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Abstract. We propose a novel approach to monotone operator splitting based on the no-
tion of a saddle operator. Under investigation is a highly structured multivariate monotone
inclusion problem involving a mix of set-valued, cocoercive, and Lipschitzian monotone
operators, as well as various monotonicity-preserving operations among them. This model
encompasses most formulations found in the literature. A limitation of existing primal-
dual algorithms is that they operate in a product space that is too small to achieve full split-
ting of our problem in the sense that each operator is used individually. To circumvent this
difficulty, we recast the problem as that of finding a zero of a saddle operator that acts on a
bigger space. This leads to an algorithm of unprecedented flexibility, which achieves full
splitting, exploits the specific attributes of each operator, is asynchronous, and requires to
activate only blocks of operators at each iteration, as opposed to activating all of them. The
latter feature is of critical importance in large-scale problems. The weak convergence of the
main algorithm is established, as well as the strong convergence of a variant. Various appli-
cations are discussed, and instantiations of the proposed framework in the context of varia-
tional inequalities and minimization problems are presented.

Funding: This workwas supported by the National Science Foundation [Grant CCF-1715671].

Keywords: monotone inclusion • monotone operator • saddle form • operator splitting • block-iterative algorithm •
asynchronous algorithm • strong convergence

1. Introduction
In 1979, several methods appeared to solve the basic problem of finding a zero of the sum of two maximally
monotone operators in a real Hilbert space (Lions and Mercier [37], Mercier [38], Passty [43]). Over the past
40 years, increasingly complex inclusion problems and solution techniques have been considered (Boţ and Hen-
drich [10], Briceño-Arias and Combettes [14], Briceño-Arias and Davis [17], Bùi and Combettes [19], Combettes
[23], Combettes and Eckstein [25], Eckstein [29], Johnstone and Eckstein [34], Tseng [53]) to address concrete prob-
lems in fields as diverse as game theory (Attouch et al. [2], Briceño-Arias and Combettes [15], Yi and Pavel [56]),
evolution inclusions (Attouch et al. [3]), traffic equilibrium (Attouch et al. [3], Fukushima [31]), domain decompo-
sition (Attouch et al. [4]), machine learning (Bach et al. [6], Briceño-Arias et al. [12]), image recovery (Banert et al.
[7], Boţ and Hendrich [11], Briceño-Arias et al. [16], Hintermüller and Stadler [33]), mean field games (Briceño-
Arias et al. [18]), convex programming (Combettes [24], Li and Yuan [36]), statistics (Combettes and Müller [26],
Yan and Bien [55]), neural networks (Combettes and Pesquet [27]), signal processing (Combettes and Wajs [28]),
partial differential equations (Ghoussoub [32]), tensor completion (Mizoguchi and Yamada [39]), and optimal
transport (Papadakis et al. [42]). In our view, two challenging issues in the field of monotone operator splitting al-
gorithms are the following:

• A number of independent monotone inclusion models coexist with various assumptions on the operators and
different types of operation among these operators. At the same time, as will be seen in Section 4, they are not suffi-
ciently general to cover important applications.

•Most algorithms do not allow asynchrony and impose that all the operators be activated at each iteration. They
can therefore not handle efficiently modern large-scale problems. The only methods that are asynchronous and
block-iterative are limited to specific scenarios (Combettes and Eckstein [25], Eckstein [29], Johnstone and Eckstein
[34]), and they do not cover inclusionmodels such as that of Combettes [23].

In an attempt to bring together and extend the application scope of the wide variety of unrelated models
that coexist in the literature, we propose the following multivariate formulation that involves a mix of set-
valued, cocoercive, and Lipschitzian monotone operators, as well as various monotonicity-preserving opera-
tions among them.
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Problem 1. Let (Hi)i∈I and (Gk)k∈K be finite families of real Hilbert spaces with Hilbert direct sums H � � i∈IHi

and G � � k∈K Gk. Denote by x � (xi)i∈I a generic element in H. For every i ∈ I and every k ∈ K, let s∗i ∈Hi, let
rk ∈ Gk, and suppose that the following are satisfied:

[a] Ai :Hi → 2Hi is maximally monotone, Ci :Hi →Hi is cocoercive with constant αc

i ∈]0, +∞[, Qi :Hi →Hi is
monotone and Lipschitzian with constant αℓ

i ∈ [0, +∞[, and Ri :H→Hi.
[b] Bm

k : Gk → 2Gk is maximally monotone, Bc

k : Gk → Gk is cocoercive with constant βck ∈]0, +∞[, and Bℓ

k : Gk → Gk

is monotone and Lipschitzian with constant βℓk ∈ [0, +∞[.
[c] Dm

k : Gk → 2Gk is maximally monotone, Dc

k : Gk → Gk is cocoercive with constant δck ∈]0, +∞[, and Dℓ

k : Gk → Gk

is monotone and Lipschitzian with constant δℓk ∈ [0, +∞[.
[d] Lki :Hi → Gk is linear and bounded.

In addition, it is assumed that
[e]R :H→H : x �→ (Rix)i∈I is monotone and Lipschitzian with constant χ ∈ [0, +∞[.

The objective is to solve the primal problem

find x ∈ H such that (∀i ∈ I) s∗i ∈ Aixi + Cixi +Qixi + Ri x

+
∑
k∈K

L∗ki ((Bm

k + Bc

k + Bℓ

k)w (Dm

k +Dc

k +Dℓ

k))
∑
j∈I

Lkjxj − rk

( )( )
(1)

and the associated dual problem

find v∗ ∈ G such that (∃ x ∈ H)(∀i ∈ I)(∀k ∈ K)
s∗i −

∑
j∈K

L∗jiv
∗
j ∈ Aixi + Cixi +Qixi + Rix

v∗k ∈ ((Bm

k + Bc

k + Bℓ

k)w (Dm

k +Dc

k +Dℓ

k))
∑
j∈I

Lkjxj − rk

( )
:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Our highly structured model involves three basic monotonicity preserving operations, namely addition, com-
position with linear operators, and parallel sum. It extends the state-of-the-art model of Combettes [23], where
the simpler form

(∀i ∈ I) s∗i ∈ Aixi +Qixi +
∑
k∈K

L∗ki Bm

k
w Dm

k

( ) ∑
j∈I

Lkjxj − rk

( )( )
(3)

of the system in (1) was investigated (see Attouch et al. [3] and Combettes and Eckstein [25] for special cases). In an
increasing number of applications, the sets I and K can be sizable. To handle such large-scale problems, it is critical
to implement block-iterative solution algorithms, in which only subgroups of the operators involved in the problem
need to be activated at each iteration. In addition, it is desirable that the algorithm be asynchronous in the sense
that, at any iteration, it has the ability to incorporate the result of calculations initiated at earlier iterations. Such
methods have been proposed for special cases of Problem 1: first in Combettes and Eckstein [25] for the system

find x ∈ H such that (∀i ∈ I) s∗i ∈ Aixi +
∑
k∈K

L∗ki Bm

k

∑
j∈I

Lkjxj − rk

( )( )
, (4)

and then in Eckstein [29] for the inclusion (we omit the subscript 1):

find x ∈ H such that 0 ∈
∑
k∈K

L∗k B
m

k (Lkx)
( )

, (5)

and more recently in Johnstone and Eckstein [34] for the inclusion

find x ∈ H such that 0 ∈ Ax +Qx +
∑
k∈K

L∗k((Bm

k + Bℓ

k)(Lkx)): (6)

It is clear that the formulations (4) and (6) are not interdependent. Furthermore, as we shall see in Section 4,
many applications of interest are not covered by either of them. From both a theoretical and a practical view-
point, it is therefore important to unify and extend these approaches. To achieve this goal, we propose to design
an algorithm for solving the general Problem 1 which possesses simultaneously the following features:

‹ It has the ability to process all the operators individually and exploit their specific attributes, for example, set-
valuedness, cocoercivity, Lipschitz continuity, and linearity.
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› It is block-iterative in the sense that it does not need to activate all the operators at each iteration, but only a
subgroup of them.

fi It is asynchronous.
fl Each set-valued monotone operator is scaled by its own, iteration-dependent, parameter.
� It does not require any knowledge of the norms of the linear operators involved in the model.

Let us observe that the method of Combettes and Eckstein [25] has features ‹–�, but it is restricted to (4). Like-
wise, the method of Johnstone and Eckstein [34] has features‹–�, but it is restricted to (6).

Solving the intricate Problem 1 with the requirement ‹ does not seem possible with existing tools. The pres-
ence of requirements ›–� further complicates this task. In particular, the Kuhn–Tucker approach initiated in
Briceño-Arias and Combettes [14]—and further developed in Alotaibi et al. [1], Boţ and Hendrich [10], Comb-
ettes [23], Combettes and Eckstein [25], and Johnstone and Eckstein [34, 35]—relies on finding a zero of an opera-
tor acting on the primal-dual space H�G. However, in the context of Problem 1, this primal-dual space is too
small to achieve full splitting in the sense that each operator is used individually. To circumvent this difficulty,
we propose a novel splitting strategy that consists of recasting the problem as that of finding a zero of a saddle
operator acting on the bigger space H�G�G�G. This is done in Section 2, where we define the saddle form of
Problem 1, study its properties, and propose outer approximation principles to solve it. In Section 3, the main
asynchronous block-iterative algorithm is presented, and we establish its weak convergence under mild condi-
tions on the frequency at which the operators are selected. We also present a strongly convergent variant. The
specializations to variational inequalities and multivariate minimization are discussed in Section 4, along with
several applications. The appendix contains auxiliary results.

Notation. The notation used in this paper is standard and follows Bauschke and Combettes [9], to which one
can refer for background and complements on monotone operators and convex analysis. Let K be a real Hilbert
space. The symbols 〈 · | · 〉 and ‖ · ‖ denote the scalar product of K and the associated norm, respectively. The ex-
pressions xn * x and xn → x denote, respectively, the weak and the strong convergence of a sequence (xn)n∈N to x

in K, and 2K denotes the family of all subsets of K. Let A :K→ 2K. The graph of A is
gra A � {(x,x∗) ∈K ×K | x∗ ∈ Ax}, the set of zeros of A is zer A � x ∈K | 0 ∈ Ax{ }, the inverse of A is

A−1 :K→ 2K : x∗ �→ x ∈K | x∗ ∈ Ax{ }, and the resolvent of A is JA � (Id+A)−1, where Id is the identity operator
on K. Furthermore, A is monotone if

(∀(x,x∗) ∈ gra A)(∀(y,y∗) ∈ gra A) 〈x− y |x∗ − y∗〉P 0, (7)

and it is maximally monotone if, for every (x,x∗) ∈K ×K,

(x,x∗) ∈ gra A � (∀(y,y∗) ∈ gra A) 〈x− y |x∗ − y∗〉P 0: (8)

If A is maximally monotone, then JA is a single-valued operator defined on K. The parallel sum of B :K→ 2K

and D :K→ 2K is Bw D � (B−1 +D−1)−1. An operator C :K→K is cocoercive with constant α ∈ ]0, +∞[ if

(∀x ∈K)(∀y ∈K) 〈x− y |Cx−Cy〉P α‖Cx−Cy‖2. We denote by Γ0(K) the class of lower semicontinuous convex

functions f :K→ ]−∞, +∞] such that dom f � x ∈K | f (x) < +∞
{ }

≠ ∅. Let f ∈ Γ0(K). The conjugate of f is the

function Γ0(K)� f ∗ : x∗ �→ supx∈K(〈x |x∗〉 − f (x)) and the subdifferential of f is the maximally monotone operator

∂f :K→ 2K : x �→ x∗ ∈K | (∀y ∈K) 〈y− x |x∗〉 + f (x) 6 f (y)
{ }

. In addition, epi f is the epigraph of f. For every

x ∈K, the unique minimizer of f + (1=2)‖ · −x‖2 is denoted by proxfx. We have proxf � J∂f . Given h ∈ Γ0(K), the infi-
mal convolution of f and h is f w h :K→ −∞, +∞[ ] : x �→ inf y∈K( f (y) + h(x− y)); the infimal convolution f w h is

exact if the infimum is achieved everywhere, in which case we write f(· h. Now let (Ki)i∈I be a finite family of real
Hilbert spaces and, for every i ∈ I, let fi :Ki →]−∞, +∞]. Then

�
i∈I

fi :K � �
i∈I

Ki → ]−∞, +∞]: x �→
∑
i∈I

fi(xi): (9)

The partial derivative of a differentiable function Θ :K→ R relative to Ki is denoted by riΘ. Finally, let C be a
nonempty convex subset of K. A point x ∈ C belongs to the strong relative interior of C, in symbols x ∈ sri C, if⋃

λ∈]0,+∞[λ(C− x) is a closed vector subspace of K. If C is closed, the projection operator onto it is denoted by
projC and the normal cone operator of C is the maximally monotone operator

NC :K→ 2K : x �→
x∗ ∈K | sup 〈C− x |x∗〉6 0
{ }

, if x ∈ C;

∅, otherwise:

{
(10)
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2. The Saddle Form of Problem 1
A classical Lagrangian setting for convex minimization is the following. Given real Hilbert spaces H and G,
f ∈ Γ0(H), g ∈ Γ0(G), and a bounded linear operator L :H→ G, consider the primal problem

minimize
x∈H

f (x) + g(Lx) (11)

together with its Fenchel–Rockafellar dual (Rockafellar [47])

minimize
v∗∈G

f ∗(−L∗v∗) + g∗(v∗): (12)

The primal-dual pair (11)–(12) can be analyzed through the lens of Rockafellar’s saddle formalism (Rockafellar
[49, 50]) as follows. Set h :H�G→ ]−∞, +∞]: (x,y) �→ f (x) + g(y) and U :H�G→ G : (x,y) �→ Lx− y, and note
that U∗ : G→H�G : v∗ �→ (L∗v∗, − v∗). Then, upon defining K �H�G and introducing the variable z � (x,y) ∈K,
(11) is equivalent to

minimize
z∈K, Uz�0

h(z) (13)

and (12) to

minimize
v∗∈G

h∗(−U∗v∗): (14)

The Lagrangian associated with (13) is (see Rockafellar [51, example 4′] or Bauschke and Combettes [9, proposi-
tion 19.21])

L :K�G→]−∞, +∞]

(z,v∗) �→ h(z) + 〈Uz |v∗〉, if z ∈ dom h;

+∞, otherwise,

{
(15)

and the associated saddle operator (Rockafellar [49, 50]) is the maximally monotone operator

S :K�G→ 2K�G : (z,v∗) �→ ∂L(·,v∗)(z) × ∂(−L(z, ·))(v∗) � (∂h(z) +U∗v∗) × {−Uz}: (16)

As shown in Rockafellar [49], a zero (z,v∗) of S is a saddle point of L, and it has the property that z solves (13)
and v∗ solves (14). Thus, going back to the original Fenchel–Rockafellar pair (11)–(12), we learn that, if (x,y,v∗) is
a zero of the saddle operator

S :H�G�G→ 2H�G�G : (x,y,v∗) �→ (∂f (x) + L∗v∗) × (∂g(y) − v∗) × {−Lx+ y}, (17)

then x solves (11) and v∗ solves (12). As shown in Combettes [24, section 4.5], a suitable splitting of S leads to an
implementable algorithm to solve (11)–(12).

A generalization of Fenchel–Rockafellar duality to monotone inclusions was proposed in Pennanen [44] and
Robinson [46] and further extended in Combettes [23]. Given maximally monotone operators A :H→ 2H and
B : G→ 2G, and a bounded linear operator L :H→ G, the primal problem

find x ∈H such that 0 ∈ Ax + L∗(B(Lx)) (18)

is paired with the dual problem

find v∗ ∈ G such that 0 ∈ −L(A−1(−L∗v∗)) +B−1v∗: (19)

Following the same pattern as that described above, let us consider the saddle operator

S :H�G�G→ 2H�G�G : (x,y,v∗) �→ (Ax+ L∗v∗) × (By− v∗) × {−Lx+ y}: (20)

It is readily shown that, if (x,y,v∗) is a zero of S, then x solves (18) and v∗ solves (19). We call the problem of find-
ing a zero of S the saddle form of (18)–(19). We now introduce a saddle operator for the general Problem 1.

Definition 1. In the setting of Problem 1, let X �H�G�G�G. The saddle operator associated with Problem 1 is

S : X→ 2X : (x,y,z,v∗) �→

✕
i∈I

−s∗i +Aixi +Cixi +Qixi +Rix+
∑
k∈K

L∗kiv
∗
k

( )
, ✕
k∈K

(Bm

k yk +Bc

kyk +Bℓ

kyk − v∗k),
(

✕
k∈K

(Dm

k zk +Dc

kzk +Dℓ

kzk − v∗k), ✕
k∈K

rk + yk + zk −
∑
i∈I

Lkixi

{ })
, (21)
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and the saddle form of Problem 1 is to

find x ∈ X such that 0 ∈ Sx: (22)

Next, we establish some properties of the saddle operator as well as connections with Problem 1.

Proposition 1. Consider the setting of Problem 1 and Definition 1. Let 3 be the set of solutions to (1), let $ be the set of
solutions to (2), and let

Z �
{
(x,v∗) ∈H�G

∣∣∣∣ (∀i ∈ I)(∀k ∈ K) s∗i −
∑
j∈K

L∗jiv
∗
j ∈ Aixi +Cixi +Qixi +Rix and

∑
j∈I

Lkjxj − rk ∈ (Bm

k +Bc

k +Bℓ

k)
−1v∗k + (Dm

k +Dc

k +Dℓ

k)
−1v∗k

}
(23)

be the associated Kuhn–Tucker set. Then the following hold:
(i) S is maximally monotone.
(ii) zer S is closed and convex.
(iii) Suppose that x � (x,y,z,v∗) ∈ zer S. Then (x,v∗) ∈ Z ⊂3 ×$ .
(iv)$ ≠ ∅ � zer S≠ ∅ � Z≠ ∅⇒3 ≠ ∅.
(v) Suppose that one of the following holds:

[a] I is a singleton.
[b] For every k ∈ K, (Bm

k +Bc

k +Bℓ

k) w (Dm

k +Dc

k +Dℓ

k) is at most single-valued.
[c] For every k ∈ K, (Dm

k +Dc

k +Dℓ

k)
−1 is strictly monotone.

[d] I ⊂ K, the operators ((Bm

k +Bc

k +Bℓ

k)w (Dm

k +Dc

k +Dℓ

k))k∈K\I are at most single-valued, and (∀i ∈ I)(∀k ∈ I) k≠ i
⇒ Lki � 0.

Then 3 ≠ ∅ ⇒ Z≠ ∅.
Proof. Define

A : H → 2H : x �→ Rx +✕
i∈I

(Aixi + Cixi +Qixi)

B : G → 2G : y �→ ✕
k∈K

(Bm

k yk + Bc

kyk + Bℓ

kyk)

D : G → 2G : z �→ ✕
k∈K

(Dm

k zk +Dc

kzk +Dℓ

kzk)

L : H → G : x �→
∑
i∈I

Lkixi

( )

k∈K
s∗ � (s∗i )i∈I and r � (rk)k∈K:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

Then the adjoint of L is

L∗ : G → H : v∗ �→
∑
k∈K

L∗kiv
∗
k

( )

i∈I
: (25)

Hence, in view of (21) and (24),

S : X → 2X : (x,y, z,v∗) �→ (−s∗ + Ax + L∗v∗) × (By − v∗) × (Dz − v∗) × {r − Lx + y + z}: (26)

(i): Let us introduce the operators

P : X → 2X : (x,y, z,v∗) �→ (−s∗ + Ax) × By × Dz × {r}
W : X → X : (x,y, z,v∗) �→ (L∗v∗, − v∗, − v∗, − Lx + y + z):

{
(27)

Using Problem 1[a]–[c], we derive from Bauschke and Combettes [9, example 20.31 and corollaries 20.28 and 25.5(i)]
that, for every i ∈ I and every k ∈ K, the operators Ai +Ci +Qi, B

m

k +Bc

k +Bℓ

k, and Dm

k +Dc

k +Dℓ

k are maximally mono-
tone. At the same time, Problem 1[e] and Bauschke and Combettes [9, corollary 20.28] entail that R is maximally
monotone. Therefore, it results from (24), Bauschke and Combettes [9, proposition 20.23 and corollary 25.5(i)], and
(27) that P is maximally monotone. However, since Problem 1[d] and (27) imply thatW is linear and bounded with
W∗ � −W, Bauschke and Combettes [9, example 20.35] asserts that W is maximally monotone. Hence, in view of
Bauschke and Combettes [9, corollary 25.5(i)], we infer from (26)–(27) that S � P+W is maximally monotone.
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(ii): This follows from (i) and Bauschke and Combettes [9, proposition 23.39].
(iii): Using (24) and (25), we deduce from (23) that

Z � (x,v∗) ∈ H�G | s∗ − L∗v∗ ∈ Ax and Lx − r ∈ B−1v∗ +D−1v∗
{ }

(28)

and from (2) that

$ � v∗ ∈ G | − r ∈ −L(A−1(s∗ − L∗v∗)) + B−1v∗ +D−1v∗
{ }

: (29)

Suppose that (x,v∗) ∈ Z. Then it follows from (28) that x ∈ A−1(s∗ −L∗v∗) and, in turn, that −r ∈ −Lx+B−1v∗+
D−1v∗ ⊂ −L(A−1(s∗ −L∗v∗)) +B−1v∗ +D−1v∗. Thus v∗ ∈$ by (29). In addition, (23) implies that

∀k ∈ K( ) v∗k ∈ ((Bm

k +Bc

k +Bℓ

k) w (Dm

k +Dc

k +Dℓ

k))
∑
j∈I

Lkjxj − rk

( )
(30)

and, therefore, that

(∀i ∈ I) s∗i ∈ Aixi +Cixi +Qixi +Rix+
∑
k∈K

L∗kiv
∗
k

⊂ Aixi +Cixi +Qixi +Rix

+
∑
k∈K

L∗ki ((Bm

k +Bc

k +Bℓ

k) w (Dm

k +Dc

k +Dℓ

k))
∑
j∈I

Lkjxj − rk

( )( )
: (31)

Hence, x ∈3 . To summarize, we have shown that Z ⊂3 ×$ . It remains to show that (x,v∗) ∈ Z. Since 0 ∈ Sx,
we deduce from (26) that s∗ −L∗v∗ ∈ Ax, Lx − r � y + z, 0 ∈ By − v∗, and 0 ∈Dz − v∗. Therefore, Lx − r ∈ B−1v∗ +
D−1v∗ and (28) thus yields (x,v∗) ∈ Z.

(iv): The implication zer S≠ ∅⇒3 ≠ ∅ follows from (iii). Next, we derive from (29) and (28) that

$ ≠ ∅ � (∃v∗ ∈ G) − r ∈ −L(A−1(s∗ −L∗v∗)) +B−1v∗ +D−1v∗

� (∃(v∗,x) ∈ G�H) − r ∈ −Lx +B−1v∗ +D−1v∗ and x ∈ A−1(s∗ −L∗v∗)
� (∃(x,v∗) ∈H�G) s∗ −L∗v∗ ∈ Ax and Lx − r ∈ B−1v∗ +D−1v∗

� Z ≠ ∅: (32)

However, (iii) asserts that zer S≠ ∅ ⇒ Z≠ ∅. Therefore, it remains to show that Z ≠ ∅ ⇒ zer S≠ ∅. Towards this
end, suppose that (x,v∗) ∈ Z. Then, by (28), s∗ −L∗v∗ ∈ Ax and Lx − r ∈ B−1v∗ +D−1v∗. Hence, 0 ∈ −s∗ +Ax +L∗v∗,
and there exists (y,z) ∈ G�G such that y ∈ B−1v∗, z ∈D−1v∗, and Lx − r � y + z. We thus deduce that 0 ∈ By − v∗,
0 ∈Dz − v∗, and r −Lx + y + z � 0. Consequently, (26) implies that (x,y,z,v∗) ∈ zer S.

(v): In view of (iv), it suffices to establish that3 ≠ ∅⇒$ ≠ ∅. Suppose that x ∈3 .
[a]: Suppose that I � {1}. We then infer from (1) that there exists v∗ ∈ G such that

s∗1 ∈ A1x1 +C1x1 +Q1x1 +R1x +
∑
k∈K

L∗k1v
∗
k

(∀k ∈ K) v∗k ∈ ((Bm

k +Bc

k +Bℓ

k) w (Dm

k +Dc

k +Dℓ

k)) Lk1x1 − rk( ):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩ (33)

Therefore, by (2), v∗ ∈$ .
[b]: Set (∀k ∈ K) v∗k � ((Bm

k +Bc

k +Bℓ

k)w (Dm

k +Dc

k +Dℓ

k))(
∑

j∈ILkjxj − rk). Then v∗ solves (2).
[c]⇒ [b]: See Combettes [23, section 4].
[d]: Let i ∈ I. It results from our assumption that

s∗i ∈ Aixi +Cixi +Qixi+Rix + L∗ii(((Bm

i +Bc

i +Bℓ

i )w (Dm

i +Dc

i +Dℓ

i ))(Liixi − ri))

+
∑
k∈K\I

L∗ki ((Bm

k +Bc

k +Bℓ

k)w (Dm

k +Dc

k +Dℓ

k))
∑
j∈I

Lkjxj − rk

( )( )
: (34)

Thus, there exists v∗i ∈ Gi such that v∗i ∈ ((Bm

i +Bc

i +Bℓ

i )w (Dm

i +Dc

i +Dℓ

i ))(Liixi − ri) and that

s∗i ∈ Aixi +Cixi +Qixi +Rix + L∗iiv
∗
i +

∑
k∈K\I

L∗ki ((Bm

k +Bc

k +Bℓ

k)w (Dm

k +Dc

k +Dℓ

k))
∑
j∈I

Lkjxj − rk

( )( )
: (35)

Bùi and Combettes: Multivariate Monotone Inclusions in Saddle Form

6 Mathematics of Operations Research, Articles in Advance, pp. 1–28, © 2021 INFORMS



As a result, upon setting

(∀k ∈ K\I) v∗k � ((Bm

k + Bc

k + Bℓ

k) w (Dm

k +Dc

k +Dℓ

k))
∑
j∈I

Lkjxj − rk

( )
, (36)

we conclude that v∗ ∈$ . w

Remark 1. Some noteworthy observations about Proposition 1 are the following.
(i) The Kuhn–Tucker set (23) extends to Problem 1 the corresponding notion introduced for some special cases in

Alotaibi et al. [1], Briceño-Arias and Combettes [14], and Combettes and Eckstein [25].
(ii) In connection with Proposition 1(v), we note that the implication 3 ≠ ∅ ⇒ Z≠ ∅ is implicitly used in Comb-

ettes and Eckstein [25, theorems 13 and 15], where one requires Z ≠ ∅ butmerely assumes3 ≠ ∅. However, this im-
plication is not true in general (a similar oversight is found in Alotaibi et al. [1], Pesquet and Repetti [45], and
Rosasco et al. [52]). Indeed, consider as a special case of (1), the problem of solving the system

0 ∈ B1(x1 + x2) +B2(x1 − x2)
0 ∈ B1(x1 + x2) −B2(x1 − x2)

{
(37)

in the Euclidean plane R2. Then, by choosing B1 � {0}−1 and B2 � 1, we obtain 3 � (x1, − x1) | x1 ∈ R{ }, whereas
Z � ∅.

(iii) As stated in Proposition 1(iii), any Kuhn–Tucker point is a solution to (1)–(2). In the simpler setting consid-
ered in Combettes and Eckstein [25], a splitting algorithm was devised for finding such a point. However, in the
more general context of Problem 1, there does not seem to exist a path from the Kuhn–Tucker formalism in H�G

to an algorithm that is fully split in the sense of ‹. This motivates our approach, which seeks a zero of the saddle
operator S defined on the bigger space X and, thereby, offers more flexibility.

(iv) Special cases of Problem 1 can be found in Alotaibi et al. [1], Combettes and Eckstein [25], and Johnstone and
Eckstein [34, 35], where they were solved by algorithms that proceed by outer approximation of the Kuhn–Tucker
set inH�G. In those special cases, Algorithm 1 below does not reduce to those of Alotaibi et al. [1], Combettes and
Eckstein [25], and Johnstone and Eckstein [34, 35] since it operates by outer approximation of the set of zeros of the
saddle operator S in the bigger space X.

The following operators will induce a decomposition of the saddle operator that will lead to a splitting algo-
rithm which complies with our requirements ‹–�.

Definition 2. In the setting of Definition 1, set

M : X → 2X : (x, y, z, v∗) �→ ✕
i∈I

−s∗i + Aixi +Qixi + Rix +
∑
k∈K

L∗kiv
∗
k

( )
, ✕
k∈K

(Bm

k yk + Bℓ

kyk − v∗k),
(

✕
k∈K

(Dm

k zk +Dℓ

kzk − v∗k), ✕
k∈K

rk + yk + zk −
∑
i∈I

Lkixi

{ } )
(38)

and

C : X → X : (x,y, z,v∗) �→
(
(Cixi)i∈I, (Bc

kyk)k∈K, (Dc

kzk)k∈K, 0
)
: (39)

Proposition 2. In the setting of Problem 1 and of Definitions 1 and 2, the following hold:
(i) S �M+C.
(ii)M is maximally monotone.
(iii) Set α �min {αc

i ,β
c

k ,δ
c

k}i∈I,k∈K. Then the following hold:
(a)C is α-cocoercive.
(b) Let (p,p∗) ∈ gra M and q ∈ X. Then zer S ⊂ x ∈ X | 〈x−p |p∗ +Cq〉6 (4α)−1‖p−q‖2

{ }
:

Proof.

(i): Clear from (21), (38), and (39).
(ii): This is a special case of Proposition 1(i), where, for every i ∈ I and every k ∈ K, Ci � 0 and Bc

k �Dc

k � 0.
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(iii)(a): Take x � (x,y,z,v∗) and y � (a,b, c,w∗) in X. By (39) and Problem 1[a]–[c],

〈x− y |Cx−Cy〉 �
∑
i∈I

〈xi − ai |Cixi −Ciai〉 +
∑
k∈K

(〈yk − bk |Bc

kyk −Bc

kbk〉 + 〈zk − ck |Dc

kzk −Dc

kck〉)

P

∑
i∈I

αc
i ‖Cixi −Ciai‖2 +

∑
k∈K

(βck‖Bc

kyk −Bc

kbk‖2 + δck‖Dc

kzk −Dc

kck‖2)

P α
∑
i∈I

‖Cixi −Ciai‖2 +α
∑
k∈K

(‖Bc

kyk −Bc

kbk‖2 + ‖Dc

kzk −Dc

kck‖2)

� α‖Cx−Cy‖2: (40)

(iii)(b): Suppose that z ∈ zer S. We deduce from (i) that −Cz ∈Mz and from our assumption that p∗ ∈Mp. Hence,
(ii) implies that 〈z−p |p∗ +Cz〉6 0. Thus, we infer from (iii)(a) and the Cauchy–Schwarz inequality that

〈z−p |p∗ +Cq〉 � 〈z−p |p∗ +Cz〉 − 〈z−q |Cz−Cq〉 + 〈p−q |Cz−Cq〉
6 − α‖Cz−Cq‖2 + ‖p−q‖ ‖Cz−Cq‖

� (4α)−1‖p−q‖2 −
∣∣∣(2

��
α

√
)−1‖p−q‖ −

��
α

√
‖Cz−Cq‖

∣∣∣
2

6 (4α)−1‖p−q‖2, (41)

which establishes the claim. w

Next, we solve the saddle form (22) of Problem 1 via successive projections onto the outer approximations con-
structed in Proposition 2(iii)(b).

Proposition 3. Consider the setting of Problem 1 and of Definitions 1 and 2, and suppose that zer S≠ ∅. Set
α �min{αc

i ,β
c

k ,δ
c

k}i∈I,k∈K, let x0 ∈ X, let ε ∈ ]0, 1[, and iterate
for n � 0, 1, : : :

(pn,p
∗
n) ∈ gra M; qn ∈ X;

t∗n � p∗
n +Cqn;

∆n � 〈xn −pn | t∗n〉 − (4α)−1‖pn −qn‖2;
if ∆n > 0

λn ∈ ε, 2− ε[ ];
xn+1 � xn − (λn∆n=‖t∗n‖2)t∗n;

else

x n+1 � xn:

(42)

Then the following hold:
(i) (∀z ∈ zer S)(∀n ∈ N) ‖xn+1 − z‖6 ‖xn − z‖.
(ii)

∑
n∈N‖xn+1 − xn‖2 < +∞.

(iii) Suppose that (t∗n)n∈N is bounded. Then lim∆n6 0.
(iv) Suppose that xn −pn * 0,pn −qn → 0, and t∗n → 0. Then (xn)n∈N converges weakly to a point in zer S.

Proof. (i) and (ii): Proposition 1(ii) and our assumption ensure that zer S is a nonempty closed convex subset of
X. Now, for every n ∈ N, set ηn � (4α)−1‖pn −qn‖2 + 〈pn | t∗n〉 and Hn � x ∈ X | 〈x | t∗n〉6 ηn

{ }
. On the one hand, ac-

cording to Proposition 2(iii)(b), (∀n ∈ N) zer S ⊂ Hn. On the other hand, (42) gives (∀n ∈ N) ∆n � 〈xn | t∗n〉 − ηn. Al-
together, (42) is an instantiation of (A.3). The claims thus follow from Lemma A.4(i) and (ii).

(iii): Set μ � supn∈N‖t∗n‖. For every n ∈ N, if ∆n > 0, then (42) yields ∆n � λ−1
n ‖t∗n‖ ‖xn+1 − xn‖ 6 ε−1μ‖xn+1 − xn‖;

otherwise, ∆n6 0 � ε−1μ‖xn+1 − xn‖. We therefore invoke (ii) to get lim∆n6 limε−1μ‖xn+1 − xn‖ � 0.
(iv): Let x ∈ X, let (kn)n∈N be a strictly increasing sequence in N, and suppose that xkn * x. Then pkn �

(pkn − xkn) + xkn * x. In addition, (42) and Proposition 2(i) imply that (pkn ,p
∗
kn
+Cpkn)n∈N lies in gra (M+C) � gra S.

We also note that, since C is (1=α)-Lipschitzian by Proposition 2(iii)(a), (42) yields ‖p∗
n +Cpn‖ �

‖t∗n −Cqn +Cpn‖6 ‖t∗n‖ + ‖Cpn −Cqn‖ 6 ‖t∗n‖ + ‖pn −qn‖=α→ 0. Altogether, since S is maximally monotone by
Proposition 1(i), Bauschke and Combettes [9, proposition 20.38(ii)] yields x ∈ zer S. In turn, Lemma A.4(iii) guar-
antees that (xn)n∈N converges weakly to a point in zer S. w
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The next outer approximation scheme is a variant of the previous one that guarantees strong convergence to a
specific zero of the saddle operator.

Proposition 4. Consider the setting of Problem 1 and of Definitions 1 and 2, and suppose that zer S≠ ∅. Define

Ξ :]0, +∞[×]0, +∞[× R × R→ R
2

(∆,τ,ς,χ) �→
(1,∆=τ), if ρ � 0;

(0, (∆+χ)=τ), if ρ≠ 0 and χ∆P ρ;

(1−χ∆=ρ,ς∆=ρ), if ρ≠ 0 and χ∆ < ρ,

where ρ � τς−χ2,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(43)

set α �min{αc

i ,β
c

k ,δ
c

k}i∈I,k∈K, and let x0 ∈ X. Iterate

for n � 0, 1, : : :

(pn,p
∗
n) ∈ gra M;qn ∈ X;

t∗n � p∗
n +Cqn;

∆n � 〈xn −pn | t∗n〉 − (4α)−1‖pn −qn‖2;
if ∆n > 0

τn � ‖t∗n‖2; ςn � ‖x0 − xn‖2; χn � 〈x0 − xn | t∗n〉;
(κn,λn) � Ξ(∆n,τn,ςn,χn);
xn+1 � (1− κn)x0 + κnxn −λnt

∗
n;

else

xn+1 � xn:

(44)

Then the following hold:
(i) (∀n ∈ N) ‖xn − x0‖6 ‖xn+1 − x0‖ 6 ‖projzer Sx0 − x0‖.
(ii)

∑
n∈N‖xn+1 − xn‖2 < +∞.

(iii) Suppose that (t∗n)n∈N is bounded. Then lim∆n6 0.
(iv) Suppose that xn −pn * 0, pn −qn → 0, and t∗n → 0. Then xn → projzer Sx0.

Proof. Set (∀n ∈ N) ηn � (4α)−1‖pn −qn‖2 + 〈pn | t∗n〉 and Hn � x ∈ X | 〈x | t∗n〉6 ηn
{ }

. As seen in the proof of
Proposition 3, zer S is a nonempty closed convex subset of X and, for every n ∈ N, zer S ⊂ Hn and ∆n � 〈xn | t∗n〉 − ηn.
This and (43) make (44) an instance of (A.4).

(i) and (ii): Apply Lemma A.5(i) and (ii).
(iii): Set μ � supn∈N‖t∗n‖. Take n ∈ N. Suppose that ∆n > 0. Then, by construction of Hn, projHn

xn � xn − (∆n= ‖t∗n‖2)t∗n.
This implies that ∆n � ‖t∗n‖ ‖projHn

xn − xn‖ 6 μ‖projHn
xn − xn‖. Next, suppose that ∆n6 0. Then xn ∈ Hn and therefore

∆n6 0 � μ‖projHn
xn − xn‖. Altogether, (∀n ∈ N) ∆n6 μ‖projHn

xn − xn‖. Consequently, LemmaA.5(ii) yields lim∆n6 0.

(iv): Follow the same procedure as in the proof of Proposition 3(iv), invoking Lemma A.5(iii) instead of Lemma
A.4(iii). w

3. Asynchronous Block-Iterative Outer Approximation Methods
We exploit the saddle form of Problem 1 described in Definition 1 to obtain splitting algorithms with features
‹–�. Let us comment on the impact of requirements‹–fl.

‹ For every i ∈ I and every k ∈ K, each single-valued operator Ci, Qi, Ri, B
c

k, B
ℓ

k, D
c

k, D
ℓ

k, and Lki must be activated
individually via a forward step, whereas each of the set-valued operatorsAi, B

m

k , andDm

k must be activated individ-
ually via a backward resolvent step.

› At iteration n, only operators indexed by subgroups In ⊂ I and Kn ⊂ K of indices need to be involved in the
sense that the results of their evaluations are incorporated. This considerably reduces the computational load com-
pared to standard methods, which require the use of all the operators at every iteration. Assumption 2 below regu-
lates the frequency at which the indices should be chosen over time.

fiWhen an operator is involved at iteration n, its evaluation can be made at a point based on data available at an
earlier iteration. This makes it possible to initiate a computation at a given iteration and incorporate its result at a
later time. Assumption 3 below controls the lag allowed in the process of using past data.
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fl Assumption 1 below describes the range allowed for the various scaling parameters in terms of the cocoerciv-
ity and Lipschitz constants of the operators.

Assumption 1. In the setting of Problem 1, set α �min{αc

i , β
c

k , δ
c

k}i∈I,k∈K, let σ ∈]0, +∞[ and ε ∈]0, 1[ be such that
σ > 1=(4α) and 1=ε >max αℓ

i +χ+ σ, βℓk + σ, δℓk + σ
{ }

i∈I,k∈K, (45)

and suppose that the following are satisfied:
[a] For every i ∈ I and every n ∈ N, γi,n ∈ [ε, 1=(αℓ

i +χ+ σ)].
[b] For every k ∈ K and every n ∈ N, μk,n ∈ [ε, 1=(βℓk + σ)], νk,n ∈ [ε, 1=(δℓk + σ)], and σk,n ∈ [ε, 1=ε].
[c] For every i ∈ I, xi,0 ∈Hi; for every k ∈ K, {yk,0, zk,0,v∗k,0} ⊂ Gk.

Assumption 2. I and K are finite sets, P ∈ N, (In)n∈N are nonempty subsets of I, and (Kn)n∈N are nonempty subsets of K
such that

I0 � I, K0 � K, and (∀n ∈ N)
⋃n+P

j�n
Ij � I and

⋃n+P

j�n
Kj � K: (46)

Assumption 3. I and K are finite sets, T ∈ N, and, for every i ∈ I and every k ∈ K, (πi(n))n∈N and (ωk(n))n∈N are sequences
in N such that (∀n ∈ N) n−T6 πi(n) 6 n and n−T6 ωk(n) 6 n.

Our first algorithm is patterned after the abstract geometric outer approximation principle described in
Proposition 3. As before, bold letters denote product space elements, for example, xn � (xi,n)i∈I ∈H.

Algorithm 1. Consider the setting of Problem 1 and suppose that Assumptions 1–3 are in force. Let (λn)n∈N be a
sequence in ε, 2− ε[ ] and iterate

for n � 0, 1, : : :

for every i ∈ In

l∗i,n �Qixi,πi(n) +Rixπi(n) +
∑
k∈K

L∗kiv
∗
k,πi(n);

ai,n � Jγi,πi(n)Ai
(xi,πi(n) + γi,πi(n)(s

∗
i − l∗i,n −Cixi,πi(n)));

a∗i,n � γ−1
i,πi(n)(xi,πi(n) − ai,n) − l∗i,n +Qiai,n;

ξi,n � ‖ai,n − xi,πi(n)‖
2
;

for every i ∈ I\In
ai,n � ai,n−1; a∗i,n � a∗i,n−1; ξi,n � ξi,n−1;

for every k ∈ Kn

u∗k,n � v∗k,ωk(n) −Bℓ

kyk,ωk(n);

w∗
k,n � v∗k,ωk(n) −Dℓ

kzk,ωk(n);

bk,n � Jμk,ωk (n)
Bm

k
(yk,ωk(n) +μk,ωk(n)(u

∗
k,n −Bc

kyk,ωk(n)));
dk,n � Jνk,ωk(n)D

m

k
(zk,ωk(n) + νk,ωk(n)(w∗

k,n −Dc

kzk,ωk(n)));

e∗k,n � σk,ωk(n)
∑
i∈I

Lkixi,ωk(n) − yk,ωk(n) − zk,ωk(n) − rk

( )
+ v∗k,ωk(n);

q∗k,n � μ−1
k,ωk(n)(yk,ωk(n) − bk,n) + u∗k,n +Bℓ

kbk,n − e∗k,n;

t∗k,n � ν−1k,ωk(n)(zk,ωk(n) − dk,n) +w∗
k,n +Dℓ

kdk,n − e∗k,n;

ηk,n � ‖bk,n − yk,ωk(n)‖
2 + ‖dk,n − zk,ωk(n)‖

2
;

ek,n � rk + bk,n + dk,n −
∑
i∈I

Lkiai,n;

for every k ∈ K\Kn

bk,n � bk,n−1; dk,n � dk,n−1; e
∗
k,n � e∗k,n−1; q

∗
k,n � q∗k,n−1; t

∗
k,n � t∗k,n−1;

ηk,n � ηk,n−1; ek,n � rk + bk,n + dk,n −
∑
i∈I

Lkiai,n;

(47)
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for every i ∈ I

p∗i,n � a∗i,n +Rian +
∑
k∈K

L∗kie
∗
k,n;

∆n � −(4α)−1
∑
i∈I

ξi,n +
∑
k∈K

ηk,n

( )
+
∑
i∈I

〈xi,n − ai,n |p∗i,n〉

+
∑
k∈K

(〈yk,n − bk,n |q∗k,n〉 + 〈zk,n − dk,n | t∗k,n〉 + 〈ek,n |v∗k,n − e∗k,n〉);

if ∆n > 0

θn � λn∆n=
∑
i∈I

‖p∗i,n‖2 +
∑
k∈K

‖q∗k,n‖
2 + ‖t∗k,n‖

2 + ‖ek,n‖2
( )( )

;

for every i ∈ I

xi,n+1 � xi,n −θnp
∗
i,n;

for every k ∈ K

yk,n+1 � yk,n −θnq
∗
k,n; zk,n+1 � zk,n −θnt

∗
k,n; v

∗
k,n+1 � v∗k,n −θnek,n;

else
for every i ∈ I

xi,n+1 � xi,n;

for every k ∈ K

yk,n+1 � yk,n; zk,n+1 � zk,n; v
∗
k,n+1 � v∗k,n:

The convergence properties of Algorithm 1 are laid out in the following theorem.

Theorem 1. Consider the setting of Algorithm 1 and suppose that the dual problem (2) has a solution. Then the following hold:
(i) Let i ∈ I. Then

∑
n∈N‖xi,n+1 − xi,n‖2 < +∞.

(ii) Let k ∈ K. Then
∑

n∈N‖yk,n+1 − yk,n‖2 < +∞,
∑

n∈N‖zk,n+1 − zk,n‖2 < +∞, and
∑

n∈N‖v∗k,n+1 − v∗k,n‖2 < +∞.

(iii) Let i ∈ I and k ∈ K. Then xi,n − ai,n → 0, yk,n − bk,n → 0, zk,n − dk,n → 0, and v∗k,n − e∗k,n → 0.

(iv) There exist a solution x to (1) and a solution v∗ to (2) such that, for every i ∈ I and every k ∈ K, xi,n * xi, ai,n * xi, and
v∗k,n * v∗k. In addition, (x,v∗) is a Kuhn–Tucker point of Problem 1 in the sense of (23).

Proof. We use the notation of Definitions 1 and 2. We first observe that zer S≠ ∅ by virtue of Proposition 1(iv).
Next, let us verify that (47) is a special case of (42). For every i ∈ I, denote by ϑi(n) the most recent iteration pre-
ceding an iteration n at which the results of the evaluations of the operators Ai, Ci, Qi, and Ri were incorporated,
and by ϑi(n) the iteration at which the corresponding calculations were initiated, that is,

ϑi(n) �max j ∈ N | j6 n and i ∈ Ij
{ }

and ϑi(n) � πi(ϑi(n)): (48)

Similarly, we define

(∀k ∈ K)(∀n ∈ N) �k(n) �max j ∈ N | j6 n and k ∈ Kj

{ }
and �k(n) � ωk(�k(n)): (49)

By virtue of (47),

(∀i ∈ I)(∀n ∈ N) ai,n � ai,ϑ i(n), a∗i,n � a∗
i,ϑ i(n)

, ξi,n � ξi,ϑ i(n), (50)

and likewise

(∀k ∈ K)(∀n ∈ N)
bk,n � bk,�k(n), dk,n � dk,�k(n), ηk,n � ηk,� k(n)
e∗k,n � e∗k,�k(n)

, q∗k,n � q∗k,�k(n)
, t∗k,n � t∗k,�k(n)

:

{
(51)

To proceed further, set

(∀n ∈ N)

xn � (xn,yn,zn,v∗n)
pn � (an,bn,dn,e∗n)
p∗
n � (p∗n − (Cixi,ϑi(n))i∈I,q∗n − (Bc

kyk,�k(n))k∈K, t
∗
n − (Dc

kzk,�k(n))k∈K, en)
qn � ((xi,ϑi(n))i∈I, (yk,�k(n))k∈K, (zk,�k(n))k∈K, (e

∗
k,n)k∈K)

t∗n � (p∗n,q∗n, t∗n, en):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(52)
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For every i ∈ I and every n ∈ N, it follows from (50), (48), (47), and Bauschke and Combettes [9, proposition
23.2(ii)] that

a∗i,n −Cixi,ϑi(n) � a∗
i,ϑ i(n)

−Cixi,πi(ϑ i(n))

� γ−1
i,πi(ϑ i(n))

(xi,πi(ϑ i(n)) − ai,ϑ i(n)) − l∗
i,ϑ i(n)

−Cixi,πi(ϑ i(n)) +Qiai,ϑ i(n)

∈ −s∗i +Aiai,ϑ i(n) +Qiai,ϑ i(n)

� −s∗i +Aiai,n +Qiai,n (53)

and, therefore, that

p∗i,n −Cixi,ϑi(n) � a∗i,n −Cixi,ϑi(n) +Rian +
∑
k∈K

L∗kie
∗
k,n

∈ −s∗i +Aiai,n +Qiai,n +Rian +
∑
k∈K

L∗kie
∗
k,n: (54)

Analogously, we invoke (51), (49), and (47) to obtain

(∀k ∈ K)(∀n ∈ N) q∗k,n −Bc

kyk,�k(n) ∈ Bm

k bk,n +Bℓ

kbk,n − e∗k,n (55)

and

(∀k ∈ K)(∀n ∈ N) t∗k,n −Dc

kzk,�k(n) ∈Dm

k dk,n +Dℓ

kdk,n − e∗k,n: (56)

In addition, (47) states that

(∀k ∈ K)(∀n ∈ N) ek,n � rk + bk,n + dk,n −
∑
i∈I

Lkiai,n: (57)

Hence, using (52) and (38), we deduce that (pn,p
∗
n)n∈N lies in gra M. Next, it results from (52) and (39) that (∀n ∈ N)

t∗n � p∗
n +Cqn. Moreover, for every n ∈ N, (47)–(52) entail that

∑
i∈I

ξi,n +
∑
k∈K

ηk,n �
∑
i∈I

ξi,ϑ i(n) +
∑
k∈K

ηk,�k(n)

�
∑
i∈I

‖ai,ϑ i(n) − xi,πi(ϑ i(n))‖
2 +

∑
k∈K

(
‖bk,� k(n) − yk,ωk(�k(n))‖

2 + ‖dk,� k(n) − zk,ωk(�k(n))‖
2
)

�
∑
i∈I

‖ai,n − xi,ϑi(n)‖2 +
∑
k∈K

(
‖bk,n − yk,�k(n)‖

2 + ‖dk,n − zk,�k(n)‖
2
)

� ‖pn −qn‖2 (58)

and, in turn, that

∆n � 〈xn −pn | t∗n〉 − (4α)−1‖pn −qn‖2: (59)

To sum up, (47) is an instantiation of (42). Therefore, Proposition 3(ii) asserts that
∑
n∈N

‖xn+1 − xn‖2 < +∞: (60)

(i) and (ii): These follow from (60) and (52).
(iii) and (iv): Proposition 3(i) implies that (xn)n∈N is bounded. It therefore results from (52) that

(xn)n∈N, (yn)n∈N, (zn)n∈N, and (v∗n)n∈N are bounded: (61)

Hence, (51), (47), (49), and Assumption 1[b] ensure that

(∀k ∈ K) (e∗k,n)n∈N � σk,�k(n)
∑
i∈I

Lkixi,�k(n) − yk,�k(n) − zk,�k(n) − rk

( )
+ v∗k,�k(n)

( )

n∈N
is bounded: (62)

Next, we deduce from (61) and Problem 1[e] that

(∀i ∈ I) (Rixϑi(n))n∈N is bounded: (63)

In turn, it follows from (47), (61), the fact that (Qi)i∈I and (Ci)i∈I are Lipschitzian, and Assumption 1[a] that

(∀i ∈ I) xi,ϑi(n) + γi,ϑi(n) s
∗
i − l∗

i,ϑ i(n)
−Cixi,ϑi(n)

( )( )
n∈N

is bounded: (64)

Bùi and Combettes: Multivariate Monotone Inclusions in Saddle Form

12 Mathematics of Operations Research, Articles in Advance, pp. 1–28, © 2021 INFORMS



An inspection of (50), (47), (48), and Lemma A.1 reveals that

(∀i ∈ I) (ai,n)n∈N � Jγi,ϑi(n)Ai xi,ϑi(n) + γi,ϑi(n) s
∗
i − l∗

i,ϑ i(n)
− Cixi,ϑi(n)

( )( )( )
n∈N

is bounded: (65)

Hence, we infer from (50), (47), (61), and Assumption 1[a] that

(∀i ∈ I) (a∗i,n)n∈N is bounded: (66)

Accordingly, by (47), (61), and Assumption 1[b],

(∀k ∈ K) yk,�k(n) + μk,�k(n)
u∗k,�k(n) − Bc

kyk,�k(n)
( )( )

n∈N
is bounded: (67)

Therefore, (51), (47), (49), and Lemma A.1 imply that

(∀k ∈ K) (bk,n)n∈N � Jμk,�k (n)
Bm

k
yk,�k(n) + μk,�k(n)

u∗k,�k(n) − Bc

kyk,�k(n)
( )( )( )

n∈N
is bounded: (68)

Thus, (51), (47), (61), (62), and Assumption 1[b] yield

(q∗n)n∈N is bounded: (69)

Likewise,

(dn)n∈N and (t∗n)n∈N are bounded: (70)

We deduce from (57), (68), (70), and (65) that

(en)n∈N is bounded: (71)

On the other hand, (47), (66), (65), Problem 1[e], and (62) imply that

(p∗n)n∈N is bounded: (72)

Hence, we infer from (52) and (69)–(71) that (t∗n)n∈N is bounded. Consequently, (59) and Proposition 3(iii) yield

lim (〈xn −pn | t∗n〉 − (4α)−1‖pn −qn‖2) � lim∆n6 0: (73)

Let L andW be as in (24) and (27). For every n ∈ N, set

(∀i ∈ I) Ei,n � γ−1
i,ϑi(n)Id−Qi

(∀k ∈ K) Fk,n � μ−1
k,�k(n)

Id−Bℓ

k, Gk,n � ν−1k,�k(n)
Id−Dℓ

k

En : X→ X : (x,y,z,v∗) �→ ((Ei,nxi)i∈I, (Fk,nyk)k∈K, (Gk,nzk)k∈K, (σ−1k,�k(n)v
∗
k)k∈K)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(74)

and

x̃n � ((xi,ϑi(n))i∈I, (yk,�k(n))k∈K, (zk,�k(n))k∈K, (v
∗
k,�k(n)

)k∈K)
v∗n � Enxn −Enpn, w

∗
n �Wpn −Wxn

r∗n � ((Rian −Rixn)i∈I,0,0,0), r̃
∗
n � ((Rian −Rixϑi(n))i∈I,0,0,0)

l∗n � −
∑
k∈K

L∗kiv
∗
k,ϑi(n)

( )

i∈I
, v∗k,�k(n)

( )
k∈K

, v∗k,�k(n)

( )
k∈K

,
∑
i∈I

Lkixi,�k(n) − yk,�k(n) − zk,�k(n)

( )

k∈K

( )
:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(75)

In view of Problem 1[a]–[c] and Assumption 1[a] and [b], we deduce from Lemma A.2 that

(∀n ∈ N) the operators (Ei,n)i∈I are (χ+ σ) -strongly monotone

the operators (Fk,n)k∈K and (Gk,n)k∈K are σ-strongly monotone,

{
(76)

and from (74) that there exists κ ∈]0, +∞[ such that

the operators (En)n∈N are κ-Lipschitzian: (77)

It results from (50), (47), (48), and (74) that

(∀i ∈ I)(∀n ∈ N) a∗i,n � a∗
i,ϑ i(n)

� γ−1
i,πi(ϑ i(n))

xi,πi(ϑ i(n)) −Qixi,πi(ϑ i(n))

( )
− γ−1

i,πi(ϑ i(n))
ai,ϑ i(n) −Qiai,ϑ i(n)

( )
−Rixπi(ϑ i(n)) −

∑
k∈K

L∗kiv
∗
k,πi(ϑ i(n))

� Ei,nxi,ϑi(n) −Ei,nai,n −Rixϑi(n) −
∑
k∈K

L∗kiv
∗
k,ϑi(n) (78)

Bùi and Combettes: Multivariate Monotone Inclusions in Saddle Form

Mathematics of Operations Research, Articles in Advance, pp. 1–28, © 2021 INFORMS 13



and, therefore, that

(∀i ∈ I)(∀n ∈ N) p∗i,n � a∗i,n +Rian +
∑
k∈K

L∗kie
∗
k,n

� Ei,nxi,ϑi(n) −Ei,nai,n +Rian −Rixϑi(n) −
∑
k∈K

L∗kiv
∗
k,ϑi(n) +

∑
k∈K

L∗kie
∗
k,n: (79)

At the same time, (51), (47), (49), and (74) entail that

(∀k ∈ K)(∀n ∈ N) q∗k,n � q∗k,�k(n)

� μ−1
k,ωk(�k(n))

yk,ωk(�k(n)) −Bℓ

kyk,ωk(� k(n))
( )

− μ−1
k,ωk(� k(n))

bk,� k(n) −Bℓ

kbk,�k(n)
( )

+ v∗k,ωk(�k(n)) − e∗k,� k(n)

� Fk,nyk,�k(n) − Fk,nbk,n + v∗k,�k(n) − e∗k,n (80)

and that

(∀k ∈ K)(∀n ∈ N) t∗k,n � Gk,nzk,�k(n) −Gk,ndk,n + v∗k,�k(n) − e∗k,n: (81)

Furthermore, we derive from (51), (47), and (49) that

(∀k ∈ K)(∀n ∈ N) rk � σ−1k,�k(n)v
∗
k,�k(n) − σ−1k,�k(n)e

∗
k,n − yk,�k(n) − zk,�k(n) +

∑
i∈I

Lkixi,�k(n) (82)

and, in turn, from (57) that

(∀k ∈ K)(∀n ∈ N) ek,n � σ−1k,�k(n)v
∗
k,�k(n) − σ−1k,�k(n)e

∗
k,n − yk,�k(n) − zk,�k(n)

+
∑
i∈I

Lkixi,�k(n) + bk,n + dk,n −
∑
i∈I

Lkiai,n: (83)

Altogether, it follows from (52), (79)–(81), (83), (74), (75), (27), and (25) that

(∀n ∈ N) t∗n � Enx̃n −Enpn + r̃
∗
n + l∗n +Wpn: (84)

Next, in view of (60), (48), (49), and Assumptions 2 and 3, we learn from Lemma A.3 that

(∀i ∈ I)(∀k ∈ K)
xϑi(n) − xn → 0, x�k(n) − xn → 0, and v∗ϑi(n) − v∗n → 0

y�k(n) − yn → 0, z�k(n) − zn → 0, and v∗�k(n)
− v∗n → 0:

{
(85)

Thus, (75), (27), (25), and (24) yield

l∗n +Wxn → 0, (86)

while Problem 1[e] gives

(∀i ∈ I) ‖Rixϑi(n) −Rixn‖ 6 χ‖xϑi(n) − xn‖→ 0: (87)

On the other hand, we infer from (77), (75), and (85) that

‖Enx̃n −Enxn‖6 κ‖x̃n − xn‖→ 0: (88)

Combining (84), (75), and (86)–(88), we obtain

t∗n − (v∗n + r∗n +w∗
n) � l∗n +Wxn +Enx̃n −Enxn + r̃

∗
n − r∗n → 0: (89)

Now set

(∀n ∈ N) q̃n � (xn,yn,zn, e∗n): (90)
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Then (q̃n)n∈N is bounded by virtue of (61) and (62). On the one hand, (52), (62), (65), (68), and (70) imply that
(pn)n∈N is bounded. On the other hand, (52) and (85) give

q̃n −qn → 0: (91)

Therefore, appealing to the Cauchy–Schwarz inequality, we obtain

| 〈pn − q̃n | q̃n −qn〉 | 6 sup
m∈N

‖pm‖ + sup
m∈N

‖q̃m‖
( )

‖q̃n −qn‖→ 0 (92)

and, by (89),

| 〈xn −pn | t∗n − (v∗n + r∗n +w∗
n)〉 | 6 sup

m∈N
‖xm‖ + sup

m∈N
‖pm‖

( )
‖t∗n − (v∗n + r∗n +w∗

n)‖ → 0: (93)

However, sinceW∗ � −W by (27), it results from (75) that (∀n ∈ N) 〈xn −pn |w∗
n〉 � 0. Thus, by (73) and (91)–(93),

0P lim (〈xn −pn | t∗n〉 − (4α)−1‖pn −qn‖2)

� lim (〈xn −pn |v∗n + r∗n +w∗
n〉 + 〈xn −pn | t∗n − (v∗n + r∗n +w∗

n)〉 − (4α)−1‖pn −qn‖2)

� lim (〈xn −pn |v∗n + r∗n〉 − (4α)−1(‖pn − q̃n‖2 + 2〈pn − q̃n | q̃n −qn〉 + ‖q̃n −qn‖2))

� lim (〈xn −pn |v∗n + r∗n〉 − (4α)−1‖pn − q̃n‖2): (94)

On the other hand, we deduce from (75), (52), (74), (76), Assumption 1[b], the Cauchy–Schwarz inequality,
Problem 1[e], and (90) that, for every n ∈ N,

〈xn −pn |v∗n + r∗n〉 − (4α)−1‖pn − q̃n‖2

� 〈xn −pn |Enxn −Enpn〉 + 〈xn −pn | r∗n〉 − (4α)−1‖pn − q̃n‖2

�
∑
i∈I

〈xi,n − ai,n |Ei,nxi,n −Ei,nai,n〉 +
∑
k∈K

〈yk,n − bk,n |Fk,nyk,n − Fk,nbk,n〉

+
∑
k∈K

〈zk,n − dk,n |Gk,nzk,n −Gk,ndk,n〉 +
∑
k∈K

σ−1k,�k(n)‖v
∗
k,n − e∗k,n‖2

+ 〈xn − an |Ran −Rxn〉 − (4α)−1‖pn − q̃n‖2

P (χ+ σ)‖xn − an‖2 + σ‖yn − bn‖2 + σ‖zn − dn‖2

+ ε‖v∗n − e∗n‖2 − ‖xn − an‖ ‖Ran −Rxn‖ − (4α)−1‖pn − q̃n‖2

P (χ+ σ)‖xn − an‖2 + σ‖yn − bn‖2 + σ‖zn − dn‖2

+ ε‖v∗n − e∗n‖2 −χ‖xn − an‖2 − (4α)−1‖pn − q̃n‖2

� (σ− (4α)−1)(‖xn − an‖2 + ‖yn − bn‖2 + ‖zn − dn‖2) + ε‖v∗n − e∗n‖2: (95)

Hence, since σ > 1=(4α) by (45), taking the limit superior in (95) and invoking (94) yields

xn − an → 0, yn − bn → 0, zn − dn → 0, and v∗n − e∗n → 0, (96)

which establishes (iii). In turn, (52) and (77) force

xn −pn → 0 and ‖Enxn −Enpn‖ 6 κ‖xn −pn‖ → 0, (97)

and (85) thus yields pn −qn → 0. Furthermore, we infer from (75), (96), and Problem 1[e] that

‖r∗n‖2 � ‖Ran −Rxn‖26 χ2‖an − xn‖2 → 0: (98)

Altogether, it follows from (75), (89), (97), and (98) that

t∗n � (t∗n − (v∗n + r∗n +w∗
n)) + (Enxn −Enpn) +W(pn − xn) + r∗n → 0: (99)

Hence, Proposition 3(iv) guarantees that there exists x � (x,y,z,v∗) ∈ zer S such that xn * x. This and (96) imply
that, for every i ∈ I and every k ∈ K, xi,n * xi, ai,n * xi, and v∗k,n * v∗k. Finally, Proposition 1(iii) asserts that (x,v∗)
lies in the set of Kuhn–Tucker points (23), that x solves (1), and that v∗ solves (2). w

Some infinite-dimensional applications require strong convergence of the iterates; see, for example, Attouch
et al. [3, 4]. This will be guaranteed by the following variant of Algorithm 1, which hinges on the principle out-
lined in Proposition 4.
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Algorithm 2. Consider the setting of Problem 1, define Ξ as in (43), and suppose that Assumptions 1–3 are in
force. Iterate

for n � 0, 1, : : :
for every i ∈ In
l∗i,n � Qixi,πi(n) + Rixπi(n) +

∑
k∈K

L∗kiv
∗
k,πi(n);

ai,n � Jγi,πi(n)Ai
(xi,πi(n) + γi,πi(n)(s

∗
i − l∗i,n − Cixi,πi(n)));

a∗i,n � γ−1
i,πi(n)(xi,πi(n) − ai,n) − l∗i,n +Qiai,n;

ξi,n � ‖ai,n − xi,πi(n)‖
2
;

for every i ∈ I\In
ai,n � ai,n−1; a∗i,n � a∗i,n−1; ξi,n � ξi,n−1;

for every k ∈ Kn

u∗k,n � v∗k,ωk(n) − Bℓ

kyk,ωk(n);

w∗
k,n � v∗k,ωk(n) −Dℓ

kzk,ωk(n);
bk,n � Jμk,ωk(n)

Bm

k
(yk,ωk(n) + μk,ωk(n)(u

∗
k,n − Bc

kyk,ωk(n)));
dk,n � Jνk,ωk(n)D

m

k
(zk,ωk(n) + νk,ωk(n)(w∗

k,n −Dc

kzk,ωk(n)));

e∗k,n � σk,ωk(n)

(∑
i∈I

Lkixi,ωk(n) − yk,ωk(n) − zk,ωk(n) − rk

)
+ v∗k,ωk(n);

q∗k,n � μ−1
k,ωk(n)(yk,ωk(n) − bk,n) + u∗k,n + Bℓ

kbk,n − e∗k,n;

t∗k,n � ν−1k,ωk(n)(zk,ωk(n) − dk,n) + w∗
k,n +Dℓ

kdk,n − e∗k,n;

ηk,n � ‖bk,n − yk,ωk(n)‖
2 + ‖dk,n − zk,ωk(n)‖

2
;

ek,n � rk + bk,n + dk,n −
∑
i∈I

Lkiai,n;

for every k ∈ K\Kn

bk,n � bk,n−1; dk,n � dk,n−1; e∗k,n � e∗k,n−1; q∗k,n � q∗k,n−1; t∗k,n � t∗k,n−1;

ηk,n � ηk,n−1; ek,n � rk + bk,n + dk,n −
∑
i∈I

Lkiai,n;

for every i ∈ I

p∗i,n � a∗i,n + Rian +
∑
k∈K

L∗kie
∗
k,n;

∆n � −(4α)−1
∑
i∈I

ξi,n +
∑
k∈K

ηk,n

( )
+
∑
i∈I

〈xi,n − ai,n | p∗i,n〉

+
∑
k∈K

(〈yk,n − bk,n | q∗k,n〉 + 〈zk,n − dk,n | t∗k,n〉 + 〈ek,n | v∗k,n − e∗k,n〉);

if ∆n > 0
τn �

∑
i∈I

‖p∗i,n‖2 +
∑
k∈K

(‖q∗k,n‖
2 + ‖t∗k,n‖

2 + ‖ek,n‖2);

ςn �
∑
i∈I

‖xi,0 − xi,n‖2

+
∑
k∈K

(‖yk,0 − yk,n‖2 + ‖zk,0 − zk,n‖2 + ‖v∗k,0 − v∗k,n‖
2);

χn �
∑
i∈I

〈xi,0 − xi,n | p∗i,n〉

+
∑
k∈K

(〈yk,0 − yk,n | q∗k,n〉 + 〈zk,0 − zk,n | t∗k,n〉 + 〈ek,n | v∗k,0 − v∗k,n〉);

(κn,λn) � Ξ(∆n, τn, ςn,χn);
for every i ∈ I
xi,n+1 � (1 − κn)xi,0 + κnxi,n − λnp

∗
i,n;

for every k ∈ K
yk,n+1 � (1 − κn)yk,0 + κnyk,n − λnq

∗
k,n;

zk,n+1 � (1 − κn)zk,0 + κnzk,n − λnt
∗
k,n;

v∗k,n+1 � (1 − κn)v∗k,0 + κnv
∗
k,n − λnek,n;

else
for every i ∈ I
xi,n+1 � xi,n;

for every k ∈ K
yk,n+1 � yk,n; zk,n+1 � zk,n; v∗k,n+1 � v∗k,n:

(100)
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Theorem 2. Consider the setting of Algorithm 2 and suppose that the dual problem (2) has a solution. Then the following
hold:

(i) Let i ∈ I. Then
∑

n∈N‖xi,n+1 − xi,n‖2 < +∞.

(ii) Let k ∈ K. Then
∑

n∈N‖yk,n+1 − yk,n‖2 < +∞,
∑

n∈N‖zk,n+1 − zk,n‖2 < +∞, and
∑

n∈N‖v∗k,n+1 − v∗k,n‖2 < +∞.

(iii) Let i ∈ I and k ∈ K. Then xi,n − ai,n → 0, yk,n − bk,n → 0, zk,n − dk,n → 0, and v∗k,n − e∗k,n → 0.

(iv) There exist a solution x to (1) and a solution v∗ to (2) such that, for every i ∈ I and every k ∈ K, xi,n → xi, ai,n → xi,
and v∗k,n → v∗k. In addition, (x,v∗) is a Kuhn–Tucker point of Problem 1 in the sense of (23).

Proof. Proceed as in the proof of Theorem 1 and use Proposition 4 instead of Proposition 3. w

4. Applications
In nonlinear analysis and optimization, problems with multiple variables occur in areas such as game theory
(Attouch et al. [2], Briceño-Arias and Combettes [15], Yi and Pavel [56]), evolution inclusions (Attouch et al. [3]),
traffic equilibrium (Attouch et al. [3], Fukushima [31]), domain decomposition (Attouch et al. [4]), machine learn-
ing (Bach et al. [6], Briceño-Arias et al. [12]), image recovery (Briceño-Arias and Combettes [13], Briceño-Arias
et al. [16]), infimal-convolution regularization (Combettes [23]), statistics (Combettes and Müller [26], Yan and
Bien [55]), neural networks (Combettes and Pesquet [27]), and variational inequalities (Fukushima [31]). The nu-
merical methods used in these papers are limited to special cases of Problem 1, they do not perform block itera-
tions, and they operate in synchronous mode. The methods presented in Theorems 1 and 2 provide a unified
treatment of these problems and extensions, within a considerably more flexible algorithmic framework. In this
section, we illustrate this in the context of variational inequalities and multivariate minimization. Below we pre-
sent only the applications of Theorem 1, as similar applications of Theorem 2 follow using similar arguments.

4.1. Application to Variational Inequalities
The standard variational inequality problem associated with a closed convex subset D of a real Hilbert space G

and a maximally monotone operator B : G→ G is to

find y ∈D such that (∀y ∈D) 〈y − y |By〉 6 0: (101)

Classical methods require the ability to project onto D and specific assumptions on B such as cocoercivity,
Lipschitz continuity, or the ability to compute the resolvent (Bauschke and Combettes [9], Facchinei and Pang
[30], Tseng [53]). Let us consider a refined version of (101) in which B and D are decomposed into basic compo-
nents and for which these classical methods are not applicable.

Problem 2. Let I be a nonempty finite set and let (Hi)i∈I and G be real Hilbert spaces. For every i ∈ I, let Ei and Fi be
closed convex subsets of Hi such that Ei ∩ Fi ≠ ∅ and let Li :Hi → G be linear and bounded. In addition, let Bm :

G→ 2G be at most single-valued and maximally monotone, let Bc : G→ G be cocoercive with constant
βc ∈ ]0, +∞[, and let Bℓ : G→ G be Lipschitzian with constant βℓ ∈ [0, +∞[. The objective is to

find y ∈
∑
i∈I

Li(Ei ∩ Fi) such that ∀y ∈
∑
i∈I

Li(Ei ∩ Fi)
( )

〈y − y |Bmy +Bcy +Bℓy〉 6 0: (102)

To motivate our analysis, let us consider an illustration of (102).

Example 1. Let I be a nonempty finite set and let (Zi)i∈I and K be real Hilbert spaces. For every i ∈ I, let Si ⊂ Zi be
closed and convex, and letMi : Zi →K be linear and bounded. In addition, let f ∈ Γ0(K) be Gâteaux differentiable
on dom ∂f , let φ : K→ R be convex and differentiable with a Lipschitzian gradient, let V be a real Hilbert space,
let g ∈ Γ0(V) be such that g∗ is Gâteaux differentiable on dom ∂g∗, let D be a closed convex subset of V such that

0 ∈ sri (D−dom g∗), (103)

let h ∈ Γ0(V) be strongly convex, and let L :K→ V be linear and bounded. By Bauschke and Combettes [9, theorem
18.15], h∗ is differentiable on V andrh∗ is cocoercive. The objective is to solve the Kuhn–Tucker problem

find (x,v∗) ∈ K�V such that

0

0

[ ]
∈ rf 0

0 rg∗

[ ]

︸!!!!︷︷!!!!︸
monotone

x

v∗

[ ]
+ rφ 0

0 rh∗

[ ]

︸!!!!︷︷!!!!︸
cocoercive

x

v∗

[ ]
+ 0 L∗

−L 0

[ ]

︸!!!!︷︷!!!!︸
Lipschitzian

x

v∗

[ ]
+ NC 0

0 ND

[ ]

︸!!!!︷︷!!!!︸
normal cone

x

v∗

[ ]
, (104)
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where it is assumed that

C �
∑
i∈I

Mi(Si) is closed and 0 ∈ sri (C−dom f ): (105)

Since dom h∗ � V, we deduce from (103) and Bauschke and Combettes [9, proposition 15.7(i)] that
gw h w σD ∈ Γ0(V). It follows from standard convex calculus (Bauschke and Combettes [9]) that a solution (x,v∗)
to (104) provides a solution x to

minimize
x∈C

f (x) + (gw h w σD)(Lx) +φ(x), (106)

as well as a solution v∗ to the associated Fenchel–Rockafellar dual

minimize
v∗∈D

( f +φ)∗ w σC
( )

(−L∗v∗) + g∗(v∗) + h∗(v∗): (107)

To see that (104)–(105) is a special case of Problem 2, set G �K�V and

(∀i ∈ I) Li :Hi � Zi�V → G : (zi,v∗) �→ (Mizi,v
∗=card I), Ei � Si ×D, and Fi � Zi × V: (108)

Note that

C ×D �
∑
i∈I

Li(Ei ∩ Fi): (109)

Furthermore, in view of Bauschke and Combettes [9, proposition 17.31(i)], let us define

Bm : G→ 2G : (x,v∗) �→ ∂( f �g∗)(x,v∗)

Bc : G→ G : (x,v∗) �→ (rφ(x),rh∗(v∗))
Bℓ : G→ G : (x,v∗) �→ (L∗v∗, − Lx):

� (rf (x),rg∗(v∗)), if (x,v∗) ∈ dom ∂f × dom ∂g∗;

∅, otherwise

{
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(110)

Then Bm is maximally monotone (Bauschke and Combettes [9, theorem 20.25]), Bc is cocoercive (Bauschke and
Combettes [9, corollary 18.17]), and Bℓ is a skew bounded linear operator and hence monotone and Lipschitzian
(Bauschke and Combettes [9, example 20.35]). In turn, combining (108) and (110), we conclude that (104) can be
written as

find (x,v∗) ∈K�V such that (0, 0) ∈ Bm(x,v∗) +Bc(x,v∗) +Bℓ(x,v∗) +NC×D(x,v∗), (111)

which, in the light of (109), fits the format of (102). Special cases of (106) involving minimization over Minkowski
sum of sets are found in areas such as signal and image processing (Aujol and Chambolle [5], Combettes and
Wajs [28], Ono et al. [41]), location and network problems (Nam et al. [40]), and robotics and computational me-
chanics (Wang et al. [54]).

We are going to reformulate Problem 2 as a realization of Problem 1 and solve it via a block-iterative method
derived from Algorithm 1. In addition, our approach employs the individual projection operators onto the sets
(Ei)i∈I and (Fi)i∈I and the resolvents of the operator Bm. We are not aware of any method which features such flex-
ibility. For instance, consider the special case discussed in Fukushima [31, section 4], where G � RN, Bc � Bℓ � 0,
T : RN → R

M is a linear operator, and, for every i ∈ I, Hi � RN, Li � Id, Ei � T−1({di}) for some di ∈ RM, and
Fi � 0,+∞ N

[[
. There, the evaluations of all the projectors (projEi∩Fi)i∈I are required at every iteration. Note that

there are no closed-form expressions for (projEi∩Fi)i∈I in general.

Corollary 1. Consider the setting of Problem 2. Let σ ∈]1=(4βc), +∞[, ε ∈]0,min {1, 1=(βℓ + σ)}[, and K � I
⋃{k}, where

k ∉ I. Suppose that Assumption 2 is in force, together with the following:
[a] For every i ∈ I and every n ∈ N, {γi,n,μi,n,νi,n} ⊂ [ε, 1=σ] and σi,n ∈ [ε, 1=ε].
[b] For every n ∈ N, λn ∈ [ε, 2− ε], μ

k ,n
∈ [ε, 1=(βℓ + σ)], ν

k ,n
∈ [ε, 1=σ], and σ

k ,n
∈ [ε, 1=ε].

[c] For every i ∈ I, {xi,0,yi,0, zi,0,v∗i,0} ⊂Hi; {yk ,0,zk ,0,v∗k ,0} ⊂ G.
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Iterate
for n � 0, 1, : : :

for every i ∈ In
l∗i,n � v∗i,n + L∗iv

∗
k ,n
;

ai,n � projEi
(xi,n − γi,nl

∗
i,n);

a∗i,n � γ−1
i,n (xi,n − ai,n) − l∗i,n;

ξi,n � ‖ai,n − xi,n‖2;
for every i ∈ I\In
ai,n � ai,n−1; a∗i,n � a∗i,n−1; ξi,n � ξi,n−1;

for every k ∈ Kn

if k ∈ I
bk,n � projFk(yk,n + μk,nv

∗
k,n);

e∗k,n � σk,n(xk,n − yk,n − zk,n) + v∗k,n;

q∗k,n � μ−1
k,n(yk,n − bk,n) + v∗k,n − e∗k,n;

ek,n � bk,n − ak,n;

if k � k

u∗k,n � v∗k,n − Bℓyk,n;

bk,n � Jμk,nB
m(yk,n + μk,n(u∗k,n − Bcyk,n));

e∗k,n � σk,n
∑
i∈I

Lixi,n − yk,n − zk,n

( )
+ v∗k,n;

q∗k,n � μ−1
k,n(yk,n − bk,n) + u∗k,n + Bℓbk,n − e∗k,n;

ek,n � bk,n −
∑
i∈I

Liai,n;

t∗k,n � ν−1k,nzk,n + v∗k,n − e∗k,n;

ηk,n � ‖bk,n − yk,n‖2 + ‖zk,n‖2;

for every k ∈ K\Kn

bk,n � bk,n−1; e
∗
k,n � e∗k,n−1; q∗k,n � q∗k,n−1; t∗k,n � t∗k,n−1; ηk,n � ηk,n−1;

if k ∈ I

ek,n � bk,n − ak,n;

if k � k

ek,n � bk,n −
∑
i∈I

Liai,n;

for every i ∈ I
p∗i,n � a∗i,n + e∗i,n + L∗i e

∗
k ,n
;

∆n � −(4βc)−1
∑
i∈I

ξi,n +
∑
k∈K

ηk,n

( )
+
∑
i∈I

〈xi,n − ai,n | p∗i,n〉

+
∑
k∈K

(〈yk,n − bk,n | q∗k,n〉 + 〈zk,n | t∗k,n〉 + 〈ek,n | v∗k,n − e∗k,n〉);

if ∆n > 0

θn � λn∆n=
∑
i∈I

‖p∗i,n‖2 +
∑
k∈K

‖q∗k,n‖
2 + ‖t∗k,n‖

2 + ‖ek,n‖2
( )( )

;

for every i ∈ I
xi,n+1 � xi,n − θnp

∗
i,n;

for every k ∈ K
yk,n+1 � yk,n − θnq

∗
k,n; zk,n+1 � zk,n − θnt

∗
k,n; v∗k,n+1 � v∗k,n − θnek,n;

else
for every i ∈ I

xi,n+1 � xi,n;

for every k ∈ K
yk,n+1 � yk,n; zk,n+1 � zk,n; v∗k,n+1 � v∗k,n:

(112)
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Furthermore, suppose that (102) has a solution and that

(∀i ∈ I) NEi∩Fi � NEi
+NFi : (113)

Then there exists (xi)i∈I ∈ � i∈IHi such that
∑

i∈I Lixi solves (102) and, for every i ∈ I, xi,n * xi and ai,n * xi.

Proof. SetH � � i∈IHi. Let us consider the problem

find x ∈H such that (∀i ∈ I) 0 ∈NEixi +NFixi + L∗i (Bm +Bc +Bℓ)
∑
j∈I

Ljxj

( )
(114)

together with the associated dual problem

find (x∗,v∗) ∈H�G such that (∃x ∈H)
(∀i ∈ I) − x∗i − L∗iv

∗ ∈NEixi and x∗i ∈NFixi

v∗ � (Bm +Bc +Bℓ)
∑
j∈I

Ljxj

( )
:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩ (115)

Denote by 3 and $ the sets of solutions to (114) and (115), respectively. We observe that the primal-dual problem
(114)–(115) is a special case of Problem 1 with

(∀i ∈ I) Ai �NEi
, Ci �Qi � 0, Ri � 0, and s∗i � 0, (116)

and

(∀k ∈ K)

Gk �Hk, Bm

k �NFk , Bc

k � Bℓ

k � 0 if k ∈ I;

G
k
� G, Bm

k
� Bm, Bc

k
� Bc, Bℓ

k
� Bℓ

Dm

k � {0}−1, Dc

k �Dℓ

k � 0, rk � 0

(∀j ∈ I) Lkj �
Id, if k � j;

0, if k ∈ I and k≠ j;

Lj, if k � k:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(117)

Furthermore, we have

(∀i ∈ I)(∀n ∈ N) Jγi,nAi
� projEi

(∀k ∈ K)(∀n ∈ N) Jνk,nDm

k
� 0 and Jμk,nB

m

k
�

projFk , if k ∈ I;

Jμk,nB
m , if k � k:

{⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(118)

Therefore, (112) is a realization of Algorithm 1 in the context of (114)–(115). Now define D �✕i∈I(Ei ∩ Fi) and
L :H→ G : x �→∑

i∈I Lixi. Then L∗ : G→H : y∗ �→ (L∗iy∗)i∈I. Hence, by (102), Bauschke andCombettes [9, proposition
16.9], and (113),

(∀y ∈ G) y solves (102) � (∃ x ∈D) y � Lx

(∀x ∈D) 〈Lx −Lx | (Bm +Bc +Bℓ)(Lx)〉 6 0

{

� (∃x ∈D) y � Lx

(∀x ∈D) 〈x − x |L∗((Bm +Bc +Bℓ)(Lx))〉 6 0

{

� (∃x ∈H) y � Lx

0 ∈NDx +L∗((Bm +Bc +Bℓ)(Lx))

{

� (∃x ∈H)
y � Lx

(∀i ∈ I) 0 ∈NEi∩Fixi + L∗i (Bm +Bc +Bℓ)
∑
j∈I

Ljxj

( )⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

� (∃x ∈H)
y � Lx

(∀i ∈ I) 0 ∈NEixi +NFixi + L∗i (Bm +Bc +Bℓ)
∑
j∈I

Ljxj

( )⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

� (∃x ∈3 ) y � Lx: (119)
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In turn, 3 ≠ ∅ since (102) has a solution. Therefore, in view of (117), Proposition 1(v)[d] yields $ ≠ ∅. As a result,
Theorem 1(iv) asserts that there exists (xi)i∈I ∈3 such that, for every i ∈ I, xi,n * xi and ai,n * xi. Finally, using
(119), we conclude that

∑
i∈ILixi solves (102). w

Remark 2. Theorem 1 allows us to tackle other types of variational inequalities. For instance, let (Hi)i∈I be a finite
family of real Hilbert spaces and set H � � i∈IHi. For every i ∈ I, let φi ∈ Γ0(Hi) and let Ri :H→Hi be such that
Problem 1[e] holds. The objective is to

find x ∈H such that (∀i ∈ I) 0 ∈ ∂φi(xi) +Rix: (120)

This simple instantiation of Problem 1 shows up in neural networks (Combettes and Pesquet [27]) and in game
theory (Attouch et al. [2], Briceño-Arias and Combettes [15]). Thanks to Theorem 1, it can be solved using an
asynchronous block-iterative strategy, which is not possible with current splitting techniques such as those of
Combettes and Eckstein [25] and Johnstone and Eckstein [34].

4.2. Application to Multivariate Minimization
We consider a composite multivariate minimization problem involving various types of convex functions and
combinations between them.

Problem 3. Let (Hi)i∈I and (Gk)k∈K be finite families of real Hilbert spaces, and set H � � i∈IHi and G � � k∈K Gk.
For every i ∈ I and every k ∈ K, let fi ∈ Γ0(Hi), let αi ∈ ]0, +∞[, let φi :Hi → R be convex and differentiable with a
(1=αi)-Lipschitzian gradient, let gk ∈ Γ0(Gk), let hk ∈ Γ0(Gk), let βk ∈ ]0, +∞[, let ψk : Gk → R be convex and differen-

tiable with a (1=βk)-Lipschitzian gradient, and suppose that Lki :Hi → Gk is linear and bounded. In addition, let

χ ∈ [0, +∞[ and let Θ :H→ R be convex and differentiable with a χ-Lipschitzian gradient. The objective is to

minimize
x∈H

Θ(x) +
∑
i∈I

fi(xi) +φi(xi)
( )

+
∑
k∈K

(gk +ψk)w hk
( ) ∑

j∈I
Lkjxj

( )
: (121)

Special cases of Problem 3 are found in various contexts (Briceño-Arias and Combettes [13], Briceño-Arias et al.
[16], Combettes [23], Combettes and Eckstein [25], Hintermüller and Stadler [33], Johnstone and Eckstein [34]).
Formulation (121) brings together these disparate problems, and the following algorithm makes it possible to
solve them in an asynchronous block-iterative fashion in full generality.

Algorithm 3. Consider the setting of Problem 3 and suppose that Assumptions 2 and 3 are in force. Set
α �min{αi,βk}i∈I,k∈K, let σ ∈]1=(4α), +∞[, and let ε ∈ ]0,min {1, 1=(χ+ σ)}[. For every i ∈ I, every k ∈ K, and every

n ∈ N, let γi,n ∈ [ε, 1=(χ+ σ)], let {μk,n,νk,n} ⊂ [ε, 1=σ], let σk,n ∈ [ε, 1=ε], and let λn ∈ [ε, 2− ε]. In addition, let x0 ∈H

and {y0,z0,v∗0} ⊂ G. Iterate

for n � 0, 1, : : :

for every i ∈ In
l∗i,n �riΘ(xπi(n)) +

∑
k∈K

L∗kiv
∗
k,πi(n);

ai,n � proxγi,πi(n)fi
xi,πi(n) − γi,πi(n) l

∗
i,n +rφi(xi,πi(n))

( )( )
;

a∗i,n � γ−1
i,πi(n)(xi,πi(n) − ai,n) − l∗i,n;

ξi,n � ‖ai,n − xi,πi(n)‖2;
for every i ∈ I\In
ai,n � ai,n−1; a∗i,n � a∗i,n−1; ξi,n � ξi,n−1;

for every k ∈ Kn

bk,n � proxμk,ωk(n)
gk

yk,ωk(n) +μk,ωk(n) v
∗
k,ωk(n) −rψk yk,ωk(n)

( )( )( )
;

dk,n � proxνk,ωk(n)hk
zk,ωk(n) + νk,ωk(n)v

∗
k,ωk(n)

( )
;

e∗k,n � σk,ωk(n)
∑
i∈I

Lkixi,ωk(n) − yk,ωk(n) − zk,ωk(n)

( )
+ v∗k,ωk(n);

q∗k,n � μ−1
k,ωk(n)(yk,ωk(n) − bk,n) + v∗k,ωk(n) − e∗k,n;

t∗k,n � ν−1k,ωk(n)(zk,ωk(n) − dk,n) + v∗k,ωk(n) − e∗k,n;

ηk,n � ‖bk,n − yk,ωk(n)‖
2 + ‖dk,n − zk,ωk(n)‖

2
;

ek,n � bk,n + dk,n −
∑
i∈I

Lkiai,n;

(122)
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for every k ∈ K\Kn

bk,n � bk,n−1; dk,n � dk,n−1; e
∗
k,n � e∗k,n−1; q

∗
k,n � q∗k,n−1; t

∗
k,n � t∗k,n−1;

ηk,n � ηk,n−1; ek,n � bk,n + dk,n −
∑
i∈I

Lkiai,n;

for every i ∈ I

p∗i,n � a∗i,n +riΘ(an) +
∑
k∈K

L∗kie
∗
k,n;

∆n � −(4α)−1
∑
i∈I

ξi,n +
∑
k∈K

ηk,n

( )
+
∑
i∈I

〈xi,n − ai,n |p∗i,n〉

+
∑
k∈K

〈yk,n − bk,n |q∗k,n〉 + 〈zk,n − dk,n | t∗k,n〉 + 〈ek,n |v∗k,n − e∗k,n〉
( )

;

if ∆n > 0

θn � λn∆n=
∑
i∈I

‖p∗i,n‖2 +
∑
k∈K

‖q∗k,n‖
2 + ‖t∗k,n‖

2 + ‖ek,n‖2
( )( )

;

for every i ∈ I

xi,n+1 � xi,n −θnp
∗
i,n;

for every k ∈ K

yk,n+1 � yk,n −θnq
∗
k,n; zk,n+1 � zk,n −θnt

∗
k,n; v

∗
k,n+1 � v∗k,n −θnek,n;

else
for every i ∈ I

xi,n+1 � xi,n;

for every k ∈ K

yk,n+1 � yk,n; zk,n+1 � zk,n; v
∗
k,n+1 � v∗k,n:

Corollary 2.Consider the setting of Algorithm 3. Suppose that

(∀k ∈ K) epi (gk + ψk) + epi hk is closed (123)

and that Problem 3 admits a Kuhn–Tucker point, that is, there exist x̃ ∈H and ṽ∗ ∈ G such that

(∀i ∈ I)(∀k ∈ K)
−
∑
j∈K

L∗jĩv
∗
j ∈ ∂fi(̃xi) +rφi(̃xi) +riΘ(̃x)

∑
j∈I

Lkj̃xj ∈ ∂(g∗k w ψ∗
k)(̃v

∗
k) + ∂h∗k(̃v

∗
k):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(124)

Then there exists a solution x to (121) such that, for every i ∈ I, xi,n * xi and ai,n * xi.

Proof. Set
(∀i ∈ I) Ai � ∂fi, Ci � rφi, and Ri � ri Θ

(∀k ∈ K) Bm

k � ∂gk, Bc

k � rψk, and Dm

k � ∂hk:

{
(125)

First, Bauschke and Combettes [9, theorem 20.25] asserts that the operators (Ai)i∈I, (Bm

k )k∈K, and (Dm

k )k∈K are maxi-
mally monotone. Second, it follows from Bauschke and Combettes [9, corollary 18.17] that, for every i ∈ I, Ci is
αi-cocoercive and, for every k ∈ K, Bc

k is βk-cocoercive. Third, in view of (125) and Bauschke and Combettes
[9, proposition 17.7], R �rΘ is monotone and χ-Lipschitzian. Now consider the problem

find x ∈H such that

(∀i ∈ I) 0 ∈ Aixi +Cixi +Rix +
∑
k∈K

L∗ki Bm

k +Bc

k

( )
w Dm

k

( ) ∑
j∈I

Lkjxj

( )( )
(126)

together with its dual

find v∗ ∈ G such that (∃x ∈H)(∀i ∈ I)(∀k ∈ K)

−
∑
j∈K

L∗jiv
∗
j ∈ Aixi +Cixi +Rix

v∗k ∈ Bm

k +Bc

k

( )
w Dm

k

( ) ∑
j∈I

Lkjxj

( )
:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(127)
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Denote by 3 and $ the sets of solutions to (126) and (127), respectively. We observe that, by (125) and Bauschke
and Combettes [9, example 23.3], Algorithm 3 is an application of Algorithm 1 to the primal-dual problem
(126)–(127). Furthermore, it results from (124) and Proposition 1(iv) that $ ≠ ∅. According to Theorem 1(iv),
there exist x ∈3 and v∗ ∈$ such that, for every i ∈ I and every k ∈ K,

xi,n * xi, ai,n * xi, and

−
∑
j∈K

L∗jiv
∗
j ∈ Aixi +Cixi +Rix

v∗k ∈ ((Bm

k +Bc

k)w Dm

k )
∑
j∈I

Lkjxj

( )
:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(128)

It remains to show that x solves (121). Define

f � �
i∈I

fi, u � �
i∈I

φi, g � �
k∈K

gk, h � �
k∈K

hk, and ψ � �
k∈K

ψk

L :H→ G : x �→
∑
i∈I

Lkixi

( )

k∈K
:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(129)

We deduce from Bauschke and Combettes [9, theorem 15.3] that (∀k ∈ K) (gk +ψk)
∗ � g∗k(· ψ

∗
k. In turn, (124) im-

plies that

(∀k ∈ K) ∅≠ dom (g∗k(· ψ∗
k) ∩ dom h∗k � dom (gk +ψk)

∗ ∩ dom h∗k: (130)

On the other hand, since the sets (epi (gk +ψk) + epi hk)k∈K are convex, it follows from (123) and Bauschke and
Combettes [9, theorem 3.34] that they are weakly closed. Therefore, Burachik and Jeyakumar [20, theorem 1] and
the Fenchel–Moreau theorem (Bauschke and Combettes [9, theorem 13.37]) imply that

(∀k ∈ K) ((gk +ψk)
∗ + h∗k)

∗ � (gk +ψk)
∗∗
(· h∗∗k � (gk +ψk)(· hk: (131)

Hence, we derive from (125), Bauschke and Combettes [9, corollaries 16.48(iii) and 16.30], (131), and Bauschke
and Combettes [9, proposition 16.42] that

(∀k ∈ K) (Bm

k +Bc

k) w Dm

k � (∂gk +rψk) w (∂hk)
� ((∂(gk +ψk))

−1 + (∂hk)−1)−1

� (∂(gk +ψk)
∗ + ∂h∗k)

−1

� (∂((gk +ψk)
∗ + h∗k))

−1

� ∂((gk +ψk)
∗ + h∗k)

∗

� ∂((gk +ψk)(· hk): (132)

Since it results from (129) and (131) that

(g +ψ)w h � (g +ψ)(· h � �
k∈K

((gk +ψk)(· hk), (133)

we deduce from Bauschke and Combettes [9, proposition 16.9] and (132) that

∂ (g +ψ)(· h
( )

�✕
k∈K

∂ gk +ψk

( )
(· hk

( )
�✕

k∈K
Bm

k +Bc

k

( )
w Dm

k

( )
: (134)

It thus follows from (128) and (129) that v∗ ∈ ∂((g +ψ)(· h)(Lx). On the other hand, since L∗ : G→H : v∗ �→
(∑k∈KL

∗
kiv

∗
k)i∈I, we infer from (128), (125), (129), and Bauschke and Combettes [9, proposition 16.9] that −L∗v∗ ∈

(Cixi)i∈I +Rx +✕
i∈I Aixi �ru(x) +rΘ(x) + ∂f (x). Hence, we invoke Bauschke and Combettes [9, proposition

16.6(ii)] to obtain

0 ∈ ∂f (x) +ru(x) +rΘ(x) +L∗v∗

⊂ ∂f (x) +ru(x) +rΘ(x) +L∗(∂((g +ψ)(· h)(Lx))
⊂ ∂( f +u+Θ+ ((g +ψ)(· h)◦L)(x): (135)

However, thanks to (129) and (133), (121) is equivalent to

minimize
x∈H

f (x) +u(x) +Θ(x) + ((g +ψ)(· h)(Lx): (136)
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Consequently, in view of Fermat’s rule (Bauschke and Combettes [9, theorem 16.3]), (135) implies that x
solves (121). w

Remark 3. In Briceño-Arias et al. [16], multicomponent image recovery problems were approached by applying
the forward-backward and the Douglas–Rachford algorithms in a product space. Using Corollary 2, we can now
solve these problems with asynchronous block-iterative algorithms and more sophisticated formulations. For in-
stance, the standard total variation loss used in Briceño-Arias et al. [16] can be replaced by the pth order Huber
total variation penalty of Hintermüller and Stadler [33], which turns out to involve an infimal convolution.

To conclude, we provide some scenarios in which condition (123) is satisfied.

Proposition 5.Consider the setting of Problem 3. Suppose that there exist x̃ ∈H and ṽ∗ ∈ G such that

(∀i ∈ I)(∀k ∈ K)
−
∑
j∈K

L∗jĩv
∗
j ∈ ∂fi(̃xi) +rφi(̃xi) +riΘ(̃x)

∑
j∈I

Lkj̃xj ∈ ∂(g∗k w ψ∗
k)(̃v

∗
k) + ∂h∗k(̃v

∗
k)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(137)

and that, for every k ∈ K, one of the following is satisfied:
[a] 0 ∈ sri (dom g∗k +dom ψ∗

k −dom h∗k).
[b] Gk is finite-dimensional, hk is polyhedral, and dom h∗k ∩ ri dom (gk +ψk)

∗
≠ ∅.

[c] Gk is finite-dimensional, gk and hk are polyhedral, and ψk � 0.

Then, for every k ∈ K, epi (gk +ψk) + epi hk is closed.

Proof. Let k ∈ K. Since dom ψk � Gk, Bauschke and Combettes [9, theorem 15.3] yields

(gk +ψk)
∗ � g∗k(· ψ

∗
k: (138)

Therefore, (137) implies that

∅≠ dom (g∗k(· ψ∗
k) ∩ dom h∗k � dom (gk +ψk)

∗ ∩ dom h∗k: (139)

In view of (139), Burachik and Jeyakumar [20, theorem 1], and Bauschke and Combettes [9, theorem 3.34], it suffi-
ces to show that ((gk +ψk)

∗ + h∗k)
∗ � (gk +ψk)

∗∗
(· h∗∗k .

[a]: We deduce from Bauschke and Combettes [9, proposition 12.6(ii)] and (138) that 0 ∈ sri (dom (g∗k(· ψ∗
k)−

dom h∗k) � sri (dom (gk +ψk)
∗ −dom h∗k). In turn, Bauschke and Combettes [9, theorem 15.3] gives ((gk+

ψk)
∗ + h∗k)

∗ � (gk +ψk)
∗∗
(· h∗∗k .

[b]: Since Rockafellar [48, theorem 19.2] asserts that h∗k is polyhedral, we infer from Rockafellar [48, theorem 20.1]
that ((gk +ψk)

∗ + h∗k)
∗ � (gk +ψk)

∗∗
(· h∗∗k .

[c]: Since g∗k and h∗k are polyhedral by Rockafellar [48, theorem 19.2], it follows from (139) and Rockafellar [48, the-
orem 20.1] that (g∗k + h∗k)

∗ � g∗∗k (· h
∗∗
k . w

Appendix
In this section, K is a real Hilbert space.

Lemma A.1. Let A :K→ 2K be maximally monotone, let (xn)n∈N be a bounded sequence in K, and let (γn)n∈N be a bounded sequence in
]0, +∞[. Then (JγnA

xn)n∈N is bounded.

Proof. Fix x ∈K. Using the triangle inequality, the nonexpansiveness of (JγnA
)n∈N, and Bauschke and Combettes [9, proposition

23.31(iii)], we obtain (∀n ∈ N) ‖JγnA
xn − JAx‖6 ‖JγnA

xn − JγnA
x‖ + ‖JγnA

x− JAx‖ 6 ‖xn − x‖ + |1− γn | ‖JAx− x‖ 6 ‖x‖+
supm∈N‖xm‖ + (1+ supm∈Nγm)‖JAx− x‖. w

Lemma A.2. Let α ∈ [0, +∞[, let A :K→K be α-Lipschitzian, let σ ∈]0, +∞[, and let γ ∈ ]0, 1=(α+ σ)]. Then γ−1Id−A is
σ-strongly monotone.

Proof. By Cauchy–Schwarz,

(∀x ∈ K)(∀y ∈ K) 〈x − y | (γ−1Id − A)x − (γ−1Id − A)y〉
� γ−1‖x − y‖2 − 〈x − y |Ax − Ay〉
P (α + σ)‖x − y‖2 − ‖x − y‖ ‖Ax − Ay‖
P (α + σ)‖x − y‖2 − α‖x − y‖2

� σ‖x − y‖2, (A.1)

which proves the assertion. w
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Lemma A.3. Let I be a nonempty finite set, let (In)n∈N be nonempty subsets of I, let P ∈ N, and let (xn)n∈N be a sequence in K. Suppose

that
∑

n∈N‖xn+1 − xn‖2 < +∞, I0 � I, and (∀n ∈ N) ⋃n+P
j�n Ij � I. Furthermore, let T ∈ N, let i ∈ I, and let (πi(n))n∈N be a sequence in N

such that (∀n ∈ N) n−T6 πi(n) 6 n. For every n ∈ N, set ϑi(n) �max j ∈ N | j6 n and i ∈ Ij
{ }

and ϑi(n) � πi(ϑi(n)). Then

xϑi(n) − xn → 0.

Proof. For every integer nP P, since i ∈⋃n
j�n−PIj, we have n6 ϑi(n) +P 6 πi(ϑi(n)) +P+T � ϑi(n) +P+T. Hence,

ϑi(n) → +∞, and therefore,
∑ϑi(n)+P+T

j�ϑi(n) ‖xj+1 − xj‖2 → 0. However, it results from our assumption that (∀n ∈ N) ϑi(n) �
πi(ϑi(n))6 ϑi(n) 6 n. We thus deduce from the triangle and Cauchy–Schwarz inequalities that

‖xn − xϑi(n)‖26
∣∣∣∣∣

∑ϑi(n)+P+T

j�ϑi(n)
‖xj+1 − xj‖

∣∣∣∣∣

2

6 (P+T+ 1)
∑ϑi(n)+P+T

j�ϑi(n)
‖xj+1 − xj‖2 → 0: (A.2)

Consequently, xϑi(n) − xn → 0. w

LemmaA.4 (Combettes [22]). Let Z be a nonempty closed convex subset of K, x0 ∈K, and ε ∈]0, 1[. Suppose that
for n � 0, 1, : : :

t∗n ∈K and ηn ∈ R satisfy Z ⊂Hn � x ∈K | 〈x | t∗n〉6 ηn
{ }

;

∆n � 〈xn | t∗n〉 − ηn;

if ∆n > 0

λn ∈ ε, 2− ε[ ];
xn+1 � xn − (λn∆n=‖t∗n‖2) t∗n;

else
xn+1 � xn:

(A.3)

Then the following hold:
(i) (∀z ∈ Z)(∀n ∈ N) ‖xn+1 − z‖6 ‖xn − z‖.
(ii)

∑
n∈N‖xn+1 − xn‖2 < +∞.

(iii) Suppose that, for every x ∈K and every strictly increasing sequence (kn)n∈N in N, xkn * x ⇒ x ∈ Z. Then (xn)n∈N converges
weakly to a point in Z.

We now revisit ideas found in Bauschke and Combettes [8] and Combettes [21] in a format that is more suited for our
purposes.

LemmaA.5. Let Z be a nonempty closed convex subset of K and let x0 ∈K. Suppose that

for n � 0, 1, : : :

t∗n ∈ Kand ηn ∈ R satisfy Z ⊂Hn � x ∈K | 〈x | t∗n〉6 ηn
{ }

;

∆n � 〈xn | t∗n〉 − ηn;

if ∆n > 0

τn � ‖t∗n‖2; ςn � ‖x0 − xn‖2; χn � 〈x0 − xn | t∗n〉; ρn � τnςn −χ2
n;

if ρn � 0

κn � 1; λn � ∆n=τn;

else
if χn∆n P ρn

κn � 0; λn � (∆n +χn)=τn;
else

κn � 1−χn∆n=ρn; λn � ςn∆n=ρn;

xn+1 � (1− κn)x0 + κnxn −λnt
∗
n;

else

xn+1 � xn:

(A.4)

Then the following hold:
(i) (∀n ∈ N) ‖xn − x0‖6 ‖xn+1 − x0‖ 6 ‖projZx0 − x0‖.
(ii)

∑
n∈N‖xn+1 − xn‖2 < +∞ and

∑
n∈N‖projHn

xn − xn‖2 < +∞.

(iii) Suppose that, for every x ∈K and every strictly increasing sequence (kn)n∈N in N, xkn * x ⇒ x ∈ Z. Then xn → projZx0.
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Proof.Define (∀n ∈ N) Gn � x ∈K | 〈x− xn |x0 − xn〉6 0{ }. Then, by virtue of (A.4),

(∀n ∈ N) xn � projGn
x0 and ∆n > 0 ⇒ projHn

xn � xn − (∆n=‖t∗n‖2) t∗n
[ ]

: (A.5)

Let us establish that

(∀n ∈ N) Z ⊂Hn ∩ Gn and xn+1 � projHn∩Gn
x0: (A.6)

Since G0 �K, (A.4) yields Z ⊂H0 �H0 ∩ G0. Hence, we derive from (A.5) and (A.4) that ∆0 > 0 ⇒ [projH0
x0 � x0 − (∆0=τ0) t∗0

and ρ0 � 0 ] ⇒ [projH0
x0 � x0 − (∆0=τ0) t∗0, κ0 � 1, and λ0 � ∆0=τ0 ] ⇒ x1 � x0 − (∆0=τ0) t∗0 � projH0

x0 � projH0∩G0
x0. On the

other hand, ∆06 0 ⇒ x1 � x0 ∈H0 �H0 ∩ G0 ⇒ x1 � projH0∩G0
x0. Now assume that, for some integer nP 1, Z ⊂Hn−1 ∩ Gn−1

and xn � projHn−1∩Gn−1
x0. Then, according to Bauschke and Combettes [9, theorem 3.16],

Z ⊂Hn−1 ∩ Gn−1 ⊂ x ∈K | 〈x− xn |x0 − xn〉6 0{ } � Gn. In turn, (A.4) entails that Z ⊂Hn ∩ Gn. Next, it follows from (A.4), (A.5),
and Bauschke and Combettes [9, proposition 29.5] that ∆n6 0 ⇒ [xn+1 � xn and projGn

x0 � xn ∈Hn ] ⇒
xn+1 � projGn

x0 � projHn∩Gn
x0. To complete the induction argument, it remains to verify that ∆n > 0 ⇒ xn+1 � projHn∩Gn

x0. As-

sume that ∆n > 0 and set

yn � projHn
xn, χ̃n � 〈x0 − xn |xn − yn〉, ν̃n � ‖xn − yn‖2, and ρ̃n � ςnν̃n − χ̃

2
n: (A.7)

Since ∆n > 0, we have Hn � x ∈K | 〈x− yn |xn − yn〉6 0
{ }

and yn � xn −θnt
∗
n, where θn � ∆n=τn > 0. In turn, we infer from (A.7)

and (A.4) that

χ̃n � θnχn, ν̃n � θ2
nτn � θn∆n, and ρ̃n � θ2

nρn: (A.8)

Furthermore, (A.4) and the Cauchy–Schwarz inequality ensure that ρnP 0, which leads to two cases.
• ρn � 0: On the one hand, (A.4) asserts that xn+1 � xn − (∆n=τn) t∗n � yn. On the other hand, (A.8) yields ρ̃n � 0 and, there-

fore, since Hn ∩ Gn ≠ ∅, Bauschke and Combettes [9, corollary 29.25(ii)] yields projHn∩Gn
x0 � yn. Altogether,

xn+1 � projHn∩Gn
x0.

• ρn > 0: By (A.8), ρ̃n > 0. First, suppose that χn∆nP ρn. It follows from (A.4) that xn+1 � x0 − ((∆n +χn)=τn) t∗n and from

(A.8) that χ̃nν̃n � θ2
nχn∆nP θ2

nρn � ρ̃n. Thus, Bauschke and Combettes [9, corollary 29.25(ii)] and (A.8) imply that

projHn∩Gn
x0 � x0 +

(
1+ χ̃n

ν̃n

)
(yn − xn)

� x0 −
(
1+ χn

θnτn

)
θnt

∗
n

� x0 −
θnτn +χn

τn
t∗n

� x0 −
∆n +χn

τn
t∗n

� xn+1: (A.9)

Now suppose that χn∆n < ρn. Then χ̃nν̃n < ρ̃n, and hence, it results from Bauschke and Combettes [9, corollary 29.25(ii)], (A.8),
and (A.4) that

projHn∩Gn
x0 � xn +

ν̃n
ρ̃n

(χ̃n(x0 − xn) + ςn(yn − xn))

� χ̃nν̃n
ρ̃n

x0 + 1− χ̃nν̃n
ρ̃n

( )
xn +

ν̃nςn
ρ̃n

(yn − xn)

� χn∆n

ρn

x0 + 1−χn∆n

ρn

( )
xn −

τnςn
ρn

∆n

τn
t∗n

� xn+1: (A.10)

(i): Let n ∈ N. We derive from (A.6) that ‖xn+1 − x0‖ � ‖projHn∩Gn
x0 − x0‖6 ‖projZx0 − x0‖. On the other hand, since xn+1 ∈ Gn

by virtue of (A.6), we have

‖xn − x0‖2 + ‖xn+1 − xn‖26 ‖xn − x0‖2 + ‖xn+1 − xn‖2 + 2〈xn+1 − xn |xn − x0〉
� ‖xn+1 − x0‖2: (A.11)

(ii): Let N ∈ N. In view of (A.11) and (i),
∑N

n�0‖xn+1 − xn‖26
∑N

n�0(‖xn+1 − x0‖2 − ‖xn − x0‖2) � ‖xN+1 − x0‖2 6 ‖projZx0 − x0‖2.
Therefore,

∑
n∈N‖xn+1 − xn‖2 < +∞. However, for every n ∈ N, since (A.6) asserts that xn+1 ∈Hn, we have

‖projHn
xn − xn‖6 ‖xn+1 − xn‖. Thus,

∑
n∈N‖projHn

xn − xn‖2 < +∞.
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(iii): It results from (i) that (xn)n∈N is bounded. Now let x ∈K, let (kn)n∈N be a strictly increasing sequence in N, and sup-
pose that xkn * x. Using Bauschke and Combettes [9, lemma 2.42] and (i), we deduce that
‖x− x0‖6 lim ‖xkn − x0‖ 6 ‖projZx0 − x0‖. Thus, since it results from our assumption that x ∈ Z, we have x � projZx0, which

implies that xn * projZx0 (Bauschke and Combettes [9, lemma 2.46]). In turn, since lim ‖xn − x0‖6 ‖projZx0 − x0‖ by (i),

Bauschke and Combettes [9, lemma 2.51(i)] forces xn → projZx0. w
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Bùi and Combettes: Multivariate Monotone Inclusions in Saddle Form

Mathematics of Operations Research, Articles in Advance, pp. 1–28, © 2021 INFORMS 27



[36] Li M, Yuan X (2015) A strictly contractive Peaceman-Rachford splitting method with logarithmic-quadratic proximal regularization for
convex programming. Math. Oper. Res. 40:842–858.

[37] Lions PL, Mercier B (1979) Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16:964–979.
[38] Mercier B (1979) Topics in Finite Element Solution of Elliptic Problems. Lectures on Mathematics, no. 63 (Tata Institute of Fundamental Re-

search, Bombay, India).
[39] Mizoguchi T, Yamada I (2019) Hypercomplex tensor completion via convex optimization. IEEE Trans. Signal Process. 67:4078–4092.
[40] Nam NM, Nguyen TA, Rector RB, Sun J (2014) Nonsmooth algorithms and Nesterov’s smoothing technique for generalized Fermat-

Torricelli problems. SIAM J. Optim. 24:1815–1839.
[41] Ono S, Miyata T, Yamada I (2014) Cartoon-texture image decomposition using blockwise low-rank texture characterization. IEEE Trans.

Signal Process. 23:1128–1142.
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