k € K. Then x;,, — a;p — 0, Yy — by — 0, 2y — diy — 0, and Vin =€ — 0.

(iv) There exist a solution x to (1) and a solution 0" to (2) such that, for every i € I and every k € K, x;,, = X;, ajn — X;,
and v, — Oy In addition, (x,7") is a Kuhn-Tucker point of Problem 1 in the sense of (23).

Proof. Proceed as in the proof of Theorem 1 and use Proposition 4 instead of Proposition 3. O

4. Applications

In nonlinear analysis and optimization, problems with multiple variables occur in areas such as game theory
(Attouch et al. [2], Bricenio-Arias and Combettes [15], Yi and Pavel [56]), evolution inclusions (Attouch et al. [3]),
traffic equilibrium (Attouch et al. [3], Fukushima [31]), domain decomposition (Attouch et al. [4]), machine learn-
ing (Bach et al. [6], Bricefio-Arias et al. [12]), image recovery (Bricefio-Arias and Combettes [13], Bricefio-Arias
et al. [16]), infimal-convolution regularization (Combettes [23]), statistics (Combettes and Miiller [26], Yan and
Bien [55]), neural networks (Combettes and Pesquet [27]), and variational inequalities (Fukushima [31]). The nu-
merical methods used in these papers are limited to special cases of Problem 1, they do not perform block itera-
tions, and they operate in synchronous mode. The methods presented in Theorems 1 and 2 provide a unified
treatment of these problems and extensions, within a considerably more flexible algorithmic framework. In this
section, we illustrate this in the context of variational inequalities and multivariate minimization. Below we pre-
sent only the applications of Theorem 1, as similar applications of Theorem 2 follow using similar arguments.

4.1. Application to Variational Inequalities
The standard variational inequality problem associated with a closed convex subset D of a real Hilbert space G
and a maximally monotone operator B: G — G is to

find ¥ € D such that (VyeD) (y—y|By) <O0. (101)

Classical methods require the ability to project onto D and specific assumptions on B such as cocoercivity,
Lipschitz continuity, or the ability to compute the resolvent (Bauschke and Combettes [9], Facchinei and Pang
[30], Tseng [53]). Let us consider a refined version of (101) in which B and D are decomposed into basic compo-
nents and for which these classical methods are not applicable.

Problem 2. Let I be a nonempty finite set and let (74;),c; and G be real Hilbert spaces. For every i € I, let E; and F; be
closed convex subsets of H; such that E; N F; # 0 and let L; : H; — G be linear and bounded. In addition, let B :
G—2Y% be at most single-valued and maximally monotone, let B°:G— G be cocoercive with constant
B €10, + oo, and let B : G — G be Lipschitzian with constant g € [0, + co[. The objective is to

find 7 € Z Li{E; N F;) such that

iel iel

Vye > LiE; mm) (7—y|B"F+BF+BF) <0, (102)

To motivate our analysis, let us consider an illustration of (102).

Example 1. Let I be a nonempty finite set and let (Z;),; and /K be real Hilbert spaces. For every i €I, let S; C Z; be
closed and convex, and let M; : Z; — K be linear and bounded. In addition, let f € I'((K) be Gateaux differentiable
on dom df, let ¢ : £ — R be convex and differentiable with a Lipschitzian gradient, let V be a real Hilbert space,
let g € To(V) be such that ¢* is Gateaux differentiable on dom dg*, let D be a closed convex subset of V such that

0 esri(D—-dom g), (103)

let h € T'y(V) be strongly convex, and let L : K — V be linear and bounded. By Bauschke and Combettes [9, theorem
18.15], b is differentiable on V and V" is cocoercive. The objective is to solve the Kuhn-Tucker problem

find (x,7") € KDV such that

0 A/ Vo 0 || X 0 Lf|x Ne 0 [|x
€ + + + , (104)
0 0 Vg ||z 0 vm||l7* -L o||7 0 Npl|z
— e ——— — e —— ———— e

monotone cocoercive Lipschitzian normal cone
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where it is assumed that

C= ZMZ»(S,-) is closed and 0 € sri (C—dom f). (105)

iel

Since domh* =V, we deduce from (103) and Bauschke and Combettes [9, proposition 15.7(i)] that
gOhOop eToH(V). It follows from standard convex calculus (Bauschke and Combettes [9]) that a solution (X,7")
to (104) provides a solution ¥ to

miniggize f(x)+(gOhOop)(Lx) + @(x), (106)

as well as a solution 7" to the associated Fenchel-Rockafellar dual

minjerlrjlize (f+@)'Ooc)(-Lv") +g"(v") + b (v"). (107)

To see that (104)—(105) is a special case of Problem 2, set G = K@V and
(VZ € I) Li:H;= ZlEBV —G: (Zi,U*) — (Mizi,v*/card I), E;=S;xD, and F;=2Z; X V. (108)
Note that

CxD= > L(EiNF). (109)

iel
Furthermore, in view of Bauschke and Combettes [9, proposition 17.31(i)], let us define

if (x,v") € dom df x dom dg*;

, otherwise
B :G— G:(x,0") — (Ve(x), VI'(0")) (110)

B{:G—G:(x,v") — (L'v*, — Lx).

B”:G— 25 . (X, U*) — 8(f@g*)(x, U*) _ ((Z)Vf(x)/ Vg*(v*)),

Then B” is maximally monotone (Bauschke and Combettes [9, theorem 20.25]), B* is cocoercive (Bauschke and
Combettes [9, corollary 18.17]), and B’ is a skew bounded linear operator and hence monotone and Lipschitzian
(Bauschke and Combettes [9, example 20.35]). In turn, combining (108) and (110), we conclude that (104) can be
written as

find (%,5") e KBV such that (0,0) € B”(%,7") + B (%,7") + B'(%,7") + Nexn (X, 7°), 111)

which, in the light of (109), fits the format of (102). Special cases of (106) involving minimization over Minkowski
sum of sets are found in areas such as signal and image processing (Aujol and Chambolle [5], Combettes and
Wajs [28], Ono et al. [41]), location and network problems (Nam et al. [40]), and robotics and computational me-
chanics (Wang et al. [54]).

We are going to reformulate Problem 2 as a realization of Problem 1 and solve it via a block-iterative method
derived from Algorithm 1. In addition, our approach employs the individual projection operators onto the sets
(Ei)jer and (F;);e; and the resolvents of the operator B”. We are not aware of any method which features such flex-
ibility. For instance, consider the special case discussed in Fukushima [31, section 4], where G = RN, B° =B/ =0,
T:RYN 5> RM is a linear operator, and, for every i€l, H; = RN, L;=1d, E; =T '({d;}) for some d; e R™, and
F; = [0,+co[N. There, the evaluations of all the projectors (projg . )er are required at every iteration. Note that
there are no closed-form expressions for (proj 5 );e; in general.

Corollary 1. Consider the setting of Problem 2. Let o €]1/(4p°), + oo[, € €]0,min{1,1/ (B +0)}[, and K = IU{k}, where
k ¢ I. Suppose that Assumption 2 is in force, together with the following:

[a] For every i € I and everyn €N, {yi,n, ‘ui,n,v,-,n} Cle, 1/c]and o;y € [€,1/€].

[b] For everyn e N, A, € [¢,2 — €], Hr, € [s,l/(ﬁ[ +0)], Vi, € e, 1/0], and Ot € [e,1/¢€].

[c] For every i € I, {xi0, Y30, 20,V 0} © Hi Y0, 250/ 05 o} © G-
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Iterate

forn=0,1,...
for every i € I,
L,=1,+ L;v%/n ;
i = PrOjg, (Xin = 7 L5 );
a;n = Vz_,i (Xin = i) = l;r,nl'
éi,n = |
for every i € I\,
Ain = Ain-1; 07 = 0715 Ein = Ein-1
for every k € K,
if kel
by = prOij(]/k,n + uk,nv;;,n)’.
e,*(/n = Uk,n(xk,n — Yikn — Zk,n) + Uz,n/‘
qli,n = /llz,}z(]/k,n - bk,n) + UZ,n - ez,n;
[ ein = bin = i
if k=k
uli,n = Uz,n - Bgyk,n;
bk,n = ]yk,nB'” (]/k,n + Uin (u;:,n - B[yk,n))}

ez,n = Ok/”(z Lixi,” —Ykn — Zk,") + vz,n;

i€l

2
Ain — xi,n” ;

| ¢ .
q2,71 - Auk,n(yk,ﬂ - bk,") + u;;’” +B bkrﬂ - ely;,n’
| Ckn = bk,n - Z Liai,n;

i€l

=1 o o
tk,n - Vk,nzk," + Z)k,n ek,n’

2 2

L e = ”bk,n _yk,nl + ”Zk,n” ; (112)
for every k € K\K,

bkr” = bkz”—l; ez,n = elz,n—l; qli,n = qz,n—l; tli,n = t;,n—l; nk,n = nk,n—l;

if kel

|_€k,n ibk,n — iy

ifk=k
L Lek,n = bk,n - Z Liai,n;

iel

foreveryiel
* o % * * ok,
Lpi,n - ai,n + ei,n + Lieﬁln/

Ay = _(45”)_1(2 51’,71 + Z nk,n) + Z <xi,n —in |p:,n>

i€l keK i€l
+ Z«yk,n - bk,n qun> + <Zk,n | t};n> + <ek,n Iv;;,n - ei,n»?
keK
if Ay>0

0 = AnAn/(Z 5l 517,017 + 185, + el 2));
i€l keK

for every i €]
|_xi,n+1 =Xin— enpzn;
for every k € K

Lyk,n+1 = Yin — anz,n; Zkn+l = Zkn — On tz,n’. vz,n-‘.l = vz,n - enek,n;
else

for every i €1

Xin+l = Xiny
for every k € K
| Yins1 = Yews Zins1 = Zows Oy in = Vo
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Furthermore, suppose that (102) has a solution and that
(Viel) Ngonr, = Ng + NFr,. (113)

Then there exists (X;);e; € D ier Hi such that 3 ,.; LiX; solves (102) and, for every i € I, x;,, — X; and a;,, — X;.
Proof. Set H = ©®;; H;. Let us consider the problem

find ¥ € H such that (Viel) 0€ NgX; +NgX; +L;(B” + B + BY) (Z L]-x]-) (114)

jel
together with the associated dual problem
(Viel) —=x;—L;jv" € Ngx; and X; € Nrx;

= (Bm + B+ Bf) (Z L]x]) (115)

jel

find (x*,7") e HDG such that (Ix e H)

Denote by 2 and & the sets of solutions to (114) and (115), respectively. We observe that the primal-dual problem
(114)—(115) is a special case of Problem 1 with

(VZEI) Ai:NE,-/ C,‘=Q1'=O, R1'=0, and S:»{:O, (116)
and
Gr="Hy, By =Np, Bi=B.=0 if ke[;
S w — N o c ¢t _ pt
Gr=G, By =B”, B:=B, BL=B
Dy ={0}", D{=D{=0, n,=0

(Vk € K) (117)
Id, if k=j;
(Vjel) Ly =40, if kel and k#7;
Furthermore, we have
(Viel)(VneN) Jy, i = PTOjg,
prOij' if kel; (118)

(VkeK)(VneN) Jy,p, =0 and Ju 5y = {] g, if k=k
Auk,n "~ -

Therefore, (112) is a realization of Algorithm 1 in the context of (114)-(115). Now define D = Xig(E; N F;) and
L:H—>G:xt— >,gLixi. ThenL : G — H :y* — (Ly");e;- Hence, by (102), Bauschke and Combettes [9, proposition
16.9], and (113),

- - B y=Lx
(VyeG) g solves (102) = (3x < D) {(Vx € D) (L¥ - Lx|(B” + B* + BY)(L¥)) < 0
- y=Lx
=(3xeD) {(‘v’x eD) (x—x|L'((B” + B+ B)(Lx))) < 0
- y=Lx
=@xeh) {0 € Npx + L*((B” + B + B')(Lx))
y=ILx
= (@xeH) I(Vi €1) 0€ Ngr X+ Li(B” + B + Bf)(z ijj)
jel

y=Lx
dx e
= (3xeH) (Viel) 0€ NgX;+NpX; +L;j(B” + B + B”")(Z Ljfj)
jel
— @%e?) j=Ix. (119)
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In turn, ? # 0 since (102) has a solution. Therefore, in view of (117), Proposition 1(v)[d] yields & # 0. As a result,
Theorem 1(iv) asserts that there exists (X;);; € 2 such that, for every i €I, x;, — X; and 4;,, — X;. Finally, using
(119), we conclude that >,,L;x; solves (102). O
Remark 2. Theorem 1 allows us to tackle other types of variational inequalities. For instance, let (H;);; be a finite
family of real Hilbert spaces and set H = @ ;; H;. For every i € I, let ¢, € To(H;) and let R; : H — H; be such that
Problem 1[e] holds. The objective is to

find x € H such that (Viel) 0€do,(x;) + Rix. (120)
This simple instantiation of Problem 1 shows up in neural networks (Combettes and Pesquet [27]) and in game
theory (Attouch et al. [2], Bricefio-Arias and Combettes [15]). Thanks to Theorem 1, it can be solved using an
asynchronous block-iterative strategy, which is not possible with current splitting techniques such as those of
Combettes and Eckstein [25] and Johnstone and Eckstein [34].

4.2. Application to Multivariate Minimization

We consider a composite multivariate minimization problem involving various types of convex functions and
combinations between them.

Problem 3. Let (H;),; and (Gy)rex be finite families of real Hilbert spaces, and set H = @ H; and G = @ jex Gi.
For every i € I and every k € K, let f; € I'o(H;), let a; € ]0, + oo, let ¢, : H; — R be convex and differentiable with a
(1/ay)-Lipschitzian gradient, let g € I'o(Gx), let I € To(Gy), let B, € 10, + o[, let 1, : Gy — R be convex and differen-
tiable with a (1/p,)-Lipschitzian gradient, and suppose that L;; : H; — Gy is linear and bounded. In addition, let
X €[0, + oo and let © : H — R be convex and differentiable with a y-Lipschitzian gradient. The objective is to

minig’r{ﬁze Ox) + D (filxi) + @,(xi)) + > ((gx +¢,) O hk)(z Lk]-xj). (121)
xe iel keK jel

Special cases of Problem 3 are found in various contexts (Bricefio-Arias and Combettes [13], Bricefio-Arias et al.
[16], Combettes [23], Combettes and Eckstein [25], Hintermiiller and Stadler [33], Johnstone and Eckstein [34]).
Formulation (121) brings together these disparate problems, and the following algorithm makes it possible to
solve them in an asynchronous block-iterative fashion in full generality.

Algorithm 3. Consider the setting of Problem 3 and suppose that Assumptions 2 and 3 are in force. Set
a = min{a;f, }ier kex, let 0 €]1/(4a), +oo[, and let € € ]0,min{1,1/(x +0)}[. For every i €I, every k € K, and every
neN,lety, €le1/(x +0)l, let {u ,, viu} Cle,1/0], let oxn € [¢,1/¢], and let A, € [¢,2 — ¢]. In addition, let x) € H
and {y,, zo, vy} C G. Iterate

forn=0,1,...
for every i€,

l;,n = vi®(xﬂi(")) + Z leivz,ﬂ,‘(‘ﬂ);
keK

in =ProX, — p (xi,n,-w) - Vi,nf(n)(lﬁ,n + V(Pi(xi,mm))));
=1 i Y
aiy = yi,ni(n)(xi,ﬂz(”) - ﬂ,/”) li,n’
2,
Ei,n = Hai,n - xi,m(n)” ;
for every i € I\I,
Ain = Ain=1; 5, = ;15 Ein = Ein-1;
for every k € K,

) (122)
bin = PTOX,, o) (yk,mkm) + Auk,a)k(n)(vk,wk(n) L ));

din = proka,wk(,,,hk (Zk/wk(”) + Vk/wk(ﬂ)vk,wk(n));

elz,n = Uk,(w(n)(z Lkixirwk(") ~ Ykwrm) — Zk,wk(ﬂ)) + Uz,a)k(;z);
iel
* =1 * C
Tin = P‘k,mk(n)(yk,wm) —bin) + ko) ~ Chnr
* _ -1 * *
tk,n - Vk,mk(n) (Zkrwk(”) - dk/”) + vk,a)k(n) - ek,n’
2 2
Men = ”bk,n _yk,mk(n)” + ”dk,n - Zk,wk(n)“ ;

Ckn = bk,n + dk,n - Z Lkiaz’,n;

iel
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for every k € K\K,
bk/” = bk,”—l; dk:" = dk,”—l; ely;,n = elz,n—l; qlz,n = qli,n—l" tlz,n = tz,n—l;

Mk = Mk n—17 €kn = bk,Vl + dk,n - Z Lkiai,n;
L iel
foreveryiel

p;n = a;'r,n + vi ®(an) + Z Lliie;:,n"
keK

Ay = —(401)1(2 Eint D nk,n) + 2> i — i | P

iel keK iel

o 3 (W = bion |G + € = i | 1) + et |, = €50 )
keK

if A, >0

0, = AnAn/(Z 5l + 17,02 + 11 + ||ek,n||2));

i€l keK
for every i€l
in,n+1 =Xin — GnP;n/’
for every k € K
|_]/k,n+l =VYkn — Gnlﬁ,,,} Zkn+1 = Zkn — Qnt;,n; Uli,n+1 = vl’;,n - Qnek,n;

else
for every i€l

|_x1‘,n+1 = Xin;
for every k € K

|_yk,77+1 = Yknr Zkn+1 = Zkns U;/,H_l = Uli,n'

Corollary 2. Consider the setting of Algorithm 3. Suppose that
(Vk € K) epi (gx + ) + epi Iy is closed (123)
and that Problem 3 admits a Kuhn—Tucker point, that is, there exist x € H and v € G such that

- ILF; € 9iG) + Ve, ) + V. OR)

jeK

(VieI)(Vk e K) _ e . (124)
> Lix; € A(g; 0 ) (@) + I (@)
jel
Then there exists a solution X to (121) such that, for every i € I, x;, — X; and a;,, — X;.
Proof. Set
(Viel) Ai=dfi, Ci=Ve¢, and R;=V; 0O (125)
(Vk € K) By =dgx, B; =V, and Dy = ohy.

First, Bauschke and Combettes [9, theorem 20.25] asserts that the operators (A;);c;, (Bf )xex, and (D' )iex are maxi-
mally monotone. Second, it follows from Bauschke and Combettes [9, corollary 18.17] that, for every i €I, C; is
a-cocoercive and, for every k€ K, B is fi-cocoercive. Third, in view of (125) and Bauschke and Combettes
[9, proposition 17.7], R = VO is monotone and y-Lipschitzian. Now consider the problem

find x¥ € H such that

(Viel) 0€ A%+ C%+ R+ > L,’;i(((B',j” +B{)O D;:)(Z Lk]-fj)) (126)
keK jel
together with its dual
—Z L;E; € Aix;+Cix; + Rix
jeK
find 0" € G such that (3x € H)(Vi e I)(Vk € K)
9 € ((By' + B0 Dy )| 2 L

jel

) (127)
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Denote by # and 9 the sets of solutions to (126) and (127), respectively. We observe that, by (125) and Bauschke
and Combettes [9, example 23.3], Algorithm 3 is an application of Algorithm 1 to the primal-dual problem
(126)—-(127). Furthermore, it results from (124) and Proposition 1(iv) that & # (0. According to Theorem 1(iv),
there exist X € 2 and v € ¥ such that, for every i € [ and every k€ K,

—Z L;E; € Aifl‘ + C,‘fl‘ + Rif
jekK
Xip — Xi, @i —X;, and
o} € ((By' + B)D Dy)| 2, Ly,

jel

) (128)

It remains to show that ¥ solves (121). Define

f=90f 0=Dp, g=Dg h=Dh, and =

129
L:7-£—>g:x|—>(ZLkix,~) . (129)
i€l keK
We deduce from Bauschke and Combettes [9, theorem 15.3] that (Vk € K) (g + ¢,)" = ;0 ¢;. In turn, (124) im-
plies that
(VkeK) 0+ dom (g3 ¢;) Ndom hy = dom (gx + ¢,)" N dom h. (130)

On the other hand, since the sets (epi (g + ) + epi )ik are convey, it follows from (123) and Bauschke and
Combettes [9, theorem 3.34] that they are weakly closed. Therefore, Burachik and Jeyakumar [20, theorem 1] and
the Fenchel-Moreau theorem (Bauschke and Combettes [9, theorem 13.37]) imply that

(Vk € K) ((gk + l#)k)* + h};)* = (gk + L)ZJk)*’e [ l’l}:* = (gk + llbk) | hk. (131)

Hence, we derive from (125), Bauschke and Combettes [9, corollaries 16.48(iii) and 16.30], (131), and Bauschke
and Combettes [9, proposition 16.42] that

(VkeK) (By +Bp)ODy = (dgx + Vi) O (Jhy)
= (@G + ) + @)™
= (g + ) + 8h,§)‘1
= (I((ge+ )" +h) "

= A(ge+ ) +I)
= d((gk + ) hy). (132)
Since it results from (129) and (131) that
g+ =g+P) T = B (Q+Y) D), (133)
we deduce from Bauschke and Combettes [9, proposition 16.9] and (132) that
(g +w) h) = X (g + 1) @ he) = X ((By' + By) 0 Dy). (134)

It thus follows from (128) and (129) that 7" € d((g + )@ h)(Lx). On the other hand, since L': G —>H : v* —
(SkexLiivp)ier, we infer from (128), (125), (129), and Bauschke and Combettes [9, proposition 16.9] that —L'0" €
(CiXy)jer + RX + X, AiXi = Vo(¥) + VO(X) + Jf (x). Hence, we invoke Bauschke and Combettes [9, proposition
16.6(ii)] to obtain

0€df(xX)+Veo()+VOX)+ LT

CIf(X)+ Ve(®) + VO(X) + L*(d((g + )3 h)(LX))
CIHf+e+0O+((g+y)D h)oL)X). (135)

However, thanks to (129) and (133), (121) is equivalent to
minirg‘lize f(x) + o(x) +O(x) + (g + ) & h)(Lx). (136)
xe
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Consequently, in view of Fermat’s rule (Bauschke and Combettes [9, theorem 16.3]), (135) implies that x
solves (121). O

Remark 3. In Briceno-Arias et al. [16], multicomponent image recovery problems were approached by applying
the forward-backward and the Douglas—Rachford algorithms in a product space. Using Corollary 2, we can now
solve these problems with asynchronous block-iterative algorithms and more sophisticated formulations. For in-
stance, the standard total variation loss used in Bricefio-Arias et al. [16] can be replaced by the pth order Huber
total variation penalty of Hintermiiller and Stadler [33], which turns out to involve an infimal convolution.

To conclude, we provide some scenarios in which condition (123) is satisfied.

Proposition 5. Consider the setting of Problem 3. Suppose that there exist x € H and v" € G such that
Z L0} € 9f (1) + Vep, (X)) + Vi O(X)

(VieI)(Vk e K) (137)
Z Lijx; € (g0 ¢;)(©}) + Iy (vy)

jel
and that, for every k € K, one of the following is satisfied:
[a] 0 € sri (dom g} + dom )} —dom h}).
b] Gy is finite-dimensional, hy is polyhedral, and dom I N ri dom (gx +1,)" # 0.
[c] Gk is finite-dimensional, g and hy are polyhedral, and 1, = 0.
Then, for every k € K, epi (gx + ;) + epi hy is closed.

Proof. Let k € K. Since dom ¢, = G, Bauschke and Combettes [9, theorem 15.3] yields

8k +¥,)" = &5 Y} (138)
Therefore, (137) implies that

0 # dom (g; @ ¢;) N dom h = dom (gx +1,)" N dom K. (139)

In view of (139), Burachik and Jeyakumar [20, theorem 1], and Bauschke and Combettes [9, theorem 3.34], it suffi-
ces to show that ((gx + ¢,)" + 1) = (g + ¢) "B Iy

[a]: We deduce from Bauschke and Combettes [9, proposition 12.6(ii)] and (138) that 0 € sri (dom (g} & ¢;) —
dom h;) = sri (dom (gx + )" —dom k}). In turn, Bauschke and Combettes [9, theorem 15.3] gives ((gi+
) ) = Qe+ ) B

[b]: Since Rockafellar [48, theorem 19.2] asserts that /1 is polyhedral, we infer from Rockafellar [48, theorem 20.1]

that (g +v,)" + 1) = (e + ) "B Iy
[c]: Since g and h;, are polyhedral by Rockafellar [48, theorem 19.2], it follows from (139) and Rockafellar [48, the-
orem 20.1] that (g} + h;)* =gyOhy. O

Appendix
In this section, K is a real Hilbert space.

Lemma A.1. Let A: K — 2" be maximally monotone, let (x,),ey be a bounded sequence in K, and let (y,),ey be a bounded sequence in
10, +oo[. Then (J,, aXn)ney is bounded.

Proof. Fix x € K. Using the triangle inequality, the nonexpansiveness of (], 4),cy, and Bauschke and Combettes [9, proposition
2331(iij)], ~we  obtain  (VneN) |, axn = Jaxl[ < Wy,a%n =]y, axll + Wy, a% = Jaxll < llvw = xll+ 11 =y, [ ax = x| < lxll+
SUP yenl Pl + (14 sup,, ey I ax = xf|. - O

Lemma A.2. Let a€[0, +oof, let A:K — K be a-Lipschitzian, let o €]0, +oo[, and let y€10,1/(a+0)]. Then y~'ld-A is
o-strongly monotone.

Proof. By Cauchy-Schwarz,
(Vxe )Yy e K) (x-yl(ld-Ax~-(y '1d - A)y)
=yl —yl? = (x -y | Ax - Ay)
> (a+0)lx -yl - llx -yl l|Ax - Ay
> (a+0)|x -yl - allx - yIP
=alx -yl (A)

which proves the assertion. O
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Lemma A.3. Let I be a nonempty finite set, let (I,),ey be nonempty subsets of 1, let P € N, and let (x,),en be a sequence in K. Suppose
that 3 ,enllXns1 —xul? < +00, Iy =1, and (Vn €N) Uf:nplj = L. Furthermore, let T €N, let i €I, and let (1;(n)),ey be a sequence in N
such that (VneN) n—T< m(n) <n. For every neN, set 9(n)=max{jeN |j<nandiecl} and 9;(n)=m(S;(n)). Then
X3,(n) — Xu — 0.

Proof. For every integer n> P, since i€, pl;, we have n<8i(n)+P <m(8;(n)+P+T=98(n)+P+T. Hence,
9i(n) > +c0, and therefore, Z}i’@&f”
71:(8:(n)) < 94(n) < n. We thus deduce from the triangle and Cauchy-Schwarz inequalities that

||x]-+1—x]-||2 — 0. However, it results from our assumption that (VneN) 9i(n)=

2

5 Qi(n)+P+T 3i(n)+P+T )
[l = x5,0n)|I” < g(]) g —xll| <(P+T+1) ;}) llxj1 = x;ll” — 0. (A2
j=i(n j=3i(n

Consequently, xg,;;) —x, — 0. O

Lemma A.4 (Combettes [22]). Let Z be a nonempty closed convex subset of K, xo € K, and ¢ €]0,1[. Suppose that
forn=0,1,...

tr e Kand n, eRsatisfy ZC Hy = {xe K | (x|t;)< n,};
Ay = (x| 8) =1,
if Ay >0 (A3)
L/\ne[e,Z—e]; ’
Xn+1 = Xp — (/\nAn/“t:l”z) t;;
else
Xp+1 = Xy

Then the following hold:

(@) (Vz € Z)(Vn €N) [xn1 =2l < llxn —2l-

(1) D7 enllnen =l < +oo.

(iii) Suppose that, for every x € KC and every strictly increasing sequence (ki) ey in N, xp, — x = x € Z. Then (x,),ey converges
weakly to a point in Z.

We now revisit ideas found in Bauschke and Combettes [8] and Combettes [21] in a format that is more suited for our

purposes.

Lemma A.5. Let Z be a nonempty closed convex subset of K and let xq € K. Suppose that
forn=0,1,...

tr e Kand n, € Rsatisfy ZC Hy = {x e K | (x|t;) < n,};

Au=(xalty) =1,

if Ay>0
T =16 IF5 6o =1%o = 2l X0 = (X0 = %u | £,); P, = TuCn — X2
ifp,=0
| 0= 1; Ay = Au/1s
else (A4)

lf)(nAﬂ = Py

|_Kn =0; A = (A, +Xn)/7n}

else

|_Kn =1- XnAn/Pn/' Ay = CnAn/pn;
| Xne1 = (1= %u)Xo + KXy — Anty;
else

Xn+1 = Xn-

Then the following hold:
() (Y € N) |lxy, — X0l < [|xn+1 = xoll < llproj,xo — xoll
(i) > penlPrn — xn”2 < +oo and ZneN”prOij,xn - xn”Z < +oo.
(iii) Suppose that, for every x € K and every strictly increasing sequence (k,),cy in N, xi, — x = x € Z. Then x, — proj,xo.
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Proof. Define (Vn e N) G, = {x € K | {(x —x,|xo — x,) < 0}. Then, by virtue of (A.4),
(VneN) x,=projg xo and [A,>0 = projy x, =, — (An/lIEsIF) £ . (A5)

Let us establish that
(VneN) ZcH,NG, and xu1 = projy ¢ Xo- (A.6)

Since Gy =K, (A.4) yields Z C Hy = Hy N Gy. Hence, we derive from (A.5) and (A.4) that Ag >0 = [ Proj, Xo = Xo — (Ao/7T0) £
and p,=0] = [projHﬂxo =x9—(Ao/70) ty, kKo =1, and Ag=A¢/70] = x1=x0—(Ag/T0)ty = Projy, Xo = Projy,nc,Yo- On the
other hand, Ag< 0 = x1=x€Hy=HyNGy = x1 = PTOj,nG,X0- Now assume that, for some integer n > 1, ZC H,—1 N G,
and Xn = PIOjy g, X0- Then, according to Bauschke and Combettes [9, theorem 3.16],
ZCHy1NGyog C{xe | (x—x,|x0—x,)< 0} =G,. In turn, (A4) entails that Z c H, N G,,. Next, it follows from (A.4), (A.5),
and Bauschke and Combettes [9, proposition 29.5] that A,<0 = [xn1=x, and proj;xo=x,€H,] =
Xp+1 = PIOjg, X0 = Projy ¢, Xo- To complete the induction argument, it remains to verify that A, >0 = x,41 = proj H, G, X0- As-
sume that A,, > 0 and set

Yn = ProjH”xnr %n = (x0 — X | Xy _]/n>/ Vi = ||xn _]/nllzl and 5,1 =CyVy — ;(ﬁ (A7)

Since A, >0, we have H, = {x € K | (x =y, |x, — y») < 0} and y,, = x,, — O,,t;,, where 6, = A,/7,, > 0. In turn, we infer from (A.7)
and (A.4) that

Xn=0uXp, Vn=021,=0,A,, and p,=02p,. (A8)

Furthermore, (A.4) and the Cauchy-Schwarz inequality ensure that p, > 0, which leads to two cases.

e p, =0: On the one hand, (A.4) asserts that x,.1 = x, — (A,/74)t;, = yn. On the other hand, (A.8) yields p, =0 and, there-
fore, since H,NG,# 0, Bauschke and Combettes [9, corollary 29.25(ii)] yields PTOjy ~G, %0 = Yn- Altogether,
X141 = PrOj o, X0

e p,>0: By (A8), p, > 0. First, suppose that x,A, = p,. It follows from (A.4) that x,41 =xo — ((Ax + x,,)/Tn) £, and from
(A.8) that X,V = 02x,A, = 02p, = p,. Thus, Bauschke and Combettes [9, corollary 29.25(ii)] and (A.8) imply that

PT0jy, G, X0 = Xo + (1 + %)(yn )

= x— (1 + QX" )ent;

nTn
_ OnTn + Xn #
T n
Ay +
=Xp— n"[ Xn t;
n
= Xn+1- (A9)

Now suppose that x,A, < p,. Then x,v, < p,, and hence, it results from Bauschke and Combettes [9, corollary 29.25(ii)], (A.8),
and (A4) that

. Vi o~
PrOJy,n¢, X0 = Xn + Tn(/\'n(xﬂ = Xn) + Gy (Yn — X))
n

=XV o+ (1 — Ay nen (Yn = x4)
pn n pn
_ Xnln X0+ (1 _ XnAn)xn _ TnCn & £
n n Pn Tn
= Xp41- (A.10)

(i): Let n € N. We derive from (A.6) that [[x,+1 — Xol| = [[projy; ~, X0 — Xoll < [[proj,xo — xo||. On the other hand, since x;+1 € G,
by virtue of (A.6), we have
It = xol* + llne1 = Xl < 1l = %ll + X1 = Xall® +2(xus1 = x| 3 — x0)
2
= [lus = xoll" (A11)
N . . 2 2 2 2 . 2
(ii): Let N €N. In view of (A.11) and (i), S ollns1 = %all* < 300 (1ns1 = 20l = [ = x0[1%) = [levs1 = x0lI* < llproj,x0 — xoll*.
Therefore, >, cnllXne1 — x,,||2 <+4co. However, for every ne€N, since (A.6) asserts that x,.1€H, we have
lIprojy;, xn — xull < X041 — xull- Thus, 3,enllprojy xx —x|* < +00.
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(iii): It results from (i) that (x,),cy is bounded. Now let x € K, let (ky),cy be a strictly increasing sequence in N, and sup-
pose that x;, —x. Using Bauschke and Combettes [9, lemma 242] and (i), we deduce that
[lx = xoll < lim [|x, — xol| < |lproj,xo — Xoll. Thus, since it results from our assumption that x € Z, we have x = proj,xo, which

implies that x, — proj,xo (Bauschke and Combettes [9, lemma 2.46]). In turn, since Lim |, — x|l < lproj,xo — xoll by (i),
Bauschke and Combettes [9, lemma 2.51(i)] forces x, — proj,xo. O
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