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ABSTRACT

We show that many nonlinear observation models in signal recovery

can be represented using firmly nonexpansive operators. To address

problems with inaccurate measurements, we propose solving a vari-

ational inequality relaxation which is guaranteed to possess solutions

under mild conditions and which coincides with the original problem

if it happens to be consistent. We then present an efficient algorithm

for its solution, as well as numerical applications in signal and im-

age recovery, including an experimental operator-theoretic method

of promoting sparsity.

Index Terms— Firmly nonexpansive operator, inconsistent

nonlinear observations, signal recovery, variational inequality.

1. INTRODUCTION

Data formation models and prior knowledge in signal recovery often

come in the form of equations which link an ideal solution x to a

prescribed value p, say Wx = p, where W is an operator between

Euclidean spaces H and G. This equation can model an observa-

tion of x obtained by a sensing device W , or a known property of

x. For instance, in the classical work [21], W is a projector onto a

vector subspace D of H, and the goal is to find a point x in a vec-

tor subspace C of H given p = projDx. We generalize this linear

framework as follows.

Problem 1 Let I be a nonempty finite set and let C be a nonempty

closed convex subset of a Euclidean space H. For every i ∈ I , let

Gi be a Euclidean space, let pi ∈ Gi, let Li : H → Gi be a nonzero

linear operator, and let Fi : Gi → Gi be firmly nonexpansive, i.e.,

(∀(y, z) ∈ G2
i ) 〈y − z | Fiy − Fiz〉 > ‖Fiy − Fiz‖

2. (1)

The task is to

find x ∈ C such that (∀i ∈ I) Fi(Lix) = pi. (2)

Adopting firmly nonexpansive operators in our model allows for

the enforcement of complex nonlinear equations such as the follow-

ing (further instances of firmly nonexpansive operators are provided

in Section 2).

Example 2 For every j ∈ {1, . . . ,m}, let ρj > 0 and let Gj be a

Euclidean space. The shrinkage operator on G =×j∈J
Gj , given

by

F : (yj)16j6m 7→

((
1−

ρj
max{‖yj‖, ρj}

)
yj

)

16j6m

, (3)
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is used to sparsify signals across groups of indices [22]. Since F
is firmly nonexpansive, a signal x ∈ H can be recovered from its

sparsified version p ∈ G, i.e., F (Lx) = p, where L : H → G is a

decomposition operator.

The algorithms of [9, 10] are guaranteed to yield a solution to

Problem 1, provided an exact solution exists. However, in many sit-

uations, the operators (Fi, Li)i∈I may not be known perfectly or the

prescribed values (pi)i∈I may be corrupted, meaning that a solu-

tion to Problem 1 may not exist, in which case the algorithms from

[9, 10] are known to diverge. To handle this situation, we propose a

tractable relaxed problem which is guaranteed to possess solutions

under mild conditions.

In general, there is no tractable relaxation of Problem 1 as a con-

vex minimization problem. For instance, consider the least-squares

relaxation

minimize
x∈C

f(x), where f : x 7→
∑

i∈I ‖Fi(Lix)− pi‖
2. (4)

In our setting, f is typically nonconvex and nondifferentiable [2,13],

which makes it impossible to guarantee the construction of solutions.

Another plausible approach would be, for every i ∈ I , to introduce

the closed convex set Di =
{
y ∈ Gi | Fiyi = pi

}
and solve

minimize
x∈C

g(x), where g : x 7→
∑

i∈I dDi
(Lix)

2, (5)

where dDi
is the distance function to Di. However, (5) is intractable

because evaluating the operators (projDi
)i∈I is either impossible or

computationally expensive, and therefore we cannot evaluate g or its

gradient. We circumvent these issues with the following variational

inequality relaxation.

Problem 3 Consider the setting of Problem 1 and let {ωi}i∈I ⊂
]0, 1] satisfy

∑
i∈I ωi = 1. The task is to

find x ∈ C such that

(∀y ∈ C)
∑

i∈Iωi〈Li(y − x) | Fi(Lix)− pi〉 > 0. (6)

In Section 2, we discuss background and illustrate the flexibility

and the breadth the proposed firmly nonexpansive model. Section 3

establishes that Problem 3 is an appropriate relaxed formulation of

Problem 1, provides guarantees for when Problem 3 possesses so-

lutions, and presents a block-iterative algorithm to solve Problem 3.

Numerical demonstrations, including an experiment for promoting

sparsity within Problem 3, are in Section 4.

2. FIRMLY NONEXPANSIVE MODELING

Notation 4 Let C be a nonempty closed convex subset of H. We

denote the projection operator onto C by projC and its normal cone
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operator by NC . We denote the range of an operator A by ranA
and the adjoint of a linear operator L by L∗. We denote the discrete

Fourier transform of x ∈ R
N via x̂ and its inverse via x∨.

We first observe that many nonlinearities appearing in signal

processing can be modeled using firmly nonexpansive operators (see

[10] for details and complements).

Example 5 Let C be a nonempty closed convex subset of H. The

projection operator projC is firmly nonexpansive, and operators

in this class model hard clipping [1, 13, 19], distortion [17, Sec-

tion 10.4.1], isotonic regression [3], and downsampling [15].

Example 6 Let f : H → ]−∞,+∞] be proper, lower semi-

continuous, and convex. The proximity operator proxf : x 7→

argminy∈H f(x) + ‖y − x‖2/2 is a firmly nonexpansive operator

which models soft clipping sensors [2, 14], activation functions in

neural networks [8], and shrinkage operators [22].

Example 7 Let ∅ 6= D ⊂ G be closed and convex, set p = 0 ∈ G,

and set F = Id − projD . For every y ∈ G, Fy = p if and only if

y ∈ D. Since F is firmly nonexpansive, convex set constraints [7]

are readily enforced in our framework.

Next, we demonstrate that nonlinear equations involving dis-

continuous operators may be equivalently represented using a firmly

nonexpansive operator.

Definition 8 Let Q : G → G and let q ∈ ranQ. Then (Q, q) is

proxifiable if there exists a firmly nonexpansive operator F : G → G
and p ∈ ranF such that (∀y ∈ G) Qy = q ⇔ Fy = p. In this case

(F, p) is a proxification of (Q, q).

Example 9 The hard thresholder

hardγ : η 7→ [ η, if |η| > γ; 0, if |η| 6 γ ], (7)

is discontinuous and used to model sensing devices and compression

schemes [4, 12, 18]. Letting q ∈ ran hardγ , we acquire a proxifica-

tion of ( hardγ , q) by use of S : η 7→ η − γ sign(η). Since (we use

the convention sign(0) = 0)

S ◦ hardγ = softγ : η 7→ sign(η)max{|η| − γ, 0} (8)

is the firmly nonexpansive soft thresholder on [−γ, γ], (F, p) =
( softγ , Sq) is a proxification of ( hardγ , q).

Extensions of Example 9 such as group hard thresholding are

proxifiable using similar strategies [11].

Example 10 ([11]) Let G = R
N×M , set s = min{N,M}, and

let us denote the singular value decomposition of y ∈ G by y =
Uy diag (σ1(y), . . . , σs(y))V

>
y . Let ρ ∈ ]0,+∞[, let hardρ be as

in (7), set S : η 7→ η − ρ sign(η), and set





Q : y 7→ Uy diag

(
hardρ

(
σ1(y)

)
, . . . , hardρ

(
σs(y)

))
V >
y

S : y 7→ Uy diag
(
S
(
σ1(y)

)
, . . . , S

(
σs(y)

))
V >
y .

(9)

Let q ∈ ranQ, and set F = S ◦ Q and p = Sq. Then (F, p) is a

proxification of (Q, q). The operator Q is used in image compres-

sion to produce low rank approximations, and the associated firmly

nonexpansive operator F soft-thresholds singular values at level ρ.

Remark 11 In the setting of Example 10, consider the compres-

sion technique performed by the nonconvex projection operator [5]

R : y 7→ Uy diag
(
σ1(y), . . . , σr(y), 0, . . . , 0

)
V >
y , which truncates

singular values at a given rank r ∈ {1, . . . , s−1}. Let y ∈ G and set

q = Ry. Then, for every ρ ∈ ]σr+1(y), σr(y)[, Qy = q. Therefore,

knowledge of the low rank approximation q to y can be exploited in

our framework by proxifying (Q, q) using Example 10. Note that ρ
can be estimated from q since one has access to σr(q) = σr(y).

3. ANALYSIS AND ALGORITHM

We first show that Problem 3 is a valid relaxation of Problem 1.

Proposition 12 ([11]) Suppose that the set of solutions to Problem 1

is nonempty. Then it coincides with the set of solutions to Problem 3.

Proposition 13 ([11]) Problem 3 admits a solution in each of the

following instances:

(i)
∑

i∈I ωiL
∗
i pi ∈ ran(NC +

∑
i∈I ωiL

∗
i ◦ Fi ◦ Li).

(ii) C is bounded.

(iii) ranNC +
∑

i∈I ωiL
∗
i (ranFi) = H.

(iv) For some i ∈ I , L∗
i is surjective and one of the following

holds:

(a) Fi is surjective.

(b) ‖Fi(y)‖ → +∞ as ‖y‖ → +∞.

(c) ran(Id − Fi) is bounded.

(d) Fi = proxgi
, for some convex function gi : Gi → R.

Proposition 14 ([11]) Consider the setting of Problem 3 under the

assumption that it has a solution. Let K be a strictly positive integer

and let (In)n∈N be a sequence of nonempty subsets of I such that

(∀n ∈ N)

K−1⋃

k=0

In+k = I. (10)

Let x0 ∈ H, let γ ∈ ]0, 2[, and, for every i ∈ I , let ti,−1 ∈ H and

set γi = γ/‖Li‖
2. Iterate

for n = 0, 1, . . .

for every i ∈ In⌊
ti,n = xn − γiL

∗
i

(
Fi(Lixn)− pi

)

for every i ∈ I r In⌊
ti,n = ti,n−1

xn+1 = projC
(∑m

i=1ωiti,n
)
.

(11)

Then (xn)n∈N converges to a solution to Problem 3.

The algorithm (11) is block-iterative, which allows the user to

save time-per-iteration and leverage parallelism by appropriate se-

lection of the blocks (In)n∈N. The condition (10) is mild, since it

imposes that every element of I be activated at least once every K
iterations. Note that in large-scale scenarios in which all data cannot

be simultaneously loaded into memory, block-activation strategies

make algorithm (11) implementable. Also, algorithm 11 is more

tractable than solving (4) or (5), since it converges from any initial

point and it does not require evaluating the operators (projDi
)i∈I .
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Fig. 1. Experiment of Section 4.1: (a): Original signal x. (b):

Piecewise constant approximation p1. (c): Recovered signal.

4. NUMERICAL EXPERIMENTS

Remark 15 In minimization-based signal recovery, it is customary

to add a function g to the objective to promote desirable properties

in the solutions. A prominent example is the promotion of spar-

sity through the addition of a penalty such as the `1 norm in R
N

[6, 20]. In the more general setting of Problem 3, this can be mim-

icked by adding the prescription Fy = 0, where F = Id − proxg .

Note that exact satisfaction of the equality Fy = 0 means that y
minimizes g. In general, when incorporated to Problem 3, the pair

(F, p) = (Id − proxg, 0) is intended to promote the properties g
would have promoted in a standard minimization problem. We in-

vestigate in Section 4.3 this technique to encourage sparsity in R
N

through the use of the operator F = projB∞(0;ρ) = Id − proxρ‖·‖1
,

where B∞(0; ρ) is the `∞ ball with radius ρ ∈ ]0,+∞[. The

simulations are run in GNU Octave on a computer running Linux

Ubuntu version 20.04 with a 2.60GHz dual-core processor and 8GB

of RAM.

4.1. Signal Recovery

The goal is to recover the original signal x ∈ H = C = R
N

(N = 1024) of Figure 1(a) from the following.

• A piecewise constant approximation p1 of x, given by p1 =
projD1

(x + w1), where w1 ∈ G1 = H represents noise and D1 is

the subspace of signals in G1 which are constant by blocks along

each of the 16 sets of 64 consecutive indices in {1, . . . , N} (see

Figure 1(b)). The signal-to-noise ratio is 20 log10(‖x‖/‖w1‖) =
−2.3 dB. We model this observation by setting L1 = Id and

F1 = projD1
.

• A bound ρ2 = 0.025 on the magnitude of the finite differences

of x. To enforce this, following Example 7, we set G2 = R
N−1,

L2 : H → G2 : (ξi)16i6N 7→ (ξi+1 − ξi)16i6N−1, p2 = 0, and

F2 = Id − projD2
, where D2 =

{
y ∈ G2 | ‖y‖∞ 6 ρ2

}
.

• A collection of m = 1200 noisy thresholded scalar observations

r3 = (χj)j∈J ∈ R
m of x, where J = {3, . . . ,m + 2}. The true

data formation model is

(∀j ∈ J) χj = R(〈x | ej〉) + νj , (12)

where (ej)j∈J is a dictionary of random vectors in R
N with zero-

mean i.i.d. entries, the noise vector w3 = (νj)j∈J yields a signal-

to-noise ratio of 20 log10(‖r3‖/‖w3‖) = 17.8 dB, and R is the

thresholding operator of the type found in [16] (ρ = 0.05), namely

R : η 7→

{
sign(η) 4

√
η4 − ρ4, if |η| > ρ;

0, if |η| 6 ρ.
(13)

We assume that R is misspecified as

Q : η 7→

{
sign(η)

√
η2 − ρ2, if |η| > ρ;

0, if |η| 6 ρ,
(14)

and that the presence of noise is unknown, so that (12) is incor-

rectly modeled as (∀j ∈ J) χj = Q(〈x | ej〉). While Q is not

Lipschitzian, with S : η 7→ sign(η)(
√

η2 + ρ2 − ρ), it is straight-

forward to verify that S ◦ Q = softρ and that, for every j ∈ J ,

(Fj , pj) = ( softρ , Sχj) is a proxification of (Q,χj). Also, for

every j ∈ J , we set Gj = R and Lj = 〈· | ej〉.

We thus consider the instantiation of Problem 3 in which I =
{1, 2} ∪ J and, for every i ∈ I , ωi = 1/(card I). Problem 3 has

a solution by Proposition 13(iii) [11]. Algorithm (11) produces the

signal shown in Figure 1(c) with γ = 1.9 and the following activa-

tion strategy. At every iteration, F1 and F2 are activated, while we

partition J into four blocks of 300 elements and cyclically activate

one block per iteration, i.e.,

(∀n ∈ N)(∀j ∈ {0, 1, 2, 3})

I4n+j = {1, 2, 3 + 300j, . . . , 2 + 300(j + 1)}, (15)

which satisfies condition (10) with K = 4. The execution time sav-

ings resulting from the use of (15) compared to the full activation

strategy (i.e., In = I for every n ∈ N) are displayed in Figure 3(a).

The results show that, even when the data is noisy and poorly mod-

eled, Problem 3 produces quite robust recoveries.

4.2. Image Recovery from Phase

The goal is to recover the original image x ∈ H = R
N (N = 2562)

shown in Figure 2(1a) from the following.

• Bounds on pixel values: x ∈ C = [0, 255]N .

• The degraded image p1 ∈ G1 = H shown in Figure 2(1b), which is

modeled as follows. The image x is blurred by L1 : H → G1, which

performs discrete convolution with a 15 × 15 Gaussian kernel with

standard deviation of 3.5, then corrupted by additive noise w1 ∈
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(1a) (2a)

(1b) (2b)

(1c) (2c)

Fig. 2. Experiments of Sections 4.2 (Column 1) and 4.3 (Column 2).

Top to bottom: original image x, degraded image p1, recovered im-

age.

G1. The blurred image-to-noise ratio is 20 log10(‖L1x‖/‖w1‖) =
24.0 dB. Pixel values beyond 60 are then clipped. Altogether, p1 =
projD1

(L1x + w1), where D1 = [0, 60]N . This process models a

low-quality image acquired by a device which saturates at photon

counts beyond a threshold. Hence, we use F1 = projD1
in (6).

• An approximation ρ2 = 138 of the mean pixel value of x. To

enforce this, following Example 7, we set G2 = H, L2 = Id, p2 =

0, and F2 : (ηk)16k6N 7→
(
(1/N)

∑N

k=1ηk − ρ2
)
1.

• The phase θ ∈ [−π, π]N of the 2-D discrete Fourier transform of

a noise-corrupted version of x, i.e., θ = ∠(x̂+ w3), where w3 ∈ H
yields an image-to-noise ratio 20 log10(‖x‖/‖w3‖) = 49.0 dB. To

model this information, we set G3 = H, L3 = Id, p3 = 0, and

F3 : y 7→ y − (|ŷ
∣∣max{cos

(
∠(ŷ)− θ), 0}eiθ)∨.

Due to the noise present in p1 and θ, and the inexact estimation

of ρ2, this instance of Problem 1 (I = {1, 2, 3}) is inconsistent. We

thus arrive at the relaxed Problem 3 by setting ω1 = ω2 = ω3 =
1/3. By Proposition 13(ii), since C is bounded, Problem 3 is guar-

anteed to possess a solution. The solution shown in Figure 2(1c) is

0 200 400 600 800 1,000
−30

−20

−10

0

(a)

0 200 400 600 800 1,000 1,200 1,400 1,600
−30

−20

−10

0

(b)

Fig. 3. Relative error 20 log10(‖xn−x∞‖/‖x0−x∞‖) (dB) versus

execution time (seconds) for full activation (red) and block activation

(green). (a): Section 4.1 and (15). (b): Section 4.3 and (17).

computed using algorithm (11) with γ = 1.9 and (∀n ∈ N) In = I .

This experiment illustrates a nonlinear recovery scenario with incon-

sistent measurements which nonetheless produces realistic solutions

obtained by exploiting all available information.

4.3. Sparse Image Recovery

The goal is to recover the original image x ∈ H = R
N (N = 2562)

shown in Figure 2(2a) from the following.

• Bounds on pixel values: x ∈ C = [0, 255]N .

• The low rank approximation q1 ∈ G1 = H displayed in Fig-

ure 2(2b) of a blurred noisy version of x modeled as follows. The

blurring operator L1 : H → G1 applies a discrete convolution with

a uniform 7 × 7 kernel, and the operators Q and S are as in Exam-

ple 10, with threshold ρ = 500. Then

q1 = Q(L1x+ w1) (16)

is a rank-85 compression, where w1 ∈ G1 induces a blurred image-

to-noise ratio of 20 log10(‖L1x‖/‖w1‖) = 17.6 dB. By Exam-

ple 10, we obtain a proxification of (Q, q1) with (F1, p1) = (S ◦
Q,Sq1).
• x is sparse. To promote this property in the solutions to (6), fol-

lowing Remark 15, we set G2 = H, L2 = Id, p2 = 0, ρ2 = 1.5, and

F2 = projB∞(0;ρ2)
.

We therefore arrive at an instance of Problem 3 with I = {1, 2}
and ω1 = ω2 = 1/2. Since C is bounded, Proposition 13(ii) asserts

that a solution exists. Algorithm (11) with γ = 1 yields the recovery

in Figure 2(2c). Due to the singular value decomposition, F1 is the

most numerically costly operator and we choose to activate it only

every 5 iterations, i.e.,

In = [ {2}, if n 6≡ 0 mod 5; {1, 2}, if n ≡ 0 mod 5 ]. (17)

Figure 3(b) displays the time savings resulting from the use of (17)

compared to full activation (both activation strategies yield visually

indistinguishable recoveries). Notice that, while the observation in

Figure 2(2b) is virtually illegible, many of the words in the recovery

of Figure 2(2c) can be discerned.
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