


curacy of legged robots, especially when motion becomes

highly dynamic. In the bounding gaits tested, this method’s

error is less than 35% of the median trajectory error of the

best state-of-the-art method tested. We conclude our paper

by noting future directions for using periodicity to improve

the performance of SLAM algorithms.

II. BACKGROUND/RELATED WORK

Visual and visual-inertial SLAM are well studied fields

with a wide variety of approaches, many of which are

discussed in [1]. This section highlights the most relevant

publications including systems used for benchmarking, alter-

native approaches, and inspiration for the methods presented

in this paper.

A. State-of-the-Art General Use SLAM Systems

This section provides a brief description of the state-of-

the-art SLAM systems used as comparison points for the

methods presented within this paper. Only indirect methods

are considered because the large frame to frame displace-

ments present on legged robots may break the underlying

assumptions of direct methods, which use local image in-

tensity gradients to align subsequent images [5]. Although

the systems mentioned in this section perform well in less

dynamic scenarios, they fail to provide accurate estimates of

robot pose when camera viewpoint changes become rapid.

1) ORB-SLAM2: ORB-SLAM2 is an optimization-based,

visual-only SLAM system that uses data association over

multiple time scales through local tracking and longer term

loop closure and bundle adjustment through the use of

keyframes [6]. This use of multiple timescales is one of the

main features of ORB-SLAM2. However, when there are

many difficult to estimate frames in a row, the system enters

a lost state before being able to take advantage of multiple

time scales of estimation.

2) VINS-Fusion: VINS-Fusion is an optimization-based

visual-inertial SLAM system with a large focus placed on

the integration of inertial measurements into the factor graph

[7,8]. The addition of inertial information helps VINS-

Fusion to outperform ORB-SLAM2 in moderately dynamic

scenarios. However, at the highest levels of dynamic motion

discussed in this work, the failure of VINS-Fusion’s feature

tracking module leads to inaccurate estimates of robot pose.

3) MSCKF VIO: Multi-State Constraint Kalman Filter

(MSCKF VIO) is a filtering-based method that uses visual-

inertial data in an extended Kalman filter rather than a

factor graph optimization to estimate the state of the robot

[9]. Unlike ORB-SLAM2 and VINS-Fusion, MSCKF does

not maintain a long-term map of its surroundings as it is

only performing odometry. However, because of its distinct

filtering-based back-end, we include it as a comparison point.

B. Leg Odometry Based Methods

Recently, there has been a lot of interesting work on im-

proving the quality of SLAM performance on legged robotic

systems. In works such as [10–12], an additional factor

is added to the factor graph optimization that represents

the estimated motion from the forward kinematics of the

system over the time period. While there have been many

impressive results from these methods, they are presented

on less dynamic gaits such as walks and slower trots with

more careful leg placement. In gaits such as bounding, a

large amount of camera pitch is expected, which would

decrease the utility of visual odometry factors, which these

systems are still reliant on. While in a mature system, leg

odometry factors provide useful additional constraints, the

visual constraints of the system must also be improved to

achieve reliable performance in the most dynamic scenarios.

C. Multi-Agent SLAM

The main inspiration for this Periodic SLAM algorithm is

cooperative mapping [13]. In that work, the constraints from

visual SLAM sessions running on multiple different robots

are simultaneously optimized. To address the challenge of

obtaining a unified estimate from all of the sessions, “en-

counters” between robots are used to constrain the multiple

SLAM sessions into one set of world coordinates. Each

encounter, determined when more than one robot observes a

similar set of visual features, is formulated as a relative pose

constraint between the different robots.

In this work, we treat different portions of a legged

robot’s gait cycle as individual visual SLAM sessions. Unlike

[13], our approach constrains each visual SLAM session to

one another using IMU measurements since each session is

running on a single robot.

III. PERIODIC SLAM

This section discusses details behind performing periodic

data association and the relevant mathematics.

A. Periodic Feature Tracking

Typically in visual odometry or visual SLAM systems,

short-term data association happens between sequential cam-

era frames. While tracking features across sequential camera

frames works well on slow-moving robots, on dynamically

locomoting legged robots this kind of data association often

fails. When there is known periodicity in the viewpoint of a

robot, it is beneficial to track features periodically at similar

phases of the robot’s gait cycle.

To perform periodic feature tracking, this method relies

on being able to consistently extract and track features from

images collected during an interval in which the phase of the

robot’s gait cycle is similar. Thus, this method makes two key

assumptions about the robotic platform and its environment:

1) Periodic tracking has a global clock indicating the

phase of the robot’s gait.

2) Images taken at similar gait phases contain mutually

visible features.

These assumptions have a few consequences. The first

assumption limits the present application of this algorithm

to scenarios in which the periodic motion of the robot is

consistent with a structure that is known ahead of time. The

second assumption requires that the robot maintains periodic





C. Factor Graph Optimization

This section explains the mathematics behind each factor

in the periodic factor graph shown in Fig. 2. To represent

the state of the robot and each visual landmark, there are

two types of variable nodes: si and lj . Each robot state, si,

represents the pose and velocity of the robot at a particular

time. Each visual landmark state lj represents the position

of a unique point in the robot’s map.

It is assumed that each of the factors is corrupted with

zero-mean, additive Gaussian noise. Given this assumption,

each Gaussian factor can be written in a form,

φ ∝ exp(−
1

2
‖F (si, lj , zk)‖

2

Σ
) (3)

where F can be thought of as a constraint or cost function

which is dependent on the robot and landmark states as well

as a sensor measurement zk using the squared Mahalanobis

distance ‖ · ‖2Σ for weighting based on the measurement

covariance Σ.

1) The Prior Factor: The prior factor is the simplest

factor in the full periodic factor graph shown in Fig. 2. While

all other factors are useful in estimating the robot’s relative

motion, the prior factor grounds the estimated state of the

robot to a global reference frame. Given a prior measurement

of the initial location of the robot, zp, with covariance Σp, a

Gaussian prior factor on the initial robot state is defined as:

φPrior ∝ exp(−
1

2

∥

∥(hPrior(s1)− zp)
∥

∥

2

Σp)

where hPrior is trivially the identity function

(4)

2) The Visual Factor: Each visual factor in Fig. 2 rep-

resents a cost between its connected landmark and robot

nodes that is dependent on a visual measurement, zvk . Visual

measurements are periodically tracked stereo features from

the front-end of SLAM with the form zvk = [uL
k , u

R
k , vk].

Here, uL
k and uR

k are the x coordinates of the tracked feature

in the left and right stereo images and vk is the y coordinate

of the tracked feature in both images.

To calculate the cost for a particular visual measurement,

the visual factor transforms a three-dimensional landmark

into an estimated stereo feature, ẑvk , at a corresponding robot

state. The visual measurement function, hV isual, performs

this transformation in two steps: coordinate frame transfor-

mation (g) and projection (π):

hV isual(si, lj) = π(g(si, lj)) = ẑvk (5)

After transforming the 3D landmark lj into a stereo

feature point, the re-projection error is calculated for a visual

measurement with covariance Σv as follows:

φV isual ∝ exp(−
1

2

∥

∥hV isual(si, lj)− zvk
∥

∥

2

Σv ) (6)

3) The IMU Factor: Each IMU factor uses measurements

from the two sensors that make up the IMU: the gyroscope

and the accelerometer. Using these measurements, it is

possible to describe the dynamics of the robot’s state si
between two sequential time instances. This process can be

summarized with a dynamics function hIMU which predicts

the next robot state given a sequence of IMU measurements.

ŝi+1 = hIMU (si, z
IMU
k ) (7)

Using this IMU process function, each IMU factor can be

written as an error between the predicted and estimated next

state of the robot:

φIMU ∝ exp(−
1

2

∥

∥si+1 − hIMU (si, z
IMU
k )

∥

∥

2

ΣIMU ) (8)

To avoid adding states to the graph at a high rate, IMU

preintegration [18,19] is used.

4) MAP Estimation and Robust Cost Function: After

defining the form of each of the factors in the periodic

factor graph, nonlinear optimization is performed to obtain

a unified SLAM solution. Moreover, each of the factors can

be plugged into (2) to arrive at the following minimization:

SMAP , LMAP = argmax
s,l

φPrior

N
∏

n=0

φV isual
n

M
∏

m=0

φIMU
m

= argmin
s,l

∥

∥(hPrior(s1)− zp)
∥

∥

2

Σp

+
N
∑

n=0

∥

∥hV isual(si, lj)− zvk
∥

∥

2

Σv

+

M
∑

m=0

∥

∥(si+1 − hIMU (si, z
IMU
k ))

∥

∥

2

ΣIMU

(9)

The general approach to solve this is to first use a Taylor

series expansion to linearize the optimization objective, and

then iteratively solve the linearized equation using Gauss-

Newton or Levenberg-Marquardt [20] methods. Our im-

plementation relies on the iSAM2 algorithm to perform

incremental SLAM more efficiently [21].

In the standard L2 cost objective, all measurements of

a specific type are modeled with the same uncertainty.

In practice, we empirically tuned the covariance value of

each factor. However, without explicitly pruning erroneous

measurements, this method is particularly sensitive to these

hand-tuned values. To combat this issue, a robust error model

is incorporated into the optimization. While many different

robust error models exist [22], the Geman-McClure cost

function (ρ) is chosen because of its particularly high bias

against large outliers:

ρ(r) =
r2

2

1 + r2
(10)

IV. TESTING ALGORITHMIC PERFORMANCE

A. Simulation

To evaluate the performance of the Periodic SLAM sys-

tem, we first conducted experiments in a simple hallway

environment made in Gazebo. Lines of different colors are

drawn onto the walls of the simulated hallway to ensure an

abundance of visual features is available. Rather than using

a legged robot to collect data in the simulated environment,
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