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ABSTRACT

Under consideration are multicomponent minimization problems in-
volving a separable nonsmooth convex function penalizing the com-
ponents individually, and nonsmooth convex coupling terms penal-
izing linear mixtures of the components. We investigate the appli-
cation of block-activated proximal algorithms for solving such prob-
lems, i.e., algorithms which, at each iteration, need to use only a
block of the underlying functions, as opposed to all of them as in
standard methods. For smooth coupling functions, several block-
activated algorithms exist and they are well understood. By con-
trast, in the fully nonsmooth case, few block-activated methods are
available and little effort has been devoted to assessing them. Our
goal is to shed more light on the implementation, the features, and
the behavior of these algorithms, compare their merits, and provide
machine learning and image recovery experiments illustrating their
performance.

Index Terms— Block-activated algorithm, image recovery, ma-
chine learning, nonsmooth convex minimization, proximal splitting.

1. INTRODUCTION

The goal of many signal processing and machine learning tasks is
to exploit the observed data and the prior knowledge to produce a
solution that represents information of interest. In this process of ex-
tracting information from data, structured convex optimization has
established itself as an effective modeling and algorithmic frame-
work; see, for instance, [3, 5, 8, 14, 19]. In state-of-the-art applica-
tions, the sought solution is often a tuple of vectors which reside in
different spaces [1, 2, 4, 6, 12, 16, 13, 17, 20]. The following mul-
ticomponent minimization formulation captures such problems. It
consists of a separable term penalizing the components individually,
and of coupling terms penalizing linear mixtures of the components.

Problem 1 Let (H;)1<i<m and (Gi)i1<rk<p be Euclidean spaces.
Foreveryi € {1,...,m}andevery k € {1,...,p}, let fi: H; —
|—00, +00] and gk : G — ] —00, +00] be proper lower semicontin-
uous convex functions, and let L ;: H; — Gi be a linear operator.
The objective is to

minimize
z1€EH1, - s @m €EHm

Z films) + Z gk <Z Lkﬂ%) (D
im1 k=1 im1

separable term kth coupling term

To solve Problem 1 reliably without adding restrictions (for in-
stance, smoothness or strong convexity of some functions involved
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in the model), we focus on flexible proximal algorithms that have the
following features:

@ Nondifferentiability: None of the functions fi,...,
fm, 91, ..., gp needs to be differentiable.

@ Splitting: The functions fi,..., fm, g1, .-
ear operators are activated separately.

, gp and the lin-

® Block activation: Only a block of the functions fi,...,
fms91,...,gp is activated at each iteration. This is in con-
trast with most splitting methods which require full activa-
tion, i.e., that all the functions be used at every iteration.

@ OQOperator norms: Bounds on the norms of the linear opera-
tors involved in Problem 1 are not assumed since they can be
hard to compute.

® Convergence guarantee: The algorithm produces a se-
quence which converges (possibly almost surely) to a solution
to Problem 1.

In view of features @ and @, the algorithms of interest should ac-
tivate the functions fi,..., fm, g1, ..., gp via their proximity oper-
ators (even if some functions happened to be smooth, proximal acti-
vation is often preferable [6, 10]). The motivation for @ is that prox-
imity operators of composite functions are typically not known ex-
plicitly. Feature ® is geared towards current large-scale problems. In
such scenarios, memory and computing power limitations make the
execution of standard proximal splitting algorithms, which require
activating all the functions at each iteration, inefficient or simply im-
possible. We must therefore turn our attention to algorithms which
employ only blocks of functions (f;):c1,, and (gx)kek,, at iteration
n. If the functions (g )1<r<p Were all smooth, one could use block-
activated versions of the forward-backward algorithm proposed in
[15, 25] and the references therein; in particular, when m = 1, meth-
ods such as those of [11, 18, 23, 26] would be pertinent. As noted in
[15, Remark 5.10(iv)], another candidate of interest could be the ran-
domly block-activated algorithm of [15, Section 5.2], which leads to
block-activated versions of several primal-dual methods (see [24] for
detailed developments and [7] for an inertial version when m = 1).
However, this approach violates @ as it imposes bounds on the prox-
imal scaling parameters which depend on the norms of the linear
operators. Finally, ® rules out methods that guarantee merely mini-
mizing sequences or ergodic convergence.

To the best of our knowledge, there are two primary methods
that fulfill ©-®:

* Algorithm A: The stochastic primal-dual Douglas—Rachford
algorithm of [15].

* Algorithm B: The deterministic primal-dual projective split-
ting algorithm of [9].

In the case of smooth coupling functions (gx)i<k<p, in (1), ex-
tensive numerical experience has been accumulated to understand
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the behavior of block-activated methods, especially in the case of
stochastic gradient methods. By contrast, to date, very few numeri-
cal experiments with the recent, fully nonsmooth Algorithms A and
B have been conducted and no comparison of their merits and per-
formance has been undertaken. Thus far, Algorithm A has been em-
ployed only in the context of machine learning (see also the variant
of A in [6] for partially smooth problems). On the other hand, Al-
gorithm B has been used in image recovery in [10], but only in full
activation mode, and in feature selection in [22], but with m = 1.

Contributions and novelty: This paper investigates for the
first time the application of block-activated methods in fully nons-
mooth multivariate minimization problems. It sheds more light on
the implementation, the features, and the numerical behavior of Al-
gorithms A and B, compares their merits, and provides experiments
illustrating their performance.

Outline: Algorithms A and B are presented in Section 2. In Sec-
tion 3, we analyze and compare their features, implementation, and
asymptotic properties. This investigation is complemented in Sec-
tion 4 by numerical experiments in the context of machine learning
and image recovery.

2. BLOCK-ACTIVATED ALGORITHMS FOR PROBLEM 1

The subdifferential, the conjugate, and the proximity operator of a
proper lower semicontinuous convex function f: H — ]—o00, +00]
are denoted by Of, f*, and prox, respectively. Let us consider the
setting of Problem 1 and letus set H = Hq1 X -+ X H, and G =
G1 X+ -xGp. A generic element in H is denoted by & = (i )1<i<m
and a generic element in G by y = (Yx)1<k<p-

As discussed in Section 1, two primary algorithms fulfill require-
ments O-®. Both operate in the product space H x G. The first one
employs random activation of the blocks. To present it, let us intro-

duce
m
.y E Lp,i$i>
i=1

L:H—G:x— (ZLl,ﬂi,--

= @)
V={(z,y) e HxG|y=Lx}
F:HxG>3 (xy) =300 filzi)+ 350 9r(ye)-
Then (1) is equivalent to
minimize F(x,y). 3)

(z,y)eV
The idea is then to apply the Douglas—Rachford algorithm
in block form to this problem [15]. To this end, we need
proxp and prox, = projy,. Note that proxp: (z,y)
((prox ;. i)1<i<m, (ProXy, yr)i<k<p). Now let & € H and
y € G, andsett = (Id + L*"L) '(z + L*y) and s =
(Id + LL*)"*(Lx — y). Then

projv(m,y):(t,Lt):(m—L*s,y—i-s), (4)
and we write it coordinate-wise as
projy (2,9) = (Q1(x, ), -, Quts(,y)). ®)
Thus, given v € ]0,+00[, z0 € H, and y, € G, the standard
Douglas—Rachford algorithm for (3) is
forn=0,1,...
An €]0,2]
forevery i € {1,...,m}
Tint1 = Qi(zn, ¥Y,)
Zin+1 = Zin
A5 (Prox ;. (22i g1 — Zin) — Tint1)

forevery k € {1,...,p}
Weynt1 = Qumak(Zn, Y,)
Yk,n+1 = Yk,n
+Xn (prox.,, (2wWk,nt1 = Ykn) — Whont1)-

The block-activated version of this algorithm is as follows.

Algorithm A ([15]) Lety € |0, +o0[, let § € ]0, 1], let &o and zo
be H-valued random variables (r.v.), let y, and wo be G-valued r.v.
Iterate
foryj=1,....,m+p
|compute @, as in (4)—(5)
forn=0,1,...
An € 16,2 — 0]
select randomly @ # I,, C {1,...,m}
and @ # K, C {1,...,p}
forevery i € I,
Tin+1 = Qi(znvyn)
Zi,n+1 = Zin
L +An (prOva% (2$i,n+1 — Ziyn) — xi’n,+1)
forevery i € {1,...,m} \ I,
(Tin415 Zint1) = (Tin, Zipn)
for every k € K,
W1 = Qmik(Zn, Y,)
Yk,n+1 = Yk,n
| +An (proxygk (2Wk,nt1 — Ykyn) — wk,n_‘_l)
forevery k € {1,...,p} \ K,
| (Went1, Y1) = (W Yeon)-

The second algorithm operates by projecting onto hyperplanes
which separate the current iterate from the set Z of Kuhn-Tucker
points of Problem 1, i.e., the points € # and v* € G such that

(i€ {L.omp) - Lidi €0R@E) o

This process is explained in Fig. 1.

Algorithm B ([9]) Set Iy = {1,...,m} and Ko = {1,...,p},
and let 6 € ]0,1[. For every ¢« € Iy and every k € Ko, let
{vs, pr} C]0,4+00[, zi,0 € Hi, and Vi 0 € Gr. Iterate

forn=0,1,...
An € [6,2 = 6]
ifn>0
L select @ # I, C Ip and @ # K,, C Ko
forevery i € I,
m;}:n = Tin — Vi Z£=1 Z,ivz,n
Qin = proxwfia:f,n
ar,n = 77,71 (mr,n - aiv")
forevery i € Ip \ I,
L (aiﬂh a:,n) = (ai,"flva:‘,nfl)
forevery k € K,
yz,n = M’Cv;,n + Z:nzl Lk,ixi,n
by,n = prox
*

k,n — Ml:l(yl)::,n - bk,n)
L tk,n = bk:,n - 221 Lk:,iai,n
forevery k € Ko \ K,
(bkﬂu ;;,n) = (bk,"*hbz,nfl)
| ten = b — > oie ) LiiGin
forevery ¢ € I
L tin =ain+ 2;2:1 %,i0%n

m
Tn = Zi:1 ”t:,n” + Zi:] Htkm

o
prgr Ik

| 2
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Fig. 1. Let & be the set of solutions to Problem 1 and let 2 be the
set of solutions to its dual. Then the Kuhn—Tucker set Z is a subset
of & x 2. At iteration n, the proximity operators of blocks of
functions (f;)icr,, and (gr ) ke x,, are used to construct a hyperplane
H,, separating the current primal-dual iterate (x,,,v;,) from Z, and
the update (@r1,v;, 1) is obtained as its projection onto H,, [9].

ifr, >0

Tn Zm (<mZ n | tz n>
+E (<tk’ﬂ|vkn>_

if 7, >Oand71'n >0

0 = MnTon/Tn

for every 7 € I

(ain | a7,.)
<bk,n ‘ b;;n>)

L Tin+1 = Tin — e’nt;n
forevery k € Ko

* — * 9 t
|_ Uk,n+1 7’Uk:,n — Unlk,n

else

for every 7 € Iy
L Tin+1 = Ti,n
forevery k € Ko

* *
L Uk,n+1 = Uk,n'

3. ASYMPTOTIC BEHAVIOR AND COMPARISONS

Let us first state the convergence results available for Algorithms A
and B. We make the standing assumption that Z # & (see (6)),
which implies that the solution set & of Problem [ is nonempty.

Theorem 2 ([15]) In Algorithm A, define, for every n € N and ev-
eryje{l,...om+phejn=11ij€,orj—me Ky,
€j,n = 0, otherwise. Suppose that the following hold:

(i) The rv. (€n)nen are identically distributed.

(ii) Foreveryn €N, the rv. €, and (2,9 ;)o<j<n are mutually
independent.

(i) (V5 € {1,...

Then (xy)nen converges almost surely to a P-valued r.v.

,Mm +p}) PrOb[Ej,() = 1] > 0.

Theorem 3 ([9]) In Algorithm B, suppose that there exists T € N
such that (Yn € N) U"+TI {1,...,m} and U"*T K; =
{1,...,p}. Then (:Bn)neN converges to a point in .

Let us compare Algorithms A and B.

a/ Auxiliary tasks: A requires the construction and storage of
the operators (Q;)1<j<m+p Of (4)=(5), which can be quite

demanding as they involve inversion of a linear operator act-
ing on the product space H or G (see (5)). By contrast, B
does not require such tasks.

b/ Proximity operators: Both algorithms are block-activated:
only the blocks of functions (f;)icr, and (gx)rek,, need to
be activated at iteration n. Each selected function is activated
via its proximity operator.

¢/ Linear operators: In A, the operators (Q;)ics, and
(Qm+k)kek, selected at iteration n are evaluated at
(Z],'IL, ey Zmunsy Ylny - 7yp,n) S H X g On the other
hand, B activates the local operators L;: H; — Gi and
Ly ;: Gr. — Hi once or twice, depending on whether they
are selected. Thus, if we set N = dimH and M = dim G
and if the linear operators are implemented in matrix form,
then the corresponding load per iteration in full activation
mode of A is O((M + N)?) versus O(M N) in B.

d/ Activation scheme: Both algorithms have the ability to acti-
vate several functions simultaneously, and they are therefore
naturally implementable on parallel architectures. As A se-
lects the blocks randomly, the user does not have complete
control of the computational load of an iteration, whereas the
load of B is more predictable because of its deterministic ac-
tivation scheme.

e/ Parameters: A single scale parameter -y is used in A, while
B allows the proximity operators to have their own scale pa-
rameters (Y1, ..., Ym, f1,-- -, p). This gives B more flexi-
bility, but more effort may be needed a priori to find efficient
parameters. Further, in both algorithms, there is no restriction
on the parameter values.

f/ Convergence: B, which activates the blocks deterministi-
cally, guarantees sure convergence under the mild repetitive
activation condition in Theorem 3, while A, which activates
the blocks randomly, guarantees only almost sure conver-
gence.

g/ Other features: Although this point is omitted for brevity,
unlike A, B can be executed asynchronously with iteration-
dependent scale parameters [9].

4. NUMERICAL EXPERIMENTS

We present two experiments which are reflective of our numerical
investigations in solving various problems using Algorithms A and
B. The main objective is to illustrate the block processing ability of
the algorithms (when implemented with full activation, i.e., I, = Io
and K,, = K, Algorithm B was already shown in [10] to be quite
competitive compared to existing methods).

4.1. Experiment 1: Group-Sparse Binary Classification

We revisit the classification problem of [12], which is based on
the latent group lasso formulation in machine learning [21]. Let
{G1,...,Gn} be a covering of {1,...,d} and define X =
{(361, -y Tm) | @i € RY, support(z;) C Gi}. The sought vector
isy=7>_"", % where (Z1,...,Tm) solves

m1n1mlze Z ||zill2 + ng (Z zi | Uk>>7 @)

i=1

with u, € R? and gr: R — R: & — 10max{0,1 — Br&}, where
Br = wi sign({F | ux)) is the kth measurement of the true vector
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Fig. 2. Normalized error 201log,,(||€n — oo ||/||0 — T ||) (dB),
averaged over 20 runs, versus epoch count in Experiment 1. The
variations around the averages were not significant. The computa-

tional load per epoch for both algorithms is comparable.

7 € R% (d = 10000) and wy, € {—1,1} induces 25% classifica-
tion error. There are p = 1000 measurements and the goal is to
reconstruct the group-sparse vector . There are m = 1429 groups.

Forevery i € {1,...,m — 1}, each G; has 10 consecutive integers
and an overlap with G;41 of length 3. We obtain an instance of (1),
where H; = ]Rlo, fi= || . ||2, and Ly,; = < | uk|G) The aux-

iliary tasks for Algorithm A (see a/) are negligible [12]. For each
a € {0.1,0.4,0.7,1.0}, at iteration n € N, I,, has [am] elements
and the proximity operators of the scalar functions (g )1<k<p are all
used, ie., K, = {1,...,p}. We display in Fig. 2 the normalized
error versus the epoch, that is, the cumulative number of activated
blocks in {1, ..., m} divided by m.

Fig. 3. Experiment 2: (a) Original Z. (b) Observation b. (c) Observa-
tion c. (d) Recovery (all recoveries were visually indistinguishable).
4.2. Experiment 2: Image Recovery

We revisit the image interpolation problem of [10, Section 4.3]. The
objective is to recover the image T € C = [0, 255]" (N = 962) of

Fig. 3(a), given a noisy masked observation b = MZ + w; € RY
and a noisy blurred observation ¢ = HZ 4+ wy € RY. Here, M
masks all but ¢ = 39 rows (z("*)); <<, of an image x, and H is
a nonstationary blurring operator, while w; and ws yield signal-to-
noise ratios of 28.5 dB and 27.8 dB, respectively. We split [{ into
s = 384 subblocks: for every k € {1,...,s}, H, € R*>*¥ and
the corresponding block of c is denoted ci. The goal is to

q s
|1,2+102 ||x(rk>—b(r"')|‘2+5z HHk:c—Cng,

k=1 k=1
®)
where D: RY — RY x RY models finite differences and, given
vectors y1 = (11,5 )1<5<n and y2 = (12,5)1<5<n [[(y1,92) |2 =
Zj'v=1 [l(n1,5,m2,5)]|2. Thus, (8) is an instance of Problem 1, where
m=1p=gq+s+ 1 foreveryk € {1,...,q¢}, Li.: RY —
RYN: 2 2% and gt gy — 10|y — b*)||2; for every k €
{a+1,...,¢+ s}, Ley = Hi—g, gk = 5||- — cxl3, and g, =
I-lli,2s Lpyr = D; firx — 0ifz € C; 40 if z ¢ C. At
iteration n, K, has [ap]| elements, where a € {0.1,0.4,0.7,1.0}.
The results are shown in Figs. 3—4, where the epoch is the cumulative
number of activated blocks in {1, ..., p} divided by p.

minimize || Dz
zeC

0

—— Alg. A-1.0
—— Alg. A-0.7

Alg. A-0.4
—— Alg. A-0.1

—10 FAY

—20

=30

L L L
140 145 150 155 160 165 170 175 180 185 190

—— Alg. B-1.0
—— Alg. B-0.7

Alg. B-0.4
—— Alg. B-0.1

Fig. 4. Normalized error 20log,,(||zrn — ||/ ||Zo — Z||) (dB)
versus epoch count in Experiment 2. Top: Algorithm A. The hor-
izontal axis starts at 140 epochs to account for the auxiliary tasks
(see a/). Bottom: Algorithm B. The computational load per epoch
for Algorithm B was about twice that of Algorithm A.

4.3. Discussion

Our first finding is that, for both Algorithms A and B, even when full
activation is computationally possible, it may not be the best strategy
(see Figs. 2 and 4). Second, a/~g/ and our experiments suggest that
B is preferable to A. Let us add that, in general, A does not scale
as well as B. For instance, in Experiment 2, if the image size scales
up, B can still operate since it involves only individual applications
of the local Ly, ; operators, while A becomes unmanageable because
of the size of the (); operators (see a/ and [6]).
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