

Nanostructured All-cellulose Membranes for Efficient Ultrafiltration of Wastewater

Mengying Yang¹, Sarah Lotfikatouli^{2,4}, Yvonne Chen¹, Tony Li¹,

Hongyang Ma^{1,3}, Xinwei Mao^{2,4} and Benjamin S. Hsiao^{1*}

¹ Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA

²Department of Civil Engineering, Stony Brook, NY 11794, USA

³ State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China

⁴ New York State Center for Clean Water Technology, Stony Brook, NY 11794

11

12

13

14

15

16

13

17 Corresponding Author: Tel: +1(631)632-1793, Fax: +1(631)632-6518, E-mail:

18 Benjamin.Hsiao@stonybrook.edu

19 **Abstract**

20

21 One major challenge in utilization of ultrafiltration (UF) membrane for wastewater
22 treatment is its inevitable tendency of biofouling (from biomolecules to microorganisms). To
23 overcome this challenge, nanostructured cellulose membranes with hydrophilic surface and high
24 porosity (~80% without pressurization) was demonstrated in this study. The cellulose membrane
25 consisted of a lyocell microfiber scaffold infused with cellulose nanofibers (CNF), crosslinked
26 with polyamideamine-epichlorohydrin (PAE). The demonstrated membranes showed good
27 mechanical strength (wet stress: 3.5 - 8.0 MPa), pH resistance (pH 2.5 - 9.0) and stability in hot
28 water (60 °C). The optimized cellulose membrane exhibited high permeation flux (127.6 ± 21.8 L
29 $m^{-2} h^{-1} bar^{-1}$), excellent separation efficiency (> 99.9%), good flux recovery ratio (> 95%) and self-
30 healing ability for wastewater filtration, compared with commercial polymeric membranes (e.g.,
31 polyvinylidene difluoride (PVDF) and polyether sulfone (PES)). The resistance-in-series and three
32 combined cake-filtration models were applied to investigate the fouling behavior of the cellulose
33 and PVDF/PES UF membranes. While all membranes suffered cake layer precipitation and pore
34 blocking issues, the cellulose membranes exhibited near total recyclability upon washing due to
35 the hydrophilic and negatively charged CNF membrane surface. This study illustrated the
36 promising potential of using cellulose membranes for high-efficient wastewater treatment and its
37 superior antifouling performance compared to existing commercial membranes.

38

39 **Keyword:** Cellulose, Ultrafiltration Membrane, Porosity, Fouling, Wastewater

40

41 **1. Introduction**

42

43 Wastewater treatment is crucial for protecting aquatic, air and soil environments as well as
44 for ensuring the human and animal health. However, due to the complex circumstances in different
45 wastewater sources and the relatively high cost of the treatment system, wastewater treatment has
46 not been fully adopted around the world, especially in the rural communities of the underdeveloped
47 countries [1, 2]. In the past decades, a multitude of water purification technologies, including
48 coagulation and flocculation, catalytic and photocatalytic oxidation [3], chemical adsorption and
49 precipitation [2, 4] and membrane separation have been advanced, leading to developments of
50 many high efficiency and small footprint water purification systems with benign environmental
51 impact and low energy/capital costs for varying applications [5, 6]. Nonetheless, for wastewater
52 treatment, the essential process of membrane filtration still needs advancement to overcome the
53 fouling and sustainability issues. Commercialized membranes for wastewater treatment are mainly
54 made of synthetic polymers, including polyvinylidene fluoride (PVDF), polyethersulfone (PES),
55 polysulfone (PS) and polyacrylonitrilic (PAN). While they possess good mechanical properties,
56 controllable pore size and distribution, and good reproducibility [6, 7], they are hydrophobic and
57 susceptible to fouling. The issue of membrane fouling in the treatment system requires frequent
58 maintenance, thus greatly increasing the operational cost [8]. Moreover, the synthetic polymer
59 membranes cannot be easily degraded in the environment, whereas the disposal of the used
60 membranes can cause further environmental problems [9, 10].

61

62 To deal with the above challenges (i.e., membrane fouling and disposal of used membrane),
63 our group has been exploring the replacement of synthetic polymers with nature polymers, such

64 as cellulose, for manufacturing of filtration membranes. This is because cellulose is the most
65 abundant natural polymer on Earth, and can be obtained from many biomass sources, such as
66 woods, agricultural residues, vascular plants, aquatic plants, and bacteria [11]. The intrinsic
67 properties of cellulose, such as hydrophilicity, non-toxicity, water stability, sustainability and good
68 mechanical properties, are suitable for water purification applications [12, 13]. In addition, the
69 modifications of cellulose surface can further render it into functional scaffolds for applications
70 such as sorption, flocculation, catalytic degradation, disinfection, and membrane filtration [14, 15].
71 The recent advances of extracting nanoscale materials from cellulose (nanocellulose) have further
72 enhance the efficiency of water remediation capability due to the increased surface area and
73 functionality. These nanomaterials, such as cellulose nanocrystals (CNC) and cellulose nanofibers
74 (CNF), have shown great potential to improve the membrane properties [15]. In specific, some
75 recent studies showed that the inclusion of nanocellulose in ultrafiltration (UF) membranes could
76 offer the added benefits of reduced biofouling suitable for wastewater treatment [16-19].
77

78 There have been several ways to incorporate nanocellulose into synthetic membranes, such
79 as the use of CNC/CNF and polymer solution to produce hybrid nanocomposite membranes,
80 impregnated CNC/CNF into an electrospun scaffold to generate hybrid nanofibrous membranes,
81 or vacuum filtrated/solution casting on top of a polymer substrate to fabricate the thin-film
82 nanocomposite (TFNC) membranes [15]. The major component of these composite membranes,
83 however, is still the synthetic polymer. Recently, several research groups have demonstrated the
84 use of cellulose membranes for water filtration such as for oil/water separation [20], dye removal
85 [21], or heavy metal adsorption [22]. From these studies, several challenges were noted in the
86 fabrication of cellulose membranes. First, the commonly applied vacuum-filtration strategy

87 usually results in a condensed structure of membrane, which renders a low permeation flux in
88 water treatment. Second, a separate supporting membrane is essential to ensure the mechanical
89 strength of the hierarchical cellulose membrane during the membrane preparation process, where
90 nanocellulose is added through an additional step, such as electrospinning, additive printing, and
91 dip coating [20, 21, 23]. Third, often organic solvents need to be used, either to dissolve cellulose
92 for membrane casting or to immerse the membrane for post-treatment during fabrication [21, 24].
93 To overcome these challenges, we aim to develop a simple and low-cost method that can produce
94 the innovative nanostructured membranes with good mechanical strength, high porosity and
95 suitable pore size for superb filtration properties (i.e., high permeate flux and rejection ratio). We
96 believe that it is the first completely sustainable all-cellulose UF membrane that can be prepared
97 in one step and has superior filtration performance than most of the commercial polymer
98 membranes.

99

100 In this study, we demonstrate a strong and highly hydrophilic nanostructured cellulose
101 membrane system with high porosity (~ 80%) in a one-step approach without pressurization or
102 usage of organic solvent. This membrane system consisted of a lyocell microfiber scaffold infused
103 with TEMPO-oxidized CNF crosslinked by polyamideamine-epichlorohydrin (PAE). The infusion
104 of cellulose nanofiber in cellulose-based microfiber avoided the potential delamination problem
105 which is commonly seen in layer-by-layer coated membranes. The surface properties, crystallinity,
106 zeta potential, pore size, permeability, and porosity of the cellulose membranes were carefully
107 characterized. To compare the filtration performance, demonstrated membranes and commercially
108 available polymeric UF membranes such as polyvinylidene difluoride (PVDF) and polyether
109 sulfone (PES) membranes, a continuously operating wastewater filtration test was designed and

110 conducted. The membranes before and after fouling as well as cleaned with sodium hypochlorite
111 (NaClO) were further characterized by Fourier-transform infrared spectroscopy (FTIR), contact
112 angle and zeta potential techniques. The resistance-in-series models and three combined cake-
113 filtration models were used to analyze the membrane fouling behavior. In addition, the impact of
114 environmental conditions (e.g., pH and temperature) and physical scratch on the performance of
115 cellulose membranes were also carried out.

116

117 **2. Experimental**

118

119 **2.1. Materials**

120

121 Untreated jute fibers were provided by Toptrans Bangladesh Ltd. in Bangladesh. Chemical
122 reagents: 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO, 98%), sodium bromide (NaBr), sodium
123 hypochlorite (NaClO, 14.5% available chlorine), phosphate buffer (0.025M, pH 2.5) and sodium
124 bicarbonate buffer (0.05M, pH 9.0) were purchased from Fisher Scientific and were used as
125 received. Lyocell nanofibrillated fibers with a fiber diameter between 0.1-0.5 μm were provided
126 by Engineered Fibers Technology (EFT), LLC. Hydrophilic polyvinylidene fluoride (PVDF)
127 membrane filter (Durapore[®]) with 0.65 μm pore size was purchased from Millipore Sigma
128 Company. Polyamideamine-epichlorohydrin (PAE) resin (Kymene 920A) was purchased from
129 Solenis, LLC. Commercial-grade PVDF-A6 (MWCO: 500 kDa, composed of neat PVDF), PVDF-
130 V6 (MWCO: 500 kDa, composed of PVDF treated to create positive surface charge) and PES-LX

131 (MWCO: 300 kDa, composed of neat PES) membranes were purchased from the Sterlitech
132 Corporation.

133

134 **2.2. Preparation of Cellulose Membranes**

135

136 A suspension of CNF extracted from jute fibers was prepared according to the TEMPO-
137 oxidation protocol published in the literature [25] [18]. Cellulose membranes containing different
138 ratios of dry mass density (g m^{-2}) were prepared using by mixing 0.5 wt% lyocell and 0.15 wt%
139 CNF (1.60 mmol/g in degree of oxidation, average width was 4.9 ± 1.3 nm, Fig. S1, *Supporting*
140 *Information*) suspensions as follows. First, the pre-weighted lyocell (50 g m^{-2} dry mass density)
141 and CNF ($0.5 - 2.5 \text{ g m}^{-2}$ dry mass density) mixed suspension was stirred rigorously with a
142 magnetic stirring bar for 30 min. Then, the mixed suspension was poured evenly onto a wetted
143 hydrophilic PVDF filter membrane (average pore size: $0.65 \mu\text{m}$) supported by a ceramic funnel
144 and was drained via gravity filtration for 3 days until the membrane was totally dried. The cellulose
145 membranes were labeled based on the ratio of lyocell and CNF in terms of their dry mass density.
146 For example, 50-0.0, 50-0.5, 50-0.75, 50-0.85, and 50-2.5 membranes stand for the membranes
147 prepared with 50 g m^{-2} lyocell and 0.0, 0.5, 0.75, 0.85 and 2.5 g m^{-2} CNF, respectively. Later, the
148 dried membranes were peeled off from the PVDF filter, immersed in a crosslinking agent (0.1wt%
149 PAE) for 30 min, and then cured in the oven for another 30 min at 120°C . The illustration of the
150 crosslinking reaction (i.e., PAE-CNF crosslinking and PAE-PAE self-crosslinking) pathways and
151 the preparation of cellulose membrane is depicted in Fig. 1a and 1b, respectively. The resulting
152 membranes were washed with distilled water several times to remove unreacted crosslinking agent,

153 and then dried and stored at 50% humidity and room temperature before the tensile test. For FT-
 154 IR and XRD measurements, membrane samples were dried at 50 C° for 30 min to minimize the
 155 signals from water.

156

157 **Fig. 1** The preparation scheme of all-cellulose membrane preparation and the crosslinking
158 mechanism and enhance the substrate strength. (a) Illustration of crosslinking reaction pathway:
159 PAE-CNF crosslinking (the yellow ribbon represents CNF) and PAE-PAE self-crosslinking. (b)
160 Preparation of cellulose membrane; photograph and SEM images of the 50-0.85 crosslinked
161 membrane (i.e., 50 g m⁻² lyocell and 0.85 g m⁻² CNF). The smooth side was the side attached to
162 the PVDF filter and the rough side was the side exposed to air during gravity draining.

163

164 **2.3. Characterization of Cellulose Membranes**

165

166 The morphology of CNF was characterized by a FEI BioTwinG2 transmission electron
167 microscope (TEM) equipped with an AMT XR-60 CCD digital camera system (Hillsboro, OR,
168 USA). The structure of the cellulose membranes was characterized using a Thermo Nicolet iS10
169 FTIR spectrometer equipped with attenuated total reflection (ATR) configuration, and by a wide-
170 angle X-ray diffraction (WAXD) instrument (Benchtop Rigaku MiniFlex 600). The zeta potentials
171 of the lyocell, CNF, and the mixture suspensions were evaluated by a Nano Brook Series size and
172 zeta potential analyzer (Brookhaven, Holtsville, NY, USA). The zeta potentials of the cellulose
173 membranes and commercial PVDF and PES UF membranes were characterized by a zeta potential
174 analyzer (Anton Paar, SurPASS 3, Graz, Austria).

175

176 The surface and cross-sectional morphologies of cellulose membranes were examined by
177 a Schottky field emission scanning electron microscope (FE-SEM) (LEO Gemini 1550, Zeiss,
178 Oberkochen, Germany) at an accelerating voltage of 2.5 kV. The water contact angles of the tested

179 membranes were determined using a Dataphysics contact angle analyzer (OCA 15EC, Hamden,
180 CT, USA), where more than five different locations on each membrane were tested to obtain an
181 average value. Various sizes of unfunctionalized polystyrene (PS) beads (Polybead® Microspheres,
182 0.05, 0.2, and 1.0 μm) were used to estimate the pore size of the cellulose membrane by the dead-
183 end filtration cell (Amicon Stirred Cell, 50 mL). The rejection ratio of the solute having PS
184 nanoparticles was determined by a Shimadzu total organic analyzer (TOC-VCPN, Kyoto, Japan).
185 The tensile strength of the cellulose membranes was evaluated using a modified Instron 4442
186 tensile apparatus. In brief, the precut membranes strips (10 mm \times 50 mm \times 0.20 mm; stored at 50%
187 humidity and 25 °C for 24 hours for dry sample testing; immersed in water at 25 °C for one hour
188 for wet sample testing). The tensile samples were uniaxially stretched in a symmetric manner at a
189 rate of 10 mm/min and room temperature. A mean tensile strength was determined by testing 10
190 samples. The membrane porosity (P_r) was determined by the gravimetric method defined as
191 follows:

$$192 \quad P_r(\%) = \frac{W_w - W_d}{\rho \times A \times D} \quad (1)$$

193 where W_w is the weight of wet membrane, W_d is the weight of dry membrane, ρ is density of
194 distilled water (g/cm^3), A is membrane area (cm^2), and D is the thickness of wet membrane (cm).

195

196 **2.4. Membrane Performance for Wastewater Treatment**

197

198 To test the UF performance of the cellulose and commercial PVDF/PES membranes,
199 activated sludge (or mixed liquor suspended solids MLSS) was collected from a membrane

200 bioreactor in the Riverhead Sewage Treatment Plant, Long Island, NY and used as to test the
201 membrane performance. This MLSS was stored at 5 °C before the filtration experiment. The
202 separation efficiency and antifouling properties of a chosen cellulose membrane (crosslinked 50-
203 0.85 membrane) and commercial PVDF-V6, PVDF-A6, and PES-LX membranes were evaluated
204 by measuring the pure water flux (J_w), water flux in the presence of effluent (J_p), retention ratio of
205 foulant (R) and flux recovery ratio (Fr) using a dead-end UF cell (Model HP4750X, Sterlitech
206 Corporation, USA) with an effective membrane area (A) of 14.6 cm². All membranes were first
207 compacted using distilled water under 0.5 bar pressure until a stable permeation flux was reached.
208 Subsequently, the MLSS was added into the reservoir and fully stirred to start the fouling
209 emulsion. The flux value was recorded to monitor the flux decline at different time intervals at
210 0.5 ± 0.02 bar and 24 ± 2 °C. The turbidity and TDS concentrations were measured by a turbidity
211 meter (Thermo Scientific Orion AQ3010) following the published weighing method [26]. Briefly,
212 20 mL weighted sample was filtered through a 0.45 µm membrane filter (Millipore Co., Bedford,
213 MA, USA). Then, the TDS concentration (mg L⁻¹) was calculated by drying the filtrate at 105 °C
214 overnight and then weighing the dried solids.

215

216 The membrane permeation flux (J) was calculated using the following equation with the
217 unit of L m⁻² h⁻¹ (LMH):

$$J = \frac{V}{(A \times t)} \quad (2)$$

218 where V is the volume of the permeate passing through the membrane at time t , and A is the
219 effective membrane area. The rejection ratio (R_t) was determined by measuring the turbidity and
220 TDS concentration in wastewater (C_0) and permeate (C_t) as follows:

$$R_t (\%) = (1 - \frac{C_t}{C_0}) \times 100 \quad (3)$$

221 The flux recovery ratio ($F_{r,w}$) was evaluated after applying either hydraulic cleaning (rinsing the
222 membrane for 30 seconds at a flow rate of 0.6 gpm) or NaClO cleaning (i.e., immersing the
223 membrane in 0.05 wt% NaClO solution for 30 seconds followed by three rounds of rinsing with
224 distilled water) using the following equation:

$$F_{r,w} (\%) = \frac{J_{w,w}}{J_w} \times 100 \quad (4)$$

225 where $J_{w,w}$ is the pure water flux after hydraulic cleaning and J_w is the pure water flux prior to the
226 membrane fouling.

227

228 **2.5. Fouling Mechanism Study of Cellulose Membranes**

229

230 The resistance-in-series model utilizes Darcy's Law to characterize filtration resistance [27,
231 28]. The formulas are shown below.

$$R_t = \frac{\Delta P}{\mu \times J_{w1}} \quad (5)$$

$$R_M = \frac{\Delta P}{\mu \times J} \quad (6)$$

$$R_M + R_P = \frac{\Delta P}{\mu \times J_{w2}} \quad (7)$$

$$R_C = R_t - (R_M + R_P) \quad (8)$$

236 where J is the last flux point of DI compaction, J_{w1} is the last flux point of the current wastewater
237 run, J_{w2} is the first flux point of the next wastewater run, ΔP is transmembrane pressure, and μ is
238 the viscosity of permeate.

239

240 This model accounts for three types of resistances (pore clogging, cake layer, and inherent
241 membrane resistance), assigning each a quantitative variable. A fourth quantitative variable, R_f
242 (total fouling resistance) is determined by summing the variables R_C and R_P . The percent of
243 reversible (cake layer) and irreversible (pore clogging) fouling can be demonstrated by calculating
244 the variables ratio R_C/R_f and R_P/R_f .

245
$$R_t = R_C + R_P + R_M \quad (9)$$

246
$$R_t = R_f + R_M \quad (10)$$

247
$$R_f = R_C + R_P \quad (11)$$

248 where R_t is total resistance, R_c is cake-layer induced resistance, R_p is pore clogging induced
249 resistance, R_M is inherent membrane resistance and R_f is fouling resistance. We note that there is
250 one form of external fouling (cake layer) and three forms of internal fouling (standard, complete,
251 and intermediate pore blocking) [29]. The resistance-in-series model addresses internal fouling,
252 but it does not specify which mechanism is dominant. As a result, this model alone is insufficient
253 for a full analysis of the membrane fouling and a supplementary model is needed. To deal with
254 this issue, three models: cake-filtration complete pore blocking Model (CFCBM), cake-filtration
255 standard pore blocking model (CFSBM) and cake-filtration intermediate pore blocking model
256 (CFIBM) were used together to analyze the internal membrane fouling data in this study (with the

257 Origin Pro software). [30, 31] A variety of parameters were selected for comparison to determine
258 the model that fit best to the experimental data (the chosen combined fouling models at constant
259 pressure to investigate the fouling mechanism are summarized in Table S1, *Supporting*
260 *Information*).

261

262 **2.6. Membrane Self-Healing and Stability Study**

263

264 To investigate the self-healing ability of selected membranes, the filtration performance of
265 the scratched cellulose, PVDF-V6, PES-LX, and PVDF-A6 membranes was evaluated by distilled
266 water using the dead-end filtration system. In this test, the membrane was first compressed with
267 distilled water at pressure of 0.5 bar until the permeate flux was stable. A blade cutter was used to
268 create a 3 cm scratch in the middle of membranes. The flux change was monitored before and after
269 the scratch under the same filtration conditions.

270

271 The applicable pH range and temperature resistance for the cellulose membrane was also
272 investigated by using phosphate buffer solution (pH = 2.5), sodium bicarbonate buffer solution
273 (pH = 9.0) and 60 °C warm distilled water. For the pH resistance test, the cellulose membrane was
274 pre-immersed in buffer solutions at two different pH values and room temperature for 3 days. For
275 the temperature resistance test, the cellulose membrane was stirred in 60 °C warm water for 7 days.
276 After the pretreatment, all membranes were washed with water and tested via dead-end
277 ultrafiltration protocol for MLSS as described in section 2.4.

278

279 To challenge the cellulose membrane for long-term wastewater filtration, a lab-scale
280 immersed membrane filtration system was used (the schematic diagram of the immersed
281 membrane module is shown in Fig. S2, *Supporting Information*). In this test, the membrane module
282 with a total surface area of 0.0338m² was undergone a 6-hour water compaction at 0.5 bar.
283 Subsequently, the compacted membrane module was placed in a sludge feed tank with a capacity
284 of 40L. A negative pressure in the membrane module was generated by a vacuum pump, where
285 the permeate from the wastewater was sucked through the connected channels into the collection
286 flask. The permeate was collected continuously for 12 hours. In this test, the pressure was
287 stabilized at 0.5 bar, where the volume of the permeate was used to calculate the flux using
288 Equation 2.

289

290 **3. Results and Discussion**

291

292 **3.1. Characterization of Cellulose Membranes**

293

294 The cellulose membrane was first characterized to assess its surface properties, crystallinity,
295 zeta potential, permeability, pore size and porosity. Fig. 2a shows the FT-IR spectra of the cellulose
296 membranes prepared with different CNF dry mass ratios (0.0 – 1.0 g m⁻²) and crosslinking
297 conditions. It was seen that the stretching vibration at 1601 cm⁻¹ of the carboxylate group from
298 CNF was present in all crosslinked and non-crosslinked 50-1.0 (50 g m⁻² lyocell and 1.0 g m⁻² CNF)

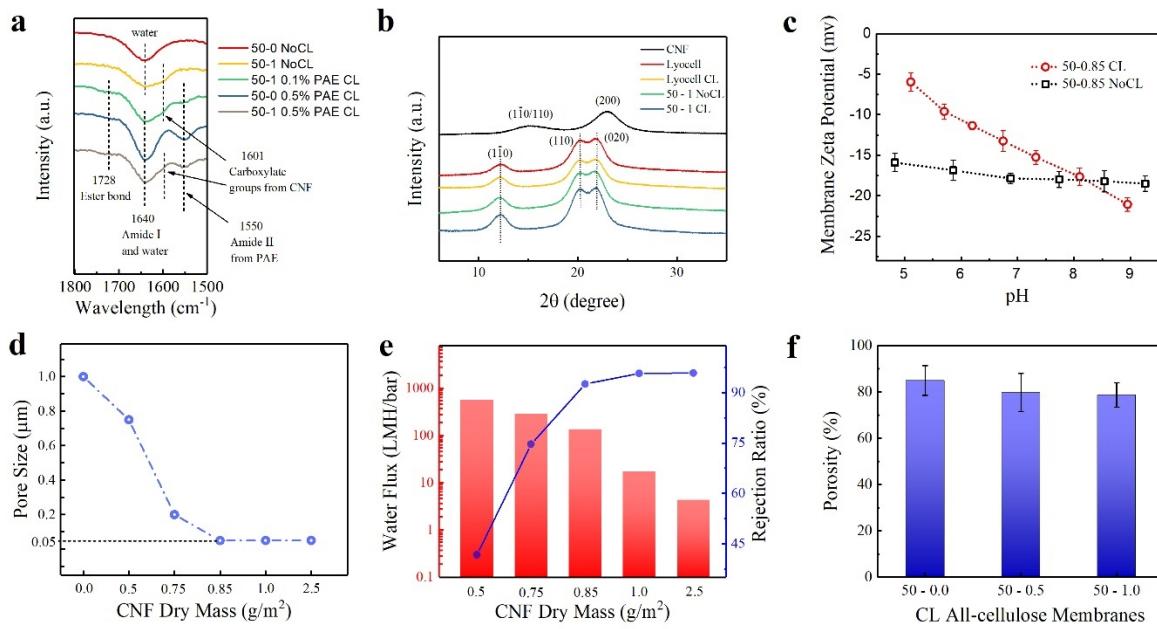
299 membranes. Compared to the neat cellulose membranes, the introduction of PAE resulted in the
300 appearance of two absorption bands: amide I group at 1640 cm^{-1} and amide II group at 1550 cm^{-1}
301 [32]. Due to the adsorbed water in the membrane, the amide I band partly overlapped with the
302 symmetric deformation vibrations of water molecules. Although PAE could self-crosslink slowly
303 under room temperature or quickly during the heating process [33], the stretching C=O vibration
304 of the ester bond at 1728 cm^{-1} in all 50-1.0 crosslinked membranes indicated the covalent bond
305 linkage between the azetidinium groups of PAE and carboxyl groups of CNF, while the low peak
306 intensity was caused by the small loading amount of CNF [34, 35].

307

308 The XRD patterns of CNF, lyocell, and cellulose membranes were displayed in Fig. 2b.
309 The crystalline regions in CNF were represented by the diffraction peaks at $2\theta = 23.1^\circ$, 16.4° , and
310 14.8° , representing the (200), (110), and (1 $\bar{1}$ 0) lattice planes of the cellulose I structure, respectively
311 [36]. While lyocell is the regenerated cellulose fibers, which showed three diffraction peaks at 2θ
312 = 22.0° , 20.3° , and 12.3° , corresponding to the (020), (110), and (1 $\bar{1}$ 0) lattice planes of the cellulose
313 II structure, respectively [37]. All cellulose membranes illustrated similar diffraction patterns as
314 that of lyocell fibers because of the small loading amount of CNF (1.0 g m^{-2}). It was seen that the
315 crosslinking treatments did not change the crystalline structure of the cellulose I structure because
316 the crosslinking process mainly occurred in the amorphous domains while the crystalline domains
317 of CNF were unaffected [38, 39].

318

319 The crosslinking reaction between CNFs and PAE in the cellulose membrane could also
320 be verified indirectly by the membrane zeta potential measurement. The zeta potential results of

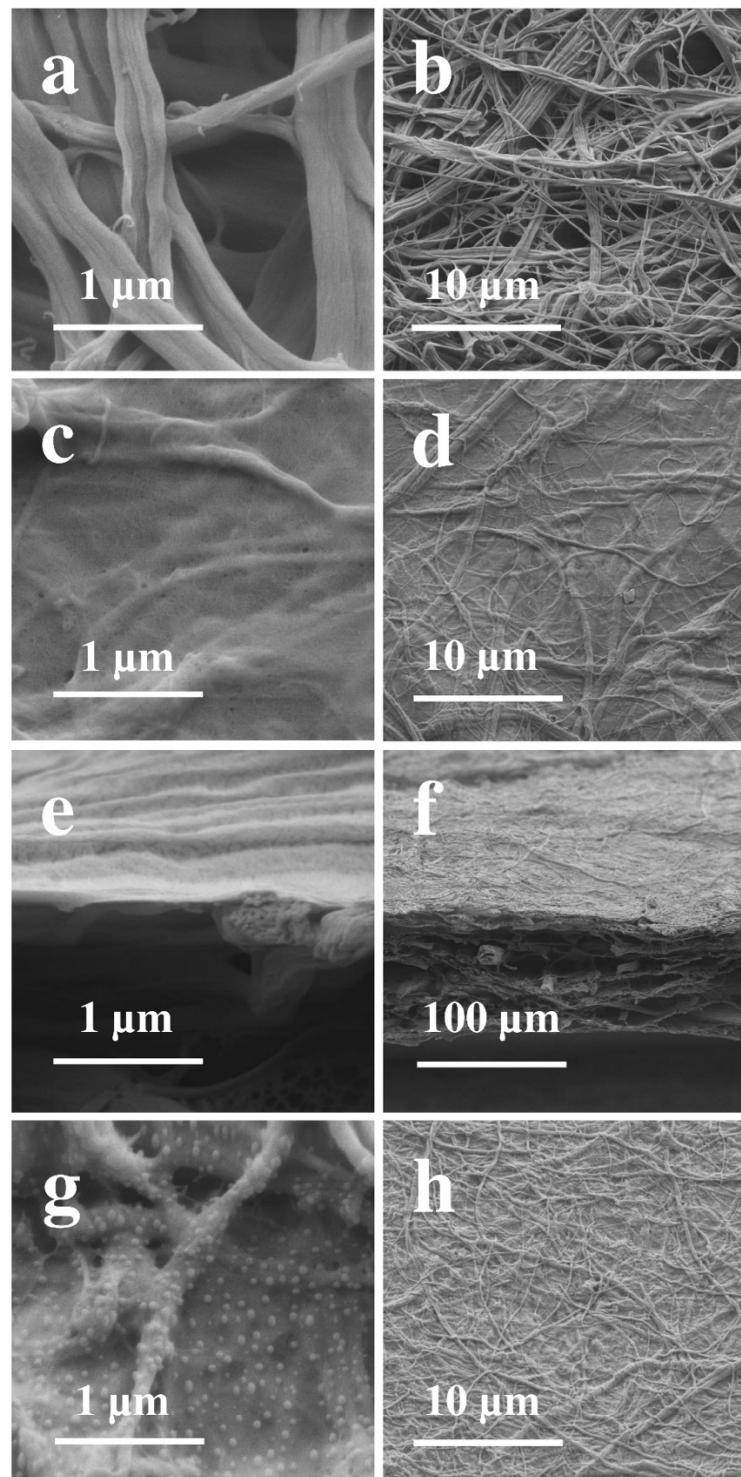

321 non-crosslinked (No CL) and crosslinked (CL) cellulose membranes as a function of pH (in the
322 range of pH = 5-9) are shown in Fig. 2c, where all zeta potential values were negative. It has been
323 shown that the addition of CNF could decrease the zeta potential of the mixed Lyocell/CNF
324 suspension because of the presence of additional carboxyl groups (Fig. S3, *Supporting*
325 *Information*). However, the behavior of the zeta potential change in the cellulose membrane was
326 found to be different due to the presence of PAE. In Fig. 2c, it was seen that the negative charge
327 of the No CL cellulose membrane surface (50 g m⁻² lyocell and 0.85 g m⁻² CNF membrane) mainly
328 came from the deprotonation of carboxyl groups on CNF, which increased slightly with the pH
329 value resulting in the slight decrease in the membrane zeta potential. However, in the CL cellulose
330 membrane, the deprotonation of the amino groups in PAE could also contribute to the negative
331 zeta potential of the membrane surface, especially with the increase in pH value. This has led to a
332 more pH-dependent zeta potential trend of the CL cellulose membrane (Fig. 2c). We note that the
333 cationic primary amide group and azetidinium functional group of PAE have a high affinity of
334 forming covalent bonds with the carboxyl groups on CNF, the sharp increase in the zeta potential
335 of the CL cellulose membrane with decreased pH was due to the protonation of secondary/tertiary
336 amino groups on PAE after the crosslinking process [40].

337

338 To investigate how the addition of CNF could influence the pore size of the cellulose
339 membranes, a dead-end filtration test using spherical PS nanoparticles of varying sizes was
340 conducted to determine the pore size of the cellulose membranes (Fig. 2d). It was seen when the
341 CNF loading in the cellulose membranes increased, the corresponding pore size decreased from 1
342 μm for the original lyocell membrane (50-0) to 0.2 μm for the 50-0.75 composite membranes. The
343 pore size value was determined when the membrane exhibited 90% of rejection ratio of the PS

nanoparticles with the smallest diameter used. As the effective minimum pore size of the CNF scaffold can be affected by the width of nanofibers and the thickness of the CNF layer, [18] we first evaluated the thickness (or the loading) of the CNF. In Fig. 2e, it was found that when the CNF dry mass was above 0.85 g m^{-2} , the pore size of the cellulose membranes remained around $0.05 \mu\text{m}$. While the rejection ratio against PS nanoparticles ($0.05 \mu\text{m}$) for the 50-0.85 and 50-2.5 membranes increased slightly from 92% to 96%, respectively. However, the extra loading of CNF dramatically reduced the water flux of the membrane (from 134.8 LMH/bar to 4.4 LMH/bar, i.e., about a decrease of 96.8%) because of the low porosity of the CNF layer (< 20%) due to the dense compaction of the CNF scaffold [41, 42]. From this study, the membrane with the CNF loading of 0.85 g m^{-2} appeared to exhibit the optimal filtration performance (i.e., high flux and high rejection ratio). It was interesting to note that the porosity of the cellulose membrane decreased only slightly with the increasing CNF loading (Fig. 2f). All cellulose membranes exhibited high porosity (> 80%) because of the highly porous structure of the Lyocell substrate.

357


358

359 **Fig. 2** Characterization of all-cellulose membranes with different CNF loading contents with and
360 without crosslinking. (a) FTIR spectra and (b) XRD patterns of the CNF, lyocell, and cellulose
361 membranes with and without PAE crosslinking (0.1 wt%). (c) Zeta potential analysis of 0.1 wt%
362 PAE crosslinked (CL) and non-crosslinked (No CL) cellulose membranes (50-0.85) as a function
363 of the pH value. (d) Membrane pore size (determined by 90% rejection ratio of PS nanoparticles
364 with the smallest size). (e) Membrane PS solution water flux and 50 nm PS nanoparticles
365 rejection ratio with increasing CNF loading amount (the dry mass of lyocell was 50 g m⁻²). (f)
366 Porosity of cellulose membranes crosslinked with 0.1 wt% PAE. Data are presented as the mean
367 value (mean \pm SD of n=3 repeating tests).

368

369 The morphology and nanostructure of cellulose membranes with different CNF loadings
370 (0.0 – 1.0 g m⁻²) were also characterized by SEM, and the results are illustrated in Fig. 3. The
371 surface images of pure lyocell membrane (crosslinked) showed a highly porous structure defined
372 by the randomly stacked lyocell microfibers with 0.1-0.5 μ m diameters (Fig. 3a and 3b). With the
373 addition of 0.85 g m⁻² CNF, the membrane surface exhibited a smooth cellulose surface without
374 detectable pore structure, even at the micrometer scale (Fig. 3c and 3d). The top view and cross-
375 sectional images of the 50-0.85 crosslinked (CL) membrane (Fig. 3e and 3f, respectively) revealed
376 the hierarchical structure of the membrane comprising a thin CNF layer with a thickness ranging
377 between 50 and 80 nm on top of the microporous lyocell scaffold with an average thickness of 130
378 \pm 25 μ m. As the top layer was due to the random agglomeration of CNF, its network formation
379 rendered a pore structure with the size of around 50 nm. This pore size was effective to hinder the
380 passage of uncharged PS nanoparticles with 50 nm diameter, where the PS beads were
381 accumulated on top of the CNF layer due to size exclusion (Fig. 3g and 3h). The intact structure

382 of the CNF layer was also verified by the high rejection ratio ($> 92\%$) against the PS nanoparticles
383 by the cellulose membranes.

384

385 **Fig. 3** Surface morphology of all-cellulose membrane. (a, b) the 50-0.0 (i.e., pure lyocell) CL
386 membrane, and (c, d) the 50-1.0 (lyocell/CNF) CL membrane; (e, f) cross-sectional morphology
387 of the 50-0.85 CL membrane; (g, h) surface morphology of the 50-0.85 CL membrane after the
388 PS nanoparticles (50 nm) filtration. All the membranes tested were crosslinked with 0.1% PAE.

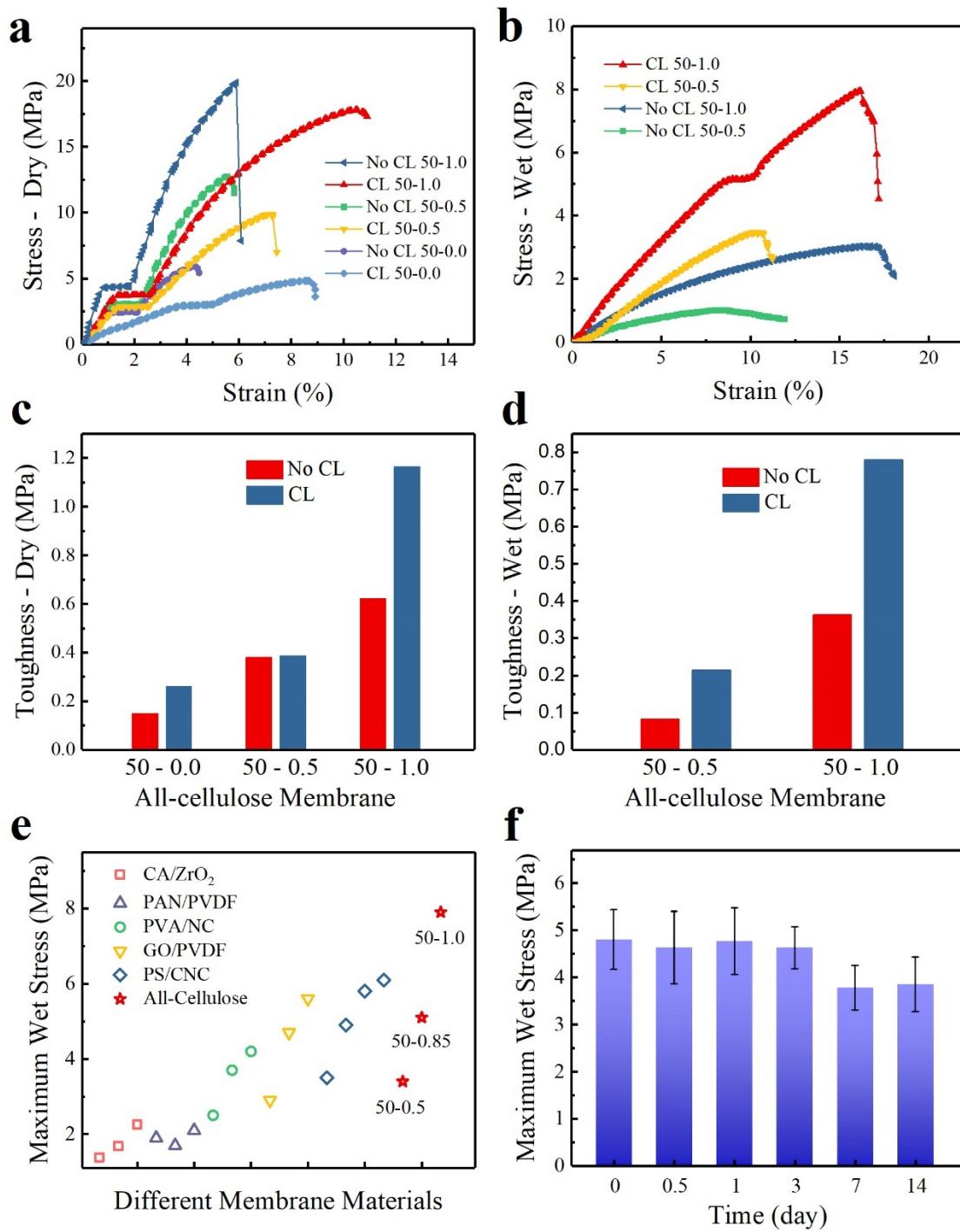
389

390 **3.2. Dry and Wet Mechanical Properties of Cellulose Membranes**

391

392 Tensile testing was performed in both dry and wet states to evaluate the effects of CNF
393 content and PAE crosslinking on the mechanical properties of cellulose membranes. Fig. 4a and
394 3b illustrate the typical dry and wet stress-strain curves of crosslinked and non-crosslinked
395 cellulose membranes with different CNF loadings, respectively. All dry membranes showed a
396 linear increase up to 3-5 MPa of the tensile stress, followed by a platform and then a continuous
397 stress increment until failure occurred. The plateau in the stress-stress curve showed the plastic
398 flow behavior of cellulose membrane due to the straightening and reorientation of the lyocell
399 fibrous scaffold and interfibrillar slippage [43]. After the reinforcement behavior and following
400 alignment of cellulose fibers, membrane failure occurred because of the failure of fibers and
401 breakage between their existing bonds. The pure lyocell membranes (50-0) exhibited no wet
402 strength before or after crosslinking. Compared with the neat lyocell membrane, the tensile stress
403 of the cellulose membrane increased gradually with the increasing CNF loading. The increasing
404 tensile properties could be attributed to the intra-molecular hydrogen bonding in the CNF network
405 [44]. After chemical crosslinking, the covalent bond formation (ester bonds formed between the

406 azetidinium groups in PAE and carboxyl groups in CNF) in the CNF network inhibited the
407 interfibrillar detachment of the lyocell substrate in both dry and wet conditions.


408

409 It was noted that the crosslinking reaction slightly decreased the strength of the cellulose
410 membrane but greatly enhanced the membrane toughness, especially in the wet state (Fig. 4c and
411 4d). For example, the wet strength of the 50-1 cellulose membrane increased by 190 % after the
412 PAE crosslinking (from 2.8 ± 0.3 MPa to 8.1 ± 0.5 MPa), while the wet toughness of the
413 crosslinked 50-1 membrane (0.78 MPa) became twice of the non-crosslinked 50-1 membrane (0.36
414 MPa). These results are consistent with the observations made in a previous study that the wet
415 strength of cellulose paper was found to increase when both PAE and CNF were absorbed onto
416 cellulose fibers [45].

417

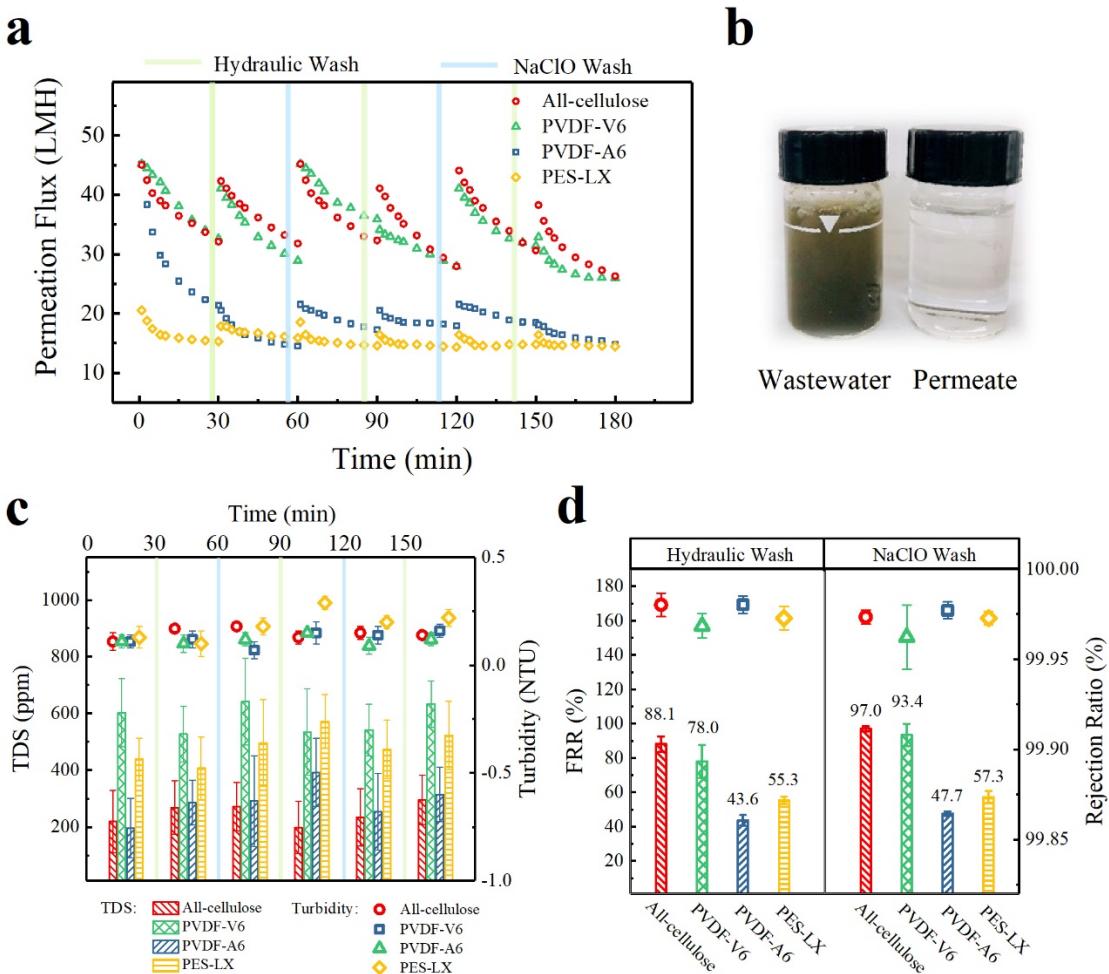
418 The wet mechanical properties (i.e., the maximum stress in the stress-strain curve) of wet
419 cellulose membranes and other reported membranes under the similar wet conditions [46-51] are
420 illustrated in Fig. 4e, while the maximum stress change of the crosslinked 50-0.85 (CL 50-0.85)
421 membrane at varying water immersion time (up to 14 days) is shown in Fig. 4f. In Fig. 4e, it was
422 seen that composite membranes without the incorporation of enhancing additives or
423 physical/chemical crosslinking usually exhibited low mechanical properties. However, the
424 cellulose membrane (CL 50-1.0) with a high loading of CNF crosslinked by PAE showed
425 competitive maximum wet stress or wet strength in comparison with those from published
426 composite membranes, confirming the potential of cellulose membranes for practical applications.
427 In Fig. 4e, the wet strength of the cellulose membrane (CL 50-0.85) was found to decrease by

428 about 20% after 7-day immersion probably because of the water-swollen effect, however this
 429 property remained unchanged at 3.8 ± 0.6 MPa for the rest of the test.

430

431 **Fig. 4** Mechanical performance of all-cellulose membranes. Stress-strain curves and calculated
432 toughness of (a, c) dry and (b, d) wet cellulose membranes with and without crosslinking (0.1
433 wt % PAE). (e) Comparison of the maximum wet stress values of cellulose membranes
434 (crosslinked with 0.1 wt % PAE) with those of other reported membranes. Symbols indicate the
435 data points of reported membranes with different composite ratio. (f) The maximum wet stress
436 change from a 14-day wet immersion test of the CL 50-0.85 membrane. Bars represent the mean
437 values \pm SD based on three independent tests.

438


439 **3.3. Wastewater/MLSS Ultrafiltration Performance of Cellulose Membranes**

440

441 The dynamic UF test was performed to evaluate the filtration performance and fouling
442 behavior of cellulose membranes using MLSS with an original turbidity of 537 ± 98 nephelometric
443 turbidity unit (NTU) and total dissolved solids (TDS) of 890 ± 102 mg L⁻¹. In this study,
444 commercial UF membranes (PVDF-V6, PVDF-A6, and PES-LX) with a similar pore size range
445 and initial water flux (as those of cellulose membranes) were also selected to provide the
446 benchmark values for comparison. The general properties of cellulose and selected polymeric UF
447 membranes are summarized in Table S2 (*Supporting Information*). The results the dynamic UF
448 test are illustrated in Fig. 5. In Fig. 5a, it was found that all membranes experienced a water flux
449 decline over the filtration operation because of the fouling issue. However, the PVDF-A6
450 membrane displayed a steeper decrease than cellulose and PVDF-V6 membranes because of the
451 hydrophobic nature of the PVDF-A6 membrane, resulting in a greater fouling tendency and flux
452 decay. In contrast, the PES-LX membrane suffered the smallest flux decrease but it exhibited the

453 lowest initial permeation flux. It was seen that the permeation flux of cellulose and PVDF-V6
454 membranes could be near fully recovered after hydraulic washing and NaClO cleaning, while
455 hydrophobic membranes (PVDF-A6 and PES-LX) suffered irreversible fouling resulting poor flux
456 recovery (below 23 LMH) after the first run. In this study, the turbidity of all tested permeates was
457 below 0.3 NTU (a photograph of wastewater and filtrated permeate is shown in Fig. 5b), which
458 met the target requirement of 0.3 NTU for public water systems recommended by the United States
459 Environmental Protection Agency (USEPA) [52]. It is noteworthy to point out that, the permeate
460 TDS by using the cellulose membrane was less than 400 ppm, lower than those of polymeric
461 membranes (Fig. 5c). Although the rejection ratio of all tested membranes was above 99.9%, the
462 recovery of permeation flux for these membranes using NaClO cleaning was slightly higher than
463 that using hydraulic washing (Fig. 5d). The usage of NaClO to remove organic and microbial
464 foulants, commonly absorbed on the membrane surface, is a well adopted approach to cleanse the
465 used membrane in wastewater treatment [53, 54]. Among all tested membranes, the cellulose
466 membrane (CL 50-0.85) exhibited the highest flux recovery ratio ($88 \pm 4.5\%$ for hydraulic wash
467 and $97 \pm 1.5\%$ for NaClO cleaning). This indicates that the fouling layer developed on the cellulose
468 membrane surface, which contains abundant hydrophilic hydroxyl and carboxyl groups, is easier
469 to remove than those on the polymeric membrane surfaces either by water or NaClO cleaning.

470

471

472 **Fig. 5** Wastewater filtration performance of all-cellulose and commercial membranes. (a)
473 Filtration cycles with multiple permeation flux recoveries for cellulose (CL 50-0.85), PVDF-V6
474 (modified PVDF), PVDF-A6, and PES-LX membranes using alternative hydraulic wash and
475 NaClO wash. (b) Photograph of original wastewater and filtrated permeate. (c) Total dissolved
476 solid (TDS - columns) and turbidity (symbols) changes in wastewater filtration. (d) Water flux
477 recovery ratio and rejection ratio of cellulose (CL 50-0.85), PVDF-V6, PVDF-A6, and PES-LX
478 membranes after hydraulic and NaClO cleaning. Data are presented as mean \pm SD of n=3
479 repeats.

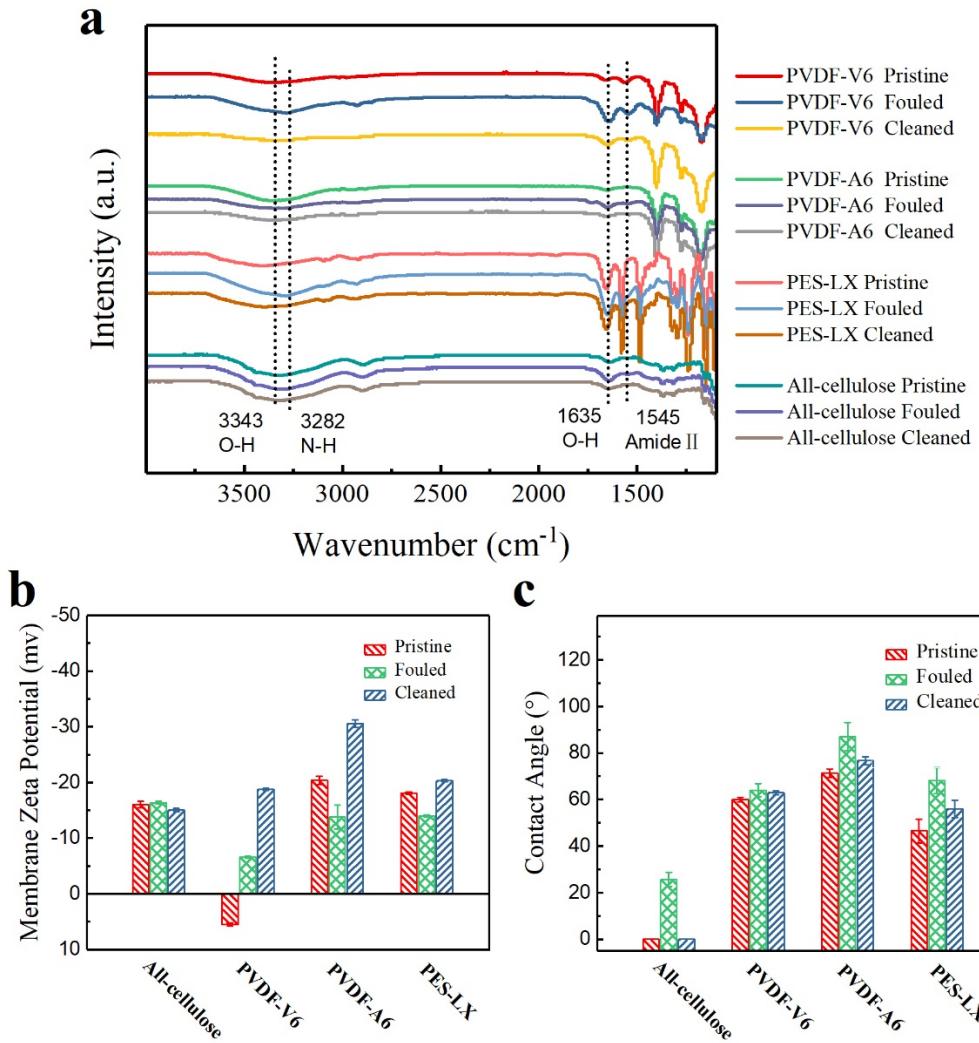
480

481 **3.4. Wastewater Fouling Mechanism Study**

482

483 Soluble microbial products (SMP) and extracellular polymeric substances (EPS, the
484 products of substrate metabolism and biomass decay) are major contributors to the membrane
485 fouling problem in MBRs. These foulants consist of humic substances, proteins, lipids,
486 polysaccharides, carbohydrates and macromolecules [55, 56]. Fig. 6a illustrates the surface
487 characteristics, determined by IR spectra, of pristine, fouled, and cleaned cellulose (CL 50-0.85)
488 of polymeric membranes. The characteristic peaks of the foulants occurred mainly in the
489 wavelength range of 1500-1800 cm⁻¹ and 3100-3400 cm⁻¹. Compared with the FTIR spectra of
490 pristine membranes, the fouled membranes exhibited four new peaks at 1542 cm⁻¹ (C=N vibration
491 of amide II), 1651 cm⁻¹ (C=O vibration of amide I and humics), 1731 cm⁻¹ (C=O vibration in
492 protein), and 3282 cm⁻¹ (N-H stretching in protein and humic substance), which were in
493 accordance with the characteristic peaks of protein and humic foulants [57, 58]. These results
494 confirmed that membrane fouling was mainly caused by the C=O and C=N amide groups in protein
495 molecules and the N-H groups in polysaccharides. It was seen that the cellulose membrane suffered
496 a less tendency fouling, as revealed by the similar spectra from the pristine and fouled cellulose
497 membranes. After NaClO cleaning, the difference in the spectra between all the pristine and
498 cleaned cellulose membranes was negligible, indicating the high efficiency of NaClO in removing
499 the organic and microbial foulants deposited on the cellulose surface [59].

500


501 Although the removal of the cake layer on the membrane surface can elute a large
502 proportion of the foulants, a small fraction of foulants could still remain inside the membrane pores

503 and cause irreversible fouling. However, this is not clear by the FTIR results. To understand the
504 detailed fouling process, other characterizations of the fouled and cleaned membranes were also
505 carried out, including the contact angle measurement to determine the hydrophilicity and zeta
506 potential measurements to determine the membrane surface charge, where the results from
507 membranes being fouled by wastewater and being treated by NaClO cleaning are shown in Fig. 6b
508 and 6c. In Fig. 6b, the contact angle (CA) of the pristine cellulose membrane ($\sim 0^\circ$) indicated that
509 its surface was truly hydrophilic, whereas the polymeric membranes were relatively hydrophobic
510 with higher CA values ($50^\circ - 70^\circ$). In comparison with the pristine membranes, the CA values of
511 all fouled membranes became more hydrophobic due to the deposition of hydrophobic foulants on
512 the membrane surface [60]. After NaClO cleaning, only cellulose and PVDF-V6 membranes
513 exhibited CA values close to their initial values. The CA value of the cleaned PVDF-A6 and PES
514 membranes was somewhat higher than that of the membranes because of the presence of residual
515 hydrophobic foulants on the membrane surface, even after the cleaning treatment [61]. The CA
516 results agreed with the results observed in the flux recovery test that polymeric membranes
517 suffered more irreversible fouling during wastewater filtration (Fig. 5a).

518

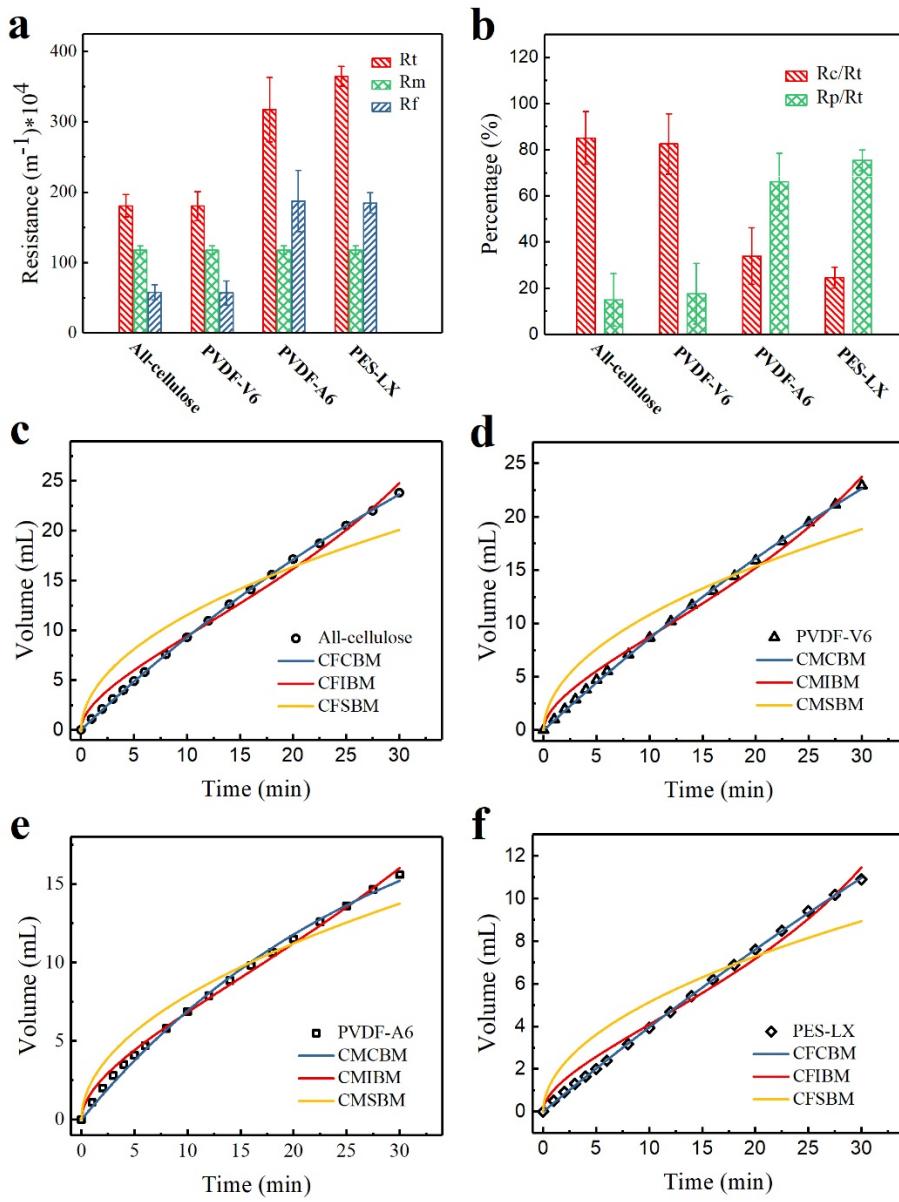
519 The zeta potential test was also carried out to characterize the fouling behavior of the
520 membranes, where the results could be used to optimize the membrane cleaning efficiency [62].
521 In Fig. 6b, the pristine cellulose (CL 50-0.85), PVDF-A6, PES-LX membranes typically exhibited
522 negative zeta potential values. As the PVDF-V6 membrane contained modified-PVDF (described
523 by the manufacturer) possibly with the amine groups (as seen by the N-H peak at 1560 cm^{-1} in the
524 FTIR spectrum, Fig. 6a), this membrane exhibited a positive zeta potential value at neutral pH [63].
525 The negative zeta potential of the fouled PVDF-V6 membranes indicated the deposition of foulants

526 such as biomacromolecules and hydrophobic organic matter in wastewater are all negatively
527 charged, which has been reported previously [64, 65]. It was interesting to note that the pristine,
528 fouled and cleaned cellulose membranes exhibited similar negative zeta potential values (Fig. 6b),
529 which implied that only minor fouling occurred on the cellulose membrane surface. This could be
530 explained by the weak interactions between the foulants and nanocellulose, as the charge repulsion
531 would hinder the already weak hydrophobic aggregation, resulting in less adhesion/adsorption of
532 biomolecular contaminants on the cellulose membrane surface [18]. Although electrostatic
533 repulsion might also exist between the foulants and negatively charged PVDF-A6 and PES-LX
534 membranes, the stronger hydrophobic-hydrophobic interactions would dominate the fouling
535 process. Meanwhile, the zeta potential of all NaClO cleaned polymeric membranes was altered
536 probably due to the occurrence of the reaction between the polymeric scaffold and NaClO [54, 66].

537

538 **Fig. 6** Characterization of membrane before and after the wastewater filtration. (a) FT-IR
539 spectra, (b) membrane zeta potential ($\text{pH} = 7$; 1 mM KCl), and (c) water contact angle of the
540 pristine, wastewater fouled, and NaClO cleaned membranes (the chosen cellulose membrane was
541 CL 50-0.85). Bars are presented as mean \pm SD of $n=3$ individual tests.

542


543

544 The fouling resistances parameters, such as total membrane resistance (R_t), intrinsic
545 resistance (R_m) and fouling resistance (R_f) were characterized using the resistance-in-series model
546 to reveal the mechanism of membrane fouling [27]. As illustrated in Fig. 7a, the cellulose
547 membrane and modified PVDF membrane (PVDF-V6) exhibited lower R_t and R_f , while the
548 conventional PVDF-A6 and PES membranes showed more severe total fouling. Detailed analysis
549 in Fig. 7b indicated that cellulose and modified PVDF membranes possessed a high reversible
550 fouling percentage (R_c/R_f) and a low irreversible fouling percentage (R_p/R_f). This implied that the
551 removable cake layer fouling dominated the total fouling during wastewater filtration. The results
552 can also be specified by their high flux recovery ratio after NaClO or hydraulic cleaning (Fig. 5d).
553 Based on the contact angle and zeta potential results, the low R_t and R_p/R_c values of cellulose
554 membrane could be attributed to the integration of negatively charged and hydrophilic CNF, which
555 has been shown to decrease the irreversible fouling and increase the antifouling property of
556 membranes [18]. On the other hand, the low fouling tendency of modified PVDF membrane could
557 be attributed to the usage of zwitterionic polymer, as indicated by the FTIR and zeta potential
558 results from the PVDF-A6 membrane (Fig. 6a and 6b) [67].

559

560 To further understand the fouling mechanism during wastewater filtration, the
561 accumulative permeate volume versus time data of cellulose (CL 50-0.85), PVDF (V6 and A6),
562 and PES membranes was fitted with three combined models: cake filtration-complete blockage
563 model (CFCBM), cake filtration-intermediate blockage model (CFIBM) and cake filtration-
564 standard blockage model (CFSBM). The best fit was determined by comparing the difference
565 between the data points and model's prediction values, when the smallest sum of squared residuals
566 (SSR) value was reached [27, 31]. As demonstrated in Fig. 7c, 7f and Table S3 (*Supporting*

567 *Information*), the combined CFCBM was in good agreement with the experimental data for all
568 tested membranes, regarding the lowest SSR and highest R^2 values. While the membrane
569 encountered total resistance from both cake layer and complete pore blocking, the CFCBM model
570 specified that the formation of foulant cake layer and complete membrane blocking could occur
571 simultaneously rather than independently, as suggested by the single fouling model. While the rate
572 of foulant precipitation on the membrane surface depended on the adjacent pore blockage, the rate
573 of complete blocking was lower due to the resistance of foulant formation as a cake layer.
574 Moreover, we speculate that the rapid flux decay (in a single filtration run) was mainly caused by
575 cake layer fouling mechanism instead of the complete blocking mechanism because of the lower
576 K_b value compared to K_c for all tested membranes [31, 68].

577

578 **Fig. 7** Mechanism study of membrane fouling by calculating the fouling resistances parameters
 579 and fitting with CFCBM, CFIBM, and CFSBM models. (a) Summary of the total resistance (R_t),
 580 inherent membrane resistance (R_m) and fouling resistance (R_f), (b) reversible fouling ratio
 581 (R_c/R_f) and irreversible fouling ratio (R_p/R_f) of cellulose and polymeric membranes during the
 582 flux recovery experiment of wastewater filtration. (c-f) Experimental and predictive permeation
 583 volume as a function of filtration time among different combined models of cellulose (CL 50-

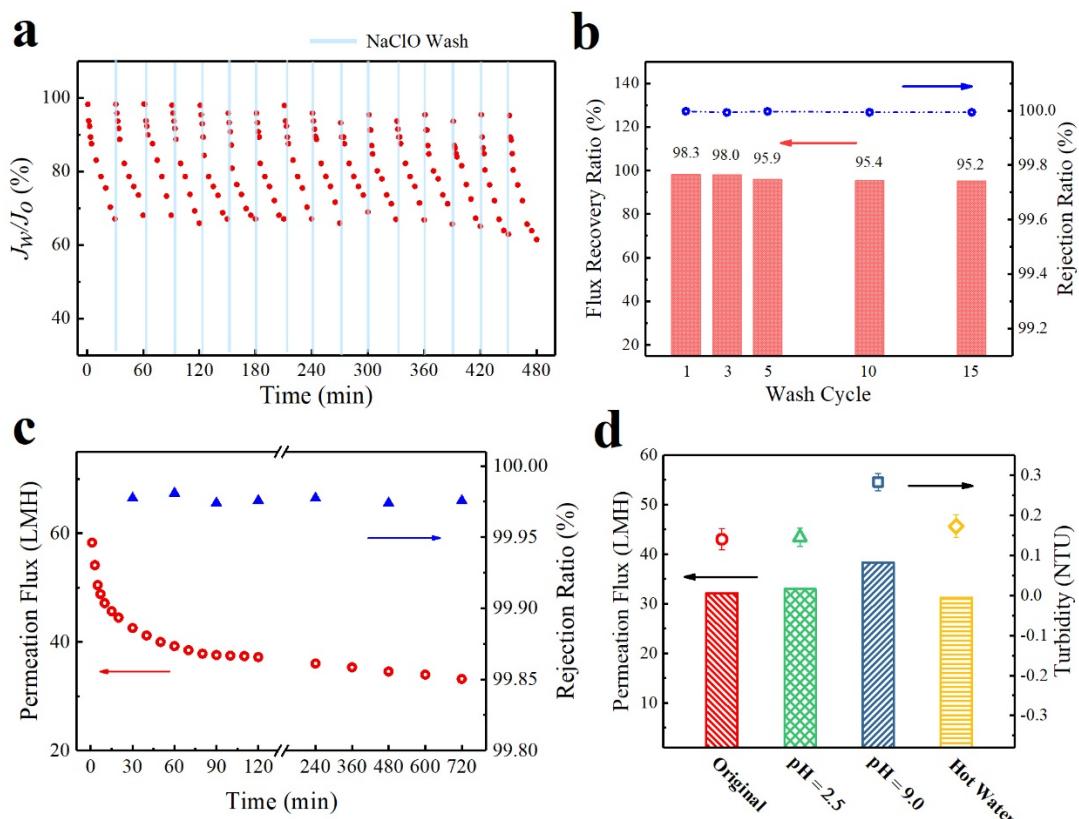
584 0.85), PVDF-V6, PVDF-A6, and PES-LX membranes. Bars are presented as mean \pm SD of n=3
585 individual tests.

586

587 **3.5. Reproducibility and Durability of Cellulose Membranes**

588

589 The unique features of the demonstrated cellulose membranes include good reproducibility
590 and durability for the successful ultrafiltration process. For example, the normalized permeation
591 flux (J_w/J_o) at the initial water flux (46.0 LMH) during 16 consecutive wastewater filtration runs
592 was monitored (Fig. 8a) to illustrate the reproducibility of the representative cellulose membrane
593 (CL 50-0.85). This membrane exhibited excellent flux recovery and easy to clean properties (e.g.,
594 using 30-second NaClO cleaning), as indicated by the high flux recovery ratio ($> 95\%$) and high
595 turbidity rejection ratio ($> 99.95\%$) during the 16-cycle test run (Fig. 8b).

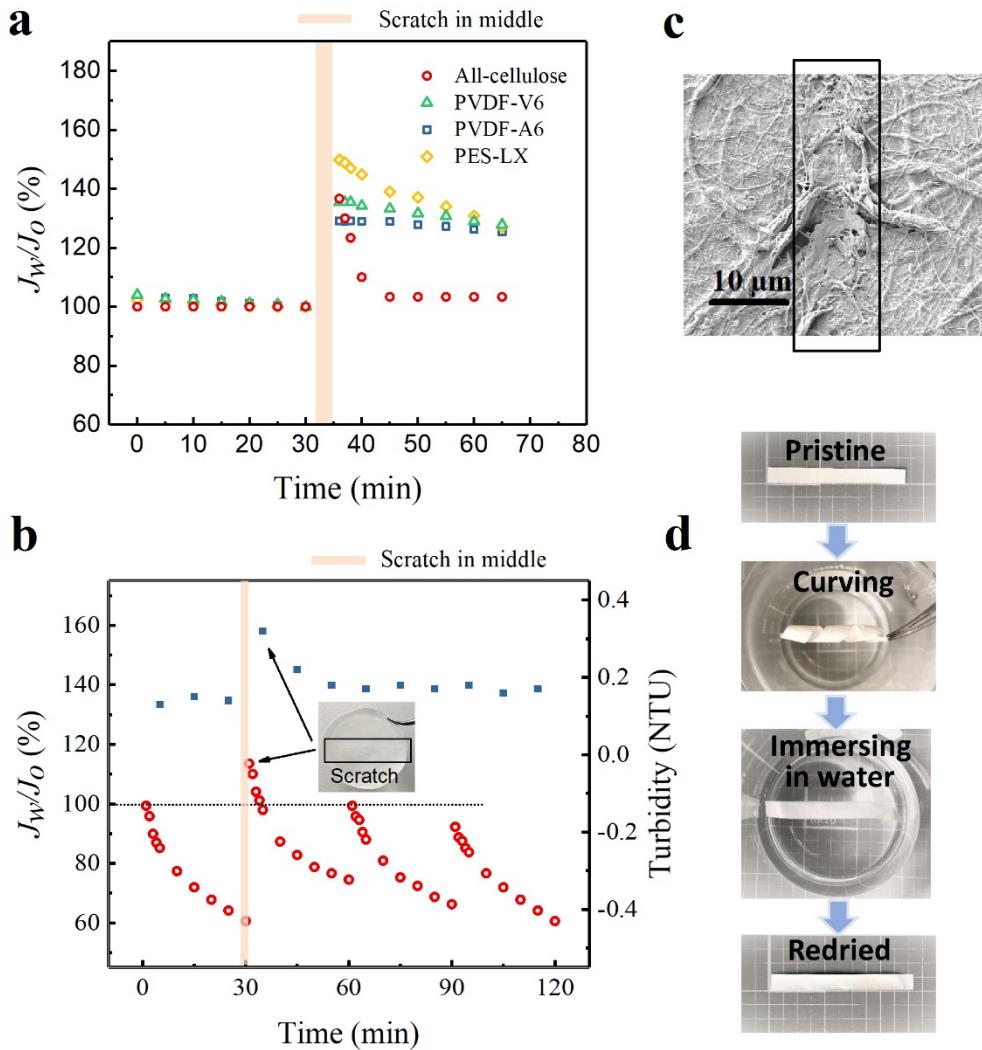

596

597 Furthermore, a 12-hour continuous wastewater filtration test was conducted to demonstrate
598 the long-time stability of this cellulose membrane using an immersed membrane filtration system
599 (schematically shown in Fig. S2, *Supporting Information*), which was commonly adopted in
600 industrial membrane bioreactor. As the flux-time data displayed in Fig. 8c, the permeate flux
601 declined from the initial value of 58.3 LMH to 37.2 LMH in the first two hours because of the
602 simultaneous occurrence of cake layer fouling and pore blocking fouling. After 12-hour filtration
603 under a constant pressure (0.5 bar), both high permeate flux (33 LMH) and good rejection ratio
604 ($>99.95\%$) were maintained. These results indicated good stability and durability of the

605 demonstrated cellulose membrane and its excellent filtration efficiency under a lengthy operation
 606 cycle.

607

608 To evaluate this membrane for practical applications, the durability of the cellulose
 609 membrane (CL 50-0.85) was further evaluated at two different pH values (2.5 and 9.0) and elevated
 610 temperature (60 °C) [69]. As illustrated in Fig. 8d, the permeation flux of the cellulose membranes
 611 treated with acid and warm water was similar to the original membrane. As for the membrane
 612 immersed in a pH = 9.0 buffer, the permeation flux increased slightly because the cellulose
 613 component could degrade slowly under alkaline conditions [70]. Regardless of the different
 614 treatment, the turbidity of all permeates maintained a low value (< 0.3 NTU), indicating that the
 615 cellulose membrane was relatively stable for use over a wide pH and temperature range.


616

617 **Fig. 8** Reproducibility and durability test of cellulose membrane. (a) Ratio of permeation water
618 flux (J_w) over initial water flux (J_o), (b) flux recovery ratio and turbidity rejection ratio over 16-
619 cycle wastewater runs of CL 50-0.85 membrane. (c) Long term wastewater filtration of CL 50-
620 0.85 membrane using the immersed membrane filtration system and the corresponding rejection
621 ratio in terms of the turbidity. (d) Durability test of the CL 50-0.85 membrane evaluated
622 regarding two critical pH values (immersed in pH = 2.5 and 9.0 buffer solutions for three days)
623 and temperature (immersed in 60 °C warm water for 7 days) resistance. Bars presented the
624 permeation flux data, and the symbols presented the turbidity data (mean \pm SD of n=3
625 independent tests).

626

627 In the scratch test, the permeability of cellulose (CL 50-0.85) and polymeric membranes
628 was evaluated prior to and immediately after the damage. After around 10- μ m wide blade scratch
629 was applied, the permeability of the cellulose membrane instantly increased to $135 \pm 5\%$ and then
630 returned to $102 \pm 3\%$ of the starting permeability after a 10-minute distilled water run. On the
631 other hand, the permeability of polymeric membranes surged after the scratch and could not drop
632 back to the original values within the testing time (Fig. 9a). Furthermore, the wastewater filtration
633 test of the scratched cellulose membrane exhibited the same trend observed in the distilled water
634 run (Fig. 9a and 9b). It was seen that after scratching, the permeate flux and turbidity of the
635 cellulose membrane increased immediately and then gradually returned to the starting value in
636 about 20 minutes during filtration. The SEM image of the healed scratch on the used cellulose
637 membrane verified its self-healing ability (Fig. 9c). The results indicated that cellulose nanofibers
638 were able to form a new layer to cover the damage on the membrane surface. Similar studies
639 indicating the self-healing ability of CNF-based hydrogels, such as the chitosan/CNF system or

640 nanocomposite/polymer system, have been reported previously [71]. The self-healing ability of
641 the CNF layer can be explained as follows. When the scratch is form, the high mobility of CNFs
642 will allow them to migrate towards the damage area and minimize the increased surface tension.
643 Upon contact, CNFs will aggregate in the wet state due to strong hydrophobic interactions forming
644 a new layer to hear the damage. The layer can be further stabilized by the formation of hydrogen
645 bonds between the abundant hydroxyl groups and carboxyl groups on CNFs [72]. Aside for the
646 above feature, cellulose membrane exhibited another unique feature, that is the superior flexibility
647 and ductility over polymeric membranes, which is seen in Fig. 9d. When immersed in water, the
648 twisted (deformed) cellulose membrane could quickly recover back to its original shape without
649 cracks or deformation. This ensures the practical usage of cellulose membranes when the
650 membrane needs to be warped, folded, or twisted during manufacturing or handling.

651

652 **Fig. 9** Self-healing property of all-cellulose membrane. The self-healing performance was
 653 indicated by how soon the membrane water flux can return to the original level after scratching
 654 membrane for 3cm in the middle using a 10-μm wide blade. (a) Scratch test of cellulose (CL 50-
 655 0.85) and polymeric membranes regarding the distilled water filtration. (b) Scratch test of
 656 cellulose (CL 50-0.85) regarding the wastewater filtration performance and permeate turbidity
 657 during cyclic operation with hydraulic cleaning. (c) SEM image of the self-healed cellulose
 658 membrane after the scratch test of distilled water filtration. (d) Shape recovery test of the

659 cellulose membrane by curving and subsequent water immersion. Result presented the mean
660 value of n=3 independent repeats.

661

662 **4. Conclusions**

663

664 A robust and nanostructured cellulose membrane system with high porosity (~ 80%) was
665 prepared by incorporating CNF into a lyocell microfibrous scaffold following by a crosslinking
666 reaction among nanofibers. In the multiple-run wastewater filtration test, the optimized cellulose
667 membrane exhibited high permeation flux ($127.6 \pm 21.8 \text{ L m}^{-2} \text{ h}^{-1} \text{ bar}^{-1}$), excellent separation
668 efficiency (> 99.9%), good flux recovery ratio (> 95%) and self-healing ability. Compared with
669 commercial polymeric membranes, such as PVDF and PES membranes, the cellulose membrane
670 showed superior filtration performance after NaClO and pure hydraulic cleaning as demonstrated
671 by the FTIR, contact angle, and zeta potential characterizations. The polymer membranes suffered
672 severe irreversible fouling during wastewater filtration. However, the reversible fouling seemed to
673 dominate the total fouling of cellulose membrane and was revealed by the fouling mechanism
674 study using the resistance-in-series model and three combined cake-filtration models. In addition,
675 the cellulose membranes showed excellent flexibility, pH resistance, stability in hot water, and
676 durability with good mechanical strength (the wet strength was 3.5 - 8.0 MPa). The easy to clean
677 characteristics of the cellulose membrane could be attributed to the negative charges and
678 hydrophilic membrane surface because of the presence of CNF. The sustainability, low cost, good
679 mechanical strength, and filtration performance of cellulose membranes make them promising
680 alternative for polymeric ultrafiltration membranes in wastewater treatments.

681

682 **CRediT Authorship Contribution Statement**

683

684 Mengying Yang: Conceptualization, Methodology, Data curation, Writing - original draft,
685 Sarah Lotfikatouli: Methodology, Review & editing. Yvonne Chen: Methodology, Visualization,
686 Validation. Tony Li: Methodology, Validation. Hongyang Ma: Writing - review & editing,
687 Validation. Xinwei Mao: Writing - review & editing, Validation. Benjamin S. Hsiao: Funding
688 acquisition, Writing - review & editing, Supervision, Validation.

689

690 **Acknowledgement**

691

692 We acknowledge the financial support from the Polymer Program of the Division of
693 Materials Research in the National Science Foundation (DMR-1808690). The authors would also
694 like to thank the Advanced Energy Research and Technology Center (AERTC) and Central
695 Microscopy Imaging Center (CMIC) at the Stony Brook University for the SEM and TEM
696 measurements.

697

698 **Reference**

699 [1] A. Gallego-Schmid, R.R.Z. Tarpani, Life cycle assessment of wastewater treatment in
700 developing countries: A review, *Water Res.*, 153 (2019) 63-79.

701 [2] L. Petta, S. De Gisi, P. Casella, R. Farina, M. Notarnicola, Evaluation of the treatability of a
702 winery distillery (vinasse) wastewater by UASB, anoxic-aerobic UF-MBR and chemical
703 precipitation/adsorption, *J Environ Manage*, 201 (2017) 177-189.

704 [3] H. Maleki, N. Husing, Current status, opportunities and challenges in catalytic and
705 photocatalytic applications of aerogels: Environmental protection aspects, *Appl Catal B-*
706 *Environ*, 221 (2018) 530-555.

707 [4] C. Shen, Y.Q. Zhao, W.X. Li, Y. Yang, R.B. Liu, D. Morgen, Global profile of heavy metals
708 and semimetals adsorption using drinking water treatment residual, *Chem Eng J*, 372 (2019)
709 1019-1027.

710 [5] E.O. Ezugbe, S. Rathilal, *Membrane Technologies in Wastewater Treatment: A Review*,
711 *Membranes-Basel*, 10 (2020).

712 [6] N.H. Ismail, W.N.W. Salleh, A.F. Ismail, H. Hasbullah, N. Yusof, F. Aziz, J. Jaafar,
713 *Hydrophilic polymer-based membrane for oily wastewater treatment: A review*, *Sep Purif*
714 *Technol*, 233 (2020).

715 [7] C.H. Koo, A.W. Mohammad, F. Suja', M.Z.M. Talib, *Review of the effect of selected*
716 *physicochemical factors on membrane fouling propensity based on fouling indices*,
717 *Desalination*, 287 (2012) 167-177.

718 [8] P. Krzeminski, L. Leverette, S. Malamis, E. Katsou, *Membrane bioreactors - A review on*
719 *recent developments in energy reduction, fouling control, novel configurations, LCA and*
720 *market prospects*, *J Membrane Sci*, 527 (2017) 207-227.

721 [9] C. Stone, F.M. Windsor, M. Munday, I. Durance, *Natural or synthetic - how global trends in*
722 *textile usage threaten freshwater environments*, *Sci Total Environ*, 718 (2020).

723 [10] Y.H. Xu, Q. He, C.H. Liu, X.L. Huangfu, *Are Micro- or Nanoplastics Leached from Drinking*
724 *Water Distribution Systems?*, *Environ Sci Technol*, 53 (2019) 9339-9340.

725 [11] M. Jonoobi, R. Oladi, Y. Davoudpour, K. Oksman, A. Dufresne, Y. Hamzeh, R. Davoodi,
726 Different preparation methods and properties of nanostructured cellulose from various natural
727 resources and residues: a review, *Cellulose*, 22 (2015) 935-969.

728 [12] Y. Huang, P. Yang, F. Yang, C. Chang, Self-supported nanoporous lysozyme/nanocellulose
729 membranes for multifunctional wastewater purification, *J Membrane Sci*, 635 (2021).

730 [13] K. Peng, Y. Huang, N. Peng, C. Chang, Antibacterial nanocellulose membranes coated with
731 silver nanoparticles for oil/water emulsions separation, *Carbohydr Polym*, 278 (2022) 118929.

732 [14] N. Mohammed, N. Grishkewich, K.C. Tam, Cellulose nanomaterials: promising sustainable
733 nanomaterials for application in water/wastewater treatment processes, *Environ Sci-Nano*, 5
734 (2018) 623-658.

735 [15] R.E. Abouzeid, R. Khiari, N. El-Wakil, A. Dufresne, Current State and New Trends in the
736 Use of Cellulose Nanomaterials for Wastewater Treatment, *Biomacromolecules*, 20 (2019)
737 573-597.

738 [16] K. Oksman, Y. Aitomaki, A.P. Mathew, G. Siqueira, Q. Zhou, S. Butylina, S. Tanpichai, X.J.
739 Zhou, S. Hooshmand, Review of the recent developments in cellulose nanocomposite
740 processing, *Compos Part a-Appl S*, 83 (2016) 2-18.

741 [17] P. Hadi, M.Y. Yang, H.Y. Ma, X.Y. Huang, H. Walker, B.S. Hsiao, Biofouling-resistant
742 nanocellulose layer in hierarchical polymeric membranes: Synthesis, characterization and
743 performance, *J Membrane Sci*, 579 (2019) 162-171.

744 [18] M.H. Yang, P. Yin, X. Yu, J. Huang, X. Ma, H. Walker, H. Hsiao, B.S., Antifouling
745 nanocellulose membranes: How subtle adjustment of surface charge lead to self-cleaning
746 property, *J Membrane Sci*, 618 (2021) 118739.

747 [19] S. Lotfikatouli, P. Hadi, M. Yang, H.W. Walker, B.S. Hsiao, C. Gobler, X. Mao, Enhanced
748 anti-fouling performance in Membrane Bioreactors using a novel cellulose nanofiber-coated
749 membrane, *Sep Purif Technol*, 275 (2021) 119145.

750 [20] D. Li, X.Y. Huang, Y.N. Huang, J. Yuan, D. Huang, G.J. Cheng, L.N. Zhang, C.Y. Chang,
751 Additive Printed All-Cellulose Membranes with Hierarchical Structure for Highly Efficient
752 Separation of Oil/Water Nanoemulsions, *Acs Appl Mater Inter*, 11 (2019) 44375-44382.

753 [21] C.H. Ao, J.Q. Zhao, Q.Y. Li, J. Zhang, B.X. Huang, Q.H. Wang, J.G. Gai, Z.M. Chen, W.
754 Zhang, C.H. Lu, Biodegradable all-cellulose composite membranes for simultaneous oil/water
755 separation and dye removal from water, *Carbohyd Polym*, 250 (2020).

756 [22] N.A. Awang, W.N.W. Salleh, A.F. Ismail, N. Yusof, F. Aziz, J. Jaafar, Adsorption Behavior
757 of Chromium(VI) onto Regenerated Cellulose Membrane, *Ind Eng Chem Res*, 58 (2019) 720-
758 728.

759 [23] L.A. Goetz, N. Naseri, S.S. Nair, Z. Karim, A.P. Mathew, All cellulose electrospun water
760 purification membranes nanotextured using cellulose nanocrystals, *Cellulose*, 25 (2018) 3011-
761 3023.

762 [24] L.L. Kong, D.L. Zhang, Z.Q. Shao, B.X. Han, Y.X. Lv, K.Z. Gao, X.Q. Peng, Superior effect
763 of TEMPO-oxidized cellulose nanofibrils (TOCNs) on the performance of cellulose triacetate
764 (CTA) ultrafiltration membrane, *Desalination*, 332 (2014) 117-125.

765 [25] A. Isogai, T. Saito, H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, *Nanoscale*, 3 (2011)
766 71-85.

767 [26] L.P. Thomas, B.M. Marino, R.N. Szupiany, M.N. Gallo, Characterisation of the suspended
768 particulate matter in a stratified estuarine environment employing complementary techniques,
769 *Cont Shelf Res*, 148 (2017) 37-43.

770 [27] J.L. Lv, G.Q. Zhang, H.M. Zhang, F.L. Yang, Graphene oxide-cellulose nanocrystal (GO-
771 CNC) composite functionalized PVDF membrane with improved antifouling performance in
772 MBR: Behavior and mechanism, *Chem Eng J*, 352 (2018) 765-773.

773 [28] S.L.D. Kenari, B. Barbeau, Understanding ultrafiltration fouling of ceramic and polymeric
774 membranes caused by oxidized iron and manganese in water treatment, *J Membrane Sci*, 516
775 (2016) 1-12.

776 [29] M. Sampath, A. Shukla, A.S. Rathore, Modeling of Filtration Processes-Microfiltration and
777 Depth Filtration for Harvest of a Therapeutic Protein Expressed in *Pichia pastoris* at Constant
778 Pressure, *Bioengineering (Basel)*, 1 (2014) 260-277.

779 [30] S.R. Sowmya, G.M. Madhu, A. Raizada, C.D. Madhusoodana, Studies on effective treatment
780 of waste water using submerged ceramic membrane bioreactor, *Mater Today-Proc*, 24 (2020)
781 1251-1262.

782 [31] G. Bolton, D. LaCasse, R. Kuriyel, Combined models of membrane fouling: Development
783 and application to microfiltration and ultrafiltration of biological fluids, *J Membrane Sci*, 277
784 (2006) 75-84.

785 [32] P.R. Naegeli, J.T. Clerc, Computer System for Structural Identification of Organic
786 Compounds from Spectroscopic Data, *Anal Chem*, 46 (1974) A739-A744.

787 [33] T. Obokata, A. Isogai, The mechanism of wet-strength development of cellulose sheets
788 prepared with polyamideamine-epichlorohydrin (PAE) resin, *Colloid Surface A*, 302 (2007)
789 525-531.

790 [34] W.S. Yang, H.Y. Bian, L. Jiao, W.B. Wu, Y.L. Deng, H.Q. Dai, High wet-strength, thermally
791 stable and transparent TEMPO-oxidized cellulose nanofibril film via cross-linking with poly-
792 amide epichlorohydrin resin, *Rsc Adv*, 7 (2017) 31567-31573.

793 [35] W. Zhang, Y. Zhang, C.H. Lu, Y.L. Deng, Aerogels from crosslinked cellulose nano/micro-
794 fibrils and their fast shape recovery property in water, *J Mater Chem*, 22 (2012) 11642-11650.

795 [36] A.J. Onyianta, M. Dorris, R.L. Williams, Aqueous morpholine pre-treatment in cellulose
796 nanofibril (CNF) production: comparison with carboxymethylation and TEMPO oxidisation
797 pre-treatment methods, *Cellulose*, 25 (2018) 1047-1064.

798 [37] F.F. Lu, H.Y. Yu, C.F. Yan, J.M. Yao, Polylactic acid nanocomposite films with spherical
799 nanocelluloses as efficient nucleation agents: effects on crystallization, mechanical and
800 thermal properties, *Rsc Adv*, 6 (2016) 46008-46018.

801 [38] I.A. Udoetok, L.D. Wilson, J.V. Headley, "Pillaring Effects" in *Cross-Linked Cellulose
802 Biopolymers: A Study of Structure and Properties*, *Int J Polym Sci*, 2018 (2018).

803 [39] A. Meftahi, R. Khajavi, A. Rashidi, M.K. Rahimi, A. Bahador, Preventing the collapse of 3D
804 bacterial cellulose network via citric acid, *J Nanostructure Chem*, 8 (2018) 311-320.

805 [40] V.S. Raghuvanshi, U.M. Garusinghe, W. Batchelor, G. Garnier, Polyamide-amine-
806 epichlorohydrin (PAE) induced TiO₂ nanoparticles assembly in cellulose network, *J Colloid
807 Interf Sci*, 575 (2020) 317-325.

808 [41] W. Li, S.F. Wang, W. Wang, C.R. Qin, M. Wu, Facile preparation of reactive hydrophobic
809 cellulose nanofibril film for reducing water vapor permeability (WVP) in packaging
810 applications, *Cellulose*, 26 (2019) 3271-3284.

811 [42] Y. Qing, R. Sabo, Y.Q. Wu, Z.Y. Cai, High-Performance Cellulose Nanofibril Composite
812 Films, *Bioresources*, 7 (2012) 3064-3075.

813 [43] S. Sharma, Y.L. Deng, Dual Mechanism of Dry Strength Improvement of Cellulose
814 Nanofibril Films by Polyamide-epichlorohydrin Resin Cross-Linking, *Ind Eng Chem Res*, 55
815 (2016) 11467-11474.

816 [44] P.T.Y. Beeran, V. Bobnar, S. Gorgieva, Y. Grohens, M. Finsgar, S. Thomas, V. Kokol,
817 Mechanically strong, flexible and thermally stable graphene oxide/nanocellulosic films with
818 enhanced dielectric properties (vol 6, pg 49138, 2016), Rsc Adv, 6 (2016) S7473-S7474.

819 [45] S. Ahola, M. Osterberg, J. Laine, Cellulose nanofibrils-adsorption with poly(amideamine)
820 epichlorohydrin studied by QCM-D and application as a paper strength additive, Cellulose, 15
821 (2008) 303-314.

822 [46] C.L. Lv, Y.L. Su, Y.Q. Wang, X.L. Ma, Q. Sun, Z.Y. Jiang, Enhanced permeation
823 performance of cellulose acetate ultrafiltration membrane by incorporation of Pluronic F127,
824 J Membrane Sci, 294 (2007) 68-74.

825 [47] M.C. Yang, T.Y. Liu, The permeation performance of polyacrylonitrile/polyvinylidene
826 fluoride blend membranes, J Membrane Sci, 226 (2003) 119-130.

827 [48] J.L. Lv, G.Q. Zhang, H.M. Zhang, F.L. Yang, Exploration of permeability and antifouling
828 performance on modified cellulose acetate ultrafiltration membrane with cellulose
829 nanocrystals, Carbohyd Polym, 174 (2017) 190-199.

830 [49] S.F. Anis, B.S. Lalia, R. Hashaikeh, Controlling swelling behavior of poly (vinyl) alcohol via
831 networked cellulose and its application as a reverse osmosis membrane, Desalination, 336
832 (2014) 138-145.

833 [50] E.M.V. Hoek, A.K. Ghosh, X.F. Huang, M. Liong, J.I. Zink, Physical-chemical properties,
834 separation performance, and fouling resistance of mixed-matrix ultrafiltration membranes,
835 Desalination, 283 (2011) 89-99.

836 [51] Z.H. Wang, H.R. Yu, J.F. Xia, F.F. Zhang, F. Li, Y.Z. Xia, Y.H. Li, Novel GO-blended PVDF
837 ultrafiltration membranes, Desalination, 299 (2012) 50-54.

838 [52] S.E. Keithley, S. Fakhreddine, K.A. Kinney, M.J. Kirisits, Effect of Treatment on the Quality
839 of Harvested Rainwater for Residential Systems, *J Am Water Works Ass*, 110 (2018) E1-E11.

840 [53] K. Li, S. Li, T.L. Huang, C.Z. Dong, J.W. Li, B. Zhao, S.J. Zhang, Chemical Cleaning of
841 Ultrafiltration Membrane Fouled by Humic Substances: Comparison between Hydrogen
842 Peroxide and Sodium Hypochlorite, *Int J Env Res Pub He*, 16 (2019).

843 [54] J.Q. Ding, S.L. Wang, P.C. Xie, Y.J. Zou, Y. Wan, Y.S. Chen, M.R. Wiesner, Chemical
844 cleaning of algae-fouled ultrafiltration (UF) membrane by sodium hypochlorite (NaClO):
845 Characterization of membrane and formation of halogenated by-products, *J Membrane Sci*,
846 598 (2020).

847 [55] Y.H. Shi, J.H. Huang, G.M. Zeng, Y.L. Gu, Y. Hu, B. Tang, J.X. Zhou, Y. Yang, L.X. Shi,
848 Evaluation of soluble microbial products (SMP) on membrane fouling in membrane
849 bioreactors (MBRs) at the fractional and overall level: a review, *Rev Environ Sci Bio*, 17 (2018)
850 71-85.

851 [56] X.W. Mao, P. Hadi, S. Lotfikatouli, B.J.S. Hsiao, H. Walker, Membrane bioreactors for
852 nitrogen removal from wastewater: A review., *J Environ Eng*, 146 (2020) 03120002.

853 [57] F. Mashayekhi, H. Hazrati, J. Shayegan, Fouling control mechanism by optimum ozone
854 addition in submerged membrane bioreactors treating synthetic wastewater, *J Environ Chem
855 Eng*, 6 (2018) 7294-7301.

856 [58] Y.F. Guan, C. Qian, W. Chen, B.C. Huang, Y.J. Wang, H.Q. Yu, Interaction between humic
857 acid and protein in membrane fouling process: A spectroscopic insight, *Water Res*, 145 (2018)
858 146-152.

859 [59] B. Zhang, S.L. Yu, Y.B. Zhu, Y. Shen, X. Gao, W.X. Shi, J.H. Tay, Efficiencies and
860 mechanisms of the chemical cleaning of fouled polytetrafluoroethylene (PTFE) membranes

861 during the microfiltration of alkali/surfactant/polymer flooding oilfield wastewater, Rsc Adv,
862 9 (2019) 36940-36950.

863 [60] J.X. Liu, B.Z. Dong, B.Q. Cao, D.S. Zhao, Z.H. Wang, Microfiltration process for surface
864 water treatment: irreversible fouling identification and chemical cleaning, Rsc Adv, 6 (2016)
865 114005-114013.

866 [61] J.H. Kweon, J.H. Jung, S.R. Lee, H.W. Hui, Y. Shin, Y.H. Choi, Effects of consecutive
867 chemical cleaning on membrane performance and surface properties of microfiltration,
868 Desalination, 286 (2012) 324-331.

869 [62] A. Al-Amoudi, P. Williams, S. Mandale, R.W. Lovitt, Cleaning results of new and fouled
870 nanofiltration membrane characterized by zeta potential and permeability, Sep Purif Technol,
871 54 (2007) 234-240.

872 [63] Y. Kakihana, L. Cheng, L.F. Fang, S.Y. Wang, S. Jeon, D. Saeki, S. Rajabzadeh, H.
873 Matsuyama, Preparation of positively charged PVDF membranes with improved antibacterial
874 activity by blending modification: Effect of change in membrane surface material properties,
875 Colloid Surface A, 533 (2017) 133-139.

876 [64] A. Subramani, X.F. Huang, E.M.V. Hoek, Direct observation of bacterial deposition onto
877 clean and organic-fouled polyamide membranes, J Colloid Interf Sci, 336 (2009) 13-20.

878 [65] A.W. Zularisam, A.F. Ismail, R. Salim, Behaviours of natural organic matter in membrane
879 filtration for surface water treatment - a review, Desalination, 194 (2006) 211-231.

880 [66] K. Li, S. Li, Q. Su, G. Wen, T.L. Huang, Effects of Hydrogen Peroxide and Sodium
881 Hypochlorite Aging on Properties and Performance of Polyethersulfone Ultrafiltration
882 Membrane, Int J Env Res Pub He, 16 (2019).

883 [67] A. Venault, W.Y. Huang, S.W. Hsiao, A. Chinnathambi, S.A. Alharbi, H. Chen, J. Zheng, Y.
884 Chang, Zwitterionic Modifications for Enhancing the Antifouling Properties of
885 Poly(vinylidene fluoride) Membranes, *Langmuir*, 32 (2016) 4113-4124.

886 [68] B. Huang, H.K. Gu, K. Xiao, F.S. Qu, H.R. Yu, C.H. Wei, Fouling Mechanisms Analysis via
887 Combined Fouling Models for Surface Water Ultrafiltration Process, *Membranes-Basel*, 10
888 (2020).

889 [69] H.Y. Ma, C. Burger, B.S. Hsiao, B. Chu, Fabrication and characterization of cellulose
890 nanofiber based thin-film nanofibrous composite membranes, *J Membrane Sci*, 454 (2014)
891 272-282.

892 [70] S.N. Molnes, K.G. Paso, S. Strand, K. Syverud, The effects of pH, time and temperature on
893 the stability and viscosity of cellulose nanocrystal (CNC) dispersions: implications for use in
894 enhanced oil recovery, *Cellulose*, 24 (2017) 4479-4491.

895 [71] C.Y. Shao, H.L. Chang, M. Wang, F. Xu, J. Yang, High-Strength, Tough, and Self-Healing
896 Nanocomposite Physical Hydrogels Based on the Synergistic Effects of Dynamic Hydrogen
897 Bond and Dual Coordination Bonds, *Acs Appl Mater Inter*, 9 (2017) 28305-28318.

898 [72] L.Y. Li, F.X. Lu, C. Wang, F.L. Zhang, W.H. Liang, S. Kuga, Z.C. Dong, Y. Zhao, Y. Huang,
899 M. Wu, Flexible double-cross-linked cellulose-based hydrogel and aerogel membrane for
900 supercapacitor separator, *J Mater Chem A*, 6 (2018) 24468-24478.

901

Supporting Information

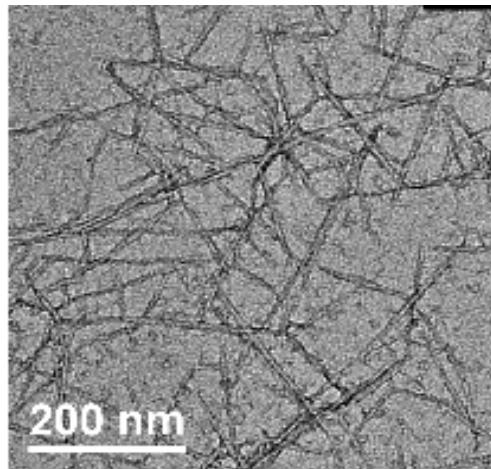
Nanostructured All-cellulose Membranes for Efficient Ultrafiltration of Wastewater

Mengying Yang¹, Sarah Lotfikatouli^{2,4}, Yvonne Chen¹, Tony Li¹,

Hongyang Ma^{1,3}, Xinwei Mao^{2,4} and Benjamin S. Hsiao^{1*}

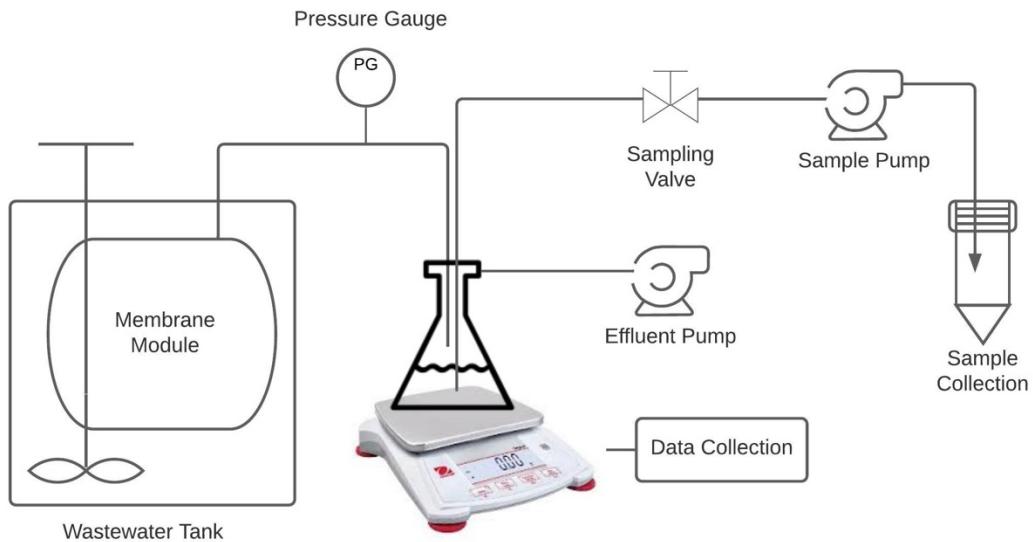
¹ Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA

² Department of Civil Engineering, Stony Brook, NY 11794, USA

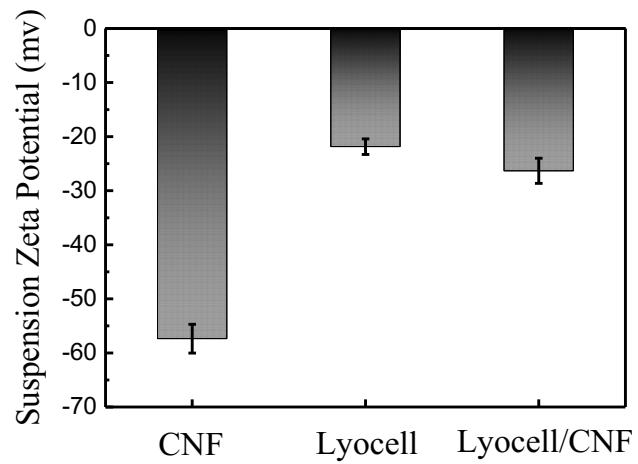

³ State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China

⁴ New York State Center for Clean Water Technology, Stony Brook, NY 11794

*Corresponding Author: Tel: +1(631)632-7793, Fax: +1(631)632-6518, E-mail:


Benjamin.Hsiao@stonybrook.edu

1. Morphology of CNF


Fig. S1 TEM image of CNF with a degree of oxidation of 1.60 mmol/g.

2. Immersed Membrane Filtration System

Fig. S2 Schematic diagram of the immersed membrane filtration system.

3. Zeta Potential of Lyocell, CNF, and Mixture Suspensions

Fig. S3 Zeta potential data of CNF (0.15 wt%), lyocell (0.5 wt%), and lyocell/CNF mixture suspensions (50-0.85) at pH = 7.

4. Parameters of All-cellulose and Commercial Ultrafiltration Membranes

Table S1 The fouling mechanism study using combined fouling models at constant pressure.

Model	Expression	Fitted parameters
Cake filtration-complete blockage (CFCBM)	$V = \frac{J_0}{K_b} \left(1 - \exp \left(\frac{-K_b}{K_c J_0^2} \left(\sqrt{1 + 2k_c J_0^2 t} - 1 \right) \right) \right)$	K_c, K_b
Cake filtration-intermediate blockage (CFIBM)	$V = \frac{1}{K_i} \ln \left(1 + \frac{K_i}{K_c J_0} \left(\sqrt{1 + 2K_c J_0^2 t} - 1 \right) \right)$ $V = \frac{2}{K_s} \left(\beta \cos \left(\frac{2\pi}{3} - \frac{1}{3} \arccos(\alpha) \right) + \frac{1}{3} \right)$	K_c, K_i
Cake filtration-standard blockage (CFSBM)	$\alpha = \frac{8}{27\beta^3} + \frac{4K_s}{3\beta^3 K_c J_0} - \frac{4K_s^2 t}{3\beta^3 K_c}$ $\beta = \sqrt{\frac{4}{9} + \frac{4K_s}{3K_c J_0} + \frac{2K_s^2 t}{3K_c}}$	K_c, K_s

Table S2 Parameters of all-cellulose and commercial ultrafiltration membranes.

Series	PVDF-V6	PVDF-A6	PES-LX	All-cellulose
Target Feed	Industrial/ Wastewater	Industrial	Industrial	Wastewater+
MWCO/ Pore size	500 kDa	500 kDa	300 kDa	50 nm
Polymer	Modified PVDF	Conventional PVDF	Conventional PES	Lyocell/CNF
Water Permeation Flux (LMH/psi)	18.6 ± 2.2	10.6 ± 1.3	7.1 ± 1.3	8.8 ± 1.5
Zeta Potential (mV) at pH=7	5.5 ± 0.3	-20.4 ± 0.7	-10.1 ± 0.8	-16.1 ± 0.6
Contact Angle (°)	63.3 ± 1.5	72.3 ± 1.8	55.0 ± 3.6	~ 0

Table S3 The fitted parameters of different membranes using combined fouling models.

Membrane	Model	R²	SSR	Fitted parameters
All-cellulose	CFCBM	0.9998	0.1214	$K_c=1.9355, K_b=0.7869$
	CFIBM	0.9862	12.935	$K_c=0.4011, K_i=-0.0662$
	CFSBM	0.8928	100.244	$K_c=0.1465, K_s=1.64E-8$
PVDF-V6	CFCBM	0.9994	0.5007	$K_c=2.3503, K_b=0.6233$
	CFIBM	0.9889	9.3449	$K_c=0.4723, K_i=-0.0736$
	CFSBM	0.8857	96.685	$K_c=0.1665, K_s=1.5423E-5$
PVDF-A6	CFCBM	0.9963	1.39	$K_c=2.9657, K_b=1.9399$
	CFIBM	0.9947	1.98	$K_c=0.6991, K_i=-0.0766$
	CFSBM	0.9375	23.60	$K_c=0.3140, K_s=6.218E-5$
PES-LX	CFCBM	0.9998	0.0441	$K_c=11.7761, K_b=0.4067$
	CFIBM	0.9847	3.0477	$K_c=2.2219, K_i=-0.1636$
	CFSBM	0.8674	26.350	$K_c=0.7410, K_s=9.4514E-5$