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ABSTRACT

We show that many nonlinear observation models in signal recovery
can be represented using firmly nonexpansive operators. To address
problems with inaccurate measurements, we propose solving a vari-
ational inequality relaxation which is guaranteed to possess solutions
under mild conditions and which coincides with the original problem
if it happens to be consistent. We then present an efficient algorithm
for its solution, as well as numerical applications in signal and im-
age recovery, including an experimental operator-theoretic method
of promoting sparsity.

Index Terms— Firmly nonexpansive operator, inconsistent
nonlinear observations, signal recovery, variational inequality.

1. INTRODUCTION

Data formation models and prior knowledge in signal recovery often
come in the form of equations which link an ideal solution Z to a
prescribed value p, say Wz = p, where W is an operator between
Euclidean spaces H and G. This equation can model an observa-
tion of = obtained by a sensing device W, or a known property of
. For instance, in the classical work [21], W is a projector onto a
vector subspace D of H, and the goal is to find a point z in a vec-
tor subspace C' of H given p = proj,x. We generalize this linear
framework as follows.

Problem 1 Let I be a nonempty finite set and let C' be a nonempty
closed convex subset of a Euclidean space H. For every ¢ € I, let
G; be a Euclidean space, let p; € G;, let L;: H — G; be a nonzero
linear operator, and let F;: G; — G; be firmly nonexpansive, i.e.,

(V(y,2) € G}) (y—z| Fiy— Fiz) > |[Fiy — Fiz|>. (1)
The task is to

find € C suchthat (Vi € I) Fi(L;x) = p;. (2)

Adopting firmly nonexpansive operators in our model allows for
the enforcement of complex nonlinear equations such as the follow-
ing (further instances of firmly nonexpansive operators are provided
in Section 2).

Example 2 Forevery j € {1,...,m}, let p; > 0 and let G; be a
Euclidean space. The shrinkage operator on G = X . Gj, given

by

jEJ

Pj
F:(yj)icism = ((1 - 7)}’) N )
I max{|ly;l, p;} ! 1<5<m
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is used to sparsify signals across groups of indices [22]. Since F'
is firmly nonexpansive, a signal © € H can be recovered from its
sparsified version p € G, i.e., F(Lz) = p, where L: H — G is a
decomposition operator.

The algorithms of [9, 10] are guaranteed to yield a solution to
Problem 1, provided an exact solution exists. However, in many sit-
uations, the operators (F;, L;);c1 may not be known perfectly or the
prescribed values (p;)ier may be corrupted, meaning that a solu-
tion to Problem 1 may not exist, in which case the algorithms from
[9, 10] are known to diverge. To handle this situation, we propose a
tractable relaxed problem which is guaranteed to possess solutions
under mild conditions.

In general, there is no tractable relaxation of Problem 1 as a con-
vex minimization problem. For instance, consider the least-squares
relaxation

mininclize f(@), where f: x>, [|Fi(Liz) —pil>. @)
[S

In our setting, f is typically nonconvex and nondifferentiable [2,13],
which makes it impossible to guarantee the construction of solutions.
Another plausible approach would be, for every ¢ € I, to introduce
the closed convex set D; = {y € G; | Fiy; = pi } and solve

mi;lierrclize g(z), where g:x— 3, dp,(Lix)?, (5
where dp, is the distance function to D;. However, (5) is intractable
because evaluating the operators (proj D, )ie1 is either impossible or
computationally expensive, and therefore we cannot evaluate g or its
gradient. We circumvent these issues with the following variational
inequality relaxation.

Problem 3 Consider the setting of Problem 1 and let {w;};er C
10, 1] satisfy >, ; wi; = 1. The task is to

find z € C such that
(Vy € C) Xieqwilli(y — ) | Fi(Lix) —pi) 2 0. (6)

In Section 2, we discuss background and illustrate the flexibility
and the breadth the proposed firmly nonexpansive model. Section 3
establishes that Problem 3 is an appropriate relaxed formulation of
Problem 1, provides guarantees for when Problem 3 possesses so-
lutions, and presents a block-iterative algorithm to solve Problem 3.
Numerical demonstrations, including an experiment for promoting
sparsity within Problem 3, are in Section 4.

2. FIRMLY NONEXPANSIVE MODELING

Notation 4 Let C' be a nonempty closed convex subset of H. We
denote the projection operator onto C by proj and its normal cone
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operator by Nc. We denote the range of an operator A by ran A
and the adjoint of a linear operator L by L*. We denote the discrete
Fourier transform of € RY via Z and its inverse via V.

We first observe that many nonlinearities appearing in signal
processing can be modeled using firmly nonexpansive operators (see
[10] for details and complements).

Example 5 Let C be a nonempty closed convex subset of . The
projection operator proj. is firmly nonexpansive, and operators
in this class model hard clipping [1, 13, 19], distortion [17, Sec-
tion 10.4.1], isotonic regression [3], and downsampling [15].

Example 6 Let f: H — ]—o0,+oc] be proper, lower semi-
continuous, and convex. The proximity operator prox,: z
argmin, ,, f(x) + [ly — z|*/2 is a firmly nonexpansive operator
which models soft clipping sensors [2, 14], activation functions in
neural networks [8], and shrinkage operators [22].

Example 7 Let @ # D C G be closed and convex, setp =0 € G,
and set F' = Id — proj,. Forevery y € G, Fy = p if and only if
y € D. Since F is firmly nonexpansive, convex set constraints [7]
are readily enforced in our framework.

Next, we demonstrate that nonlinear equations involving dis-
continuous operators may be equivalently represented using a firmly
nonexpansive operator.

Definition 8 Let Q: G — G and let ¢ € ranQ. Then (Q,q) is
proxifiable if there exists a firmly nonexpansive operator F': G — G
and p € ran F such that (Vy € G) Qy = ¢ < F'y = p. In this case
(F, p) is a proxification of (Q, q).

Example 9 The hard thresholder
hard, : n— [, if [n[ >~;0, if |n| <v], @

is discontinuous and used to model sensing devices and compression
schemes [4, 12, 18]. Letting ¢ € ran hard, , we acquire a proxifica-
tion of (hard, ,q) by use of S: n — n — ysign(n). Since (we use
the convention sign(0) = 0)

So hard, = soft, : n — sign(n) max{|n| — ~,0} (8)

is the firmly nonexpansive soft thresholder on [—v,~], (F,p) =
('soft, , Sq) is a proxification of ( hard, , ¢).

Extensions of Example 9 such as group hard thresholding are
proxifiable using similar strategies [11].

Example 10 ([11]) Let G = RY*M et s = min{N, M}, and
let us denote the singular value decomposition of y € G by y =
U, diag (o1(y), - ..,0s(y))V, . Let p € ]0,+00], let hard, be as
in (7), setS: n — n — psign(n), and set

Q:yw— U, diag (hardp (01(y)),. .., hard, (crs(y)))VyT

S:y— Uy diag (S(al(y)), . 7S(as(y)))VyT.
©))
Let g € ran@, and set F' = S o @ and p = Sq. Then (F,p) is a
proxification of (Q, ¢). The operator @ is used in image compres-
sion to produce low rank approximations, and the associated firmly
nonexpansive operator F' soft-thresholds singular values at level p.

Remark 11 In the setting of Example 10, consider the compres-
sion technique performed by the nonconvex projection operator [5]
R:yw— U, diag (01(y), . ..,0+(y),0,...,0)V,’, which truncates
singular values at a givenrank r € {1,...,s—1}. Lety € G and set
g = Ry. Then, for every p € lor+1(y), or(y)[. Qy = q. Therefore,
knowledge of the low rank approximation ¢ to y can be exploited in
our framework by proxifying (@, ¢) using Example 10. Note that p
can be estimated from g since one has access to o-(q) = o (y).

3. ANALYSIS AND ALGORITHM

We first show that Problem 3 is a valid relaxation of Problem 1.

Proposition 12 ([11]) Suppose that the set of solutions to Problem 1
is nonempty. Then it coincides with the set of solutions to Problem 3.

Proposition 13 ([11]) Problem 3 admits a solution in each of the
following instances:
(1) Zie] w; Lip; € ran(N¢ + Zie] w; Lj o F; 0 L;).
(ii) C'is bounded.
(iii) ran No¢ + >, wi L] (ran ;) = H.
(iv) For some i € I, Lj is surjective and one of the following
holds:
(a) F; is surjective.
®) [1F: ()]l = +ooas [[yl| = +oo.
(c) ran(Id — F3) is bounded.

(d) Fi = prox,, for some convex function g;: Gi — R.

Proposition 14 ([11]) Consider the setting of Problem 3 under the
assumption that it has a solution. Let K be a strictly positive integer
and let (I,)nen be a sequence of nonempty subsets of 1 such that

K—1
(Vn € N) U Insw=1. (10)
k=0

Let xg € H, let vy € ]0,2], and, for every i € I, let t;,—1 € H and
set v; = /|| Li||?. Iterate

forn=0,1,...
foreveryi € I,
| tin =an — %L} (Fi(Liwn) — pi)
foreveryi eI\ I,
L tim = tin—1
Tn41 = Projg (Zglwltl")

1)

Then (xn)nen converges to a solution to Problem 3.

The algorithm (11) is block-iterative, which allows the user to
save time-per-iteration and leverage parallelism by appropriate se-
lection of the blocks (I )nen. The condition (10) is mild, since it
imposes that every element of I be activated at least once every K
iterations. Note that in large-scale scenarios in which all data cannot
be simultaneously loaded into memory, block-activation strategies
make algorithm (11) implementable. Also, algorithm 11 is more
tractable than solving (4) or (5), since it converges from any initial
point and it does not require evaluating the operators (proj D, )ier-
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Fig. 1. Experiment of Section 4.1: (a): Original signal . (b):
Piecewise constant approximation p;. (c): Recovered signal.

4. NUMERICAL EXPERIMENTS

Remark 15 In minimization-based signal recovery, it is customary
to add a function g to the objective to promote desirable properties
in the solutions. A prominent example is the promotion of spar-
sity through the addition of a penalty such as the ¢! norm in R
[6,20]. In the more general setting of Problem 3, this can be mim-
icked by adding the prescription F'y = 0, where F' = Id — prox .
Note that exact satisfaction of the equality F'y = 0 means that y
minimizes g. In general, when incorporated to Problem 3, the pair
(F,p) = (Id — prox,,0) is intended to promote the properties g
would have promoted in a standard minimization problem. We in-
vestigate in Section 4.3 this technique to encourage sparsity in RY
through the use of the operator F' = projg__(o,,) = Id — ProX .1, »
where Bo(0; p) is the £°° ball with radius p € ]0,+oo[. The
simulations are run in GNU Octave on a computer running Linux
Ubuntu version 20.04 with a 2.60GHz dual-core processor and 8GB
of RAM.

4.1. Signal Recovery

The goal is to recover the original signal T € H = C = RY
(N = 1024) of Figure 1(a) from the following.

e A piecewise constant approximation p; of Z, given by p1 =
projD1 (T 4+ w1), where w1 € G1 = H represents noise and D; is
the subspace of signals in G; which are constant by blocks along
each of the 16 sets of 64 consecutive indices in {1,..., N} (see
Figure 1(b)). The signal-to-noise ratio is 20log,,(||Z||/|lw1]]) =
—2.3 dB. We model this observation by setting L; = Id and
Fy = projp, .

e A bound p2 = 0.025 on the magnitude of the finite differences
of . To enforce this, following Example 7, we set Go = RN
Ly: H — Gt (&)icisy = (Sit1 — &i)i<isn—1, p2 = 0, and
Fy =1d — proj,, where D2 = {y € Ga | [Jy[lcc < p2}.

e A collection of m = 1200 noisy thresholded scalar observations
rs = (xj)jes € R™ of Z, where J = {3,...,m + 2}. The true
data formation model is

(VieJ) x;=R({T|e;))+vj, 12)

where (e;) e is a dictionary of random vectors in RY with zero-
mean i.i.d. entries, the noise vector ws = (v;);es yields a signal-
to-noise ratio of 201log,,(||r3||/|lws]|) = 17.8 dB, and R is the
thresholding operator of the type found in [16] (p = 0.05), namely

3 4 4 _ 4 H .
Rines {Slgn(n)\/n pt, if |nl > p; (13)

0, if [n] <p.

We assume that R is misspecified as

‘ . .
Q:nH{S‘gﬂ(n)m7 if |n] > p; 14

0, if o] < p,

and that the presence of noise is unknown, so that (12) is incor-
rectly modeled as (Vj € J) x; = Q(T | e;)). While @ is not
Lipschitzian, with S: n — sign(n)(y/n? + p% — p), it is straight-
forward to verify that S o Q = soft, and that, for every j € J,
(Fj,p;) = (soft,,Sx;) is a proxification of (Q, x;). Also, for
everyj € J,wesetG; =Rand L; = (- | e;).

We thus consider the instantiation of Problem 3 in which I =
{1,2} U J and, for every i € I, w; = 1/(card I). Problem 3 has
a solution by Proposition 13(iii) [11]. Algorithm (11) produces the
signal shown in Figure 1(c) with v = 1.9 and the following activa-
tion strategy. At every iteration, Fy and F5 are activated, while we
partition J into four blocks of 300 elements and cyclically activate
one block per iteration, i.e.,

(Vn e N)(Vj € {0,1,2,3})

Tiny; = {1,2,343007,...,2+300(j + 1)}, (15)

which satisfies condition (10) with K = 4. The execution time sav-
ings resulting from the use of (15) compared to the full activation
strategy (i.e., [, = I for every n € N) are displayed in Figure 3(a).
The results show that, even when the data is noisy and poorly mod-
eled, Problem 3 produces quite robust recoveries.

4.2. Image Recovery from Phase

The goal is to recover the original image T € H = RY (N = 2567)
shown in Figure 2(1a) from the following.

 Bounds on pixel values: T € C = [0, 255]".

o The degraded image p1 € G1 = H shown in Figure 2(1b), which is
modeled as follows. The image 7 is blurred by L1 : H — G1, which
performs discrete convolution with a 15 x 15 Gaussian kernel with
standard deviation of 3.5, then corrupted by additive noise w; €
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Fig. 2. Experiments of Sections 4.2 (Column 1) and 4.3 (Column 2).
Top to bottom: original image =, degraded image p1, recovered im-
age.

Gi. The blurred image-to-noise ratio is 20log, (|| L1Z]||/||w1]]) =
24.0 dB. Pixel values beyond 60 are then clipped. Altogether, p1 =
projp, (L1% + w1 ), where D1 = [0, 60]"Y. This process models a
low-quality image acquired by a device which saturates at photon
counts beyond a threshold. Hence, we use F1 = projp,, in (6).

e An approximation p2 = 138 of the mean pixel value of z. To
enforce this, following Example 7, we set Go = H, L2 = Id, p2 =
0,and Fy: (me)rcnen = ((1/N) A me — p2) 1.

e The phase 6 € [, 71" of the 2-D discrete Fourier transform of
a noise-corrupted version of T, i.e., § = Z(fﬂg), where w3 € H
yields an image-to-noise ratio 20 log,,(||Z||/||ws||) = 49.0 dB. To
model this information, we set Gs = H, Lz = Id, ps = 0, and
Fs: y sy — (|| max{cos (£(§) — 0),0}e™)".

Due to the noise present in p; and 6, and the inexact estimation
of pa, this instance of Problem 1 (I = {1, 2, 3}) is inconsistent. We
thus arrive at the relaxed Problem 3 by setting w1 = ws = w3 =
1/3. By Proposition 13(ii), since C' is bounded, Problem 3 is guar-
anteed to possess a solution. The solution shown in Figure 2(1c) is
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(b)
Fig. 3. Relative error 20log,,(||zn — Zoo||/||T0 — Zoo||) (dB) versus

execution time (seconds) for full activation (red) and block activation
(green). (a): Section 4.1 and (15). (b): Section 4.3 and (17).

computed using algorithm (11) withy = 1.9 and (Vn € N) [, = I.
This experiment illustrates a nonlinear recovery scenario with incon-
sistent measurements which nonetheless produces realistic solutions
obtained by exploiting all available information.

4.3. Sparse Image Recovery

The goal is to recover the original image Z € H = RY (VN = 256%)
shown in Figure 2(2a) from the following.

e Bounds on pixel values: z € C' = [0, 255]".

e The low rank approximation 1 € Gi1 = H displayed in Fig-
ure 2(2b) of a blurred noisy version of  modeled as follows. The
blurring operator L1 : ‘H — G applies a discrete convolution with
a uniform 7 x 7 kernel, and the operators () and S are as in Exam-
ple 10, with threshold p = 500. Then

@ = Q(L1T + w1) (16)

is a rank-85 compression, where w1 € G; induces a blurred image-
to-noise ratio of 20log,,(||L1Z||/||w1|]) = 17.6 dB. By Exam-
ple 10, we obtain a proxification of (Q, q1) with (F1,p1) = (S o
Q,Sq1).

e 7 is sparse. To promote this property in the solutions to (6), fol-
lowing Remark 15, we set Go = H, Lo = 1d, p2 = 0, p2 = 1.5, and
F = prOjBOc (05p2)"

We therefore arrive at an instance of Problem 3 with I = {1, 2}
and w; = w2 = 1/2. Since C' is bounded, Proposition 13(ii) asserts
that a solution exists. Algorithm (11) with v = 1 yields the recovery
in Figure 2(2c). Due to the singular value decomposition, F} is the
most numerically costly operator and we choose to activate it only
every b iterations, i.e.,

I. =[{2}, ifn 20 mod 5; {1,2}, ifn=0mod 5]. (17)

Figure 3(b) displays the time savings resulting from the use of (17)
compared to full activation (both activation strategies yield visually
indistinguishable recoveries). Notice that, while the observation in
Figure 2(2b) is virtually illegible, many of the words in the recovery
of Figure 2(2c) can be discerned.
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