


(forward pass). One advantage of iLQR, like most shooting

methods, is that it can be stopped prematurely to produce a

feasible trajectory [11].

However, traditional iLQR is defined only for smooth

systems. Here, we extend iLQR to hybrid systems by:

1) Allowing for varying mode sequences on the forward

pass by using event detection to dictate when a transi-

tion occurs and enforcing the appropriate dynamics in

each mode, Sec. III-B.

2) Applying the reset map on the forward pass and prop-

agating the value function through reset maps in the

backwards pass by using a saltation matrix, Sec. III-C.

3) Using reference extensions when there is a mode

mismatch to get a valid control input in each mode,

Sec. III-D.

In previous hybrid system DDP/iLQR work, [4] took an

important first step by extending the approach from [16]

to create an “impact aware” iLQR algorithm which utilizes

a prespecified hybrid mode sequence to allow for different

dynamics and uses the Jacobian of the reset map to approx-

imate the value function through a hybrid transition. Con-

strained dynamics and mode sequence are enforced through

an Augmented Lagrangian method in an outer layer in their

algorithm. We instead use the saltation matrix (Def. 2), [17–

20], to propagate the value function in the backwards pass.

This change makes a significant difference in solution quality

and convergence, as we show in Sec. V. Furthermore, to

allow use on a more general class of hybrid dynamical

systems (not just rigid bodies with contact) without pre-

specifying the mode sequence, the switching constraints are

enforced as part of the dynamics on the forward pass – if the

current timestep reaches a hybrid event, the solution jumps

to the next hybrid mode using the reset map. These changes

enable the algorithm presented here to be run as a standalone

algorithm with improved solution quality and convergence

properties.

II. PROBLEM FORMULATION

There are many different formulations of hybrid dynamical

systems, with similar but subtly different properties, e.g. [1–

3]. For concreteness, in this paper we restrict our attention

to the class of systems as given in [21, Def. 2], with the

addition of control inputs for each smooth vector field. We

elect this class as it includes mechanical systems subject to

unilateral and bilateral holonomic constraints, which are of

essential interest for robotics.

Definition 1: A Cr hybrid dynamical system, for con-

tinuity class r ∈ N>0 ∪ {∞, ω}, is a tuple H :=
(J , Γ,D,F ,G,R) where the parts are defined as:

1) J := {I, J, ...,K} ⊂ N is the finite set of discrete

modes.

2) Γ ⊂ J ×J is the set of discrete transitions forming

a directed graph structure over J .

3) D := ∐I∈J DI is the collection of domains where

DI is a Cr manifold with corners [22].

4) F := ∐I∈JFI is a collection of Cr time-varying

vector fields with control inputs, FI : R×DI ×UI →

T DI , where UI is the space of admissible control

inputs in mode I .

5) G := ∐(I,J)∈Γ G(I,J)(t) is the collection of guards,

where G(I,J)(t) ⊂ DI × UI for each (I, J) ∈ Γ
is defined as a sublevel set of a Cr function, i.e.

G(I,J)(t) = {(x, u) ∈ DI × UI |g(I,J)(t, x, u) ≤ 0}.

6) R : R × G → D is a Cr map called the reset that

restricts as R(I,J) := R|G(I,J)(t)
: G(I,J)(t) → DJ for

each (I, J) ∈ Γ .

An execution of such a hybrid system [21, Def. 4] begins

with an initial condition x0 ∈ DI and input uI(t, x) and

adheres to the dynamics FI on DI . If the solution reaches

guard G(I,J), the reset map R(I,J) is applied to advance

the state to domain DJ and activates controller uJ(t, x). An

execution is defined over a hybrid time domain [21, Def. 3],

a disjoint union of intervals ∐j∈N [tj , t̄j ]. The dynamics of

hybrid systems in this class can exhibit complex behavior,

including sliding [23], branching [2], and Zeno [24]. Since

we make essential use of local linearization theory, we make

several assumptions to eliminate these pathologies:

• Assume isolated transition surfaces with transverse [2,

25] intersections.

• Assume that there are no Zeno executions.

• Assume that all vector fields FI are fully controllable.

Our essential tool to linearize the dynamics of a hybrid

system around a switching event is the saltation matrix

[17–20], which is the necessary update for the variational

equation when a hybrid transition occurs.

Definition 2 ( [20, Prop. 2]): The saltation matrix,

Ξ := DxR+
(FJ −DxRFI −DtR)Dxg

Dtg +DxgFI

(1)

where

Ξ := Ξ(I,J)(t̄j , x(t̄j), u(t̄j)), g := g(I,J)(t̄j , x(t̄j), u(t̄j)),

R := R(I,J)(t̄j , x(t̄j), u(t̄j)), FI := FI(t̄j , x(t̄j), u(t̄j)),

FJ := FJ(tj+1, R(I,J)(t̄j , x(t̄j), u(tj+1))

is the first order approximation of variations at hybrid

transitions from mode I to J and maps perturbations to first

order from pre-transition δx(t̄i) to post-transition δx(ti+1)
during the jth transition in the following way:

δx(tj+1) = Ξ(I,J)

(

t̄j , x(t̄j)
)

δx(t̄j) + h.o.t. (2)

where h.o.t. represents higher order terms.

Our class of systems are those whose executions admit

linearizations. When a trajectory is away from the hybrid

transition, the linearization around a trajectory (x(t), u(t))
is exactly the conventional variational equation d

dt
δx =

DxFI((x(t), u(t))δx + DuFI((x(t), u(t))δu, a linear time-

varying ODE. At times t̄j where the trajectory x(t) un-

dergoes a discrete transition and is thus discontinuous, the

variational equation is updated discontinuously with the

saltation matrix. For a detailed description of the saltation

matrix and its role in linearization, see [17, Chp. 7].



III. DERIVATION/IMPLEMENTATION

This section introduces an abridged derivation of iLQR

[13] following [14], proposes the changes to make iLQR

work on hybrid systems, and discusses several important key

features of the new algorithm.

A. Smooth iLQR background

Consider a nonlinear dynamical system with states x ∈
R

n, inputs u ∈ R
m, and dynamics ẋ = F (x(t), u(t)). Define

a discretization of the continuous dynamics over a timestep

∆ such that at time tk the discrete dynamics are xk+1 =
f∆(xk, uk), where tk+1 = tk + ∆, xk = x(tk), and uk =
u(tk). Let U := {u0, u1, ..., uN−1} be the input sequence,

JN the terminal cost, and J the runtime cost, where J and

JN are both differentiable functions into R.

The optimal control problem over N timesteps is

min
U

JN (xN ) +

N−1
∑

i=0

J(xi, ui) (3)

where x0 = x(0) (4)

xi+1 = f∆(xi, ui) ∀i ∈ {0, ..., N − 1} (5)

To solve this problem, DDP/iLQR uses Bellman recursion

to find the optimal input sequence U , we which briefly review

here. Let Uk := {uk, uk+1, ..., uN−1} be the sequence of

inputs including and after timestep k. Define the cost-to-go

Jk as the cost incurred including and after timestep k

Jk(xk, Uk) := JN (xN ) +
N−1
∑

i=k

J(xi, ui) (6)

with {xk+1, ..., xN} the sequence of states starting at xk

based on Uk and (5). The value function V (Bellman

equation) at state xk is the optimal cost to go Jk(xk, Uk),
which can be rewritten as a recursive function of variables

from the current timestep using the dynamics (5),

V (xk) :=min
uk

J(xk, uk) + V (f∆(xk, uk)) (7)

Since there is no input at the last timestep, the boundary

condition of the value is the terminal cost, VN (xN ) :=
JN (xN ). Next, define Qk to be the argument optimized in

(7). Optimizing the Bellman equation directly is incredibly

difficult. DDP/iLQR uses a second order local approximation

of Qk where perturbations about the state and input (xk, uk)
are taken. The resulting function is defined to be

Qk(δx, δu) :=J(xk + δx, uk + δu)− J(xk, uk)+ (8)

V (f∆(xk + δx, uk + δu))− V (f∆(xk, uk))

where the value function expansion is for timestep k+1 and

when expanded to second order

Qk(δx, δu) ≈
1

2





1
δx
δu





T 



0 QT
x QT

u

Qx Qxx QT
ux

Qu Qux Quu









1
δx
δu



 (9)

the expansion coefficients are

Qx,k = Jx + fT
x,kVx (10)

Qu,k = Ju + fT
u,kVx (11)

Qxx,k = Jxx + fT
x,kVxxfx,k + Vxfxx,k (12)

Qux,k = Jux + fT
u,kVxxfx,k + Vxfuu,k (13)

Quu,k = Juu + fT
u,kVxxfu,k + Vxfux,k (14)

where subscripted variables represent derivatives of the func-

tion with respect to the variable (e.g. Jx = DxJ) and the

discretized dynamics are abreviated as fk = f∆(xk, uk).
Note that the second derivative terms (where adjacency

indicates tensor contraction) with respect to the dynamics

(fxx,k, fuu,k, and fux,k) in (12)–(14) are used in DDP but

ignored in iLQR.

With this value function expansion, the optimal control in-

put, δu∗, can be found by setting the derivative of Q(δx, δu)
with respect to δu to zero and solving for δu,

δu∗ =argmin
δu

Q(δx, δu) = −Q−1
uu (Qu +Quxδx) (15)

This optimal control input can be split into a feedfor-

ward term uff = −Q−1
uuQu and a feedback term K =

−Q−1
uuQuxδx. Therefore, the optimal input for the local

approximation at timestep k is the sum of the original input

and the optimal control input, u∗
k = uk + δu∗.

Once the optimal controller is defined, the expansion

coefficients of V for timestep k can be updated by plugging

in the optimal controller into (9)

Vx = Qx −QuQ
−1
uuQux (16)

Vxx = Qxx −QT
uxQ

−1
uuQux (17)

Now that the expansion terms for the value function at

timestep k can be expressed as sole a function of k + 1 the

optimal control input can be calculated recursively and stored

(uff,k,Kk). This process is called the backwards pass.

Once the backwards pass is completed, a forward pass is

run by simulating the dynamics given the new gain schedule

(uff,k,Kk) and the previous iterations sequence of states

and inputs.

x̂0 = x0 (18)

ûk = Kk(x̂k − xk) + αuff,k (19)

x̂k+1 = f∆(x̂k, ûk) (20)

where the new trajectory is denoted with hats (x̂, û) and α
is used as a backtracking line-search parameters 0 < α ≤ 1
[14, Eqn. 12]. The backwards and forwards passes are run

until convergence. Following [14], convergence is when the

magnitude of the total expected reduction δJ is small

δJ(α) =

N−1
∑

i=0

uT
ff,iQu,i +

1

2

N−1
∑

k=0

uT
ff,iQuu,iuff,i (21)

Convergence issues may occur when Quu is not positive-

definite or when the second order approximations are inac-

curate. Regularization is often added to address these issues

and here we use the same regularization scheme as in [14].



B. Hybrid system modifications to the forward pass

The first change that is required for iLQR to work on

hybrid dynamical systems is that the forward pass must

accurately generate the hybrid system execution. The dy-

namics are integrated for the currently active mode Ij for

the duration of the hybrid time period j, i.e. ∀t ∈ [tj , t̄j ],
until a guard condition is met,

g(Ij ,Ij+1)(t̄j , x(t̄j), u(t̄j)) = 0 (22)

To capture these hybrid dynamics in the discrete forward

pass, the discretized dynamics are computed using numerical

integration with event detection, so that if no event occurs

the dynamic update, (5), is,

f∆j
(x̂k, ûk) :=

∫ tk+1

tk

fIj (x(t), ûk)dt+ x̂k (23)

If during the integration the hybrid guard condition is met,

(22), the integration halts, the transition state is stored, the

reset map is applied, and then the integration is continued

with the dynamics of the new mode, Ij+1. Suppose that the

guard condition is met once (which is ensured for small times

by transversality) at time t̄j , such that tk ≤ t̄j ≤ tk+1, then

f ′
∆(x̂k, ûk) =

∫ tk+1

tj+1

fIj+1
(x(t), ûk)dt+ (24)

R(Ij ,Ij+1)

(

t̄j ,

∫ t̄j

tk

fIj (x(t), ûk)dt+ x̂k

)

Note that this process can be repeated for as finitely many

times as there are hybrid changes during a single timestep,

but there cannot be infinitely many changes during a single

timestep (no Zeno). In this work, we use MATLAB’s ode45

method for integration and event detection.

Finally, in addition to updating the dynamics the cost

function, (6), can be augmented with additional cost terms,

JNj
, associated with each hybrid transition between the M

hybrid modes, as shown in [16],

J0 = JN (xN ) +

N−1
∑

i=0

J(xi, ui) +

M−1
∑

j=1

JNj
(xNj

) (25)

Such an addition may be desirable if e.g., one wanted to

penalize the occurrences of a transition event in the hopes

of having a minimal number of hybrid events.

C. Hybrid system modifications to the backwards pass

The backwards pass must be updated to reflect the discrete

jumps that were added through the hybrid transitions. Away

from hybrid transitions, the dynamics are smooth and behave

the same way as in the smooth iLQR backwards pass, so our

modification to the backwards pass occurs at timesteps where

a hybrid transition is made. By substituting (24) into (7), and

adding the transition cost from (25), the resulting Bellman

equation for the timesteps during hybrid transition j over

timestep k is

V (xk) =min
Uk

J(xk, uk)+JNj
(xNj

)+V (f ′
∆(xk, uk)) (26)

We elect to approximate the hybrid transition timestep to

have the hybrid event occur at the end of the timestep in order

to maintain smooth control inputs for each hybrid epoch. For

the backwards pass to work on the Bellman equation during

transition timesteps, we need to find the linearization of

f ′
∆(xk, uk). This linearization step is straight forward when

using the saltation matrix to map perturbations pre and post

hybrid transition (2).

The linearization can be broken up into 2 different steps,

where each step the linearization is known.

δx(t̄j) ≈ fx,∆j
δx(tk) + fu,∆j

δu(tk) (27)

δx(tj+1) ≈ Ξδx(t̄j) (28)

where f∗,∆j
= D∗f∆j

(x, u) and the saltation matrix is

abbreviated as Ξ = Ξ(Ij ,Ij+1)(t̄j , x(t̄j), u(tk))

These linearization steps can be combined and directly

substituted in the coefficient expansion equations (10)–(14)

in place of the fk terms. For the transition cost, JNj
, an

expansion is taken about δx(t̄j) which can be mapped back

to (δx(tk), δu(tk)) and added to the expansion coefficients.

When combining all the expansion terms, the hybrid iLQR

coefficients in (9) are,

Qx,k = Jx + fT
x,∆j

Jx,Nj
+ fT

x,∆j
ΞTVx (29)

Qu,k = Ju + fT
u,∆j

Jx,Nj
+ fT

u,∆j
ΞTVx (30)

Qxx,k = Jxx + fT
x,∆j

Jxx,Nj
fx,∆j

+ fT
x,∆j

ΞTVxxΞfx,∆j

(31)

Qux,k = Jux + fT
u,∆j

Jxx,Nj
fx,∆j

+ fT
u,∆j

ΞTVxxΞfx,∆j

(32)

Quu,k = Juu + fT
u,∆j

Jxx,Nj
fu,∆j

+ fT
u,∆j

ΞTVxxΞfu,∆j

(33)

After this update to the coefficient expansion, the backwards

pass continues normally. If the second order variational

expression for the saltation matrix is calculated, then these

exact changes can be used for a hybrid DDP version of this

backwards pass. However, the computation of the second

order variation expression may not be easy for systems with

large state space.

As an alternative expansion, in [4, Eq. (21)] the authors

use an Augmented Lagrangian method to handle variations

in impact time and they use the Jacobian of the reset map to

propagate perturbations in state through the hybrid transition,

instead of the saltation matrix (2). For the hybrid backwards

pass that we define, this change would be the equivalent of

substituting the Jacobian of the reset map in place of the

saltation matrix in (28)

δx(tj+1) ≈ DxR(Ij ,Ij+1)(t̄j , x(t̄j), u(tk))δx(t̄j) (34)

and similarly in the hybrid coefficient expansion equations

(29)–(33). We show empirically that using this alternate

version with the Jacobian of the reset map does not perform

as well as using the saltation matrix and may not converge.



D. Hybrid extensions for mode mismatches

Since the forward pass can alter the contact sequence, the

new trajectory is not confined to the previous trajectory’s

mode sequence or timing. This feature is intended because

the algorithm can now remove, add, or shift mode transitions

if cost is reduced. However, this introduces an issue when

the reference mode is not the same as the current mode.

In [18, Eq. 7], the authors consider the problem of mode

mismatch for an optimal hybrid trajectory, both of the refer-

ence and of the feedback gains – the reference is extended

by integration, and the gains are held constant. We employ

their strategy, as well as apply this same rule for the input

and the feedforward gains – applying the input intended for a

different mode can cause destructive results, or be not well-

defined. If the number of hybrid transitions exceeds that of

the reference, we elected to hold the terminal state and gains

constant, though other choices could be made instead.

E. Algorithm

With each hybrid modification to iLQR listed in Sections

III-B, III-C, and III-D our new algorithm can be summarized

as follows: 1) Given some initial state, input sequence,

quadratic loss function, number of timesteps, and timestep

duration a rollout is simulated to get the initial reference

trajectory and mode sequence. 2) A hybrid backwards pass

(using the regularization from [14]) computes the optimal

control inputs for the reference trajectory. 3) Hybrid refer-

ence extensions are computed on the start and end states

for each hybrid reference segment. 4) The forward pass

simulates the current mode’s dynamics until a hybrid guard

condition is met or it is the end of the simulation time; if the

guard is reached, the corresponding reset map is applied and

the simulation is continued. This forward pass is repeated

with a different learning rate until the line search conditions

are met [14]. 5) Then the backwards pass, hybrid extensions,

and forward passes are repeated until convergence.

IV. HYBRID SYSTEM EXAMPLES AND EXPERIMENTS

In this section, we define a set of hybrid systems – ranging

from a simple 1D bouncing ball to a perching quadcopter

with constrained dynamics and friction – and a series of

experiments which evaluates how our hybrid iLQR algorithm

performs in a variety of different settings.

For all of the examples, we assume that there is no desired

reference trajectory to track and that there is no hybrid

transition cost JNj
– this means the runtime cost is only a

function of input. In each experiment, a comparison against

using the Jacobian of the reset map instead of the saltation

matrix is made by evaluating the expected cost reduction for

the entire trajectory and the final cost. The Jacobian of the

reset variant is labeled as DxR-iLQR and the main variant

which uses the saltation matrix Ξ-iLQR.

For all examples, m = 1 is the mass of a rigid body,

g = 9.8 is the acceleration due to gravity, the number of

timesteps simulated is N = 1000, and the timestep duration

is ∆ = 0.001s unless specified.

The dynamics considered here fall into the category of

Euler Lagrange dynamics subjected to unilateral holonomic

constraints. We use the dynamics, impact law, and comple-

mentarity conditions as derived in [21]. These systems have

configuration variables q where the state of the system is

the configurations and their time derivatives x = [qT , q̇T ]T .

When the system is in contact with a constrained surface

a(q) = 0, a constraint force λ is applied to not allow pene-

tration in the direction of the constraint. The accelerations q̈
and constraint forces λ are found by solving the constraint

and accelerations simultaneously,

M(q)q̈ + C(q, q̇)q̇ +N(q, q̇) +A(q)Tλ = Υ(q, u) (35)

A(q)q̈ + Ȧ(q)q̇ = 0 (36)

where M(q) is the manipulator inertia matrix, C(q, q̇) are

the Coriolis and centrifugal forces, N(q, q̇) are nonlinear

forces including gravity and damping, A(q) = Dqa(q) is the

velocity constraint, and Υ(u) is the input mapping function.

Suppose the constrained surface aJ(q) is the J th possible

hybrid mode, and the current mode is the unconstrained

mode. aJ(q) acts as the guard surface for impacts g(1,J) =
aJ(q). When the system hits the impact guard, the velocity

is reset using a plastic or elastic impact law [21].

Releasing a constrained mode (liftoff) occurs when a

constraint force becomes attractive rather than repulsive; thus

we define hybrid guard g(t, x, u) := λ and the reset map at

these events are identity transforms because no additional

constraints are being added.

A. Bouncing ball elastic impact

We begin with a 1D bouncing ball under elastic impact

[3], where the state x = [z, ż]T is the vertical position z
and velocity ż. The input u is a force applied directly to

the ball. The two hybrid modes, 1 and 2, are defined when

the ball has negative velocity ż < 0 and when the ball has

non-negative velocity ż ≥ 0, respectively. The dynamics on

each mode are ballistic dynamics plus the input

F1(x, u) = F2(x, u) :=

[

ż,
u−mg

m

]T

(37)

Hybrid mode 1 transitions to 2 when the ball hits the

ground, g(1,2)(x) := z, and mode 2 transitions to 1 at

apex g(2,1)(x) := ż. When mode 1 transitions to 2, an

elastic impact is applied, R(1,2)(x) = [z,−eż]T where e
is the coefficient of restitution. The reset map from 2 to 1 is

identity.

The Jacobian of the reset map and saltation matrix are,

DxR(1,2) =

[

1 0
0 −e

]

, Ξ(1,2) =

[ −e 0
(u−mg)(e+1)

mż
−e

]

(38)

When transitioning from 2 to 1, both Jacobian of the reset

map and saltation matrix are identity.

The problem data is to have the ball fall from an initial

height with no velocity, x0 = [4, 0]T , and end up at a

final height xdes with no velocity with penalties R = 5 ×
10−7/∆, QN = 100I2×2 and the problems were seeded

with a constant input force to obtain different number of



TABLE I

BOUNCING BALL WITH ELASTIC IMPACTS. TRIALS VARY IN OPTIMAL

NUMBER OF BOUNCES, NUMBER OF SEEDED BOUNCES, WHICH METHOD

WAS USED, TOTAL COST, AND CONVERGENCE |δJ | < 0.05

Optimal # Seed # Method Actual # Cost Converged

0 0 Ξ 0 53.1 Yes
0 0 DxR 0 53.1 Yes
0 1 Ξ 1 114 Yes
0 1 DxR 0 53.1 Yes
0 1 Direct 1 114 Yes

1 0 Ξ 0 97.3 Yes
1 0 DxR 0 97.3 Yes
1 1 Ξ 1 42.5 Yes
1 1 DxR 0 97.3 Yes
1 3 Ξ 1 42.5 Yes
1 3 DxR 1 125 No

3 1 Ξ 1 105 Yes
3 1 DxR 0 114 Yes
3 3 Ξ 3 0.536 Yes
3 3 DxR 3 19.6 No
3 3 No Ext. 3 53.3 No

bounces. A suite of bouncing conditions are considered and

are summarized in Table I. In the case where 0 bounces

are optimal xdes = [3, 0]T while where 1 or 3 bounces are

optimal xdes = [1, 0]T . For 3 bounces the timestep is set

to ∆ = 0.004. To evaluate the effectiveness of the hybrid

extensions, Sec. III-D, an additional comparison using our

hybrid iLQR algorithm where we do not apply any hybrid

extensions is made. For all cases, a convergence cutoff for

this problem is set to be if |δJ | ≤ 0.05.

B. Ball dropping on a spring-damper

Hard contacts are sometimes relaxed using springs and

dampers, so we consider the 1D bouncing ball case, but

instead of having a discontinuous event at impact, the impact

event is extended by assuming the ground is a spring damper

(i.e., a force law fsd(z, ż) := kz+dż) when being penetrated

and a spring when releasing. The system now has an identity

reset, but since the saltation matrix is not identity, the hybrid

transition still produces a jump in the linearization.

The hybrid modes are defined as: the aerial phase 1, the

spring-damper phase 2 and the spring phase 3. The spring

and dampening coefficients are chosen to be k = 100 and

d = 5. The guards are when the ball hits the ground

g(1,2) = z, when the ball no longer has any penetrating

velocity g(2,3) = ż, and when the ball is released from the

ground g(3,1) = z. For all of these transitions, the reset map

is an identity transformation and the states do not change.

The example is setup to have the ball fall an initial height

with an initial downwards velocity x0 = [3,−2], end up

at a height with no velocity xdes = [1, 0], with penalties

R = 0.0001, QN = 100I2×2 and no input for the seed.

C. Ball drop on a curved surface with plastic impacts

To test our algorithm with a nonlinear constraint surface,

we designed a system where an actuated ball in 2D space is

dropped inside a hollow tube and is tasked to end in a goal

location on the tube surface.

The configuration states of the system are the horizontal

and vertical positions q = [y, z]T . This system consists of

two different hybrid modes: the unconstrained mode 1 and in

the constrained mode 2. The constrained surface is defined to

be a circle with radius 2, a(q) = 4− y2 − z2. The dynamics

of the system, (35), are ballistic dynamics with direct inputs

on configurations, M(q) = mI2×2, N(q, q̇) = [0,−mg]T ,

C(q, q̇) = 02×2, and Υ = [uy, uz]
T . The impact guard from

(1,2) is defined by the circle’s constrained surface and the

liftoff guard from (2,1) is the constraint force λ.

The example is setup to have the ball fall from an initial

height with velocity pointing down and to the right x0 =
[1, 0], end up at a specific location on circle with no velocity

xdes = [−
√
3,−1, 0, 0], with penalties R = 0.0001, QN =

100I4×4 and no input for the initial seed except for a vertical

force 2mg applied for a small duration to cause the ball to

momentarily leave the constraint.

D. Perching quadcopter

We introduce a quadcopter perching example inspired by

[26], where we consider a planar quadcopter which can make

contact with sliding friction on a surface. When both edges

of the quadcopter are touching the constraint, we assume

some latching mechanism engages and fully constrains the

quadcopter in place with no way to release. This problem

explores planning with an underactuated system, friction,

constraint surfaces, nonlinear dynamics, nonlinear guards,

and nonlinear resets.

The configurations of the system are the vertical, horizon-

tal, and angular position q = [y, z, θ]T and the inputs are the

left and right thrusters, u1 and u2. The dynamics are defined

by (35) with the following

M(q) :=





m 0 0
0 m 0
0 0 I



 , C(q, q̇) :=





0 0 0
0 0 0
0 0 0



 , (39)

N(q, q̇) :=





0
−mg
0



 , Υ :=





− sin(θ)(u1 + u2)
cos(θ)(u1 + u2)
1
2 (u2w − u1w)



 (40)

where w = 0.25 is the width and I = 1 is the inertia of the

quadcopter.

To add more complex geometry, the constrained surface

is a circle centered about the origin with radius 5. Since the

edges of the quadcopter make contact with the surface, the

left and right edges of the quadcopter are located at,

[yL, zL]
T = [y − 1

2
w cos θ, z − 1

2
w sin θ]T (41)

[yR, zR]
T = [y +

1

2
w cos θ, z +

1

2
w sin θ]T (42)

The constraints are then a1 = 25− y2L − z2L and a2 = 25−
y2R − z2R. Frictional force λt is defined to be tangential to

the constraint with magnitude proportional to the constraint

force λn, λt = µλn, where µ is the coefficient of friction.

The example is setup to have the quadcopter start

some distance away from the constraint with a hor-

izontal velocity, x0 = [2, 2.5,−π/8, 4, 0, 0]T , end up





in Fig. 4 where both methods ended up at the goal state but

DxR-iLQR converged significantly less than Ξ-iLQR.

In this example, we purposely seeded a sub-optimal tra-

jectory which releases the contact for a small duration and

returns back to the constraint to evaluate if the algorithms

would modify the contact sequence. Ξ-iLQR ended up re-

moving this erroneous contact change and whereas DxR-

iLQR ended up not going back to the constraint surface and

ended in the unconstrained mode. We speculate that because

DxR has the wrong gradient information about contacts, it

ended up staying in the unconstrained mode for a longer

duration and ultimately could not converge.

D. Perching quadcopter

In this example, the final position trajectories are shown

in Fig. 1 where Ξ-iLQR converged δJ = 0.170 with a cost

of J = 4.76 whereas DxR-iLQR did not converge δJ =
3×105 and produced an erratic solution with very high cost

of J = 2.66× 103.

Ξ-iLQR seemed to make the natural extension of the

seed and followed the constraint until the target position

was achieved, but removed the double constrained mode at

the end. We postulate that the fully constrained mode was

removed in order to better fine tune the final position because

position error is weighted significantly more than velocity.

However, the true optimal solution should include the fully

constrained mode to eliminate any velocity for free.

VI. DISCUSSION

In this work, we extended iLQR to hybrid dynamical

systems with piecewise smooth solutions with state jumps.

We compared our algorithm (Ξ-iLQR) against using the

incorrect hybrid backwards pass update (DxR-iLQR) over

a variety of hybrid systems. For each example, Ξ-iLQR

outperformed DxR-iLQR in terms of cost and convergence

when there was a hybrid transition in the final trajectory.

This result is expected because the saltation matrix is the

correct linearization about a hybrid transition.

We believe that our algorithm excels at refining a trajectory

which has an initial hybrid mode sequence that needs the

timing to be refined. This is similar to other shooting

methods, where they are sensitive to initialization. However,

this issue of locality is accentuated in our algorithm by

only giving gradient information and control reference for

transitions it has seen.

In future work, we will investigate systems with intersect-

ing hybrid guards where the Bouligand derivative [27, 28]

will play an analogous role as the saltation matrix.
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