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TRAVELING WAVE SOLUTIONS TO THE MULTILAYER FREE
BOUNDARY INCOMPRESSIBLE NAVIER–STOKES EQUATIONS∗

NOAH STEVENSON† AND IAN TICE†

Abstract. For a natural number m ⩾ 2, we study m layers of finite depth, horizontally infinite,
viscous, and incompressible fluid bounded below by a flat rigid bottom. Adjacent layers meet at
free interface regions, and the top layer is bounded above by a free boundary as well. A uniform
gravitational field, normal to the rigid bottom, acts on the fluid. We assume that the fluid mass
densities are strictly decreasing from bottom to top and consider the cases with and without surface
tension acting on the free surfaces. In addition to these gravity-capillary effects, we allow a force
to act on the bulk and external stress tensors to act on the free interface regions. Both of these
additional forces are posited to be in traveling wave form: time-independent when viewed in a
coordinate system moving at a constant, nontrivial velocity parallel to the lower rigid boundary.
Without surface tension in the case of two dimensional fluids and with all positive surface tensions
in the higher dimensional cases, we prove that for each sufficiently small force and stress tuple
there exists a traveling wave solution. The existence of traveling wave solutions to the one layer
configuration (m = 1) was recently established and, to the best of our knowledge, this paper is the
first construction of traveling wave solutions to the incompressible Navier–Stokes equations in the
m-layer arrangement.

Key words. free boundary Navier–Stokes, traveling waves, internal waves

AMS subject classifications. Primary, 35Q30, 35R35, 35C07; Secondary, 35N25, 76D33,
76D45

DOI. 10.1137/20M1360670

1. Introduction.

1.1. Eulerian coordinate formulation. In this paper we study traveling wave
solutions to the viscous surface-internal wave problem, which describes the evolution
of a finite number of layers of incompressible and viscous fluid. We posit that the
fluid layers contiguously occupy horizontally infinite, finite-depth, and time-evolving
slabs sitting atop a rigid hyperplane in ambient Euclidean space of dimension n ∈
N\{0, 1} (the physically relevant dimensions are 2 and 3, but our analysis works more
generally). Within each layer the fluid dynamics are described by the incompressible
Navier–Stokes equations, and jump conditions couple the dynamics between layers.
The multiple layers serve as a model of stratified fluids. These occur, for example,
when salinity or temperature change rapidly with respect to depth.

In order to properly state the PDEs considered in this analysis, we first set the
necessary notation. Fix the number of layers of fluid m ∈ N \ {0, 1}. Let α = {aℓ}mℓ=1

be a strictly increasing sequence of positive real numbers, i.e., 0 < a1 < · · · < am. We
refer to α as the depth parameter. We associate with α the collection of admissible
graph interfaces, which is the subset of m-tuples of continuous and bounded functions

(1.1) A (α) =
{
(ηℓ)

m
ℓ=1 ⊂ C0

b

(
Rn−1) : 0 < a1 + η1 < · · · < am + ηm on Rn−1} .
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TRAVELING WAVES: INCOMPRESSIBLE, MULTILAYER CASE 6371

If η = (ηℓ)
m
ℓ=1 ∈ A (α), then for ℓ ∈ {1, . . . ,m} we define the slab-like domain

(1.2)

Ωℓ[η] =

{{
(x, y) ∈ Rn−1 × R : ηℓ−1 (x) + aℓ−1 < y < ηℓ (x) + aℓ

}
when 2 ⩽ ℓ ⩽ m,{

(x, y) ∈ Rn−1 × R : 0 < y < η1 (x) + a1
}

when ℓ = 1,

and the free boundaries

(1.3) Σℓ[η] =
{
(x, y) ∈ Rn−1 × R : y = aℓ + ηℓ (x)

}
.

We also define the union of the slabs, entire domain, and rigid lower boundary, re-
spectively, as

(1.4)

Ω[η] = Ω1[η] ∪ · · · ∪ Ωm[η], Ωe[η] =
{
(x, y) ∈ Rn−1 × R : 0 < y < am + ηm (x)

}
,

and Σ0 =
{
(x, y) ∈ Rn−1 × R : y = 0

}
.

Observe that (Ω[η])◦ = Ωe[η]. We will often need to distinguish between derivatives
that are parallel to Σ0 and vertical derivatives, so we write ∇ = (∇∥, ∂n). Note that
the operator ∇∥ is the full spatial gradient for the free surface functions, which have
the spatial domain Rn−1.

Suppose that η = (ηℓ)
m
ℓ=1 ∈ A (α) is given and each ηℓ is Lipschitz. Then for

X ∈ H1(Ω[η];Rd), for some d ∈ N+, the restriction of X to each Ωℓ[η] belongs to
H1(Ωℓ[η];Rd), and so from standard trace theory we have trace operators onto the

upper and lower boundaries, Σℓ[η] and Σℓ−1[η], which we denote by Tr↑Σℓ[η]
X and

Tr↓Σℓ−1[η]
X, respectively. In turn, for ℓ ∈ {1, . . . ,m} this allows us to define the

interfacial jumps via

(1.5) JXKℓ =

{
Tr↓Σℓ[η]

X − Tr↑Σℓ[η]
X when 1,⩽ ℓ ⩽ m− 1,

−Tr↑Σm[η]X when ℓ = m.

Note that JXKm is not really a jump, but we will employ this notation for brevity
in writing PDEs throughout the paper. If u is a weakly differentiable vector field
we define its symmetrized gradient as the matrix field Du = ∇u + ∇ut, where the
superscript “t” denotes the matrix transpose. If µ = {µℓ}mℓ=1 ⊂ R+ is a sequence
of positive fluid viscosity parameters, we define the associated stress tensor as the
mapping

(1.6) Sµ : L2(Ω[η])×H1(Ω[η];Rn) → L2(Ω[η];Rn×n
sym )

via Sµ (p, u) =

m∑
ℓ=1

1Ωℓ[η] (pIn×n − µℓDu) ,

where Rn×n
sym denotes the set of n× n real symmetric matrices.

With the notation established, we are now equipped to describe the model and the
equations of motion in time. At equilibrium, we posit that the layers of fluid occupy
the domain Ω[0] with the ℓth layer occupying the region Ωℓ[0]; furthermore, when
perturbed from equilibrium there are free surface functions ζ (t, ·) = (ζℓ (t, ·))mℓ=1 ∈
A (α) for time t ⩾ 0 describing the evolution of the fluid layer domains in such a way
that Ω[ζ (t, ·)] is the region occupied by the union of all the layers, and the ℓth layer
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6372 NOAH STEVENSON AND IAN TICE

occupies Ωℓ[ζ (t, ·)]. The fluid velocity and pressure are described by the functions
w (t, ·) : Ω[ζ(t, ·)] → Rn, r (t, ·) : Ω[ζ(t, ·)] → R. The density of the fluid occupying
the region Ωℓ[ζ(t, ·)] is the constant ρℓ ∈ R+, and the viscosity of this portion of the
fluid is the constant µℓ ∈ R+.

We assume that the fluid is acted upon by the following forces. The bulk (the
region of fluid occupying Ω[ζ (t, ·)]) is acted on by a uniform external gravitational
field −gen ∈ Rn, for acceleration of gravity g ∈ R+; and by a generic force F (t, ·) :
Ω[ζ(t, ·)] → Rn. The ℓth free surface is acted upon by a force generated by an
externally applied stress tensor Tℓ : Σℓ[ζ(t, ·)] → Rn×n

sym ; and a force generated by the
surface itself, which is modeled in the standard way by −σℓH(ζℓ (t, ·)) for σℓ ⩾ 0 a
surface tension coefficient and

(1.7) H(ηℓ) = ∇∥ ·
(
∇∥ηℓ(1 + |∇∥ηℓ|2)−1/2

)
the mean curvature operator. In addition, the upper surface (the mth one) is acted
on by a constant external pressure Pext ∈ R.

The equations of motion are
(1.8)

ρℓ (∂t + w · ∇)w +∇ · Sµ (r, w) = −gρℓen + F in Ωℓ[ζ(t, ·)], ℓ ∈ {1, . . . ,m} ,
∇ · u = 0 in Ω[ζ (t, ·)],
Pextνm − Sµ (r, w) νm − σmH(ζm) νm = Tmνm on Σm[ζ (t, ·)],
JSµ (r, w)Kℓ νℓ − σℓH(ζℓ) νℓ = Tℓνℓ on Σℓ[ζ (t, ·)], ℓ ∈ {1, . . . ,m− 1} ,
∂tζℓ + w ·

(
∇∥ζℓ, 0

)
= w · en on Σℓ[ζ(t, ·)], ℓ ∈ {1, . . . ,m} ,

JwKℓ = 0 on Σℓ[ζ(t, ·)], ℓ ∈ {1, . . . ,m− 1} ,
w = 0 on Σ0.

Here the upward pointing unit normal to the surface Σℓ[ζ(t, ·)] is

(1.9) νℓ = (1 + |∇∥ζℓ|2)−1/2(−∇∥ζℓ, 1),

and we write ∇ · Sµ(r, w) to mean the n-vector with ith component equal to the
divergence of the ith row of Sµ(r, w).

We briefly comment on the physics of the above system of PDEs. The first
two equations of (1.8) are the incompressible Navier–Stokes equations. The first
asserts a Newtonian balance of forces, while the second enforces that the associated
flow is locally volume preserving and, hence, because the density is constant in the
slab domains, mass is conserved. The third and fourth equations are the dynamic
boundary conditions, which are understood as force balances on the interfaces, and
the fifth equation is the kinematic boundary condition, which dictates the surfaces’
motion with the fluid. The final two equations are the no-slip conditions: the Eulerian
velocity vanishes on the lower rigid boundary and is continuous across the free interface
regions. For a more physical description of these equations and boundary conditions
we refer to Wehausen and Laitone [27].

In this paper we construct traveling wave solutions to the system (1.8). These
are solutions that are time independent when viewed in an inertial coordinate system
obtained from the above Eulerian coordinates through a Galilean transformation. In
order for the stationary condition to hold, the moving coordinate system must be
traveling at a constant velocity parallel to Σ0. Up to a rigid rotation fixing the vector
en, we may assume that the traveling coordinate system is moving at a constant
velocity γe1 for a signed wave speed γ ∈ R \ {0}.
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TRAVELING WAVES: INCOMPRESSIBLE, MULTILAYER CASE 6373

In the new coordinates the stationary free surface functions are described by the
unknowns η = (ηℓ)

m
ℓ=1 ∈ A (α); these are related to ζ via η (x− γte1) = ζ (t, x). Next

we posit that v (x− tγe1, y) = w (t, x, y),

(1.10) q (x− tγe1, y) = r (t, x, y)− Pext

− g

m∑
ℓ=1

1(aℓ−1,aℓ) (y)

[
ρℓ (aℓ − y) +

m∑
k=ℓ+1

ρk (ak − ak−1)

]
,

F (x− tγe1, y) = F (t, x, y), and Tℓ (x− tγe1) = Tℓ (t, x, aℓ + ζℓ (t, x)) for t ⩾ 0 and
(x, y) ∈ Rn−1 × (0, am), where v : Ω[η] → Rn, q : Ω[η] → R, F : Ω[η] → Rn, and
Tℓ : Rn−1 → Rn×n

sym are the stationary velocity field, renormalized pressure, external
force, and external stresses, respectively. In the traveling coordinate system the PDE
satisfied by the unknowns (q, v, (ηℓ)

m
ℓ=1) with forcing (F , (Tℓ)mℓ=1) is the following

system:
(1.11)

ρℓ[(v − γe1) · ∇]v +∇ · Sµ (q, v) = F in Ωℓ[η], ℓ ∈ {1, . . . ,m} ,
∇ · v = 0 in Ω[η],

JSµ (q, v)Kℓ Nℓ = (g JρKℓ ηℓ + σℓH(ηℓ))Nℓ + TℓNℓ on Σℓ[η], ℓ ∈ {1, . . . ,m} ,
−γ∂1ηℓ + v ·

(
∇∥ηℓ, 0

)
= v · en on Σℓ[η], ℓ ∈ {1, . . . ,m} ,

JvKℓ = 0 on Σℓ[η], ℓ ∈ {1, . . . ,m− 1} ,
u = 0 on Σ0.

In the above we write Nℓ = (−∇∥ηℓ, 1) and ρ =
∑m

ℓ=1 1Ωℓ[0]ρℓ. Note that renormaliz-
ing the pressure in this way has the effect of shifting the gravitational term from the
bulk to the interfaces.

We conclude our discussion of the model with a comment about the role of the
forcing and interfacial stresses, (F , (Tℓ)mℓ=1), appearing in (1.11). The simplest con-
figuration occurs when F = 0 and Tℓ = 0 for 1 ⩽ ℓ ⩽ m − 1, but Tm = −φIn×n for
a given scalar function φ : Rn−1 → R. In this configuration, φ can be viewed as a
spatially localized source of pressure moving with velocity γe1 above the fluid. We
have chosen to study the more general framework with (F , (Tℓ)mℓ=1) in order to allow
for more sources of external force and stress.

1.2. Remarks on previous work. Traveling wave solutions to the equations
of fluid dynamics have been a subject of intense mathematical study for more than a
century, so a complete review of the literature is well beyond the scope of this paper.
The vast majority of this work has focused on inviscid models, in which the Navier–
Stokes equations in (1.11) are replaced by the Euler equations. For a thorough review
of the inviscid literature, we refer to the works of Toland [26], Groves [12], and Strauss
[25].

In the viscous literature there are various results on stationary solutions to the
free boundary problems, which correspond to traveling waves with vanishing velocity,
γ = 0. For works on stationary solutions in layer geometries, we refer to Jean [13],
Pileckas [21, 22, 23], Gellrich [10], Nazarov and Pileckas [17, 18], Pileckas and Zaleskis
[24], and Bae and Cho [3]. Traveling wave solutions without a free boundary were
constructed by Chae and Dubovskĭı [6] in full space and Kagei and Nishida [14] as
bifurcations from Poiseuille flow in rigid channels.

To the best of our knowledge, the first construction of traveling wave solutions to
the free boundary incompressible Navier–Stokes equations (system (1.8) for m = 1)
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6374 NOAH STEVENSON AND IAN TICE

was only accomplished recently in the work of Leoni and Tice in [15], and there are no
known results involving multiple layers. The multilayer problem is an important vari-
ant that appears in the study of internal waves in stratified fluids. This stratification
can occur, for instance, due to changes in salinity or temperature.

As mentioned above, the system (1.11) can be used to model a source of spatially
localized pressure translating above the fluid. This configuration has been studied
in recent experiments with a tube of air, translating uniformly above a wave tank,
blowing onto a single layer of viscous fluid and resulting in traveling waves. For
details, we refer to the works of Diorio et al. [8], Cho et al. [7], Masnadi and Duncan
[16], and Park and Cho [19, 20].

1.3. Reformulation in an independent domain. The domain itself is one
of the unknowns in the system (1.11), which presents a fundamental difficulty in
producing solutions. Following the strategy of the single-layer case from [15], we
overcome this obstacle with another change of coordinates and unknowns. We flatten
to a domain that is independent of both time and the free surface functions, which
comes at the expense of worsening the nonlinearities of the system.

We begin by defining the following family of flattening maps. Set a0 = 0 and
η0 = 0. For ℓ ∈ {1, . . . ,m} we define the mapping Fℓ : Ωℓ[0] → Ωℓ[η] with the
assignment

(1.12) Fℓ (x, y) =
(
x, aℓ−y

aℓ−aℓ−1
(aℓ−1 + ηℓ−1 (x)) +

y−aℓ−1

aℓ−aℓ−1
(aℓ + ηℓ (x))

)
for (x, y) ∈ Rn−1 × [aℓ−1, aℓ] = Ωℓ[0]. First we observe that each Fℓ is bijective with
inverse given via

(1.13) Fℓ
−1 (x, y) =

(
x, aℓ+ηℓ(x)−y

aℓ+ηℓ(x)−aℓ−1−ηℓ−1(x)
aℓ−1 +

y−aℓ−1−ηℓ−1(x)
aℓ+ηℓ(x)−aℓ−1−ηℓ−1(x)

aℓ

)
for (x, y) ∈ Ωℓ[η], whenever aℓ − aℓ−1 ̸= ηℓ−1 − ηℓ pointwise. If this inequality holds,
then Fℓ is a homeomorphism inheriting the regularity of the tuple η. We propose
to paste these functions together to build our sought-after flattening map. That
is, we define F : Ωe[0] → Ωe[η] via F = Fℓ on Ωℓ[0]. This assignment defines a
homeomorphism because Fℓ = Fℓ−1 on Σℓ−1[0] for ℓ ∈ {2, . . . ,m}.

Provided that η is differentiable, for (x, y) ∈ Ωℓ[0] we can compute the gradient
(1.14)

∇Fℓ (x, y) =

(
I(n−1)×(n−1) 0(n−1)×1

aℓ−y
aℓ−aℓ−1

∇∥ηℓ−1 (x) + y−aℓ−1

aℓ−aℓ−1
∇∥ηℓ (x) aℓ+ηℓ(x)−aℓ−1−ηℓ−1(x)

aℓ−aℓ−1

)
,

the Jacobian

(1.15) Jℓ (x, y) = det∇Fℓ(x, y) =
aℓ + ηℓ (x)− aℓ−1 − ηℓ−1 (x)

aℓ − aℓ−1
,

and the geometry matrices
(1.16)

Aℓ (x, y) = ∇F (x, y)
−t

=

(
I(n−1)×(n−1) − (aℓ−y)∇∥ηℓ−1(x)+(y−aℓ−1)∇∥ηℓ(x)

aℓ+ηℓ(x)−aℓ−1−ηℓ−1(x)

01×(n−1)
aℓ−aℓ−1

aℓ+ηℓ(x)−aℓ−1−ηℓ−1(x)

)
.

We then set A : Ω[0] → Rn×n via A = Aℓ in Ωℓ[0], and J : Ω[0] → R via J = Jℓ
in Ωℓ[0]. We may now reformulate (1.11) as a quasilinear system in the fixed domain
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Ω[0]:
(1.17)

ρℓ[(u− γe1) · A∇]u+ (A∇) · Sµ
A (p, u) = f in Ωℓ[0], ℓ ∈ {1, . . . ,m} ,

(A∇) · u = 0 in Ω[0],

JSµ
A (p, u)Kℓ Nℓ = (g JρKℓ ηℓ + σℓH(ηℓ))Nℓ + TℓNℓ on Σℓ[0], ℓ ∈ {1, . . . ,m} ,

γ∂1ηℓ + u · Nℓ = 0 on Σℓ[0], ℓ ∈ {1, . . . ,m} ,
JuKℓ = 0 on Σℓ[0], ℓ ∈ {1, . . . ,m− 1} ,
u = 0 on Σ0

for the flattened velocity field and pressure u = v ◦ F and p = q ◦ F. In the above
we have also set f = F ◦ F, allowed A to act on the “vector” ∇ by standard matrix
multiplication, and introduced the operator

(1.18) Sµ
A (p, u) =

∑m
ℓ=1 1Ωℓ[0]

[
pIn×n − µℓ(∇u)At − µℓA(∇ut)

]
.

The n-vector (A∇) · Sµ
A(p, u) has its ith component equal to the A-divergence of the

ith row of Sµ
A(p, u).

1.4. Statement of main results and discussion. We now give the two main
results obtained from the analysis in this paper. We provide somewhat informal and
abbreviated statements in order to avoid the need to introduce here some nonstandard
function spaces we employ in our analysis. The proper statements are found later in
the paper at the indicated theorems. The definitions of the function sets Ck, Ck

b , and
Ck

0 can be found in section 1.6.
Our first result regards the solvability of the flattened problem in (1.17): it tells

us that if the strict Rayleigh–Taylor condition, 0 < ρm < · · · < ρ1, is satisfied along
with certain conditions on the dimension n and the surface tensions {σℓ}mℓ=1, then the
multilayer flattened free boundary problem (1.17) is well-posed for all nontrivial wave
speeds and small forcing and applied stresses.

Theorem 1.1 (proved in Theorem 5.5). Suppose that either n = 2 and {σℓ}mℓ=1 =
0 or else n ⩾ 2 and {σℓ}mℓ=1 ⊂ R+. Let R ∋ s > n/2, 0 < ρm < · · · < ρ1, and
N ∋ r < s− n/2. Then there exist Banach spaces

(1.19) X s ↪→ C1+r
b (Ω[0])×

[
C0

b (Ω
e[0];Rn) ∩ C2+r

b (Ω[0];Rn)
]
× (C3+r

0 (Rn−1))m

and Zs ↪→ R× (C1+r
0 (Rn−1;Rn×n

sym ))m × Cr
b (Ω[0];Rn)

and open sets Vs ⊂ X s and Us ⊂ Zs such that the following hold:
(1) (0, 0, (0)mℓ=1) ∈ Vs and (R \ {0})× {(0)mℓ=1} × {0} ⊂ Us.
(2) For each (γ, (Tℓ)mℓ=1, f) ∈ Us there exists a unique (p, u, (ηℓ)

m
ℓ=1) ∈ Vs that is

a classical solution to (1.17) with the former tuple as data. Moreover, the free
surface functions obey the bound

(1.20) max{∥η1∥C0
b
, . . . , ∥ηm∥C0

b
} ⩽ 1

4 min {a1, a2 − a1, . . . , am − am−1} .

(3) The mapping Us ∋ (γ, (Tℓ)mℓ=1 , f) 7→ (p, u, (ηℓ)
m
ℓ=1) ∈ Vs is smooth.

Next, we take the solutions constructed by the previous theorem and build their
associated inverse flattening maps. This process results in traveling wave solutions to
the Eulerian formulation of the free boundary problem (1.11).
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6376 NOAH STEVENSON AND IAN TICE

Theorem 1.2 (proved in Proposition 5.6 and Theorem 5.7). Let N ∋ k > n/2,
0 < ρm < · · · < ρ1, and N ∋ r < k − n/2. Suppose the dimension n ∈ N\{0, 1} and
the surface tension coefficients {σℓ}mℓ=1 are related as in Theorem 1.1, and let Uk be
as in the theorem. Then for each (γ, (Tℓ)mℓ=1, f) ∈ Uk the solution (p, u, (ηℓ)

m
ℓ=1) ∈ Vk

to (1.17) provided by Theorem 1.1 satisfies the following.
(1) When defining the flattening map F from the tuple η = (ηℓ)

m
ℓ=1 as in sec-

tion 1.3, the result is a bi-Lipschitz homeomorphism F : Ωe[0] → Ωe[η] that is
a C3+r-diffeomorphism on the m slab domains. In other words, F and F−1

are Lipschitz and satisfy the inclusions

(1.21) F ∈ C3+r(Ω[0]; Ω[η]) and F−1 ∈ C3+r(Ω[η]; Ω[0]).

(2) Setting

(q, v, (ηℓ)
m
ℓ=1) = (p ◦ F−1, u ◦ F−1, (ηℓ)mℓ=1)

∈ C1+r
b (Ωe[η])× [C0

b (Ω[η];Rn) ∩ C2+r
b (Ω[η];Rn)]

× (C3+r
0 (Rn−1))m

(1.22)

gives a classical solution to the free boundary problem (1.11) with signed wave
speed γ ∈ R \ {0}, applied surface stresses (Tℓ)mℓ=1 ⊂ C1+r

0 (Rn−1;Rn×n
sym ), and

external forcing F = f ◦ F−1 ∈ Cr
b (Ω[η];Rn).

Following the lead of the single layer analysis in [15], our strategy for proving
Theorems 1.1 and 1.2 can be succinctly described as follows: we find appropriate
Banach spaces such that the locally defined mapping associated with the flattened
problem in system (1.17) is well-defined, smooth, and satisfies the hypotheses of the
implicit function theorem around the zero solution. This grants us the small data
solution operator described in the first theorem. From these solutions to the flattened
problem, we use the free surface functions to build the flattening map and its inverse to
undo the reformulation described in section 1.3. This then yields the second theorem.

The only serious difficulties in progressing from Theorem 1.1 to Theorem 1.2 lie
in verifying that the flattening map F and its inverse preserve not only the standard
Sobolev spaces, but the specialized ones we employ in our analysis. Fortunately,
these difficulties were already overcome in the single layer analysis of [15], and the
solution is readily ported to the multilayer context of the present paper. As such,
the main thrust of this paper is proving Theorem 1.1, which presents a number of
nontrivial difficulties not encountered in the single layer analysis. The remainder of
this discussion describes the path to this theorem in greater detail.

To invoke the implicit function theorem, we are led to study the linearization
of system (1.17), which is recorded in (4.1). Even though this is a linear PDE,
there are several obstacles that make solving it both an interesting and nontrivial
endeavor. The first of these is the selection of appropriate Banach spaces for data
and solutions for the linearized flattened problem. These spaces need be chosen so
that (1) the nonlinear operator associated with the flattened system is locally well-
defined near the zero solution and is at least continuously differentiable; (2) they
embed within subspaces of the classical scales measuring differentiability; and (3) the
linearized problem induces a Banach isomorphism. The first and last point ensure
that the hypotheses of the implicit function theorem are satisfied, and the second
point guarantees that our notion of solution to the nonlinear flattened problem will
be the classical one.
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TRAVELING WAVES: INCOMPRESSIBLE, MULTILAYER CASE 6377

Unfortunately, for data belonging to subspaces of standard L2-based Sobolev
spaces, the natural a priori estimates associated with the linearized PDE (4.1) are too
weak to force the solution tuple (p, u, (ηℓ)

m
ℓ=1) to belong to standard Sobolev spaces.

The same problem was encountered in the single layer problem; to circumvent the
issue, in [15, section 5] novel scales of specialized Sobolev spaces were introduced,
which satisfy the three requirements mentioned above. Fortunately for us, we find that
the appropriate Banach spaces for the multilayer problem are natural modifications of
the single-layer problem’s spaces; see Definitions 4.2 and 4.4. It is worth pointing out
that, while these spaces arise naturally as the spaces that contain the solutions to (4.1),
they have rather odd properties. For instance, in the most physically important case
of n = 3 the space for the free surface functions is strongly anisotropic in the sense
that it is not closed under composition with rotations (see [15, Remark 5.4]).

We now turn to the question of how to solve the problem (4.1), which is not a
standard elliptic boundary value system (i.e., not in the form studied in the classic pa-
per of Agmon, Douglis, and Nirenberg [2]) due to the fact that some of the unknowns,
namely, (ηℓ)

m
ℓ=1, appear only on the boundary. Building on the strategy of [15], we at-

tack this problem with the help of the normal stress to normal Dirichlet map (see Defi-
nition 2.14), which is (ψℓ)

m
ℓ=1 7→ νγ(ψℓ)

m
ℓ=1 = (TrΣℓ

v ·en)mℓ=1, where (q, v) solve (2.44).
Then a solution (p, u, (ηℓ)

m
ℓ=1) will take the form p = −g

∑m
ℓ=1 JρKℓ ηℓ1(0,aℓ) + q + r

and u = v + w for (q, v) solving (2.44) with data (ψℓ)
m
ℓ=1 = (σℓ∆∥ηℓ)

m
ℓ=1 and (r, w)

solving
(1.23)

∇ · Sµ (r, w)− γρℓ∂1w = f + g
∑m

ℓ=1 JρKℓ ∇ηℓ1(0,aℓ) in Ωℓ, ℓ ∈ {1, . . . ,m} ,
∇ · w = g in Ω,

JSµ (r, w) enKℓ = kℓ on Σℓ, ℓ ∈ {1, . . . ,m} ,
w · en = hℓ − γ∂1ηℓ − [ν−γ(σk∆∥ηk)

m
k=1]ℓ on Σℓ, ℓ ∈ {1, . . . ,m} ,

JwKℓ = 0 on Σℓ, ℓ ∈ {1, . . . ,m− 1} ,
w = 0 on Σ0.

At first glance this seems no better than (4.1), but the advantage of this form is that
even for given η = (ηℓ)

m
ℓ=1 belonging to the specialized Sobolev spaces, the right sides

of this system belong to standard Sobolev spaces (see Proposition 4.3). However, if we
think of η as given, then this system is overdetermined in the sense that n+ 1 scalar
boundary conditions are specified at each Σℓ rather than the n needed to uniquely
determine solutions. This leads us to study the overdetermined problem (3.1).

The problem (3.1) cannot be solved for arbitrary data tuples (g, f, (kℓ)
m
ℓ=1, (hℓ)

m
ℓ=1).

Indeed, data for which a solution exists must satisfy certain compatibility conditions,
which we identify in section 3.1. Remarkably, this then yields a mechanism for solv-
ing (1.23) for general data (g, f, (kℓ)

m
ℓ=1, (hℓ)

m
ℓ=1): we solve for η so that the modified

data tuple

(1.24)

(
g, f + g

m∑
ℓ=1

JρKℓ ∇ηℓ1(0,aℓ), (kℓ)
m
ℓ=1 , (hℓ − γ∂1ηℓ)

m
ℓ=1 − ν−γ(σℓ∆∥ηℓ)

m
ℓ=1

)
satisfies the compatibility conditions, and then we solve for (r, w) using the solvability
theory for the overdetermined problem (3.1), which we also develop in section 3.1.

In following this strategy for determining η in terms of the data, we uncover an-
other remarkable fact: after horizontal Fourier transformation, the bulk term
g
∑m

ℓ=1 JρKℓ ∇ηℓ1(0,aℓ) in the compatibility condition shifts back to a boundary term
involving the symbol of the pseudodifferential operator (ΨDO) ν−γ , which allows us
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6378 NOAH STEVENSON AND IAN TICE

to show that the compatibility condition for the modified data tuple (1.24) is equiva-
lent to a system of pseudodifferential equations (ΨDEs) on Rn−1. More precisely, we
show in Proposition 2.16 that νγ has an associated symbol nγ : Rn−1 → Cm×m, and
we prove that the compatibility conditions are equivalent to the ΨDEs,

(1.25) pγ(ξ)F [η](ξ) = F [φ](ξ) for ξ ∈ Rn−1,

where F denotes the Fourier transform on Rn−1 (acting on each component of the
tuple η in the obvious way),

pγ(ξ) = n−γ (ξ) diag(−g JρK1 + 4π2 |ξ|2 σ1, . . . ,−g JρKm + 4π2 |ξ|2 σm)

− 2πiγξ1Im×m ∈ Cm×m,
(1.26)

and φ : Rn−1 → Cm is a particular tuple depending on the data (g, f, (kℓ)
m
ℓ=1, (hℓ)

m
ℓ=1).

Note that the symbol pγ is a synthesis of the symbols for the differential operator
γ∂1, the normal stress to normal Dirichlet operator ν−γ , and the elliptic capillary
operators g JρKℓ + σℓ∆∥.

Provided that pγ is almost everywhere invertible, we then have the determination
η = F−1[pγ

−1F [φ]]. However, given the complicated form of pγ , it is far from
obvious that this holds or that, if it is true, the resulting formula for η produces free
surfaces that are both physically sensible and mathematically useful in our implicit
function theorem scheme. In order to prove these, we need to know two crucial
pieces of information: detailed facts about the regularity of φ, and precise asymptotic
developments of nγ(ξ) as |ξ| → 0 and |ξ| → ∞.

It is here where the present paper seriously deviates from the strategy employed
for a single layer in [15], which involved brute forcing the asymptotics of the sym-
bol from an explicit expression given by the solution to the ODE system resulting
from applying F to (2.44). Due to essential singularities in the symbol at |ξ| = ∞,
this approach is rather delicate and involves numerous tedious calculations for which
computer algebra systems are of little assistance. If we were to attempt to port this
brute force approach to the m-layer problem, the number of these tedious asymptotic
developments that we would need to compute by hand would be on the order of m2,
which is already disagreeable when m = 2 and is outright impossible in the general
case m ⩾ 2.

In the present paper we thus abandon the brute force strategy and develop a more
elegant and flexible method for deriving the asymptotic developments of the symbol
nγ . Our technique is based on a synthesis of novel energy estimates for solutions
of the multilayer traveling Stokes system (2.1), a duality-based formulation of the
compatibility conditions for (3.1), and estimates for solutions to certain prescribed
divergence equations. The key observation is the energy equivalence of Theorem 2.18
for solutions to the applied normal stress problem (2.44), which characterizes the data
space for solenoidal weak formulations (only employing solenoidal test functions to
avoid introducing the pressure), and may thus be of independent interest in the study
of the Stokes system.

The symbol pγ
−1, together with the properties of φ (see section 3.2), ultimately

determine the nonstandard Sobolev spaces employed in our analysis. Thus, by em-
ploying this strategy, we can indeed solve for the free surface functions and then
solve the linearized problem (4.1). This leads us to the isomorphism theorems The-
orems 4.9 and 4.11, which then form the backbone of the implicit function scheme
discussed above.
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TRAVELING WAVES: INCOMPRESSIBLE, MULTILAYER CASE 6379

1.5. Outline of the paper. We begin our linear analysis in section 2, where we
study the multilayer traveling Stokes equations subject to stress boundary conditions,
as well as the specified divergence and normal trace problem. These are systems (2.1)
and (2.2), respectively. The analysis of the latter PDE in section 2.1 explores a
necessary and sufficient compatibility condition for the data. The result is a solution
operator and important technical estimates.

Section 2.2 dives into the analysis of the system (2.1). This system is elliptic, and
the well-posedness theory is straightforward. However, the solution operator for this
system plays a foundational role in our subsequent analysis, as they allow us to define
the normal stress to normal Dirichlet ΨDO, νγ , as well as build more complicated
solution operators to other PDE systems.

Section 2.3 next studies the normal stress to normal Dirichlet operator. The
asymptotic developments of its symbol are computed using the energy structure of
the multilayer traveling Stokes system and estimates from the specified divergence
and normal trace problem.

In section 3 we analyze the overdetermined variant of the multilayer traveling
Stokes system. In section 3.1 we characterize spaces of compatible data for which this
PDE admits solutions. Then, in section 3.2, we examine more closely what it means
for data to be compatible and develop a particular measurement of compatibility for
general data, which leads us to the tuple φ appearing in the ΨDEs (1.25). We prove
estimates for φ in frequency space that aid in the solving of these ΨDEs.

Section 4 synthesizes the previous two sections and draws from the specialized
Sobolev space analysis of [15] to build the Banach isomorphism solution operator
associated with the linearized flattened problem. Section 4.1 proves that the proposed
solution operator is well-defined and injective. Sections 4.2 and 4.3 prove surjectivity
in the cases n ⩾ 2 and strictly positive surface tensions and n = 2 and vanishing
surface tensions, respectively.

Section 5 contains the nonlinear analysis and the proofs of the main theorems. We
combine the linear analysis from section 4 with more results on specialized Sobolev
spaces in order to satisfy the hypothesis of the implicit function theorem. Theo-
rems 1.1 and 1.2 then follow.

Finally, in Appendix A, we record some useful facts from analysis used throughout
the paper. These include notions of real valued tempered distributions, (anti)duality
and the Lax–Milgram lemma, tangential Fourier multipliers, and Korn’s inequality.

1.6. Conventions of notation. The standard Lebesgue measure on the Euclid-
ean space Rd is Ld. The symbol K will be used in situations in which both K = R
and K = C are valid.

Whenever the expression a ≲ b appears in a proof of a result, it means that there
is a constant C ∈ R+, depending only on the parameters implicitly and explicitly
quantified in the statement of the result, such that a ⩽ Cb. We also write a ≍ b to
mean a ≲ b and b ≲ a.

Given complex vector spaces X, Y , and Z we say that a mapping B : X×Y → Z
is sesquilinear if it is linear in the left argument and antilinear in the right argument.
The dot product · denotes the standard sesquilinear Euclidean inner product on Cd,
and we write : for the sesquilinear Frobenius inner product on Cd×d. We denote the
divergence and tangential divergence operators with

(1.27) ∇ · f =
n∑

j=1

∂j(f · ej) and (∇∥, 0) · f =
n−1∑
k=1

∂k(f · ek)
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6380 NOAH STEVENSON AND IAN TICE

for appropriate Cn-valued functions f . Note that this does not violate our sesquilin-
earity rule because the arguments of ∇ · f and (∇∥, 0) · f are outside of the domain
of the dot product.

If H is a complex Hilbert space, then H∗ denotes the set of continuous and anti-
linear functionals on H, i.e., the antidual. Sometimes we will need to simultaneously
refer to complex and real Hilbert spaces. When doing so we will use H∗ to refer to the
usual dual space when the base field is R and the antidual when it’s C. Given a com-
plex Hilbert H, the antidual pairing is the sesquilinear form ⟨·, ·⟩H∗,H : H∗ ×H → C
defined via ⟨F, v⟩H∗,H = F (v). The Fourier transform is denoted F [·].

Finally, we set the following function space notation. If U ⊂ Rd1 and V ⊂ Rd2

are open subsets of Euclidean space and r ∈ N we define
(1.28)

Cr(U ;V ) = {f : U → V | f is continuous along with its derivatives of order k

∀ k ∈ N+, k ⩽ r},
Cr

b (U ;V ) = {f ∈ Cr(U ;V ) | max0⩽k⩽r supz∈U |Dkf(z)| <∞},
Cr

0(Rd1 ;Rd2) = {f ∈ Cr
b (Rd1 ;Rd2) | lim|z|→∞max0⩽k⩽r

∣∣Dkf(z)
∣∣ = 0}.

Let η ∈ A (α), s ⩾ 0, and K ∈ {R,C}. If t, a ∈ R we identify

(1.29) Ht(Rn−1 × {a};Kd) ≃ Ht(Rn−1;Kd)

in the obvious way. We say that a vector field is solenoidal if its distributional di-
vergence vanishes. The closed subspace of H1 consisting of solenoidal fields on Ωe[η]
vanishing identically on the lower boundary is denoted

(1.30) 0H
1
σ(Ω[η];Kn) = {f ∈ H1(Ωe[η];Kn) : ∇ · f = 0 and TrΣ0

f = 0}.

Note that functions in this space are required to be in H1 on the entire domain Ωe[η]
(see (1.4)). For s ∈ R+ ∪ {0} we also define
(1.31)

0H
1+s(Ω[η];Kd) = {f ∈ H1(Ωe[η];Kd) : f ↾ Ω[η] ∈ H1+s(Ω[η];Kd) and TrΣ0

f = 0}.

Note that functions in this space are required to be in H1 of the entire domain but
only H1+s on each subdomain Ωℓ[η]. A norm that makes the above vector space
Banach is given by

(1.32) ∥f∥2
0H1+s(Ω[η]) =

m∑
ℓ=1

∥f ↾ Ωℓ[η]∥2H1+s(Ωℓ[η])
.

Observe in particular that taking s = 0 implies that we will also denote 0H
1(Ωe[η];Kd)

with 0H
1(Ω[η];Kd).

2. Multilayer traveling Stokes with stress boundary and jump condi-
tions. In this section and the two succeeding we analyze linear systems of PDEs in the
fixed domains Ωℓ[0] with boundary conditions prescribed on Σj [0] for ℓ ∈ {1, . . . ,m}
and j ∈ {0, 1, . . . ,m}. In the interest of concision we make the following change of
notation: Ωℓ[0] 7→ Ωℓ, Σj [0] 7→ Σj , and Ω[0] 7→ Ω.

Specific to this section of the paper is analysis of the following system of PDEs:

(2.1)



∇ · Sµ (p, u)− γρℓ∂1u = f in Ωℓ, ℓ ∈ {1, . . . ,m} ,
∇ · u = g in Ω,

JSµ (p, u) enKℓ = kℓ on Σℓ, ℓ ∈ {1, . . . ,m} ,
JuKℓ = 0 on Σℓ, ℓ ∈ {1, . . . ,m− 1} ,
u = 0 on Σ0
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TRAVELING WAVES: INCOMPRESSIBLE, MULTILAYER CASE 6381

with unknown velocity u and pressure p, and with prescribed data f , g, and (kℓ)
m
ℓ=1.

The viscosity parameters are µ = {µℓ}mℓ=1 ⊂ R+, {ρℓ}mℓ=1 ⊂ R+ are the density
parameters, and γ ∈ R is the signed wave speed. Out of necessity, in this section
we will work with real and complex valued solutions. We recall from section 1.6 that
K ∈ {R,C} and in the complex case the symbols · and : are sesquilinear, which allows
us to suppress writing complex conjugates in many expressions.

2.1. Specified divergence and multinormal trace problem. Before we dive
into the analysis of (2.1), we first develop a few auxiliary results concerning the
following multinormal trace-divergence problem. That is, given a collection of normal
traces (gℓ)

m
ℓ=1 with gℓ defined on Σℓ, and given f : Ω → K one asks for u : Ω → Kn

satisfying

(2.2)


∇ · u = f in Ω,

u · en = gℓ on Σℓ, ℓ ∈ {1, . . . ,m} ,
u = 0 on Σ0.

In general this problem is overdetermined in the sense that if u is a solution belonging
to an appropriate function space then a nontrivial compatibility condition must hold
among the data f and (gℓ)

m
ℓ=1. We codify this precisely in the following result.

Proposition 2.1 (divergence compatibility estimate). Let u ∈ 0H
1 (Ω;Kn) and

set f = ∇ · u ∈ L2 (Ω;K) and gℓ = TrΣℓ
u · en ∈ H1/2 (Σℓ;K). Then for each

ℓ ∈ {1, . . . ,m} we have the inclusion

(2.3) gℓ (·, aℓ)−
∫
(0,aℓ)

f (·, y) dy ∈ Ḣ−1
(
Rn−1;K

)
.

Moreover, we have the bound

(2.4)
m∑
ℓ=1

[
gℓ −

∫
(0,aℓ)

f

]
Ḣ−1

⩽ 2π

(
m∑
ℓ=1

√
aℓ

)
∥u∥L2 .

Proof. As justified by the absolute continuity on lines characterization of 0H
1 (Ω;Kn),

we may integrate the equation ∇·u = f in the vertical variable over (0, aℓ) and employ
the second fundamental theorem of calculus. This results in the identity

(2.5)

∫
(0,aℓ)

f = gℓ + (∇∥, 0) ·
∫
(0,aℓ)

u.

Therefore, by Hölder’s inequality and Tonelli’s theorem,

(2.6)

[
gℓ −

∫
(0,aℓ)

f

]2
Ḣ−1

⩽ 4π2

∫
Rn−1

∣∣∣∣∣
∫
(0,aℓ)

u

∣∣∣∣∣
2

⩽ 4π2aℓ ∥u∥2L2 .

The stated estimate follows.

The remainder of this subsection is devoted to the converse of the previous lemma:
the satisfaction of this compatibility condition is also sufficient in guaranteeing the
solvability of the PDE (2.2). The first ingredient we require is some right inverse to
the divergence operator that enforces the vanishing trace on the lower boundary Σ0.
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Lemma 2.2 (A right inverse to the divergence). Let a, b ∈ R with a < b and set
U = Rn−1 × (a, b). There exists a linear and continuous mapping ΠU : L2 (U ;K) →
0H

1 (U ;Kn) such that ∇ ·ΠUf = f for all f ∈ L2 (U ;K).

Proof. The existence of such an operator in the case K = R is well known. See,
for instance, [15, Proposition 2.1]. In the instance that K = C one may simply take
the real valued operator to act on real and imaginary parts of the data separately in
the obvious way.

Next, we may explicitly construct a solution operator to (2.2) in the special case
of f = 0 and m = 1.

Lemma 2.3 (solenoidal extension operator). Let W = Rn−1 × (a, b) and Σ =
Rn−1 × {b} for a, b ∈ R, a < b. There exists a bounded linear operator PW :
H1/2 (Σ;K) ∩ Ḣ−1 (Σ) → 0H

1 (W ;Kn) such that ∇ · PW g = 0 and TrΣPW g · en = g
for all g ∈ H1/2 (Σ;K) ∩ Ḣ−1 (Σ;K).

Proof. It is sufficient to consider the case where a = 0 and b ∈ R+. We explicitly
construct the solution operator with the horizontal Fourier transform. Given g ∈
Ḣ−1 (Σ;K) ∩H1/2 (Σ;K) we define the auxiliary functions v : Rn−1 × (0, b) → Cn−1

and w : Rn−1 × (0, b) → C via

(2.7) v (ξ, t) = ĝ (ξ)
iξ sinh (t |ξ|)

2π |ξ| (cosh (b |ξ|)− 1)
and w (ξ, t) = ĝ (ξ)

cosh (t |ξ|)− 1

cosh (b |ξ|)− 1
.

We propose that setting PW g = F−1 (v, w) gives the desired solution operator. In
order to check that this is well-defined and continuous, it is sufficient to use Parseval’s
and Tonelli’s theorems and observe the following four computations. First,

∥∥F−1v∥∥2
L2Ḣ1 =

∫
(0,b)

∫
Rn−1

|ξ|2 |ĝ (ξ)|2 sinh (t |ξ|)2

(cosh (b |ξ|)− 1)
2 dξ dt

=
1

4

∫
Rn−1

max{|ξ| , |ξ|−2} |ĝ (ξ)|2 min{1, |ξ|3}−2b |ξ|+ sinh (2b |ξ|)
(cosh (b |ξ|)− 1)

2 dξ

⩽ c0 (b) ∥g∥2Ḣ−1∩H1/2 .

(2.8)

Second,

∥∥F−1v∥∥2
0H1L2 =

1

4π2

∫
(0,b)

∫
Rn−1

|ξ|2 |ĝ (ξ)|2 cosh (t |ξ|)2

(cosh (b |ξ|)− 1)
2 dξ dt

=
1

16π2

∫
Rn−1

max{|ξ| , |ξ|−2} |ĝ (ξ)|2 min{1, |ξ|3}2b |ξ|+ sinh (2b |ξ|)
(cosh (b |ξ|)− 1)

2 dξ

⩽ c1 (b) ∥g∥2Ḣ−1∩H1/2 .

(2.9)
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Third,

∥∥F−1w∥∥2
L2Ḣ1

= 4π2

∫
(0,b)

∫
Rn−1

|ξ|2 |ĝ (ξ)|2 (cosh (t |ξ|)− 1)
2

(cosh (b |ξ|)− 1)
2 dξ dt

= π2

∫
Rn−1

max{|ξ| , |ξ|−2} |ĝ (ξ)|2 min{1, |ξ|3}6b |ξ| − 8 sinh (b |ξ|) + sinh (2b |ξ|)
(cosh (b |ξ|)− 1)

2 dξ

⩽ c2 (b) ∥g∥2Ḣ−1∩H1/2 .

(2.10)

Fourth,
(2.11)∥∥F−1w∥∥2

0H1L2 =

∫
(0,b)

∫
Rn−1

|ξ|2 |ĝ (ξ)|2 sinh (t |ξ|)2

(cosh (b |ξ|)− 1)
2 dξ dt ⩽ c0 (b) ∥g∥2Ḣ−1∩H1/2 .

It is straightforward to check that∇·PW g = 0, TrΣPW g·en = g, and TrRn−1×{0}PW g =
0. By Proposition A.2 and Remark A.4 it is also ensured that PW g is real valued
whenever g is real valued. This completes the proof.

We may piece together the operators from Lemmas 2.3 and 2.2 to solve prob-
lem (2.2) in the single prescribed normal trace case, m = 1.

Proposition 2.4 (solution operator to (2.2): single layer case). Let a, b ∈ R
with a < b. Define the Hilbert space
(2.12)
W (a, b) =

{
(f, g) ∈ L2(Rn−1 × (a, b) ;K)×H1/2(Rn−1 × {b} ;K) : ∥(f, g)∥W <∞

}
for the norm

(2.13) ∥(f, g)∥2W = ∥f∥2L2 + ∥g∥2H1/2 +

[
g −

∫
(a,b)

f

]2
Ḣ−1

.

There exists a bounded linear Qa,b : W (a, b) → 0H
1(Rn−1 × (a, b) ;Kn) such that

∇ ·Qa,b (f, g) = f and TrRn−1×{b}Q
a,b (f, g) · en = g.

Proof. Set W = Rn−1 × (a, b) and Σ = Rn−1 × {b}. We propose that the assign-
ment

(2.14) Qa,b (f, g) = ΠW f + PW [g − TrΣΠW f · en] for (f, g) ∈ W (a, b)

has the desired properties. Well-definedness and continuity of Qa,b are assured as
soon as one observes the bound

[g − en · TrΣΠW f ]Ḣ−1 ⩽

[
g −

∫
(a,b)

f

]
Ḣ−1

+

[
en · TrΣΠW f −

∫
(a,b)

f

]
Ḣ−1

⩽ ∥(f, g)∥W + 2π
√
b− a ∥ΠW f∥L2 ≲ ∥(f, g)∥W .

(2.15)

Note that in the second to last inequality above we have employed the divergence
compatibility estimate from Proposition 2.1.

We need one final lemma before we solve the general case of problem (2.2).
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Lemma 2.5. Let a, b ∈ R with 0 < a < b. There exists a bounded linear extension
operator

(2.16) Ea,b : 0H
1(Rn−1 × (0, a) ;Kn) → H1

0 (Rn−1 × (0, b) ;Kn).

That is, Ea,bf = f on Rn−1 × (0, a) for all f ∈ 0H
1(Rn−1 × (0, a);Kn).

Proof. We construct Ea,b via a simple reflection. Given f ∈ 0H
1(Rn−1×(0, a) ;Kn)

we define
(2.17)

Ea,bf (x, y) =

{
f (x, y) when (x, y) ∈ Rn−1 × (0, a) ,

f (x, y) = f (x, a− a (y − a) /(b− a)) when (x, y) ∈ Rn−1 × (a, b) .

Thanks to the absolute continuity on lines characterization of H1, we observe that
Ea,b takes values within the claimed target. This extension is also continuous since
bi-Lipschitz change of coordinates boundedly preserve H1 inclusion.

We now have tools that are sufficient in solving the general case of problem (2.2).

Theorem 2.6 (solution operator to (2.2): multilayer case). We define the ap-
propriate Hilbert space for data in problem (2.2). For α = {aℓ}mℓ=1 ⊂ R+ with
0 < a1 < · · · < am we define
(2.18)
Xm (α) = {(f, {gℓ}mℓ=1) ∈ L2 (Ω;K)×

∏m
ℓ=1H

1/2 (Σℓ;K) : ∥(f, (gℓ)mℓ=1)∥Xm(α) <∞}

for the norm

(2.19) ∥(f, (gℓ)mℓ=1)∥2Xm(α) = ∥f∥2L2 +
m∑
ℓ=1

∥gℓ∥2H1/2 +

[
gℓ −

∫
(0,aℓ)

f

]2
Ḣ−1

 .

There exists a linear and continuous mapping Qm : Xm (α) → 0H
1 (Ω;Kn) such that

∇·Qm (f, (gℓ)
m
ℓ=1) = f and for each ℓ ∈ {1, . . . ,m} one has TrΣℓ

Qm (f, (gℓ)
m
ℓ=1) ·en =

gℓ for all data (f, (gℓ)
m
ℓ=1) ∈ Xm (α).

Proof. We construct the desired solution operator by way of mathematical in-
duction on the number of specified normal traces. The precise statement to be
proved, which we denote by statement(m) for m ∈ N+, is as follows: for all strictly
increasing sequences α = {aℓ}mℓ=1 ⊂ R+ there exists a bounded linear mapping
Qm : Xm (α) → 0H

1 (Ω;Kn) that is a solution operator to problem (2.2).
The case m = 1 is handled by Proposition 2.4. Now suppose that m ∈ N+ is such

that statement(m) holds true. We will prove that statement(m+ 1) is true.

Let β = {bℓ}m+1
ℓ=1 ⊂ R+ be any sequence such that 0 < b1 < · · · < bm < bm+1 and

set α = {bℓ}mℓ=1. By hypothesis, there is a solution operator to problem (2.2), Qm,
for the domain Ωm = Rn−1 × (0, bm) and boundary regions Σℓ = Rn−1 × {bℓ}, for
ℓ ∈ {1, . . . ,m}. Set Ωm+1 = Rn−1 × (0, bm+1) and Σm+1 = Rn−1 × {bm+1}.

We propose to define, for (f, (gℓ)
m+1
ℓ=1 ) ∈ Xm+1 (β),

Qm+1(f, (gℓ)
m+1
ℓ=1 )

= Ebm,bm+1Qm(f1Ωm
, (gℓ)

m
ℓ=1)

+Qbm,bm+1(f1Ωm+1\Ωm
−∇ · Ebm,bm+1Qm(f1Ωm

, (gℓ)
m
ℓ=1), gm+1),

(2.20)

where Ebm,bm+1 is the extension operator from Lemma 2.5 and Qbm,bm+1 is the so-
lution operator from the single-layer problem from Proposition 2.4. First, we check
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that this assignment is well-defined. It is clear that (f1Ωm
, (gℓ)

m
ℓ=1) ∈ Xm (α) with

∥(f1Ωm
, (gℓ)

m
ℓ=1)∥Xm ⩽ ∥(f, (gℓ)m+1

ℓ=1 )∥Xm+1 . Hence the first term appearing on the
right-hand side of the equality in (2.20) is a well-defined and continuous assignment.
To check that these same properties hold for the second term too, we observe the
following compatibility estimate:[

gm+1 −
∫
(bm,bm+1)

f +

∫
(bm,bm+1)

∇ · Ebm,bm+1Qm(f1Ωm
, (gℓ)

m
ℓ=1)

]
Ḣ−1

⩽

[
gm+1 − gm −

∫
(bm,bm+1)

f

]
Ḣ−1

+

[
gm +

∫
(bm,bm+1)

∇ · Ebm,bm+1Qm(f1Ωm
, (gℓ)

m
ℓ=1)

]
Ḣ−1

⩽ 2∥(f, (gℓ)m+1
ℓ=1 )∥Xm+1

+ 2π
√
bm+1 − bm∥Ebm,bm+1Qm(f1Ωm

, (gℓ)
m
ℓ=1)∥L2 .

(2.21)

In the above we have employed the divergence compatibility estimate from Proposi-
tion 2.1 and the boundedness of the extension operator Ebm,bm+1 from Lemma 2.5.
Hence Qm+1 is well-defined and continuous. In the set Ωm we have the equality
Qm = Qm+1. The second term in the definition of Qm+1, (2.20), vanishes on Σm and
the first term in the definition vanishes on Σm+1; therefore, Qm+1 is a solution oper-
ator to the problem (2.2) in the (m+1)-prescribed normal trace case. This completes
the induction.

2.2. Isomorphism associated with multilayer traveling Stokes. In this
subsection we construct a solution operator to the multilayer traveling Stokes problem
with stress boundary conditions in (2.1). The validity of this section’s results over
the fields R and C is integral to the proof of Theorem 2.19 in the next subsection.
We remind the reader that the Euclidean inner product is sesquilinear with the left
argument the linear one and that essential information regarding antiduality can be
found in Appendix A.2.

We begin by studying the weak formulation and showing the existence of weak
solutions. First we focus on the existence of a pressure with the following result.

Lemma 2.7 (image of the gradient is the annihilator of solenoidal fields). Suppose
that F ∈ (0H

1 (Ω;Kn))∗ vanishes on solenoidal fields. Then, there exists p ∈ L2 (Ω;K)
such that for all u ∈ 0H

1 (Ω;Kn)

(2.22) ⟨F, u⟩(0H1)∗,0H1 =

∫
Ω

p · (∇ · u).

Proof. The case K = R is handled by [15, Corollary 2.3]. We will show this
is sufficient to justify the case K = C as well. Given an antilinear functional F ∈
(0H

1 (Ω;Cn))∗ we define the R-linear functionals FRe, FIm ∈ (0H
1 (Ω;Rn))∗ via

(2.23) ⟨FRe, v⟩ = Re [⟨F, v⟩] , ⟨FIm, v⟩ = Re [⟨F, iv⟩] for v ∈ 0H
1 (Ω;Rn) .

Observe that if F annihilates solenoidal fields, then FRe and FIm satisfy the hypothesis
of the lemma for the R-valued case. Therefore there are q, r ∈ L2 (Ω;R) such that for
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all v, w ∈ 0H
1 (Ω;Rn)

Re [⟨F, v + iw⟩] = ⟨FRe, v⟩+ ⟨FIm, w⟩ =
∫
Ω

q∇ · v + r∇ · w

= Re

[∫
Ω

(q + ir) · (∇ · (v + iw))

]
.

(2.24)

This suggests that we set p ∈ L2 (Ω;C) via p = q + ir. It remains to check that
G ∈ (0H

1 (Ω;Cn))∗ defined via ⟨G, u⟩ = ⟨F, u⟩−
∫
Ω
p · (∇·u) ∈ C vanishes identically.

The above computation shows that Re [⟨G, u⟩] = 0 for all u. By antilinearity, the real
part of G determines G entirely, i.e., for all u ∈ 0H

1 (Ω;Cn) it holds that ⟨G, u⟩ =
Re [⟨G, u⟩] + iRe [⟨G, iu⟩]. Thus G = 0 and the proof is complete.

The truth of the two subsequent results in the R-valued case is a consequence of
[15, Theorem 2.4]. We include a proof here in the K-valued case for K ∈ {R,C}.

Lemma 2.8. For γ ∈ R+ we define the sesquilinear (bilinear if K = R) mapping
Bγ : 0H

1(Ω;Kn)× 0H
1(Ω;Kn) → C via

(2.25) Bγ(w, v) =
m∑
ℓ=1

∫
Ωℓ

µℓ

2
Dw : Dv − γρℓ∂1w · v.

Then we have the identity

(2.26) Re [Bγ(w,w)] =
m∑
ℓ=1

∫
Ωℓ

µℓ

2
|Dw|2 ∀w ∈ 0H

1(Ω;Kn).

In particular, Bγ is coercive over the H1-norm.

Proof. We observe that

−γ
m∑
ℓ=1

∫
Ωℓ

ρℓ∂1w · w = γ
m∑
ℓ=1

∫
Ωℓ

ρℓw · ∂1w

= γ
m∑
ℓ=1

∫
Ωℓ

ρℓ∂1w · w ⇒ γ
m∑
ℓ=1

∫
Ωℓ

ρℓ∂1w · w ∈ iR.
(2.27)

Equation (2.26) follows. We now deduce that Bγ is H1-coercive by Korn’s inequality
(see Appendix A.4).

We now use the preceding lemmas to construct weak solutions to (2.1).

Proposition 2.9 (existence and uniqueness of weak solutions to (2.1)). For
γ ∈ R we define the mapping

(2.28) χγ : L2(Ω;K)× 0H
1(Ω;Kn) → L2(Ω;K)× (0H

1(Ω;Kn))∗

via χγ (p, u) = (∇ · u,Eγ(p, u)) ,

where the antilinear functional Eγ(p, u) ∈ (0H
1(Ω;Kn))∗ is defined via

⟨Eγ(p, u), v⟩(0H1)∗,0H1 = −
∫
Ω

p · (∇ · v) +
m∑
ℓ=1

∫
Ωℓ

µℓ

2
Du : Dv − γρℓ∂1u · v

= −
∫
Ω

Sµ (p, u) : ∇v − γ
m∑
ℓ=1

∫
Ωℓ

ρℓ∂1u · v
(2.29)

for v ∈ 0H
1 (Ω;Kn). Then χγ is a Hilbert isomorphism for all γ ∈ R.
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Proof. We begin by showing that χγ is a surjection. Thanks to the observation
that the sesquilinear (bilinear when K = R) form Bγ is bounded paired with the
coercive estimate of Lemma 2.8, we are free to invoke the Lax–Milgram lemma (see
Proposition A.5) for Bγ on any closed subspace of 0H

1 (Ω;Kn).
Let (g, F ) ∈ L2 (Ω;K) × (0H

1 (Ω;Kn))∗ be any data pair. Then Lax–Milgram
implies that there exists a unique w ∈ 0H

1
σ (Ω;Kn) such that for all v ∈ 0H

1
σ (Ω;Kn)

(2.30) Bγ (w, v) = −Bγ (ΠΩg, v) + ⟨F, v⟩(0H1)∗,0H1 ,

where ΠΩ is the bounded right inverse to the divergence granted by Lemma 2.2. Next,
we apply Lemma 2.7 to find that there is a pressure p ∈ L2 (Ω;K) such that for all
v ∈ 0H

1 (Ω;Kn)

(2.31) Bγ (w, v) = −Bγ (ΠΩg, v) + ⟨F, v⟩(0H1)∗,0H1 +

∫
Ω

p · (∇ · v).

We may now conclude that χγ (p, w +ΠΩg) = (g, F ), showing this mapping to be a
surjection.

On the other hand, suppose (p, u) ∈ L2 (Ω;K) × 0H
1 (Ω;Kn) satisfy χγ (p, u) =

(g, F ) . Then we decompose u = w + ΠΩg and take v = w ∈ 0H
1
σ (Ω;Kn) in iden-

tity (2.29) to see that
(2.32)

⟨F,w⟩(0H1)∗,0H1 = ⟨Eγ(p, u), w⟩(0H1)∗,0H1 = Bγ(u,w) = Bγ(u, u)−Bγ(u,ΠΩg).

Again employing Lemma 2.2, we deduce from this that

(2.33) ∥u∥2
0H1 ≲ Bγ(u, u) ≲ (∥g∥L2 + ∥F∥(0H1)∗) ∥u∥0H1 ,

and so ∥u∥
0H1 ≲ ∥g∥L2 + ∥F∥(0H1)∗ .

We then take v = ΠΩp in (2.29) and use (2.33) to deduce that

(2.34) ∥p∥L2 ≲ ∥u∥
0H1 + ∥F∥(0H1)∗ ≲ ∥g∥L2 + ∥F∥(0H1)∗ .

Estimates (2.33) and (2.34) show that χγ is also an injection.

The following lemma will be useful in the next sections where it will be important
to know that χγ

−1 commutes with tangential multipliers (see Appendix A.3).

Lemma 2.10. Let γ ∈ R and ω ∈ L∞(Rn−1;C), and consider the tangential
multiplier Mω as defined in Definitions A.11 and A.13. If (g, F ) ∈ L2 (Ω;C) ×
(0H

1 (Ω;Cn))∗ and (p, u) = χγ
−1 (g, F ), then (Mωp,Mωu) = χγ

−1 (Mωg,MωF ).

Proof. We simply check that Mωg = Mω∇ · u = ∇ ·Mωu and note that if v ∈
(0H

1 (Ω;Cn))∗, then

⟨MωF, v⟩(0H1)∗,0H1 = ⟨F,Mωv⟩(0H1)∗,0H1

=

∫
Ω

Sµ (Mωp,Mωu) : ∇v − γ
m∑
ℓ=1

∫
Ωℓ

ρℓ∂1Mωu · v.
(2.35)

Therefore, χγ (Mωp,Mωu) = (Mωg,MωF ).

Next, we examine the regularity of weak solutions. We make the following nota-
tion.
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6388 NOAH STEVENSON AND IAN TICE

Definition 2.11. For s ∈ R+ ∪ {0} we define the continuous and linear maps

(2.36) O :
∏m

ℓ=1H
−1/2(Σℓ;Kn) → (0H

1(Ω;Kn))∗,

P : Hs(Ω;Kn)×
m∏
ℓ=1

H1/2+s(Σℓ;Kn) → (0H
1(Ω;Kn)∗

with actions on v ∈ 0H
1(Rn;Kn) given by

(2.37) ⟨O(ϕℓ)
m
ℓ=1, v⟩0H1∗,0H1 =

m∑
ℓ=1

⟨ϕℓ,TrΣℓ
v⟩H−1/2,H1/2

for (ϕℓ)
m
ℓ=1 ∈

∏m
ℓ=1H

−1/2(Σℓ;Kn), and

(2.38) ⟨P(f, (kℓ)
m
ℓ=1), v⟩(0H1)∗,0H1 =

∫
Ω

f · v +
m∑
ℓ=1

∫
Σℓ

kℓ · v

for f ∈ Hs(Ω;Kn) and (kℓ)
m
ℓ=1 ∈

∏m
ℓ=1H

1/2+s(Σℓ;Kn).

We can now state our regularity result.

Proposition 2.12 (regularity of weak solutions to (2.1)). Let s ∈ R+ ∪{0} and

(2.39) (g, f, (kℓ)
m
ℓ=1) ∈ H1+s (Ω;K)×Hs (Ω;Kn)×

∏m
ℓ=1H

1/2+s (Σℓ;Kn) .

Suppose that (p, u) ∈ L2 (Ω;K)×0H
1 (Ω;Kn) are such that χγ (p, u) = (g,P(f, (kℓ)

m
ℓ=1)).

Then, in fact, we also have the inclusions p ∈ H1+s (Ω;K) and u ∈ 0H
2+s (Ω;Kn),

as well as the universal estimate
(2.40)

m∑
ℓ=1

[
∥p∥H1+s(Ωℓ)

+ ∥u∥H2+s(Ωℓ)

]
≲

m∑
ℓ=1

[
∥g∥H1+s(Ωℓ)

+ ∥f∥Hs(Ωℓ)
+ ∥kℓ∥H1/2+s

]
.

Finally the pair (p, u) are a strong solution to the multilayer traveling Stokes problem
with stress boundary conditions in (2.1) with data tuple (g, f, (kℓ)

m
ℓ=1).

Proof. This is a standard induction and interpolation argument based on ap-
plying horizontal difference quotients to derive control of horizontal derivatives and
then exploiting the elliptic structure of the Stokes operator to control the vertical
derivatives. For a sketch we refer the reader to the real valued one layer case in [15,
Theorem 2.5].

We may now synthesize the previous two propositions to state the isomorphism
of Hilbert spaces associated with problem (2.1).

Theorem 2.13 (existence and uniqueness of strong and classical solutions to (2.1)).
Let s ∈ R+ ∪ {0} and γ ∈ R. Define the bounded linear operator
(2.41)
Φγ : H1+s (Ω;K)×0H

2+s (Ω;Kn) → H1+s (Ω;K)×Hs (Ω;Kn)×
∏m

ℓ=1H
1/2+s (Σℓ;Kn)

with the assignment

(2.42) Φγ (p, u) = (∇ · u,
∑m

ℓ=1 1Ωℓ
[∇ · Sµ (p, u)− γρℓ∂1u] , (JSµ (p, u) enKℓ)

m
ℓ=1) .

Then Φγ is a Hilbert isomorphism.

Proof. Proposition 2.9 shows Φγ to be injective. Propositions 2.9 and 2.12 show
that Φγ is a surjection.
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2.3. Analysis of the normal stress to normal Dirichlet ΨDO. In this
subsection we study a ΨDO built from Φγ . We make the following definition.

Definition 2.14 (normal stress to normal Dirichlet ΨDO). Let γ ∈ R and s ∈
R+∪{−1, 0}. We define the normal stress to normal Dirichlet ΨDO to be the bounded
linear mapping νγ :

∏m
ℓ=1H

1/2+s (Σℓ;K) →
∏m

ℓ=1H
3/2+s (Σℓ;K) given by

(2.43) νγ(ψℓ)
m
ℓ=1 = (TrΣℓ

u · en)mℓ=1,

where (p, u) ∈ H1+s (Ω;K) × 0H
2+s (Ω;Kn) are the unique solution to the normal

stress problem:

(2.44)



∇ · Sµ (p, u) + γρℓ∂1u = 0 in Ωℓ, ℓ ∈ {1, . . . ,m} ,
∇ · u = 0 in Ω,

JSµ (p, u) enKℓ = ψℓen on Σℓ, ℓ ∈ {1, . . . ,m} ,
JuKℓ = 0 on Σℓ, ℓ ∈ {1, . . . ,m− 1} ,
u = 0 on Σ0.

In other words, (p, u) = χ−γ
−1(0,O(ψℓen)

m
ℓ=1) for the operators O and χ−γ

−1 from
Definition 2.11 and Proposition 2.9, respectively (note the minus sign preceding γ).

Remark 2.15. The boundedness of νγ is a consequence of the boundedness of O,
Proposition 2.9, and Theorem 2.13. The restriction s ∈ R+∪{−1, 0} is not important.
By interpolation theory we are free to take any s ∈ [−1,∞) in the previous definition
statement.

We begin by proving that the Fourier transform diagonalizes νγ . This gives us a
representation of this linear mapping as a frequency space multiplication operator.

Proposition 2.16 (diagonalization of νγ). There exists a bounded and measur-

able matrix field nγ : Rn−1 → Cm×m such that nγ (ξ) = nγ (−ξ) for a.e. ξ ∈ Rn−1

and for all s ∈ [−1,∞) and all (ψℓ)
m
ℓ=1 ∈

∏m
ℓ=1H

1/2+s (Σℓ;K) we have the equality

(2.45) F [νγ(ψℓ)
m
ℓ=1] (ξ) = nγ (ξ)F [(ψℓ)

m
ℓ=1] (ξ) for a.e. ξ ∈ Rn−1.

Moreover, there exists a constant c ∈ R+, depending only on the physical parameters,
such that for a.e. ξ ∈ Rn−1 we have |nγ (ξ)| ⩽ c(1 + |ξ|2)−1/2.

Proof. Let j, k ∈ {1, . . . ,m}. Define νj,k
γ : H−1/2 (Σk;K) → H1/2 (Σj ;K) via

νj,k
γ ψ = TrΣj

u · en where (p, u) are a solution pair to the normal stress PDE (2.44)
with normal stress ψ on the surface Σk. In other words,

(2.46) (p, u) = χ−γ
−1(0,O(ψδk,ℓen)

m
ℓ=1) for δ·,· the Kronecker delta.

It is clear that this assignment is bounded and, by Lemma 2.10, translation invari-
ant. We are in a position to apply Proposition A.10 to obtain a measurable function

nj,k
γ : Rn−1 → C such that nj,k

γ (ξ) = nj,k
γ (−ξ) for a.e. ξ ∈ Rn−1, that obeys the

estimate

(2.47) esssup{(1 + |ξ|2)−1/2|nj,k
γ (ξ)| : ξ ∈ Rn−1} ⩽ 2∥νj,k

γ ∥L(H−1/2;H1/2),

and satisfies the identity F [νj,k
γ ψ] = nj,k

γ F [ψ] for all ψ ∈ H−1/2(Σk;K).
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6390 NOAH STEVENSON AND IAN TICE

We set nγ : Rn−1 → Cm×m via nγ(ξ)j,k = nj,k
γ (ξ) for ξ ∈ Rn−1 and j, k ∈

{1, . . . ,m}. The following computation verifies that this matrix field is the sought
after spectral representation:

F [νγ(ψℓ)
m
ℓ=1] =

m∑
j,k=1

(F [νγ(ψℓδℓ,k)
m
ℓ=1] · ej)ej =

m∑
j,k=1

(F [νj,k
γ ψk] · ej)ej(2.48)

=
m∑

j,k=1

(nj,k
γ F [ψk] · ej)ej =

m∑
j,k=1

(nγj,kF [ψk] · ej)ej

= nγF [(ψℓ)
m
ℓ=1].

We next observe how the multiplier nγ changes under the map γ 7→ −γ.
Proposition 2.17 (adjoint of the normal stress to normal Dirichlet multiplier).

If γ ∈ R+ then for a.e. ξ ∈ Rn−1 we have the adjoint identity nγ(ξ)
∗
= n−γ(ξ).

Proof. Let (ψℓ)
m
ℓ=1, (ϕℓ)

m
ℓ=1 ∈

∏m
ℓ=1H

−1/2(Σℓ;C) and denote (p, u) = χ−γ
−1

(0,O(ψℓen)
m
ℓ=1), (q, v) = χγ

−1(0,O(ϕℓen)
m
ℓ=1), where we recall that χγ and χ−γ are

defined in Proposition 2.9 and O is from Definition 2.11. By testing v in the weak
formulation for (p, u), recalling that ∇ · v = ∇ · u = 0, and integrating by parts, we
obtain the identities

⟨(ψℓ)
m
ℓ=1, (TrΣℓ

v · en)mℓ=1⟩H−1/2,H1/2

=
m∑
ℓ=1

∫
Ωℓ

µℓ

2
Du : Dv + γρℓ∂1u · v =

m∑
ℓ=1

∫
Ωℓ

µℓ

2
Dv : Du− γρℓ∂1v · u

= ⟨(ϕℓ)mℓ=1, (TrΣℓ
u · en)mℓ=1⟩H−1/2,H1/2 = ⟨(TrΣℓ

u · en)mℓ=1, (ϕℓ)
m
ℓ=1⟩H1/2,H−1/2 .

(2.49)

Hence, we may apply Propositions A.6 and 2.16 along with Definition 2.14 to deduce
that

(2.50)

∫
Rn−1

F [(ψℓ)
m
ℓ=1] · n−γF [(ϕℓ)

m
ℓ=1] =

∫
Rn−1

nγF [(ψℓ)
m
ℓ=1] · F [(ϕℓ)

m
ℓ=1].

Let a, b ∈ Cm and ψ, ϕ ∈ L2(Rn−1;C). In (2.50) we are free to take (ψℓ)
m
ℓ=1 = (aℓψ)

m
ℓ=1

and (ϕℓ)
m
ℓ=1 = (bℓϕ)

m
ℓ=1 to see that

(2.51)

∫
Rn−1

(a · n−γb− nγa · b)F [ψ] · F [ϕ] = 0.

As ϕ and ψ are arbitrary, we deduce that, up to a null set depending on a and b, we
may equate a · n−γb = nγa · b. By letting a and b range over the members of the
standard basis of Cm and recalling that a countable union of null sets is, again, a null
set we conclude that nγ(ξ)

∗
= n−γ(ξ) for a.e. ξ ∈ Rn−1.

The remainder of this subsection is devoted to a more precise asymptotic devel-
opment of the matrix field nγ as ξ → 0 and ξ → ∞, which we achieve with energy
estimates. Recall that from Proposition 2.9 and trace theory we have the equivalence

(2.52) ∥(ψℓ)
m
ℓ=1∥H−1/2 ≍ ∥u∥

0H1 + ∥p∥L2

for (ψℓ)
m
ℓ=1 ∈

∏m
ℓ=1H

−1/2(Σℓ;K) and (p, u) = χ−γ
−1(0,O(ψℓen)

m
ℓ=1). Our next result

shows that if we weaken the control of (ψℓ)
m
ℓ=1 at low frequencies on the Fourier side,

then we can remove p from the right. The resulting equivalence will play a key role
in our asymptotic developments of nγ .
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Theorem 2.18 (normal stress and velocity energy equivalence). For γ ∈ R there
exists a constant c ∈ R+, depending also on the remaining physical parameters, for
which we have the equivalence

(2.53) c−1 ∥u∥
0H1 ⩽

(∫
Rn−1

min{|ξ|2 , |ξ|−1}|F [(ψℓ)
m
ℓ=1] (ξ) |2 dξ

)1/2

⩽ c ∥u∥
0H1

for all data (ψℓ)
m
ℓ=1 ∈

∏m
ℓ=1H

−1/2 (Σℓ;K), where (p, u) ∈ L2 (Ω;K)× 0H
1 (Ω;Kn) is

the uniquely determined weak solution to the normal stress problem in (2.44), i.e.,
(p, u) = χ−γ

−1(0,O(ψℓen)
m
ℓ=1) for the operators O and χ−γ

−1from Definition 2.11
and Proposition 2.9.

Proof. We begin by proving the left inequality of (2.53). By the definition of
(p, u) = χ−γ

−1(0,O(ψℓen)
m
ℓ=1) we have that for all v ∈ 0H

1(Ω;Kn)

(2.54)
m∑
ℓ=1

∫
Ωℓ

µℓ

2
Du : Dv+ γρℓ∂1u · v =

∫
Ω

p · (∇ · v) +
m∑
ℓ=1

⟨ψℓ,TrΣℓ
v · en⟩H−1/2,H1/2 .

Taking v = u in this equation and taking the real part (see Lemma 2.8) implies that

∥u∥2
0H1 ≲ Re

[
m∑
ℓ=1

⟨ψℓ,TrΣℓ
u · en⟩H−1/2,H1/2

]
= Re

[∫
Rn−1

F [(ψℓ)
m
ℓ=1] · F [(TrΣℓ

u · en)mℓ=1]

]
⩽

(∫
Rn−1

min{|ξ|2 , |ξ|−1}|F [(ψℓ)
m
ℓ=1] (ξ) |2 dξ

)1/2

×
(∫

Rn−1

max{|ξ|−2 , |ξ|}|F [(TrΣℓ
u · en)mℓ=1] (ξ) |2 dξ

)1/2

,

(2.55)

where we have used that u is solenoidal, Korn’s inequality (see Appendix A.4), and the
(anti)duality of Sobolev spaces (see Appendix A.2). Next we use the boundedness of
traces and the divergence compatibility estimate of Proposition 2.1 to further bound

(2.56)

(∫
Rn−1

max{|ξ|−2 , |ξ|}|F [(TrΣℓ
u · en)mℓ=1] (ξ) |2 dξ

)1/2

⩽ ∥(TrΣℓ
u · en)mℓ=1∥H1/2∩Ḣ−1 ≲ ∥u∥

0H1 .

Combining estimates (2.55) and (2.56) gives the left-hand inequality of (2.53).
We now prove the right inequality of (2.53). For ℓ ∈ {1, . . . ,m} define ϕℓ ∈

H1/2 (Σℓ;K) ∩ Ḣ−1 (Σℓ;K) via

(2.57) F [ϕℓ] (ξ) = min{|ξ|2 , |ξ|−1}F [ψℓ] (ξ) for ξ ∈ Rn−1.

We bound the norm of ϕℓ as follows:

∥ϕℓ∥2H1/2∩Ḣ−1 ⩽ 2

∫
Rn−1

max{|ξ|−2 , |ξ|}|min{|ξ|2 , |ξ|−1}F [ψℓ] (ξ) |2 dξ

= 2

∫
Rn−1

min{|ξ|2 , |ξ|−1} |F [ψℓ] (ξ)|2 dξ.

(2.58)
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We are in a position to apply Theorem 2.6 to obtain Qm (0, (ϕℓ)
m
ℓ=1) ∈ 0H

1 (Ω;Kn)
with the estimate

∥Qm (0, (ϕℓ)
m
ℓ=1)∥20H1 ≲

m∑
ℓ=1

∥ϕℓ∥2H1/2∩Ḣ−1

≲
∫
Rn−1

min{|ξ|2 , |ξ|−1} |F [(ψℓ)
m
ℓ=1] (ξ)|

2
dξ.

(2.59)

Testing v = Qm (0, (ϕℓ)
m
ℓ=1) in the weak formulation of the normal stress PDE in

(2.54) and using Proposition A.6 gives the identity

(2.60)
m∑
ℓ=1

∫
Rn−1

min{|ξ|2 , |ξ|−1} |F [ψℓ] (ξ)|2 dξ

=
m∑
ℓ=1

∫
Ωℓ

µℓ

2
Du : DQm (0, (ϕℓ)

m
ℓ=1) + γρℓ∂1u ·Qm (0, (ϕℓ)

m
ℓ=1) .

The right inequality of (2.53) now follows by applying the Cauchy–Schwarz inequality
to the right-hand side of (2.60) and then utilizing estimate (2.59).

We are now in a position for finer asymptotic development of the symbol to the
normal stress to normal Dirichlet ΨDO.

Theorem 2.19 (asymptotics of normal stress to normal Dirichlet multiplier).
For each γ ∈ R there exists a constant C ∈ R+, depending only on the physical
parameters, such that for a.e. ξ ∈ Rn−1 the following hold.

(1) We have the estimate |nγ (ξ)| ⩽ Cmin{|ξ|2 , |ξ|−1}.
(2) Letting ∂BC (0, 1) denote the unit sphere of Cn−1, we have the bound

(2.61) min
a∈∂BC(0,1)

Re [nγ (ξ) a · a] ⩾ C−1 min{|ξ|2 , |ξ|−1}.

(3) The matrix nγ (ξ) is invertible, and |nγ (ξ)
−1 | ⩽ Cmax{|ξ|−2 , |ξ|}.

Proof. For item one, we first use the divergence compatibility estimates from
Proposition 2.1. If (ψℓ)

m
ℓ=1 ∈

∏m
ℓ=1H

−1/2 (Σℓ;C) are normal stress data, then their
associated velocity field u solving (2.44) is solenoidal and vanishing on Σ0. Hence, the
normal traces on the hyperplanes Σℓ, ℓ ∈ {1, . . . ,m}, belong to H1/2 ∩ Ḣ−1. In fact,
we may bound with the divergence compatibility estimate and then the left inequality
of Theorem 2.18 to obtain the bound
(2.62)

[νγ(ψℓ)
m
ℓ=1]

2
Ḣ−1 ≲ ∥u∥2L2 ≲ ∥u∥2

0H1 ≲
∫
Rn−1

min{|ξ|2 , |ξ|−1} |F [(ψℓ)
m
ℓ=1] (ξ)|

2
dξ

for all (ψℓ)
m
ℓ=1 ∈

∏m
ℓ=1H

−1/2 (Σℓ;C).
Let b = (b1, . . . , bm) ∈ (Q + iQ)m and φ ∈ L1(Rn−1;R) such that φ (ξ) ⩾ 0 for

a.e. ξ ∈ Rn−1 and the support of φ is compact. Set ϕ ∈
⋂

s∈RH
s(Rn−1;C) via ϕ =

F−1
[√
φ
]
. We take (ψℓ)

m
ℓ=1 = (bℓϕ)

m
ℓ=1 in inequality (2.62) and use Proposition 2.16

to see that

(2.63)

∫
Rn−1

|ξ|−2 |nγ (ξ) b|2 φ (ξ) dξ ⩽ c

∫
Rn−1

min{|ξ|2 , |ξ|−1} |b|2 φ (ξ) dξ.

This inequality holds for all φ as above. Hence there exists Eb ⊆ B (0, 1) ⊂ Rn−1

with Ln−1 (B (0, 1) \ Eb) = 0 and

(2.64) |nγ (ξ) b|2 ⩽ c |ξ|4 |b|2 ∀ ξ ∈ Eb ∀ b ∈ (Q+ iQ)m.
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Set E =
⋂

b∈(Q+iQ)m Eb and note that since (Q+iQ)m is countable, Ln−1 (B (0, 1) \ E) =

0. Then (2.64) implies that |nγ (ξ) b| ⩽ c |ξ|2 |b| for all ξ ∈ E and all b ∈ (Q+iQ)m, but
then by the density of (Q+ iQ)m in Cm we find that this estimate continues to hold
for all ξ ∈ E and b ∈ Cm. In turn, taking the supremum over b ∈ Cm with |b| = 1 and
using the equivalence of the operator norm and Euclidean norm on Cm×m, we deduce
that there is a constant c > 0, depending only on the physical parameters, such that
|nγ (ξ)| ⩽ c |ξ|2 for a.e. ξ ∈ B(0, 1) ⊂ Rn−1. Combining this with the estimate from
Proposition 2.16 then proves the first item.

We next prove the second item. Again we let b = (b1, . . . , bm) ∈ (Q + iQ)m

and φ ∈ L1(Rn−1;R) such that φ (ξ) ⩾ 0 for a.e. ξ ∈ Rn−1 and the support of φ
is compact. Set ϕ ∈

⋂
s∈RH

s(Rn−1;C) via ϕ = F−1
[√
φ
]
. Notice that (bℓϕ)

m
ℓ=1 ∈∏m

ℓ=1H
−1/2 (Σℓ;C). Thanks to Proposition 2.9, there are (p, u) ∈ L2 (Ω;C) × 0H

1

(Ω;Kn), a weak solution to (2.44) with data (bℓϕ)
m
ℓ=1, i.e., (p, u) = χ−γ

−1(0,O(bℓϕ)
m
ℓ=1)

for the operators O and χ−γ
−1 from Definition 2.11 and Proposition 2.9, respectively.

We test u itself in the weak formulation and use (2.26) to obtain the identity

(2.65) Re[⟨(bℓϕ)mℓ=1,νγ(bℓϕ)
m
ℓ=1⟩H−1/2,H1/2 ] =

m∑
ℓ=1

∫
Ωℓ

µℓ

2
|Du|2 .

Next we use the diagonalization of νγ from Proposition 2.16, (anti)duality (Proposi-
tion A.6), and finally the right inequality of Theorem 2.18 to obtain the estimate

∫
Rn−1

Re [b · nγb]φ = Re

[
m∑
ℓ=1

⟨bℓϕ,TrΣℓ
u · en⟩

]

=

m∑
ℓ=1

∫
Ωℓ

µℓ

2
|Du|2 ⩾ c̃

∫
Rn−1

min{|ξ|2 , |ξ|−1} |b|2 φ (ξ) dξ,

(2.66)

where c̃ ∈ R+ depends only on the physical parameters. Therefore, there exists
Fb ⊆ Rn−1 such that Ln−1(Rn−1 \ Fb) = 0 and

(2.67) Re [b · nγ (ξ) b] ⩾ c̃min{|ξ|2 , |ξ|−1} |b|2 ∀ ξ ∈ Fb ∀ b ∈ (Q+ iQ)m.

Set F =
⋂

b∈(Q+iQ)m Fb and note Ln−1(Rn−1 \ F ) = 0. If ξ ∈ F then by the density

of (Q+ iQ)m in Cm we have

(2.68) min
b∈∂BC(0,1)

Re [b · nγ (ξ) b] ⩾ c̃min{|ξ|2 , |ξ|−1}.

This proves the second item. In particular, this also shows that nγ (ξ) has a trivial
kernel and thus is invertible.

It remains only to estimate the inverse. If d ∈ ∂BC (0, 1), then there exists b ∈ Cm

such that nγ (ξ) b = d. Thus

c̃min{|ξ|2 , |ξ|−1} |b|2 ⩽ Re [b · nγ (ξ) b] = Re [b · d]

⩽ |b| ⇒
∣∣nγ (ξ)

−1
d
∣∣ ⩽ c̃−1 max{|ξ|−2 , |ξ|}.

(2.69)

Taking the supremum over such d and again using the equivalence of the Euclidean
and operator norms on Cm×m, we complete the proof of the third item.
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3. Overdetermined multilayer traveling Stokes. In this and the other re-
maining sections we exclusively study the R-valued solvability for the PDE systems
considered. We next turn our attention to the following variant of system (2.1):

(3.1)



∇ · Sµ (p, u)− γρℓ∂1u = f in Ωℓ, ℓ ∈ {1, . . . ,m} ,
∇ · u = g in Ω,

JSµ (p, u) enKℓ = kℓ on Σℓ, ℓ ∈ {1, . . . ,m} ,
u · en = hℓ on Σℓ, ℓ ∈ {1, . . . ,m} ,
JuKℓ = 0 on Σℓ, ℓ ∈ {1, . . . ,m− 1} ,
u = 0 on Σ0

with unknown velocity u, pressure p, and prescribed data f , g, (kℓ)
m
ℓ=1, and (hℓ)

m
ℓ=1.

We recall that we are continuing to use the abbreviated notation for Ω, Ωℓ, and Σℓ

discussed at the start of section 2 and that µ = {µℓ}mℓ=1 ⊂ R+ are the viscosity
parameters, {ρℓ}mℓ=1 ⊂ R+ are the density parameters, and γ ∈ R is the wave speed.
Our analysis in the previous section shows that the data f , g, and (kℓ)

m
ℓ=1 entirely

determine the pressure and velocity field and hence the normal traces (hℓ)
m
ℓ=1. In

this sense problem (3.1) is overdetermined, so we cannot expect to solve it for general
data.

3.1. Data compatibility and associated isomorphism. In this subsection
we find the range of appropriate data for system (3.1). We begin by introducing the
following notation.

Definition 3.1. For γ ∈ R we define the R-bilinear mapping

(3.2) H γ :

[
L2 (Ω)× (0H

1 (Ω;Rn))∗ ×
m∏
ℓ=1

H1/2 (Σℓ)

]
×

[
m∏
ℓ=1

H−1/2 (Σℓ)

]
→ R

via H γ [(g, F, (hℓ)
m
ℓ=1), (ψℓ)

m
ℓ=1] = ⟨F, v⟩(0H1)∗,0H1 −

∫
Ω

gq −
m∑
ℓ=1

⟨ψℓ, hℓ⟩H−1/2,H1/2

for (q, v) ∈ L2 (Ω)× 0H
1 (Ω;Rn) the unique weak solution to the normal stress prob-

lem in equation (2.44) with data (ψℓ)
m
ℓ=1, i.e., (q, v) = χ−γ

−1(0,O(ψℓen)
m
ℓ=1) for the

operators O and χ−γ
−1from Definition 2.11 and Proposition 2.9, respectively. Thanks

to the boundedness of χ−γ
−1 and O, we have that H γ is continuous.

The set of data for which H γ vanishes identically as a linear functional of its
right argument will be denoted by

(3.3)
←
kerH γ = {(g, F, (hℓ)mℓ=1) : H γ [(g, F, (hℓ)

m
ℓ=1, (ψℓ)

m
ℓ=1)] = 0 ∀ (ψℓ)

m
ℓ=1}

and called the left kernel of H γ .

The following result equates the range of data for system (3.1) as exactly being
with the left kernel of H γ . In what follows recall that χγ and χ−γ are the mappings
from Proposition 2.9.

Proposition 3.2 (range of compatible data for (3.1)). For γ ∈ R the mapping

(3.4) χ̃γ : L2 (Ω)× 0H
1 (Ω;Rn) → L2 (Ω)× (0H

1 (Ω;Rn))∗ ×
∏m

ℓ=1H
1/2 (Σℓ)

with assignment χ̃γ (p, u) = (χγ (p, u) , (TrΣℓ
u · en)mℓ=1)

is an injection with closed range
←
kerH γ .
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Proof. Proposition 2.9 tells us that χ̃γ is injective, and
←
kerH γ is closed by in-

spection. It remains only to show that the range of this mapping is the left kernel of
H γ .

Suppose first that (g, F, (hℓ)
m
ℓ=1) ∈

←
kerH γ and define (p, u) ∈ L2 (Ω)×0H

1 (Ω;Rn)
through (p, u) = χγ

−1 (g, F ). If (ψℓ)
m
ℓ=1 ∈

∏m
ℓ=1H

−1/2 (Σℓ) and (q, v) ∈ L2 (Ω) ×
0H

1 (Ω;Rn) are the associated solution to the normal stress PDE in (2.44), i.e.,
χ−γ

−1(0,O(ψℓen)
m
ℓ=1), then the identity

(3.5)

H γ [(g, F, (hℓ)
m
ℓ=1) , (ψℓ)

m
ℓ=1] = ⟨F, v⟩(0H1)∗,0H1 −

∫
Ω

gq −
m∑
ℓ=1

⟨ψℓ, hℓ⟩H−1/2,H1/2 = 0

implies that

m∑
ℓ=1

⟨ψℓ,TrΣℓ
u · en⟩H−1/2,H1/2

=
m∑
ℓ=1

∫
Ωℓ

µℓ

2
Dv : Du+ γρℓ∂1v · u−

∫
Ω

qg =
m∑
ℓ=1

∫
Ωℓ

µℓ

2
Du : Dv − γρℓ∂1u · v −

∫
Ω

gq

= ⟨F, v⟩(0H1)∗,0H1 −
∫
Ω

gq =
m∑
ℓ=1

⟨ψℓ, hℓ⟩H−1/2,H1/2 .

(3.6)

As (ψℓ)
m
ℓ=1 is an arbitrary member of

∏m
ℓ=1H

−1/2 (Σℓ) we learn that TrΣℓ
u · en = hℓ

for each ℓ ∈ {1, . . . ,m} Therefore, χ̃γ (p, u) = (g, F, (hℓ)
m
ℓ=1).

On the other hand, if (p, u) ∈ L2 (Ω)×0H
1 (Ω;Rn) we let (g, F, (hℓ)

m
ℓ=1) = χ̃γ(p, u)

and (q, v) = χ−γ
−1(0,O(ψℓen)

m
ℓ=1) and compute, for (ψℓ)

m
ℓ=1 ∈

∏m
ℓ=1H

−1/2 (Σℓ),

H γ [(g, F, (hℓ)
m
ℓ=1), (ψℓ)

m
ℓ=1]

= ⟨F, v⟩(0H1)∗,0H1 −
∫
Ω

gq −
m∑
ℓ=1

⟨ψℓ, hℓ⟩H−1/2,H1/2

= ⟨F, v⟩(0H1)∗,0H1 −
m∑
ℓ=1

∫
Ωℓ

µℓ

2
Dv : Du+ γρℓ∂1v · u

= ⟨F, v⟩(0H1)∗,0H1 −
m∑
ℓ=1

∫
Ωℓ

µℓ

2
Du : Dv − γρℓ∂1u · v = 0.

(3.7)

As this holds for all such (ψℓ)
m
ℓ=1, we conclude that χ̃γ (p, u) ∈

←
kerH γ .

We now arrive at the isomorphism of Hilbert spaces associated with problem (3.1).

Theorem 3.3 (existence and uniqueness of solutions to (3.1)). Let γ ∈ R and
s ∈ R+ ∪ {0}. Consider the bounded linear injection

(3.8) Ψγ : H1+s (Ω)× 0H
2+s (Ωℓ;Rn) → H1+s (Ω)×Hs (Ω;Rn)

×
m∏
ℓ=1

H1/2+s (Σℓ;Rn)×
m∏
ℓ=1

H3/2+s (Σℓ)

with assignment Ψγ (p, u) = (Φγ (p, u) , (TrΣℓ
u · en)mℓ=1), where Φγ is from Theo-

rem 2.13. The following are equivalent for (g, f, (kℓ)
m
ℓ=1, (hℓ)

m
ℓ=1) belonging to the

codomain of Ψγ .
(1) (g, f, (kℓ)

m
ℓ=1, (hℓ)

m
ℓ=1) belongs to the range of Ψγ .
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6396 NOAH STEVENSON AND IAN TICE

(2) The data tuple (g,P(f, (kℓ)
m
ℓ=1), (hℓ)

m
ℓ=1) belongs to

←
kerH γ , where P is from

Definition 2.11.

Proof. Recall that χ̃γ is the mapping from Proposition 3.2. If the first item
holds then χ̃γ (p, u) = (g,P(f, (kℓ)

m
ℓ=1), (hℓ)

m
ℓ=1) for the unique (p, u) belonging to the

domain of Ψγ such that Ψγ (p, u) = (g, f, (kℓ)
m
ℓ=1, (hℓ)

m
ℓ=1). Thus, by Proposition 3.2,

(g,P(f, (kℓ)
m
ℓ=1), (hℓ)

m
ℓ=1) ∈

←
kerH γ and the second item follows.

If the second item holds then, by Proposition 3.2 again, we learn that there are
(p, u) ∈ L2 (Ω) × 0H

1 (Ω;Rn) such that χ̃γ (p, u) = (g,P(f, (kℓ)
m
ℓ=1), (hℓ)

m
ℓ=1). In

particular χγ (p, u) = (g,P(f, (kℓ)
m
ℓ=1)) (for χγ from Proposition 2.9) and hence we

may apply Proposition 2.12 to deduce that (p, u) belongs to the domain of Ψγ and
Ψγ (p, u) = (g, f, (kℓ)

m
ℓ=1, (hℓ)

m
ℓ=1). This shows the first item holds.

3.2. Measuring data compatibility. The previous subsection showed us that
a nontrivial compatibility condition must be satisfied by the data in order for a solution
to (3.1) to exist. In this subsection we further explore this compatibility condition.
We associate with each data tuple a tuple of functions that quantify how “close” the
data are to being compatible. We then study the dependence of the regularity and
low Fourier mode behavior of the function tuple on the data.

The sense in which this association quantifies compatibility will be made clearer
in the next section; however, the main idea is that the introduction of the free surface
functions in the multilayer traveling Stokes with gravity-capillary boundary and jump
conditions problem (4.1) modify the data in a way that results in inclusion within the
range of Ψγ . This is achieved by the free surface functions solving certain ΨDEs with
forcing exactly this measurement of compatibility.

Proposition 3.4. For γ ∈ R there is a bounded linear mapping

(3.9) I γ : L2 (Ω)× (0H
1 (Ω;Rn))∗ ×

∏m
ℓ=1H

1/2 (Σℓ) →
∏m

ℓ=1H
1/2 (Σℓ)

such that for all data tuples (g, F, (hℓ)
m
ℓ=1) ∈ L2 (Ω)×(0H

1 (Ω;Rn))∗×
∏m

ℓ=1H
1/2 (Σℓ)

the following identity holds for all (ψℓ)
m
ℓ=1 ∈

∏m
ℓ=1H

−1/2 (Σℓ):

(3.10) H γ [(g, F, (hℓ)
m
ℓ=1) , (ψℓ)

m
ℓ=1] = ⟨(ψℓ)

m
ℓ=1,I

γ (g, F, (hℓ)
m
k=1)⟩H−1/2,H1/2

=
m∑

k=1

⟨ψk,I
γ (g, F, (hℓ)

m
ℓ=1) · ek⟩H−1/2,H1/2 ,

where H γ is the bilinear mapping from Definition 3.1.

Proof. Recall that H γ is continuous thanks to Proposition 2.9. Thus there is a
constant c0 ∈ R+, depending only on the physical parameters, such that

(3.11) |H γ [(g, F, (hℓ)
m
ℓ=1) , (ψℓ)

m
ℓ=1]|

⩽ c0

(
∥g∥L2 + ∥F∥(0H1)∗ +

m∑
ℓ=1

∥hℓ∥H1/2

)(
m∑
ℓ=1

∥ψℓ∥H−1/2

)
for all (g, F, (ψℓ)

m
ℓ=1) and (ψℓ)

m
ℓ=1 belonging to the domain of H γ . In particular,

for fixed (g, F, (hℓ)
m
ℓ=1) the assignment (ψℓ)

m
ℓ=1 7→ H γ [(g, F, (hℓ)

m
ℓ=1) , (ψℓ)

m
ℓ=1] is

bounded and linear with operator norm at most c0(∥g∥L2+∥F∥(0H1)∗+
∑m

ℓ=1 ∥hℓ∥H1/2).

By duality (Proposition A.6) there is a unique I γ (g, F, {hℓ}mℓ=1) ∈
∏m

ℓ=1H
1/2 (Σℓ)
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such that (3.10) holds for all (ψℓ)
m
ℓ=1 ∈

∏m
ℓ=1H

−1/2 (Σℓ); moreover,

(3.12)
m∑

k=1

∥I γ(g, F, (hℓ)
m
ℓ=1) · ek∥H1/2 ⩽ c0

(
∥g∥L2 + ∥F∥(0H1)∗ +

m∑
ℓ=1

∥hℓ∥H1/2

)
.

It is also clear that I γ is linear.

We next show that I γ commutes with tangential Fourier multipliers, which are
defined in Appendix A.3.

Lemma 3.5. If γ ∈ R, (g, F, (ψℓ)
m
ℓ=1) ∈ L2 (Ω)×(0H

1 (Ω;Rn))∗×
∏m

ℓ=1H
1/2 (Σℓ),

and ω ∈ L∞(Rn−1;C) satisfies ω (−ξ) = ω (ξ) for a.e. ξ ∈ Rn−1, then
(3.13)
MωI γ (g, F, (hℓ)

m
ℓ=1) = F−1[ωF [I γ (g, F, (hℓ)

m
ℓ=1)]] = I γ (Mωg,MωF, (Mωhℓ)

m
ℓ=1) ,

where the above is understood in the sense of Definitions A.11 and A.13 and is R-
valued by Proposition A.2.

Proof. Let (ψℓ)
m
ℓ=1 ∈

∏m
ℓ=1H

−1/2 (Σℓ) be normal stress data and denote the
corresponding solution to (2.44) with (q, v) ∈ L2 (Ω) × 0H

1 (Ω;Rn), i.e., (q, v) =
χ−1−γ(0,O(ψℓen)

m
ℓ=1). Then by the definition of I γ , Proposition 3.4, and then

Lemma 2.10 we have that

⟨(ψℓ)
m
ℓ=1,MωI γ (g, F, (hℓ)

m
ℓ=1)⟩H−1/2,H1/2

= ⟨(Mωψℓ)
m
ℓ=1,I

γ (g, F, (hℓ)
m
ℓ=1)⟩H−1/2,H1/2

= H γ [(g, F, (hℓ)
m
ℓ=1) , (Mωψℓ)

m
ℓ=1]

= ⟨F,Mωv⟩(0H1)∗,0H1 −
∫
Ω

gMωq −
m∑
ℓ=1

⟨Mωψℓ, hℓ⟩H−1/2,H1/2

= ⟨MωF, v⟩(0H1)∗,0H1 −
∫
Ω

Mωgq −
m∑
ℓ=1

⟨ψℓ,Mωhℓ⟩H−1/2,H1/2

= H γ [(Mωg,MωF, (Mωhℓ)
m
ℓ=1) , (ψℓ)

m
ℓ=1]

= ⟨(ψℓ)
m
ℓ=1,I

γ (Mωg,MωF, (Mωhℓ)
m
ℓ=1)⟩H−1/2,H1/2 .

(3.14)

As this holds for all (ψℓ)
m
ℓ=1 ∈

∏m
ℓ=1H

−1/2 (Σℓ), the result follows.

The previous lemma allows us to deduce the regularity properties of I γ . We
record these now.

Proposition 3.6. If s ∈ R+ ∪ {0}, γ ∈ R, and

(3.15) (g, f, (kℓ)
m
ℓ=1, (hℓ)

m
ℓ=1) ∈ H1+s (Ω)×Hs (Ω;Rn)

×
m∏
ℓ=1

H1/2+s (Σℓ;Rn)×
m∏
ℓ=1

H3/2+s (Σℓ) ,

then I γ (g,P(f, (kℓ)
m
ℓ=1), (hℓ)

m
ℓ=1) ∈

∏m
ℓ=1H

3/2+s (Σℓ), where P is described in Def-
inition 2.11. Moreover, we have the universal estimate

(3.16)
m∑

k=1

∥I γ (g, F, (hℓ)
m
ℓ=1) · ek∥H3/2+s

≲
m∑
ℓ=1

[
∥g∥H1+s(Ωℓ)

+ ∥f∥Hs(Ωℓ)
+ ∥kℓ∥H1/2+s + ∥hℓ∥H3/2+s

]
,

where F = P(f, (kℓ)
m
ℓ=1).
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6398 NOAH STEVENSON AND IAN TICE

Proof. For k ∈ N+ we define the real valued radial function ωk ∈ L∞(Rn−1;R)
with the assignment ωk (ξ) = 1B(0,k) (ξ) (1+ |ξ|2) s+1

2 . Using first Lemma 3.5 and then
continuity of I γ , we arrive at the estimate

∥Mωk
I γ (g, F, (hℓ)

m
ℓ=1)∥H1/2

= ∥I γ (Mωk
g,Mωk

F, (Mωk
hℓ)

m
ℓ=1)∥H1/2

⩽ c0
[
∥Mωk

g∥L2 + ∥Mωk
F∥(0H1)∗ + ∥(Mωk

hℓ)
m
ℓ=1∥H1/2

](3.17)

for c0 ∈ R+ depending only on the physical parameters. By Proposition A.14 there
is c1 ∈ R+ depending only on s and physical parameters such that

(3.18) ∥Mωk
g∥L2 + ∥Mωk

F∥(0H1)∗ + ∥(Mωk
hℓ)

m
ℓ=1∥H1/2

⩽ c1
m∑
ℓ=1

[
∥g∥H1+s(Ωℓ) + ∥f∥Hs(Ωℓ) + ∥kℓ∥H1/2+s + ∥hℓ∥H3/2+s

]
.

Pairing equations (3.17) and (3.18) with Parseval’s theorem and Fatou’s lemma then
yields the bound

∥I γ (g, F, (hℓ)
m
ℓ=1)∥H3/2+s

⩽ lim inf
k→∞

∥Mωk
I γ (g, F, (hℓ)

m
ℓ=1)∥H1/2

⩽ c0c1
m∑
ℓ=1

[
∥g∥H1+s(Ωℓ)

+ ∥f∥Hs(Ωℓ)
+ ∥kℓ∥H1/2+s + ∥hℓ∥H3/2+s

]
,

(3.19)

which completes the proof.

For technical reasons that will become clear in the next section, we want to restrict
to a smaller subspace of the domain of I γ that guarantees an image whose members’
low Fourier modes are more tame. We label this subspace as follows.

Definition 3.7. We define the Hilbert space

Y (Ω) =

{
(g, F, (hℓ)

m
ℓ=1) ∈ L2 (Ω)× (0H

1 (Ω;Rn))∗

×
m∏
ℓ=1

H1/2 (Σℓ) : ∥(g, F, (hℓ)mℓ=1)∥Y <∞
}(3.20)

for the norm
(3.21)

∥(g, F, (hℓ)mℓ=1)∥2Y = ∥g∥2L2 + ∥F∥2(0H1)∗ +
m∑
ℓ=1

∥hℓ∥2H1/2 +

[
hℓ −

∫
(0,aℓ)

g

]2
Ḣ−1

 .
In our analysis of the action of I γ over Y (Ω) we utilize the following energy

estimates of the normal stress problem with band limited data.

Lemma 3.8. Let γ ∈ R. There exists C ∈ R+, depending only on the physical
parameters, such that for all tuples (ψℓ)

m
ℓ=1 ∈

∏m
ℓ=1H

−1/2 (Σℓ) satisfying

suppF [(ψℓ)
m
ℓ=1] ⊆ B (0, 1) ⊂ Rn−1

we may estimate

(3.22) ∥v∥2
0H1 ⩽ C2

∫
Rn−1

|ξ|2 |F [(ψℓ)
m
ℓ=1] (ξ)|

2
dξ
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TRAVELING WAVES: INCOMPRESSIBLE, MULTILAYER CASE 6399

and

(3.23)

∫
Ω

∣∣∣∣∣q +
m∑
ℓ=1

ψℓ1(0,aℓ)

∣∣∣∣∣
2

⩽ C2

∫
Rn−1

|ξ|2 |F [(ψℓ)
m
ℓ=1] (ξ)|

2
dξ,

where for each ℓ ∈ {1, . . . ,m} we have that ψℓ1(0,aℓ) ∈ L2 (Ω) is defined via Rn−1 ×
(0, am) ∋ (x, y) 7→ ψℓ (x)1(0,aℓ) (y) ∈ R, and (q, v) = χ−γ

−1(0,O(ψℓen)
m
ℓ=1) ∈

L2 (Ω)× 0H
1 (Ω;Rn) are the solution to (2.44) with data (ψℓ)

m
ℓ=1.

Proof. The band limited assumption on the data, paired with the left-hand in-
equality in the energy estimate of Theorem 2.18, gives the first estimate.

For the second estimate we test w ∈ 0H
1 (Ω;Rn) in the weak formulation of (2.44),

write q = q+
∑m

ℓ=1 ψℓ1(0,aℓ) −
∑m

ℓ=1 ψℓ1(0,aℓ), and rearrange to arrive at the identity

(3.24)

∫
Ω

∇ · w
(
q +

m∑
ℓ=1

ψℓ1(0,aℓ)

)
=

m∑
ℓ=1

∫
Ωℓ

µℓ

2
Dv : Dw − γρℓ∂1v · w −

∫
Rn−1

m∑
ℓ=1

ψℓ

[
TrΣℓ

w · en −
∫
(0,aℓ)

∇ · w

]
.

Then by the first estimate and the divergence compatibility estimate from Proposi-
tion 2.1 we may bound

(3.25)

∣∣∣∣∫
Ω

∇ · w
(
q +

m∑
ℓ=1

ψℓ1(0,aℓ)

)∣∣∣∣ ≲ ∥(ψℓ)
m
ℓ=1∥Ḣ1 [∥w∥0H1 + ∥w∥L2 ].

The second estimate now follows by taking w = ΠΩ(q+
∑m

ℓ=1 ψℓ1(0,aℓ)), where ΠΩ is
the bounded right inverse of the divergence from Lemma 2.2.

We are now in a position to analyze the low frequency behavior of the image of
Y (Ω) under I γ .

Proposition 3.9. If (g, F, (hℓ)
m
ℓ=1) ∈ Y (Ω) and γ ∈ R, then I γ (g, F, (hℓ)

m
ℓ=1) ∈∏m

ℓ=1 Ḣ
−1 (Σℓ)∩H1/2 (Σℓ) with the universal estimate ∥I γ (g, F, (hℓ)

m
ℓ=1)∥Ḣ−1∩H1/2 ≲

∥(g, F, (hℓ)mℓ=1)∥Y .
Proof. Recall that Lemma 3.5 guarantees that I γ commutes with tangential

multipliers. We use this with the continuity of I γ and the boundedness of tangential
multipliers (Proposition A.8, Definitions A.11 and A.13, and Lemma A.12) to estimate

∥I γ (g, F, (hℓ)
m
ℓ=1)∥Ḣ−1∩H1/2

≲
[
M1B(0,1)

I γ (g, F, (hℓ)
m
ℓ=1)

]
Ḣ−1

+
∥∥I γ

(
M1Rn−1\B(0,1)

g,M1Rn−1\B(0,1)
F, (M1Rn−1\B(0,1)

hℓ)
m
ℓ=1

)∥∥
H1/2

≲
[
M1B(0,1)

I γ (g, F, (hℓ)
m
ℓ=1)

]
Ḣ−1 + ∥M1Rn−1\B(0,1)

g∥L2 + ∥M1Rn−1\B(0,1)
F∥(0H1)∗

+ ∥(M1Rn−1\B(0,1)
hℓ)

m
ℓ=1∥H1/2 +

[
M1B(0,1)

I γ (g, F, (hℓ)
m
ℓ=1)

]
Ḣ−1 + ∥g∥L2

+ ∥F∥(0H1)∗ + ∥(hℓ)mℓ=1∥H1/2 .

(3.26)

Thus, it sufficient to show that M1B(0,1)
I γ (g, F, (hℓ)

m
ℓ=1) ∈

∏m
ℓ=1 Ḣ

−1 (Σℓ) with a
bounded estimate. We do this via duality.
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6400 NOAH STEVENSON AND IAN TICE

Let (ψℓ)
m
ℓ=1 ∈

∏m
ℓ=1H

−1/2 (Σℓ) and denote the corresponding solution to the nor-
mal stress problem (2.44) via (q, v) = χ−γ

−1(0,O(ψℓen)
m
ℓ=1) ∈ L2 (Ω)× 0H

1 (Ω;Rn).
We compute∫

B(0,1)

F [(ψℓ)
m
ℓ=1] (ξ) · F [I γ(g, F, (hℓ)

m
ℓ=1)] (ξ) dξ

= ⟨(ψℓ)
m
ℓ=1,M1B(0,1)

I γ(g, F, (hℓ)
m
ℓ=1)⟩H−1/2,H1/2

= H γ
[
(g, F, (hℓ)

m
ℓ=1) , (M1B(0,1)

ψℓ)
m
ℓ=1

]
= ⟨F,M1B(0,1)

v⟩(0H1)∗,0H1 −
∫
Ω

gM1B(0,1)
q −

m∑
ℓ=1

⟨M1B(0,1)
ψℓ, hℓ⟩H−1/2,H1/2

= ⟨F,M1B(0,1)
v⟩(0H1)∗,0H1 −

∫
Ω

gM1B(0,1)

(
q +

m∑
ℓ=1

ψℓ1(0,aℓ)

)
+

∫
Rn−1

m∑
ℓ=1

M1B(0,1)
ψℓ

(
−hℓ +

∫
(0,aℓ)

g

)
.

(3.27)

Hence, ∣∣∣∣∣
∫
B(0,1)

F [(ψℓ)
m
ℓ=1] (ξ) · F [I γ(g, F, (hℓ)

m
ℓ=1)] (ξ) dξ

∣∣∣∣∣
⩽ ∥F∥(0H1)∗∥M1B(0,1)

v∥
0H1 + ∥g∥L2

∥∥∥∥M1B(0,1)
q +

m∑
ℓ=1

M1B(0,1)
ψℓ1(0,aℓ)

∥∥∥∥
L2

+
m∑
ℓ=1

[M1B(0,1)
ψℓ]Ḣ1

[
hℓ −

∫
(0,aℓ)

g

]
Ḣ−1

.

(3.28)

Lemma 2.10 ensures us that (M1B(0,1)
q,M1B(0,1)

v) = χ−γ
−1(0,O(M1B(0,1)

ψℓen)
m
ℓ=1).

As (M1B(0,1)
ψℓ)

m
ℓ=1 is admissible band limited data, we may apply the second estimate

of Lemma 3.8 to (M1B(0,1)
ψℓ)

m
ℓ=1 to bound

(3.29)∥∥∥∥M1B(0,1)
q +

m∑
ℓ=1

M1B(0,1)
ψℓ1(0,aℓ)

∥∥∥∥
L2

≲ [(M1B(0,1)
ψℓ)

m
ℓ=1]Ḣ1 ⩽

m∑
ℓ=1

[M1B(0,1)
ψℓ]Ḣ1 .

Therefore, by (3.28) and (3.29),

(3.30)

∣∣∣∣∣
∫
B(0,1)

F [(ψℓ)
m
ℓ=1] (ξ) · F [I γ(g, F, (hℓ)

m
ℓ=1)] (ξ) dξ

∣∣∣∣∣
≲ ∥(g, F, (hℓ)mℓ=1)∥Y

m∑
ℓ=1

[M1B(0,1)
ψℓ]Ḣ1 ,

and so we conclude that

(3.31) [M1B(0,1)
I γ(g, F, (hmℓ=1))]Ḣ−1

≲ sup
{∣∣∣ ∫

B(0,1)

F [(ψℓ)
m
ℓ=1] (ξ) · F [I γ(g, F, (hℓ)

m
ℓ=1)] (ξ) dξ

∣∣∣ :
m∑
ℓ=1

[M1B(0,1)
ψℓ]Ḣ1 ⩽ 1

}
≲ ∥(g, F, (hℓ)mℓ=1)∥Y .

This completes the proof.
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Remark 3.10. For s ∈ R+ ∪ {0} we may view

(3.32) H1+s (Ω)×Hs (Ω;Rn)×
∏m

ℓ=1H
1/2+s (Σℓ;Rn)×

∏m
ℓ=1H

3/2+s (Σℓ)

↪→ L2 (Ω)× (0H
1 (Ω;Rn))∗ ×

∏m
ℓ=1H

1/2 (Σℓ)

through the inclusion mapping (g, f, (kℓ)
m
ℓ=1, (hℓ)

m
ℓ=1) 7→ (g,P(f, (kℓ)

m
ℓ=1), (hℓ)

m
ℓ=1),

for P as in Definition 2.11.

We now synthesize the results of this subsection into a single result.

Theorem 3.11. Let γ ∈ R and s ∈ R+ ∪ {0}. The linear mapping

(3.33)

K γ : Y (Ω)∩
[
H1+s (Ω)×Hs (Ω;Rn)×

∏m
ℓ=1H

1/2+s (Σℓ;Rn)×
∏m

ℓ=1H
3/2+s (Σℓ)

]
→
∏m

ℓ=1 Ḣ
−1 (Σℓ) ∩H3/2+s (Σℓ)

given by K γ (g, f, (kℓ)
m
ℓ=1, (hℓ)

m
ℓ=1) = I γ (g,P(f, (kℓ)

m
ℓ=1), (hℓ)

m
ℓ=1) is both well-defined

and continuous.

Proof. The result follows from Remark 3.10 and Propositions 3.6 and 3.9.

4. Multilayer traveling Stokes with gravity-capillary boundary and jump
conditions. Our linear analysis culminates in this section with the study of the lin-
earized flattened free boundary problem (1.17). More precisely, we study the system

(4.1)



∇ · Sµ (p, u)− γρℓ∂1u = f in Ωℓ, ℓ ∈ {1, . . . ,m} ,
∇ · u = g in Ω,

JSµ (p, u) enKℓ = kℓ + (g JρKℓ + σℓ∆∥)ηℓen on Σℓ, ℓ ∈ {1, . . . ,m} ,
u · en = hℓ − γ∂1ηℓ on Σℓ, ℓ ∈ {1, . . . ,m} ,
JuKℓ = 0 on Σℓ, ℓ ∈ {1, . . . ,m− 1} ,
u = 0 on Σ0.

We remind the reader that we are still using the abbreviated notation for Ω, Ωℓ, and
Σℓ discussed at the start of section 2 and that the unknown velocity is u, the pressure
is p, and the free surface functions are in the tuple (ηℓ)

m
ℓ=1. The prescribed data are

f , g, (kℓ)
m
ℓ=1, and (hℓ)

m
ℓ=1. The viscosity parameters are µ = {µℓ}mℓ=1 ⊂ R+, the fluid

densities are {ρℓ}mℓ=1 ⊂ R+, σ = {σℓ}mℓ=1 ⊂ R+ ∪ {0} are the surface tensions, γ ∈ R
is the signed wave speed, g ∈ R+ is the magnitude gravitational acceleration, and
ρ =

∑m
ℓ=1 ρℓ1Ωℓ

. Unlike the previous two sections, we now assume that the wave speed
is nontrivial, i.e., γ ∈ R \ {0} and that the density coefficients are strictly decreasing
with layer number, i.e., 0 < ρm < · · · < ρ1 (this is consistent with the assumptions
made in the introduction). Note that JρKℓ = ρℓ+1 − ρℓ < 0 for ℓ ∈ {1, . . . ,m− 1} and
JρKm = −ρm < 0.

Our goal in this section is to prove that the above system induces a linear isomor-
phism between an appropriate pair of Banach spaces. It turns out that the estimates
obtained from (4.1) are too weak to guarantee that the free surface functions and the
pressure belong to standard L2-based Sobolev spaces in dimensions three or higher.
The resolution of this issue requires developing families of specialized Sobolev spaces
to serve as the container spaces for the free surface functions and pressure. In this sec-
tion and the next we establish and utilize variants of the specialized spaces developed
in the single layer analysis of [15] that are appropriate for the multilayer context.
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6402 NOAH STEVENSON AND IAN TICE

4.1. Specialized Sobolev space interlude, well-definedness, and injec-
tivity. We first label the space of data for which we will solve (4.1).

Definition 4.1. For s ∈ R+ ∪ {0} we define the space
(4.2)
Ys = Y (Ω) ∩

[
H1+s (Ω)×Hs (Ω;Rn)×

∏m
ℓ=1H

1/2+s (Σℓ;Rn)×
∏m

ℓ=1H
3/2+s (Σℓ)

]
,

where Y (Ω) is from Definition 3.7 and the intersection is understood in the sense of
the inclusion from Remark 3.10. This space is Hilbert and as an equivalent norm we
set

(4.3) ∥(g, f, (kℓ)mℓ=1, (hℓ)
m
ℓ=1)∥2Ys

=
m∑
ℓ=1

∥g∥2H1+s(Ωℓ)
+ ∥f∥2Hs(Ωℓ)

+ ∥kℓ∥2H1/2+s + ∥hℓ∥2H3/2+s +

[
hℓ −

∫
(0,aℓ)

g

]2
Ḣ−1

 .
Next we define the container space for the free surface functions, which is an

anisotropic Sobolev space introduced in [15]. Note that for notational convenience we
denote this space with a name different from the one used in [15].

Definition 4.2. For s ∈ R+ ∪ {0} we define the normed space

(4.4) Hs
(
Rn−1) = {ζ ∈ (S (Rn−1;R))∗ : F [ζ] ∈ L1

loc(Rn−1;C) and ∥ζ∥Hs <∞}

for
(4.5)

∥ζ∥2Hs =

∫
B(0,1)

|ξ|−2
(
ξ1

2 + |ξ|4
)
|F [ζ] (ξ)|2 dξ +

∫
Rn−1\B(0,1)

|ξ|2s |F [ζ] (ξ)|2 dξ.

The following result summarizes the essential properties of this space.

Proposition 4.3. Let s ∈ R+ ∪ {0}. Then the following hold for the space
Hs(Rn−1).

(1) Hs(Rn−1) is Hilbert.
(2) If k ∈ N, then Hs(Rn−1) ↪→ Ck

0 (Rn−1)+Hs(Rn−1); in particular if (n−1)/2+
k < s then we have the embedding Hs(Rn−1) ↪→ Ck

0 (Rn−1). We remind the
reader that Ck

0 is defined in section 1.6.
(3) If η ∈ H5/2+s(Rn−1), then ∂1η ∈ H3/2+s(Rn−1) ∩ Ḣ−1(Rn−1) and ∆η ∈

H1/2+s(Rn−1); moreover, these mappings are continuous.
(4) (Fourier reconstruction) If ϑ ∈ L1

loc(Rn−1;C) satisfies ϑ (−ξ) = ϑ (ξ) for a.e.
ξ ∈ Rn−1 and

(4.6)

∫
B(0,1)

|ξ|−2
(
ξ1

2+|ξ|4
)
|ϑ (ξ)|2 dξ+

∫
Rn−1\B(0,1)

|ξ|2s |ϑ (ξ)|2 dξ <∞,

then there exists ζϑ ∈ Hs(Rn−1) with F [ζϑ] = ϑ.
(5) In the case n = 2 we have the equality of vector spaces with equivalence of

norms: Hs(Rn−1) = Hs(Rn−1).
(6) If ζ ∈ Hs(Rn−1) satisfies suppF [ζ] ⊆ Rn−1 \B(0, ε) for some ε ∈ R+, then,

in fact, we have the inclusion ζ ∈ Hs(Rn−1).

Proof. Items (1), (2), (3), and (5) follow from [15, Proposition 5.3 and Theo-
rems 5.6 and 5.7]. Item (4) follows from the definition of Hs and completeness. Item
(6) is clear given the definitions of the norms on Hs and Hs.
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Now we are ready to define and study the container space for the pressure, which
is a multilayer variant of the space introduced in [15], again given a different name
for notational convenience. For the next definition and the subsequent proposition
we switch back to the unabbreviated notation for multilayer domains as defined in
section 1.1.

Definition 4.4. Let s ∈ R+ ∪ {0} and ζ = {ζℓ}mℓ=1 ∈ (C0
b (Rn−1))m be a tuple of

continuous functions satisfying

(4.7) max{∥ζ1∥C0
b
, . . . , ∥ζm∥C0

b
} ⩽ 1

4 min {a1, a2 − a1, . . . , am − am−1} .

We define the normed vector space

(4.8) Ps (Ω[ζ]) = {q ∈ L1
loc (Ω[ζ]) : ∃ (p, (ηℓ)

m
ℓ=1) ∈ Hs (Ω[ζ])× (Hs(Rn−1))m

such that q = p− g
∑m

ℓ=1 JρKℓ ηℓ1Ω1[ζ]∪···∪Ωℓ[ζ]}

equipped with the norm
(4.9)

∥q∥Ps = inf

{
m∑
ℓ=1

[
∥p∥Hs(Ωℓ[ζ])

+ ∥ηℓ∥Hs

]
: q = p− g

m∑
ℓ=1

JρKℓ ηℓ1Ω1[ζ]∪···∪Ωℓ[ζ]

}
.

When ζ = 0 we will sometimes write Ps (Ω) in place of Ps (Ω[0]).

The following result records the essential properties of these spaces.

Proposition 4.5. The following properties hold for the scale of spaces Ps (Ω[ζ])
for s ∈ R+ ∪ {0} and ζ ∈ (C0

b (Rn−1))m satisfying (4.7).
(1) Ps (Ω[ζ]) is Banach.
(2) If k ∈ N, then Ps (Ω[ζ]) ↪→ Ck

b (Ω[ζ])+H
s (Ω[ζ]); in particular if n/2+k < s,

then Ps (Ω[ζ]) ↪→ Ck
b (Ωℓ[ζ]).

(3) If p ∈ P1+s (Ω[ζ]), then
∑m

ℓ=1 1Ωℓ[ζ]∇p ∈ Hs (Ω[ζ];Rn) and this map is con-
tinuous.

(4) For ℓ ∈ {1, . . . ,m} there are bounded trace operators: Tr↑,↓Σℓ[0]
: P1+s (Ω[0]) →

H1/2+s(Rn−1).
(5) In the case n = 2 we have the equality of vector spaces with equivalence of

norms: Ps (Ω[ζ]) = Hs (Ωℓ[ζ]).

Proof. The claims follow from simple multilayer adaptations of [15, Theorems 5.9,
5.11, and 5.13 and Remark 5.10].

We have all the tools we need to label the spaces which hold the velocity, pressure,
and free surface tuple.

Definition 4.6. For s ∈ R+ ∪ {0} we define the Banach space

(4.10) X s =

{
(p, u, (ηℓ)

m
ℓ=1) ∈ P1+s(Ω)× 0H

2+s(Ω;Rn)× (H5/2+s(Rn−1)m) :

p+ g

m∑
ℓ=1

JρKℓ ηℓ1(0,aℓ) ∈ H1+s (Ω)

}
,

which we endow with the norm

(4.11) ∥(p, u, (ηℓ)mℓ=1)∥X s

= ∥p∥P1+s +
m∑
ℓ=1

[
∥u∥H2+s(Ωℓ) + ∥ηℓ∥H5/2+s + ∥p+ g

∑m
k=1 JρKk ηk1(0,ak)∥H1+s(Ωℓ)

]
.
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6404 NOAH STEVENSON AND IAN TICE

Next we introduce the linear map that will turn out to be the Banach isomorphism
solution operator associated with the problem (4.1).

Proposition 4.7 (uniqueness of solutions to (4.1)). For γ ∈ R \ {0}, σ =
{σℓ}mℓ=1 ⊂ R+ ∪ {0}, and s ∈ R+ ∪ {0}, the linear mapping Υγ,σ : X s → Ys with
action

(4.12) Υγ,σ (p, u, (ηℓ)
m
ℓ=1) =

(
∇ · u,

∑m
ℓ=1 1Ωℓ

[∇ · Sµ (p, u)− γρℓ∂1u] ,

(JSµ (p, u) enKℓ − (g JρKℓ + σℓ∆∥)ηℓen)
m
ℓ=1, (TrΣℓ

u · en + γ∂1ηℓ)
m
ℓ=1

)
is well-defined, continuous, and injective.

Proof. We begin by checking that the mapping is well-defined and continuous.
This is clear for the first component. The only possible point of contention in the
second component is the expression with the pressure,

∑m
ℓ=1 1Ωℓ

∇p; however, we are
in the clear thanks to item two of Proposition 4.5. For the third component we use
that p+ g

∑m
ℓ=1 JρKℓ ηℓ1(0,aℓ) ∈ H1+s (Ω), paired with the usual trace theory and the

jump calculation:

(4.13)

s
m∑

k=1

JρKkηk1(0,ak)

{

ℓ

=
m∑

j=ℓ+1

JρKj ηj −
m∑
k=ℓ

JρKk ηk = − JρKℓ ηℓ

to deduce the bounded inclusion

(4.14) JpKℓ − g JρKℓ ηℓ =

t

p+ g

m∑
k=1

JρKk ηk1(0,ak)

|

ℓ

∈ H1/2+s (Σℓ) .

Item two of Proposition 4.3 tells us that σℓ∆ηℓ ∈ H1/2+s (Σℓ) boundedly as well;
hence the third component of Υγ,σ is well-defined and continuous. Using again item

two of Proposition 4.3, we learn that γ∂1ηℓ ∈ Ḣ−1 (Σℓ) ∩ H3/2+s (Σℓ); moreover,
thanks to Proposition 2.1 we have the bound

(4.15)

[
TrΣℓ

u · en + γ∂1η −
∫
(0,aℓ)

∇ · u

]
Ḣ−1

⩽ |γ| [∂1ηℓ]Ḣ−1 + 2π
√
aℓ ∥u∥L2 .

We thus conclude that Υγ,σ (p, u, (ηℓ)
m
ℓ=1) ∈ Ys with ∥Υγ,σ (p, u, (ηℓ)

m
ℓ=1)∥Ys ≲

∥(p, u, (ηℓ)mℓ=1)∥X s .
We next prove that Υγ,σ is injective. Suppose that (p, u, (ηℓ)

m
ℓ=1) ∈ ker(Υγ,σ).

Fix r ∈ N+ and define (ψℓ)
m
ℓ=1 ∈

⋂
t∈R+

∏m
ℓ=1H

−1/2+t (Σℓ) via

(4.16) (ψℓ)
m
ℓ=1 = (M1B(0,2r)\B(0,2−r)

(g JρKℓ + σℓ∆∥)ηℓ)
m
ℓ=1,

where we recall that tangential Fourier multipliers are defined in Appendix A.3. Now
let

(4.17) (q, v) = χ−γ
−1(0,O(ψℓen)

m
ℓ=1) ∈

⋂
t∈R+ [H1+t(Ω)× 0H

2+t(Ω;Rn)]

be the corresponding solution to the normal stress PDE in (2.44). Note that we have
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TRAVELING WAVES: INCOMPRESSIBLE, MULTILAYER CASE 6405

introduced the band-limited approximation, in part, so that the above application of
χ−γ

−1, as defined in Proposition 2.9, is well-defined.
Since Υγ,σ (p, u, (ηℓ)

m
ℓ=1) = 0 we obtain the following string of identities by testing

u in the weak formulation for q, v and integrating by parts (recall that v has vanishing
divergence):

−γ
m∑
ℓ=1

∫
Σℓ

ψℓ∂1ηℓ =
m∑
ℓ=1

∫
Ωℓ

µℓ

2
Dv : Du+ γρℓ∂1v · u =

m∑
ℓ=1

∫
Ωℓ

µℓ

2
Du : Dv − γρℓ∂1u · v

=
m∑
ℓ=1

∫
Ωℓ

µℓ

2
Du : Dv − γρℓ∂1u · v −

∫
Ω

(
p+ g

m∑
k=1

JρKk ηk1(0,ak)

)
∇ · v

= −
m∑
ℓ=1

∫
Ωℓ

Sµ

(
p+ g

m∑
k=1

JρKk ηk1(0,ak), u

)
: ∇v − γρℓ∂1u · v

=
m∑
ℓ=1

∫
Ωℓ

[
∇ · Sµ

(
p+ g

m∑
k=1

JρKk ηk1(0,ak), u

)
− γρℓ∂1u

]
· v

+
m∑
ℓ=1

∫
Σℓ

s
Sµ

(
p+ g

m∑
k=1

JρKk ηk1(0,ak), u

)
en

{

ℓ

· v

= g
m∑
ℓ=1

∫
Ωℓ

∇
[

m∑
k=1

JρKk ηk1(0,ak)

]
· v

+
m∑
ℓ=1

∫
Σℓ

s
Sµ

(
p+ g

m∑
k=1

JρKk ηk1(0,ak), u

)
en

{

ℓ

· v.

(4.18)

The above manipulations are justified by the fact that p + g
∑m

k=1 JρKk ηk1(0,ak) ∈
H1+s(Ω) (Definition 4.6) and that ∇

[∑m
k=1 JρKk ηk1(0,ak)

]
∈ Hs(Ω;Rn) (Proposi-

tion 4.5, item 3).
Proposition 2.10, together with the fact that (ψℓ)

m
ℓ=1, defined in (4.16), is band

limited yields the implications

(4.19) (ψℓ)
m
ℓ=1 = (M1B(0,2r)\B(0,2−r)

ψℓ)
m
ℓ=1 ⇒ TrΣℓ

v =M1B(0,2r)\B(0,2−r)
TrΣℓ

v

⇒ suppF [TrΣℓ
v] ⊆ B(0, 2r) \B(0, 2−r).

Hence, Proposition 4.5, item four, and Proposition 4.3, item six, may be invoked to
see that
(4.20)

F [JSµ(p, u)enKℓ]·F [TrΣℓ
v], F

[s
g

m∑
k=1

JρKk ηk1(0,ak)

{

ℓ

]
·F [TrΣℓ

v · en] ∈ L1(Rn−1;C),

where we recall that over C we take the inner product · to be sesquilinear on vectors
with linearity in the left argument. With these inclusions in hand we can simplify the
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6406 NOAH STEVENSON AND IAN TICE

ℓth term in the final series of (4.18) Parseval’s theorem:

∫
Σℓ

s
Sµ

(
p+ g

m∑
k=1

JρKk ηk1(0,ak), u

)
en

{

ℓ

· v

=

∫
Rn−1

F

[s
Sµ

(
p+ g

m∑
k=1

JρKk ηk1(0,ak), u

)
en

{

ℓ

]
· F [TrΣℓ

v]

=

∫
Rn−1

F [JSµ (p, u) enKℓ] · F [TrΣℓ
v]

+

∫
Rn−1

F

[s
g

m∑
k=1

JρKk ηk1(0,ak)

{

ℓ

]
· F [TrΣℓ

v · en]

=

∫
Rn−1

F [(g JρKℓ + σℓ∆∥)ηℓ] · F [TrΣℓ
v · en]− g JρℓK

∫
Rn−1

F [ηℓ] · F [TrΣℓ
v · en] ,

(4.21)

where the decomposition into the two integrands in the middle line above is justified
by (4.20).

In the final term in (4.21), we would like to use the vanishing divergence of and
Σ0-trace of v to simplify further. We first compute

F [TrΣℓ
v · en](ξ) = F

[∫
(0,aℓ)

∂nv(·, y) dy

]
(ξ)

= −F

[∫
(0,aℓ)

n−1∑
j=1

∂j(v(·, y) · ej) dy

]
(ξ)

=

∫
(0,aℓ)

F [v (·, y)] (ξ) · 2πi (ξ, 0) dy.

(4.22)

Using (4.22), we may then rewrite

− g JρℓK
∫
Rn−1

F [ηℓ] · F [TrΣℓ
v · en]

= −g JρℓK
∫
Rn−1

F [ηℓ](ξ) ·

[∫
(0,aℓ)

F [v (·, y)] (ξ) · 2πi (ξ, 0) dy

]
dξ

= −g JρKℓ

∫
(0,am)

∫
Rn−1

1(0,aℓ)F [∇∥ηℓ] · F [v] .

(4.23)

Summing over ℓ ∈ {1, . . . ,m} in (4.21) and implementing (4.23) yields the identity

m∑
ℓ=1

∫
Σℓ

s
Sµ

(
p+ g

m∑
k=1

JρKk ηk1(0,ak), u

){

ℓ

· v

=
m∑
ℓ=1

∫
Rn−1

F [(g JρKℓ + σℓ∆∥)ηℓ] · F [TrΣℓ
v · en]

− g
m∑
ℓ=1

∫
Ωℓ

∇
[

m∑
k=1

JρKk ηk1(0,ak)

]
· v,

(4.24)

and upon substituting (4.24) into (4.18) we deduce the equality

(4.25) − γ
m∑
ℓ=1

∫
Σℓ

ψℓ∂1ηℓ =
m∑
ℓ=1

∫
Rn−1

F [(g JρKℓ + σℓ∆∥)ηℓ] · F [TrΣℓ
v · en].
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Next we use the definition of (ψℓ)
m
ℓ=1 on the left-hand side and observe that

−γ
m∑
ℓ=1

∫
Σℓ

ψℓ∂1ηℓ = −γ
m∑
ℓ=1

∫
Σℓ

g JρKℓM1B(0,2r)\B(0,2−r)
ηℓ∂1M1B(0,2r)\B(0,2−r)

ηℓ

+ γ
m∑
ℓ=1

∫
Σℓ

σℓ∇M1B(0,2r)\B(0,2−r)
ηℓ · ∂1∇M1B(0,2r)\B(0,2−r)

ηℓ = 0.

(4.26)

For the right-hand side of (4.25) we first use Proposition 2.16 and then item two of
Theorem 2.19 to bound

0 =
m∑
ℓ=1

∫
Rn−1

F [(g JρKℓ + σℓ∆∥)ηℓ] · F [TrΣℓ
v · en]

=

∫
Rn−1

Re
[
F [((gJρKℓ + σℓ∆∥)ηℓ)

m
ℓ=1] · nγF [(ψℓ)

m
ℓ=1]

]
≳
∫
B(0,2r)\B(0,2−r)

min{|ξ|2 , |ξ|−1}
m∑
ℓ=1

|F [(g JρKℓ + σℓ∆∥)ηℓ] (ξ) |2 dξ.

(4.27)

Hence the right-hand side above is zero for all r ∈ N+. This proves that for all
ℓ ∈ {1, . . . ,m} we have ηℓ = 0. Thus, we have the inclusion (p, u) ∈ H1+s (Ω) ×
0H

2+s (Ω;Rn). The space on the right is the domain for Φγ . Since (ηℓ)
m
ℓ=1 = 0 and

Υγ,σ(p, u, (ηℓ)
m
ℓ=1) = 0 we have that Φγ (p, u) = 0. In Theorem 2.13 we showed that

Φγ is an isomorphism, so u = 0 and p = 0. Hence, Υγ,σ is an injection.

4.2. Isomorphism in the case with surface tension. In this subsection we
characterize the solvability of (4.1) for data belonging to the space Ys and positive
surface tensions, i.e., {σℓ}nℓ=1 ⊂ R+. Before we state and prove the relevant isomor-
phism theorem, we show how the data determine the free surface functions.

Lemma 4.8 (determination of free surface functions: surface tension case). If
γ ∈ R \ {0}, {σℓ}mℓ=1 ⊂ R+, and (g, f, (kℓ)

m
ℓ=1, (hℓ)

m
ℓ=1) ∈ Ys for some s ∈ R+ ∪ {0},

then there exists (ηℓ)
m
ℓ=1 ∈ (H5/2+s(Rn−1))m such that the modified data tuple

(4.28) (g, f + g
∑m

ℓ=1 JρKℓ ∇ηℓ1(0,aℓ), (kℓ + σℓ∆∥ηℓen)
m
ℓ=1, (hℓ − γ∂1ηℓ)

m
ℓ=1)

∈ H1+s (Ω)×Hs (Ω;Rn)×
∏m

ℓ=1H
1/2+s (Σℓ;Rn)×

∏m
ℓ=1H

3/2+s (Σℓ)

belongs to the range of Ψγ , where this latter operator is from Theorem 3.3. Moreover,
we have the universal estimate:

(4.29) ∥(ηℓ)mℓ=1∥H5/2+s ≲ ∥(g, f, (kℓ)mℓ=1, (hℓ)
m
ℓ=1)∥Ys .

Proof. We divide the proof into three steps.
Step 1: Establishing invertibility of a matrix field. Let

(4.30) o0 = −gdiag (JρK1 , . . . , JρKm) , o1 = diag (σ1, . . . , σm) ∈ Rm×m,

and for ξ ∈ Rn−1 we set o (ξ) = o0 + 4π2 |ξ|2 o1 ∈ Rm×m and

(4.31) pγ (ξ) = nγ (ξ)
∗
o (ξ)− 2πiγξ1Im×m = n−γ (ξ)o (ξ)− 2πiγξ1Im×m ∈ Cm×m,

where nγ(ξ) is as defined in Proposition 2.16 and satisfies nγ(ξ)
∗ = n−γ(ξ) by Propo-

sition 2.17. We claim that there exists a constant C ∈ R+, depending only on the
physical parameters and γ, such that for all b ∈ Cm and a.e. ξ ∈ Rn−1 we have that
(4.32)

C−1 |pγ (ξ) b|2 ⩽ [(ξ1
2 + |ξ|4)1B(0,1) (ξ) + |ξ|2 1Rn−1\B(0,1) (ξ)] |b|

2 ⩽ C |pγ (ξ) b|2 .
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6408 NOAH STEVENSON AND IAN TICE

We begin the proof of the claim by recalling that there is a full measure set
E ⊆ Rn−1 such that if ξ ∈ E then the estimates from Theorem 2.19 hold for the
matrix nγ (ξ). Let ξ ∈ E \B (0, 1) and b ∈ Cm. Then from Theorem 2.19 we deduce
that

(4.33) |pγ (ξ) b|2 ≲
[
ξ1

2 + |ξ|2
]
|b|2 ≲ |ξ|2 |b|2 .

Similarly, since o (ξ) is self-adjoint, we have that 2πiγξ1b · o(ξ)b is purely imaginary,
so again Theorem 2.19 allows us to bound

|ξ|2 |pγ (ξ) b| |b| ≳ Re [pγ (ξ) b · o (ξ) b] = Re
[
nγ (ξ)

∗
o (ξ) b · o (ξ) b

]
≳ |ξ|−1 |o (ξ) b|2 = |ξ|−1

m∑
ℓ=1

(−gJρKℓ + 4π2 |ξ|2 σℓ)2|b · eℓ|2 ≳ |ξ|3 |b|2 .

(4.34)

Combining (4.33) and (4.34) gives estimate (4.32) for ξ ∈ E \B (0, 1).
On the other hand, if ξ ∈ B (0, 1) ∩ E and b ∈ Cm, we once again appeal to

Theorem 2.19 to arrive at the upper bound

(4.35) |pγ (ξ) b|2 ≲
(
ξ1

2 + |ξ|4
)
|b|2 .

For the matching lower bound we combine the following estimates wherein we tacitly
use (1) for each ℓ ∈ {1, . . . ,m} −g JρKℓ > 0 and |γ| > 0, and (2) nγonγ

∗ is a self-
adjoint matrix field. First,

|ξ|2 |pγ(ξ)b| |b| ≳ |o(ξ)pγ(ξ)b · nγ(ξ)
∗
o(ξ)b|

= |nγ(ξ)o(ξ)nγ(ξ)
∗
o(ξ)b · o(ξ)b− 2πiγξ1o(ξ)b · nγ(ξ)

∗
o(ξ)b|

⩾ |Im[nγ(ξ)o(ξ)nγ(ξ)
∗
o(ξ)b · o(ξ)b− 2πiγξ1o(ξ)b · nγ(ξ)

∗
o(ξ)b]|

= 2π|γξ1||Re[nγ(ξ)o(ξ)b · o(ξ)b]| ≳ 2π |γξ1| |ξ|2 |o(ξ)b|2 ≳ |γξ1| |ξ|2 |b|2 .

(4.36)

Second,

|pγ (ξ) b| |b| ≳ Re [pγ (ξ) b · o (ξ) b]

= Re[nγ (ξ)
∗
o (ξ) b · o (ξ) b] ≳ |ξ|2 |o (ξ) b|2 ≳ |ξ|2 |b|2 .

(4.37)

Estimates (4.35), (4.36), and (4.37) give (4.32) in the remaining cases.
Step 2: Construction of the free surface functions. Given (g, f, (kℓ)

m
ℓ=1, (hℓ)

m
ℓ=1) ∈

Ys we propose to define, via item three of Proposition 4.3, (ηℓ)
m
ℓ=1 ∈ (H5/2+s(Rn−1))m

through

(4.38) F [(ηℓ)
m
ℓ=1] = pγ

−1F [K γ (g, f, (kℓ)
m
ℓ=1, (hℓ)

m
ℓ=1)] .

Recall that K γ is the operator from Theorem 3.11. It is clear that since pγ (−ξ) =
pγ (ξ) (this realness assertion follows from that of nγ—see Propositions 2.16 and A.2)
for a.e. ξ then the above assignment will define a real valued tempered distribution
provided it defines a tempered distribution in the first place. For the latter to hold
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we need only observe that (note the use of inequality (4.32) and continuity of K γ)

∥(ηℓ)mℓ=1∥
2
H5/2+s

=

∫
Rn−1

[|ξ|−2
(
ξ1

2 + |ξ|4
)
1B(0,1) (ξ) + |ξ|5+2s

1Rn−1\B(0,1) (ξ)] |F [(ηℓ)
m
ℓ=1] (ξ)|

2
dξ

≲
∫
Rn−1

max{|ξ|−2 , |ξ|3+2s}|F [K γ(g, f, (kℓ)
m
ℓ=1, (hℓ)

m
ℓ=1)] (ξ) |2 dξ

≲ ∥(g, f, (kℓ)mℓ=1, (hℓ)
m
ℓ=1)∥Ys .

(4.39)

This gives (4.29).
Step 3: Modification of the data. To show that the modified data tuple in (4.28)

belongs to the range of Ψγ we use the second item in the equivalence of Theorem 3.3;
so let F ∈ (0H

1 (Ω;Rn))∗ be defined as F = P(f, (kℓ)
m
ℓ=1) for P as in Definition 2.11.

Using the definitions of (ηℓ)
m
ℓ=1 and the mappings H γ ,I γ , and K γ (Definition 3.1,

Proposition 3.4, and Theorem 3.11, respectively), for any (ψℓ)
m
ℓ=1 ∈

∏m
ℓ=1H

−1/2 (Σℓ)
we may compute

H γ [(g, F, (hℓ)
m
ℓ=1), (ψℓ)

m
ℓ=1]

= ⟨(ψℓ)
m
ℓ=1,I

γ(g, F, (hℓ)
m
ℓ=1)⟩H−1/2,H1/2

= ⟨(ψℓ)
m
ℓ=1,K

γ(g, f, (kℓ)
m
ℓ=1, (hℓ)

m
ℓ=1)⟩H−1/2,H1/2

=

∫
Rn−1

F [(ψℓ)
m
ℓ=1] · pγF [(ηℓ)

m
ℓ=1]

=

∫
Rn−1

nγ (ξ)F [(ψℓ)
m
ℓ=1] (ξ) · 4π2|ξ|2o1F [(ηℓ)

m
ℓ=1] (ξ) dξ

−
∫
Rn−1

F [(ψℓ)
m
ℓ=1] (ξ) · 2πiγξ1F [(ηℓ)

m
ℓ=1](ξ) dξ

+

∫
Rn−1

nγF [(ψℓ)
m
ℓ=1] · o0F [(ηℓ)

m
ℓ=1].

(4.40)

For the first two terms after the last equality above we may use item two of Propo-
sition 4.3 to justify the application of F ’s unitary properties; we also recall Proposi-
tion 2.16 which states that nγ is a spectral representation of νγ . Hence,
(4.41)∫

Rn−1

nγ (ξ)F [(ψℓ)
m
ℓ=1] (ξ) · 4π2 |ξ|2 o1F [(ηℓ)

m
ℓ=1] (ξ) dξ = −

m∑
ℓ=1

∫
Σℓ

v · σℓ∆∥ηℓen

for (q, v) = χ−γ
−1(0,O(ψℓen)

m
ℓ=1) ∈ L2 (Ω)× 0H

1 (Ω;Rn) the solution to the applied
stress PDE in (2.44) with data (ψℓ)

m
ℓ=1. We also have the equality

(4.42)∫
Rn−1

F [(ψℓ)
m
ℓ=1] (ξ) · 2πiγξ1F [(ηℓ)

m
ℓ=1] (ξ) dξ = ⟨(ψℓ)

m
ℓ=1, (γ∂1ηℓ)

m
ℓ=1⟩H−1/2,H1/2 .

For the final term in (4.40) we cannot, in general, apply that F is unitary directly
since (ηℓ)

m
ℓ=1 need not belong to

∏m
ℓ=1 L

2 (Σℓ). Instead we utilize the fact that v is
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6410 NOAH STEVENSON AND IAN TICE

solenoidal and vanishes on Σ0, which provides us identity (4.22). Hence,∫
Rn−1

nγF [(ψℓ)
m
ℓ=1] · o0F [(ηℓ)

m
ℓ=1]

= −g
m∑
ℓ=1

JρKℓ

∫
Rn−1

F [TrΣℓ
v · en] · F [ηℓ]

= −g
m∑
ℓ=1

JρKℓ

∫
Rn−1

∫
(0,aℓ)

F [v (·, y)] (ξ) dy · 2πi (ξ, 0)F [ηℓ] (ξ) dξ

= −g
m∑
ℓ=1

JρKℓ

∫
Ω

∇ηℓ1(0,aℓ) · v.

(4.43)

The last equality, which is an application of Plancherel’s and Fubini’s theorems, is
justified by the third item of Proposition 4.5. Define G ∈ (0H

1 (Ω;Rn))∗ through the
assignment

⟨G,w⟩(0H1)∗,0H1 = ⟨F,w⟩(0H1)∗,0H1 +

∫
Ω

[
g

m∑
ℓ=1

JρKℓ ∇ηℓ1(0,aℓ)

]
· w +

m∑
ℓ=1

∫
Σℓ

σℓ∆∥ηℓ · w

=

∫
Ω

f · w +
m∑
ℓ=1

∫
Σℓ

kℓ · w +

∫
Ω

[
g

m∑
ℓ=1

JρKℓ ∇ηℓ1(0,aℓ)

]
· w

+
m∑
ℓ=1

∫
Σℓ

σℓ∆∥ηℓ · w, w ∈ 0H
1 (Ω;Rn) .

(4.44)

We now synthesize identities (4.40), (4.41), (4.42), and (4.43):

H γ [(g, F, (hℓ)
m
ℓ=1), (ψℓ)

m
ℓ=1]

= −
m∑
ℓ=1

∫
Σℓ

v · σℓ∆∥ηℓen − γ⟨(ψℓ)
m
ℓ=1, (∂1ηℓ)

m
ℓ=1⟩H−1/2,H1/2

− g
m∑
ℓ=1

JρKℓ

∫
Ω

∇ηℓ1(0,aℓ) · v = H γ [(0, F −G, (γ∂1ηℓ)
m
ℓ=1), (ψℓ)

m
ℓ=1].

(4.45)

Rearranging (4.45) and using that H γ is bilinear shows that

(4.46) H γ [(g,G, (hℓ − γ∂1ηℓ)
m
ℓ=1) , (ψℓ)

m
ℓ=1] = 0.

As the above expression vanishes for all (ψℓ)
m
ℓ=1 ∈

∏m
ℓ=1H

−1/2 (Σℓ), we conclude that

the modified data tuple of (4.28) belongs to
←
kerH γ , which Theorem 3.3 establishes

is the range of Ψγ .

At last we are ready to state and prove an isomorphism of Banach spaces induced
by the PDE (4.1).

Theorem 4.9 (existence and uniqueness of solutions to (4.1): surface tension
case). For γ ∈ R \ {0}, σ = {σℓ}mℓ=1 ⊂ R+, and s ∈ R+ ∪ {0} the bounded linear
mapping Υγ,σ : X s → Ys, with action given by (4.12), is an isomorphism.

Proof. Proposition 4.7 ensures that this mapping is well-defined and injective, so
it remains only to prove surjectivity. Let (g, f, (kℓ)

m
ℓ=1, (hℓ)

m
ℓ=1) ∈ Ys, and define the

associated tuple of free surface functions (ηℓ)
m
ℓ=1 ∈ (H5/2+s(Rn−1))m via Lemma 4.8.

Then the modified data tuple in (4.28) belongs to the range of Ψγ . Consequently,
there exists (q, u) ∈ H1+s (Ω)× 0H

2+s (Ω;Rn) such that

(4.47) Ψγ (q, u) = (g, f+g
∑m

ℓ=1 JρKℓ ∇ηℓ1(0,aℓ), (kℓ+σℓ∆∥ηℓen)
m
ℓ=1, (hℓ−γ∂1ηℓ)mℓ=1).
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TRAVELING WAVES: INCOMPRESSIBLE, MULTILAYER CASE 6411

Set p ∈ P1+s (Ω) via p = q − g
∑m

ℓ=1 JρKℓ ηℓ1(0,aℓ). As p+ g
∑m

ℓ=1 JρKℓ ηℓ1(0,aℓ) = q ∈
H1+s (Ω), we have that (p, u, (ηℓ)

m
ℓ=1) ∈ X s. We then observe that

(4.48)

JSµ(p, u)enKℓ = JSµ(q, u)enKℓ − g

s
m∑

k=1

JρKk ηk1(0,ak)

{

ℓ

en = kℓ + (g JρKℓ + σℓ∆∥)ηℓen.

It is now straightforward to check Υγ,σ (p, u, (ηℓ)
m
ℓ=1) = (g, f, (kℓ)

m
ℓ=1, (hℓ)

m
ℓ=1), which

completes the proof that Υγ,σ is a surjection.

4.3. Isomorphism in the case without surface tension. In this subsection
we study (4.1) in the case of a two dimensional fluid (n = 2) and vanishing surface
tension (σ = {σℓ}mℓ=1 = 0). Again, we first present how the free surface functions
are determined from the data. In this instance the proof is simpler because item four
of Proposition 4.3 tells us that the function spaces holding the tuple of free surface
functions are familiar Sobolev spaces.

Lemma 4.10 (determination of free surface functions: case without surface ten-
sion). If γ ∈ R \ {0} and (g, f, (kℓ)

m
ℓ=1, (hℓ)

m
ℓ=1) ∈ Ys for some s ∈ R+ ∪ {0}, then

there exists (ηℓ)
m
ℓ=1 ∈ (H5/2+s(Rn−1))m = (H5/2+s(Rn−1))m such that the modified

data tuple

(4.49) (g, f, (kℓ + g JρKℓ ηℓen)
m
ℓ=1, (hℓ − γ∂1ηℓ)

m
ℓ=1)

∈ H1+s (Ω)×Hs (Ω;Rn)×
∏m

ℓ=1H
1/2+s (Σℓ;Rn)×

∏m
ℓ=1H

3/2+s (Σℓ)

belongs to the range of Ψγ , where this latter operator is from Theorem 3.3. Moreover,
we have the universal estimate

(4.50) ∥(ηℓ)mℓ=1∥H5/2+s ≲ ∥(g, f, (kℓ)mℓ=1, (hℓ)
m
ℓ=1)∥Ys .

Proof. We again proceed in three steps as in the proof of Lemma 4.8.
Step 1: Estimates and invertibility. Again let o0 = diag (σ1, . . . , σm) ∈ Rm×m.

We claim that the matrix field

(4.51) pγ (ξ) = nγ (ξ)
∗
o0 − 2πiγξIm×m = n−γ (ξ)o0 − 2πiγξIm×m ∈ Cm×m,

where nγ(ξ) is as defined in Proposition 2.16 and satisfies the estimate

(4.52) C−1 |pγ (ξ) b|2 ⩽ |ξ|2 |b|2 ⩽ C |pγ (ξ) b|2

for a.e. ξ ∈ R and all b ∈ Cm, for a constant C ∈ R+ depending only on the physical
parameters. Recall that since n = 2, ξ = ξ1.

By the first item of Theorem 2.19, there is a universal constant C0 ∈ R+ and a
full measure set E ⊂ R such that if ξ ∈ E, then |nγ (ξ)

∗
o0| ⩽ C0 min{|ξ|2 , |ξ|−1}.

Thus the left inequality in (4.52) follows from the triangle inequality. Also, as a
consequence of this estimate on n∗γo0, we learn that there are radii (depending only
on C0 and |γ|) 0 < R0 < 1 < R1 such that if ξ ∈ R \ [(−R1,−R0) ∪ (R0, R1)], then

(4.53) 2π |γ| |ξ| − C0 min{|ξ|2 , |ξ|−1} ⩾ π |γ| |ξ| .

Estimate (4.53) gives the right inequality in (4.52) for ξ ∈ E with |ξ| ⩽ R0 or |ξ| ⩾ R1,
by the reverse triangle inequality. For ξ ∈ E∩(−R1, R1)\(−R0, R0) we use the second
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6412 NOAH STEVENSON AND IAN TICE

item of Theorem 2.19. Let b ∈ Cm. As o0 is self-adjoint, we may estimate

|pγ (ξ) b| |b| ≳ |Re [pγ (ξ) b · o0b] | = |Re [o0b · nγ (ξ)o0b] |

≳ min{|ξ|2 , |ξ|−1} |b|2 ⩾ min{R0
2, R1

−1} |b|2 .

(4.54)

Therefore (4.52) is shown.
Step 2: Construction of the free surface functions. Again using item three of

Proposition 4.3 we define, given (g, f, (kℓ)
m
ℓ=1, (hℓ)

m
ℓ=1) ∈ Ys, a corresponding tuple of

functions (ηℓ)
m
ℓ=1 ∈ (H5/2+s(Rn−1))m via

F [(ηℓ)
m
ℓ=1] = pγ

−1F [K γ (g, f, (kℓ)
m
ℓ=1, (hℓ)

m
ℓ=1)] .

This is well-defined thanks to the estimate

∥(ηℓ)mℓ=1∥2H5/2+s ≍
∫
Rn−1

(1 + |ξ|2)5/2+s |F [(ηℓ)
m
ℓ=1] (ξ)|

2
dξ

≲
∫
Rn−1

(1 + |ξ|2)5/2+s |ξ|−2 |F [K γ (g, f, (kℓ)
m
ℓ=1, (hℓ)

m
ℓ=1)] (ξ)|

2
dξ

≲ ∥(g, f, (kℓ)mℓ=1, (hℓ)
m
ℓ=1)∥Ys .

(4.55)

Hence the estimate of (4.50) holds.
Step 3: Data correction. To show that the modified data tuple in (4.49) belongs

to the range of Ψγ we appeal to the equivalence presented in Theorem 3.3. Again we
define F ∈ (0H

1 (Ω;Rn))∗ as F = P(f, (kℓ)
m
ℓ=1), for P in Definition 2.11. Using the

definition of K γ , we compute

H γ [(g, F, (hℓ)
m
ℓ=1), (ψℓ)

m
ℓ=1]

= ⟨(ψℓ)
m
ℓ=1,I

γ(g, F, (hℓ)
m
ℓ=1)⟩H−1/2,H1/2

= ⟨(ψℓ)
m
ℓ=1,K

γ(g, f, (kℓ)
m
ℓ=1, (hℓ)

m
ℓ=1)⟩H−1/2,H1/2 =

∫
R

F [(ψℓ)
m
ℓ=1] · pγF [(ηℓ)

m
ℓ=1]

=

∫
R
nγF [(ψℓ)

m
ℓ=1] · o0F [(ηℓ)

m
ℓ=1]−

∫
R

F [(ψℓ)
m
ℓ=1] (ξ) · 2πiξF [(ηℓ)

m
ℓ=1] (ξ) dξ

(4.56)

for (ψℓ)
m
ℓ=1 ∈

∏m
ℓ=1H

−1/2 (Σℓ). Denote the solution to the normal stress PDE in equa-
tion (2.44) with data (ψℓ)

m
ℓ=1 as (q, v) = χ−γ

−1(0,O(ψℓen)
m
ℓ=1) ∈ L2 (Ω)×0H

1 (Ω;Rn)
(recall that χ−γ and O are defined in Proposition 2.9 and Definition 2.11). We next
use the fact that F is unitary on L2 to rewrite (4.56) as
(4.57)

H γ [(g, F, (hℓ)
m
ℓ=1) , (ψℓ)

m
ℓ=1] = −g

m∑
ℓ=1

JρKℓ

∫
Σℓ

ηℓv·en−⟨(ψℓ)
m
ℓ=1, (γ∂1ηℓ)

m
ℓ=1⟩H−1/2,H1/2 .

Set G ∈ (0H
1 (Ω;Rn))∗ via

⟨G,w⟩(0H1)∗,0H1 = ⟨F,w⟩(0H1)∗,0H1 + g
m∑
ℓ=1

JρKℓ

∫
Σℓ

ηℓw · en

=

∫
Ω

f · w +
m∑
ℓ=1

∫
Σℓ

kℓ · w

+ g
m∑
ℓ=1

JρKℓ

∫
Σℓ

ηℓw · en for w ∈ 0H
1(Ω;Rn).

(4.58)
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Then (4.57) implies that H γ [(g,G, (hℓ − γ∂1ηℓ)
m
ℓ=1, (ψℓ)

m
ℓ=1)] = 0 for all (ψℓ)

m
ℓ=1, so

we conclude, using Theorem 3.3, that the modified data tuple belongs to the range of
Ψγ .

Finally, we state and prove the analogue to Theorem 4.9.

Theorem 4.11 (existence and uniqueness of solutions to 4.1: case without sur-
face tension). For γ ∈ R \ {0}, n = 2, and s ∈ R+ ∪ {0} the bounded linear mapping
Υγ,0 : X s → Ys, with action given by (4.12), is an isomorphism.

Proof. Proposition 4.7 ensures that this mapping is well-defined and injective, so
only surjectivity remains. Let (g, f, (kℓ)

m
ℓ=1, (hℓ)

m
ℓ=1) ∈ Ys and define the associated

tuple of free surface functions (ηℓ)
m
ℓ=1 ∈ (H5/2+s(Rn−1))m via Lemma 4.10. Then the

modified data tuple in (4.49) belongs to the range of Ψγ . Consequently, there exists
(p, u) ∈ H1+s (Ω)× 0H

2+s (Ω;Rn) such that

(4.59) Ψγ (p, u) = (g, f, (kℓ + g JρKℓ ηℓ)
m
ℓ=1, (hℓ − γ∂1ηℓ)

m
ℓ=1).

By item four of both Propositions 4.3 and 4.5, we have that (p, u, (ηmℓ=1)) ∈ X s.
It’s also clear that Υγ,0 (p, u, (ηℓ)

m
ℓ=1)) = (g, f, (kℓ)

m
ℓ=1, (hℓ)

m
ℓ=1). Hence, Υγ,0 is a

surjection.

5. Nonlinear analysis. We now use the Banach isomorphisms constructed in
the previous section to solve the fully nonlinear problems (1.17) and (1.11) for small
data by way of the implicit function theorem. The proofs of most of the results in
this section essentially mirror those used in the one layer analysis of [15] (except that
we use our new isomorphisms), so for the sake of brevity we will mostly sketch the
details. For full details we refer to [15, section 8].

5.1. Preliminaries. This subsection is dedicated to showing that the nonlinear
mapping associated with the flattened PDE (1.17) is both well-defined and smooth.
We begin by examining the smoothness of the nonlinearities present. First we have a
simple product estimate.

Proposition 5.1. Let ℓ ∈ {1, . . . ,m} and s ∈ R+ with (n − 1)/2 < s. If f ∈
Hs(Rn−1) and g ∈ Hs (Σℓ), then the pointwise product satisfies the inclusion fg ∈
Hs (Σℓ). Moreover the bilinear mapping Hs ×Hs ∋ (f, g) 7→ fg ∈ Hs is continuous
and hence smooth.

Proof. This is proved in [15, Theorem 5.13].

The more complicated nonlinearities present in system (1.17) are also smooth, as
a consequence of the following result.

Proposition 5.2. Let s ∈ R+ with s > n/2 and m = 1 There exists a positive
radius δ (s) ∈ R+ such that the following hold.

(1) If η ∈ Hs(Rn−1) satisfies ∥η∥Hs < δ (s), then ∥η∥C0
b
< 1

2 .

(2) By the first item for η ∈ BHs(0, δ (s)), w ∈ Hs(Rn−1), and v ∈ Hs (Ω)
we are free to define pointwise Γ0 (η, w) = w

1+η and Γ1 (η, v) = v
1+η . Then

Γ0 (η, w) ∈ Hs(Rn−1) and Γ1 (η, v) = v
1+η ∈ Hs(Ω), and the mappings Γ0 :

BHs (0, δ (s)) × Hs(Rn−1) → Hs(Rn−1) and Γ1 : BHs (0, δ (s)) × Hs(Ω) →
Hs(Ω) are smooth.

Proof. The existence of a δ1 (s) ∈ R+ for which the first item holds follows from
the supercritical embedding within item 2 of Proposition 4.3.

D
ow

nl
oa

de
d 

06
/2

6/
22

 to
 1

28
.2

.1
49

.1
08

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

6414 NOAH STEVENSON AND IAN TICE

Theorem 5.17 in [15] states that for some ε0 ∈ R+ the mapping Γ2 : BPs(0, ε0)×
Hs(Ω) → Hs(Ω), for BPs(0, ε0) the open ε0-ball of the space Ps(Ω) (Definition 4.4, for
m = 1), defined by Γ2(ζ, u) =

u
1+ζ is smooth and well-defined. Denote the continuous

(and hence smooth) inclusion mapping: ι : Hs(Rn−1) → Ps(Ω). There then exists
δ2(s) ∈ R+ such that ι(BHs(0, δ2(s))) ⊆ BPs(0, ε0). Let δ(s) = min{δ1(s), δ2(s)}.
Then Γ1 is smooth as Γ1 = Γ2 ◦ (ι, idHs(Ω)). By letting P : Hs(Ω) → Hs(Rn−1) denote
the smooth projection onto this closed subspace and ι̃ : Hs(Rn−1) → Hs(Ω) denote
this smooth inclusion we deduce that Γ0 = P ◦ Γ2 ◦ (ι, ι̃) is also smooth.

The data spaces Ys for which we solve the linearized flattened problem enforce the
divergence compatibility condition from Proposition 2.1. To ensure that the nonlinear
mapping associated with the flattened problem has a target enforcing this condition,
we require the following result.

Proposition 5.3. Suppose that s ∈ R+ satisfies s > n/2, u ∈ 0H
2+s (Ω[0];Rn),

and (ηℓ)
m
ℓ=1 ⊂ BH5/2+s (0, δ) for δ = 1

2 min{a1, a2 − a1, . . . , am − am−1}δ (5/2 + s) ∈
R+, where δ (5/2 + s) ∈ R+ is as in Proposition 5.2. Then for each ℓ ∈ {1, . . . ,m}
we have the identity

(5.1)

∫
(0,aℓ)

JA∇ · u = u · Nℓ (·, aℓ) + (∇∥, 0) ·
∫
(0,aℓ)

JAtu,

where J , A, and Nℓ are functions of (ηℓ)
m
ℓ=1 as defined in section 1.3.

Proof. Let k ∈ {1, . . . , ℓ}. Arguing as in [15, Proposition 8.2] we arrive at
(5.2)∫

(ak−1,aℓ)

JkAk∇ · u = u · Nℓ (·, ak)− u · Nk−1 (·, ak−1) +
(
∇∥, 0

)
·
∫
(ak−1,ak)

JkAk
tu,

where we take N0 = en. Summing over k ⩽ ℓ and using that u vanishes on Σ0 gives
the result.

We now arrive at our final preliminary result, which states that the nonlinear
mapping associated with the flattened problem (1.17) is well-defined and smooth.

Theorem 5.4. Let s ∈ R+ with s > n/2, σ = {σℓ}mℓ=1 ⊂ R+ ∪ {0}, and κ ∈ R+.
Define the open set

(5.3) Us
κ = {(p, u, (ηℓ)mℓ=1) ∈ X s : ηℓ ∈ BH5/2+s (0, κ) for ℓ ∈ {1, . . . ,m}}

and the mapping Ξσ : R×
∏m

ℓ=1H
1/2+s(Σℓ[0];Rn×n

sym )×Us
κ → Ys with action given via

Ξσ (γ, (Tℓ)mℓ=1, p, u, (ηℓ)
m
ℓ=1)

=

(
JA∇ · u,

m∑
ℓ=1

1Ωℓ[0] [[ρℓ (u− γe1) · A∇]u+ (A∇) · Sµ
A (p, u)] ,

(
JSµ (p, u)Kℓ Nℓ − (g JρKℓ ηℓ + σℓH(ηℓ))Nℓ − TℓNℓ

)m
ℓ=1

, (γ∂1ηℓ + u · Nℓ)
m
ℓ=1

)

(5.4)

for J , A, and N defined as functions of (ηℓ)
m
ℓ=1 as in sections 1.1 and 1.3. There

exists κ0 ∈ R+ such that for all 0 < κ ⩽ κ0 the mapping Ξσ is well-defined, i.e., maps
into Ys, and is smooth.
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Proof. Theorem A.14 of [15] asserts that there is a δ1 ∈ R+ for which the mean
curvature operator H : BH5/2+s(0, δ1) → H1/2+s(Rn−1) is well-defined and smooth.
Thus we set κ0 to be the minimum of δ1 and δ, for δ the radius from Proposition 5.3.
By combining the analysis of the nonlinearities from Propositions 5.1 and 5.2 with
the nonlinear divergence compatibility of Proposition 5.3, we may argue as in [15,
Theorem 5.18] to deduce well-definedness and smoothness.

5.2. Solvability of (1.17) and (1.11). To solve (1.17) we combine the smooth-
ness result from Theorem 5.4 with the linear isomorphisms of Theorems 4.9 and 4.11.

Theorem 5.5. Suppose that σ = {σℓ}mℓ=1 ⊂ R+ and n ⩾ 2 or σ = 0 and n = 2.
Assume that R+ ∋ s > n/2. Then there exists open sets Vs ⊂ X s and Us ⊂ R \ {0} ×∏m

ℓ=1H
1/2+s(Σℓ[0];Rn×n

sym )×Hs (Ω[0];Rn) such that the following hold.
(1) (0, 0, (0)mℓ=1) ∈ Vs and (R \ {0})× {(0)mℓ=1} × {0} ⊂ Us.
(2) For each (γ, (Tℓ)mℓ=1, f) ∈ Us there exists a unique (p, u, (ηℓ)

m
ℓ=1) ∈ Vs solv-

ing (1.17) classically.
(3) The mapping Us ∋ (γ, (Tℓ)mℓ=1, f) 7→ (p, u, (ηℓ)

m
ℓ=1) ∈ Vs is smooth.

Proof. We apply the implicit function theorem to Ξσ (see, for instance, [1, Theo-
rem 2.5.7]). Denote the Hilbert space Es = R ×

∏m
ℓ=1H

1/2+s(Σℓ[0];Rn×n
sym ). Viewing

the domain of Ξσ as the product Es×Us
κ0

⊂ Es×X s we define the partial derivatives
with respect to the first and second factors via

(5.5) D1Ξσ : Es × Us
δ → L (Es;Ys) and D2Ξσ : Es × Us

δ → L (X s;Ys) .

For any γ ∈ R we have Ξσ (γ, (0)mℓ=1, 0, 0, (0)
m
ℓ=1) = 0 andD2Ξσ (γ, (0)mℓ=1, 0, 0, (0)

m
ℓ=1) =

Υγ,σ, for the latter operator as in Proposition 4.7. Theorems 5.4, 4.9, and 4.11 witness
the satisfaction of the implicit function theorem’s hypotheses whenever γ ∈ R \ {0}.

Therefore for each γ⋆ ∈ R \ {0} there exist open sets A (γ⋆) ⊂ Es, B (γ⋆) ⊂
Us
κ0
, and C (γ⋆) ⊂ Ys such that (γ⋆, (0)

m
ℓ=1) ∈ A (γ⋆), (0, 0, (0)mℓ=1) ∈ B (γ⋆), and

(0, 0, (0)mℓ=1, (0)
m
ℓ=1) ∈ C (γ⋆), and a smooth mapping ϖγ⋆

: A (γ⋆) × C (γ⋆) → B (γ⋆)
such that

(5.6) Ξσ (γ, (Tℓ)mℓ=1,ϖγ⋆ (γ, (Tℓ)mℓ=1, g, f, (kℓ)
m
ℓ=1, (hℓ)

m
ℓ=1)) = (g, f, (kℓ)

m
ℓ=1, (hℓ)

m
ℓ=1)

for all (g, f, (kℓ)
m
ℓ=1, (hℓ)

m
ℓ=1) ∈ C (γ⋆) and all (γ, (Tℓ)mℓ=1) ∈ A (γ⋆). Moreover the tuple

(p, u, (ηℓ)
m
ℓ=1) = ϖγ⋆

(γ, (Tℓ)mℓ=1, g, f, (kℓ)
m
ℓ=1, (hℓ)

m
ℓ=1) ∈ B (γ⋆) is the unique solution

to (5.6) in B (γ⋆).
Define the open sets

C1(γ⋆) = {f : (0, f, (0)mℓ=1, (0)
m
ℓ=1) ∈ C(γ⋆)} ⊆ Hs(Ω[0];Rn),

Us =
⋃

γ∈R\{0}

A (γ⋆)× C1 (γ⋆) ⊂ Es ×Hs (Ω[0];Rn) , and

Vs =
⋃

γ∈R\{0}

B (γ⋆) ⊂ Us
κ0
.

(5.7)

Observe that the first item is satisfied with these open sets. Define φ : Us → Vs via
φ (γ, (Tℓ)mℓ=1, f) = ϖγ⋆ (γ, (Tℓ)mℓ=1, 0, f, (0)

m
ℓ=1, (0)

m
ℓ=1) when (γ, (Tℓ)mℓ=1) ∈ A (γ⋆) for

some γ⋆ ∈ R \ {0}. The map φ is well-defined and smooth by the previous analysis.
Taking (p, u, (ηℓ)

m
ℓ=1) = φ (γ, (Tℓ)mℓ=1, f) and noting the embeddings of the spe-

cialized Sobolev spaces (see Propositions 4.3 and 4.5) completes the justification of
the second and third items.
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Next we examine system (1.11). Our first result gives some of the mapping
properties of the flattening map F and its inverse from section 1.3.

Proposition 5.6. Let n, k ∈ N with 1 ⩽ n/2 < k; let η = (ηℓ)
m
ℓ=1 ∈

(H5/2+k(Rn−1))m be such that

(5.8) max{∥η1∥C0
b
, . . . , ∥ηm∥C0

b
} ⩽ 1

4 min {a1, a2 − a1, . . . , am − am−1} ,

and define G : Ω[η] → Ω[0] via G = Fℓ
−1 in the set Ωℓ[η] for each ℓ ∈ {1, . . . ,m} as

in (1.13). Then the following hold.
(1) G ∈ C0,1 (Ω[η],Ω[0]) is a bi-Lipschitz homeomorphism with inverse given by

F ∈ C0,1 (Ω[0]; Ω[η]), as defined in (1.12).
(2) Set Gℓ = G ↾ Ωℓ[η] for ℓ ∈ {1, . . . ,m}. Then Gℓ ∈ Cr (Ωℓ[η],Ωℓ[0]) is

a diffeomorphism with inverse given by Fℓ = F ↾ Ωℓ[0] ∈ Cr (Ωℓ[0],Ωℓ[η]),
where N ∋ r < 3 + k − n/2.

(3) If g ∈ 0H
1 (Ω[0]), then g ◦ G ∈ 0H

1 (Ω[η]). Moreover there is c ∈ R+,
independent of g, such that ∥g ◦G∥

0H1 ⩽ c ∥g∥
0H1 .

(4) For R+∪{0} ∋ s ⩽ k+2, if f ∈ Hs (Ω[0]), then f ◦G ∈ Hs (Ω[η]). Moreover
there is c̃ ∈ R+, independent of f , such that ∥f ◦G∥Hs(Ω[η]) ⩽ c̃ ∥f∥Hs(Ω[0]).

Proof. By inspection, G is a homeomorphism with weak derivative in Ω[η] given
by ∇G (x, y) = At ◦ G for A the geometry matrix field from section 1.3. By the
embedding of item two in Proposition 4.3, this weak gradient is essentially bounded.
Hence G is Lipschitz. A similar argument shows that F = G−1 is also Lipschitz.
Hence the first and third items are now shown. The second and fourth items are now
shown by applying the arguments of [15, Theorem 8.4] to the restrictions G ↾ Ωℓ[η]
for ℓ ∈ {1, . . . ,m}.

Finally, we prove the solvability of the free boundary problem (1.11).

Theorem 5.7. Let n, k ∈ N with 1 ⩽ n/2 < k. Suppose that σ = {σℓ}mℓ=1 ⊂ R+

and n ⩾ 2 or σ = 0 and n = 2. For all γ ∈ R \ {0}, there exists ε ∈ R+ such that
if (Tℓ)mℓ=1 ∈

∏m
ℓ=1H

1/2+k
(
Σℓ[0];Rn×n

sym

)
, f ∈ Hk (Ω[0];Rn), and

∑m
ℓ=1[∥Tℓ∥H1/2+k +

∥f∥Hs(Ωℓ[0])
] < ε then there exists a tuple of free surface functions η = (ηℓ)

m
ℓ=1 ∈

(H5/2+k(Rn−1))m satisfying (5.8) such that the following hold.
(1) If G is the diffeomorphism from Proposition 5.6, then we have the inclusion

F := f ◦G ∈ Hk (Ω[η];Rn).
(2) There exists (q, v) ∈ P1+k (Ω[η]) × 0H

2+k (Ω[η];Rn) such that (q, v,η) is a
classical solution to system (1.11) with forcing F and applied surface stresses
(Tℓ)mℓ=1.

Proof. We argue as in the proof of [15, Theorem 1.3]. For small data we may solve
the flattened problem via Theorem 5.5. Then we obtain the associated flattening
mapping via Proposition 5.6. Finally, we precompose the solution to the flattened
problem with the inverse of the flattening map to obtain the desired solution to the
free boundary problem.

Appendix A. Tools from analysis. This appendix records various tools and
results used throughout the paper.

A.1. Real valued tempered distributions. Recall the notion of a real valued
tempered distribution.
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Definition A.1 (real valued tempered distributions). We say that F ∈
(S (Rd;C))∗ is R-valued if F equals its complex conjugate F , where we define F ∈
(S ∗(Rd;C))∗ with action ⟨F ,φ⟩ = ⟨F,φ⟩ for φ ∈ S (Rd;C).

The following are useful characterizations of the R-valued tempered distributions.
Here we recall that the reflection operator δ−1 acts on functions f : Rd → Ck via
δ−1f(x) = f(−x) and acts on F ∈ (S (Rd;C))∗ via ⟨δ−1F,φ⟩ = ⟨F, δ−1φ⟩ .

Proposition A.2 (characterizations of real-valued tempered distributions). For
F ∈ (S (Rd;C))∗ the following are equivalent.

(1) F is R-valued.
(2) F [F ] = δ−1F [F ].
(3) F ∈ (S (Rd;R))∗ in the sense that ⟨F,φ⟩ ∈ R for all φ ∈ S (Rd;R).

Proof. The equivalence of the first and second items is standard; see, for instance,
[15, Lemma A.1] for a proof. We prove that the first and third items are equivalent.
Suppose first that (3) holds. If φ ∈ S (Rd;C), then Re[φ], Im[φ] ∈ S (Rd;R); hence
we are free to equate

(A.1) ⟨F ,φ⟩ = ⟨F ,Re[φ]⟩+ i⟨F , Im[φ]⟩ = ⟨F,Re[φ]⟩+ i⟨F, Im[φ]⟩ = ⟨F,φ⟩.

Therefore (3) ⇒ (1). Next suppose that (1) holds. If φ ∈ S (Rd;R) then φ = φ.
Hence,

(A.2) ⟨F,φ⟩ = ⟨F ,φ⟩ = ⟨F,φ⟩ = ⟨F,φ⟩ ⇒ ⟨F,φ⟩ ∈ R.

Thus (1) ⇒ (3).

Remark A.3. By the previous proposition it is not an abuse of notation to denote
the space of real valued tempered distributions with (S (Rd;R))∗.

Remark A.4. If f ∈ (S (Rd;C))∗ ∩ L1
loc(Rd;C) then by the third item of Propo-

sition A.2 f is an R-valued tempered distribution if and only if f(x) ∈ R for a.e.
x ∈ Rd.

A.2. (Anti)duality and the Lax–Milgram lemma. Recall notions of ses-
quil-inearity and anti-duality as defined in section 1.6 of the introduction. The follow-
ing variant of the Lax–Milgram lemma is adapted to antiduality. For the well-known
R-valued version of this result we refer, for instance, to [5, Corollary 5.8].

Proposition A.5 (Lax–Milgram). Suppose that H is C-Hilbert and B : H ×
H → C is a continuous and sesquilinear mapping for which there exists c ∈ R+ such
that for all u ∈ H one has the coercive estimate ∥u∥2 ⩽ cRe[B(u, u)]. Then, there
exists a C-linear continuous isomorphism β : H∗ → H satisfying

(A.3) B(βF, v) = ⟨F, v⟩H∗,H∀F ∈ H∗ and v ∈ H.

Proof. Let K be the R-Hilbert space with underlying vector space equal to that
of H and equipped with inner product (·, ·)K = Re[(·, ·)H ]. The map Re[B(·, ·)] :
K ×K → R is then a bilinear form satisfying the hypotheses of the R-valued Lax–
Milgram lemma; in other words, Re[B(·, ·)] is bounded and coercive. Thus there exists
an R-isomorphism α0 : K∗ → K such that for all v ∈ K and all G ∈ K∗ we have
Re[B(α0G, v)] = ⟨G, v⟩K∗,K . Let α1 : H∗ → K∗ be the R-linear mapping defined via
⟨α1F, v⟩K∗,K = Re[⟨F, v⟩H∗,H ]. Set β : H∗ → H via β = α0α1.
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6418 NOAH STEVENSON AND IAN TICE

By the definition of β for all F ∈ H∗ and v ∈ H we have Re[B(βF, v) −
⟨F, v⟩H∗,H ] = 0. By antilinearity,
(A.4)
B(βF, v)−⟨F, v⟩H∗,H = Re[B(βF, v)−⟨F, v⟩H∗,H ]+ iRe[B(βF, iv)−⟨F, iv⟩H∗,H ] = 0.

Finally β is a C-linear isomorphism as it is the inverse of the following C-linear
mapping: α2 : H → H∗ with action. ⟨α2v, w⟩H∗,H = B(v, w).

To conclude this subsection, we review some representation formulas of (anti)-dual
spaces.

Proposition A.6 ((anti)dual representation of Sobolev spaces). Let s ∈ R and
K ∈ {R,C}. Recall that the Kk-valued L2-based Sobolev space on Rd of order s is
defined as

(A.5) Hs(Rd;Kk) =

{
f ∈

(
(S (Rd;K))∗

)k
: F [f ] ∈ L1

loc(Rd;Ck)

and ∥f∥2Hs =

∫
Rd

(1 + |ξ|2)s|F [f ](ξ)|2 dξ <∞
}
.

We have the representation formula (Hs(Rd;Kk))∗ = H−s(Rn;Kk), where one may
view the (anti)dual pairing as the sesquilinear (bilinear when K = C) L2-pairing of
Fourier transforms. In other words, for all G ∈ (Hs(Rd;Kk))∗ there exists a unique
g ∈ H−s(Rd;Kk) such that for all f ∈ Hs(Rd;Kk) one has the equality

(A.6) ⟨G, f⟩(Hs)∗,Hs =

∫
Rd

F [g] · F [f ] =: ⟨g, f⟩H−s,Hs .

Conversely, if g ∈ H−s(Rd;Kk), then f 7→ ⟨g, f⟩H−s,Hs defines a member of

(Hs(Rd;Kk))∗.

Proof. The assertions for the case K = C are a consequence of the discussion after
[9, Theorem 6.3]. Suppose that K = R and that G ∈ (Hs(Rd;Rk))∗. We may define
G0 ∈ (Hs(Rd;Ck))∗ via

(A.7) ⟨G0, f⟩(Hs)∗,Hs = ⟨G,Re[f ]⟩(Hs)∗,Hs − i⟨G, Im[f ]⟩(Hs)∗,Hs , f ∈ Hs(Rd;Ck).

Applying the result for the C-valued case gives us g ∈ H−s(Rd;Ck) such that
⟨G0, f⟩(H−s)∗,Hs = ⟨g, f⟩H−s,Hs for all f ∈ Hs(Rd;Ck). We next note that g ∈
((S (Rd;R))∗)k by Proposition A.2, that is, if f ∈ S (Rd;Rk) ⊂ Hs(Rd;Ck), then

⟨g, f⟩S ∗,S = ⟨g, f⟩S ∗,S = ⟨g, f⟩H−s,Hs

= ⟨G,Re[f ]⟩(Hs)∗,Hs − i⟨G, Im[f ]⟩(Hs)∗,Hs = ⟨G, f⟩(Hs)∗,Hs ∈ R.
(A.8)

Finally, g is uniquely determined by the following argument. Suppose that g0 ∈
H−s(Rd;Rk) also satisfies ⟨G, f⟩(Hs)∗,Hs = ⟨g0, f⟩H−s,Hs for all f ∈ Hs(Rd;Rk).

Define f0 ∈ Hs(Rd;Ck) via F [f0](ξ) = (1 + |ξ|2)−sF [g − g0](ξ), ξ ∈ Rd. Again,
Proposition A.2 assures us that, in fact, f0 ∈ Hs(Rd;Rk). Therefore,

(A.9) 0 = ⟨g − g0, f0⟩H−s,Hs =

∫
Rd

(1 + |ξ|2)−s|F [g − g0](ξ)|2 dξ = ∥g − g0∥2H−s .

Remark A.7. In this paper we choose to identify the functional G with the tem-
pered distribution g and the (anti)duality pairing ⟨·, ·⟩(Hs)∗,Hs with ⟨·, ·⟩H−s,Hs .
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A.3. Fourier multipliers. We begin this subsection recalling the characteriza-
tion of essentially bounded Fourier multipliers as L2-bounded translation invariant
linear mappings.

Proposition A.8. Let K ∈ {R,C}. The following are equivalent for a continuous
linear mapping T ∈ L(L2(Rd;K)).

(1) T commutes with all translation operators.
(2) There exists m ∈ L∞(Rd;C) such that Tf = F−1[mF [f ]] for all f ∈

L2(Rd;K).
In either case ∥T∥L(L2) ⩽ ∥m∥L∞ ⩽ 2 ∥T∥L(L2) and, if K = R, then m(ξ) = m(−ξ)
for a.e. ξ ∈ Rd.

Proof. The case K = C is handled in [11, Theorem 2.5.10]. It remains to handle
the case K = R. The implication (2) ⇒ (1) is clear. On the other hand, given a
translation invariant T ∈ L(L2(Rd;R)) define T0 ∈ L(L2(Rd;C)) via T0f = TRe[f ] +
iT Im[f ] for f ∈ L2(Rd;C). T0 is also translation invariant. Hence by the C-valued
case there is m ∈ L∞(Rn;C) such that the action of T0 is given by the multiplication
of m in frequency space. Using Proposition A.2 and Remark A.4 we compute

mF [f ] = F [TRe[f ]]− iF [T Im[f ]] = δ−1F [TRe[f ]] + iδ−1F [T Im[f ]]

= δ−1mδ−1F [f ] = δ−1mF [f ].
(A.10)

The above equality holds for all f ∈ L2(Rn;C) and so we deduce that m = δ−1m
almost everywhere.

We may also generalize the previous theorem to a characterization of continuous,
linear, and translation invariant mappings between the L2-based fractional Sobolev
spaces. First we recall the Bessel potential.

Definition A.9 (Bessel potential). For s ∈ R we define the Bessel potential
of order s as the operator Js ∈ L((S (Rd;C))∗) defined via JsF = F−1[(1 + | ·
|2)s/2F [F ]] for F ∈ (S (Rd;C))∗. Thanks to Proposition A.2, JsF is R-valued
whenever this is true of F . We also recall that for any t ∈ R and K ∈ {R;C},
Js ∈ L(Ht+s(Rd;K);Ht(Rd;K)) is an isometric isomorphism.

Proposition A.10. Let K ∈ {R,C}, s, t ∈ R. The following are equivalent for a
continuous linear mapping T ∈ L(Hs(Rd;K);Ht(Rd;K)).

(1) T commutes with all translation operators.
(2) There exists a measurable function µ : Rd → C such that

(A.11) mµ[r] := esssup{(1 + |ξ|2)r/2 |µ(ξ)| : ξ ∈ Rd} ∈ [0,∞]

is finite for r = t− s and for all f ∈ Hs(Rd;K) one has Tf = F−1[µF [f ]].
In either case ∥T∥L(Hs;Ht) ⩽ mµ[t−s] ⩽ 2 ∥T∥L(Hs;Ht) and, if K = R, then δ−1µ = µ,

Proof. Suppose that the first item holds. Using the Bessel potentials from the
previous definition, we obtain the bounded and translation invariant L2-operator
T0 := J tTJ−s. Applying Proposition A.8 grants us ω ∈ L∞(Rd;K) such that
if K = R, then δ−1ω = ω and T0F = F−1[ωF [F ]] for F ∈ L2(Rd;K). Set

µ (ξ) = (1 + |ξ|2)(s−t)/2ω(ξ). We check that µ is the desired spectral representation
of T :

TF = J−tT0J
sF = J−tT0F

−1[(1 + |·|)s/2F [F ]]

= F−1[(1 + |·|2)−t/2ω(ξ)(1 + |·|2)s/2F [F ]] = F−1[µF [F ]]
(A.12)
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6420 NOAH STEVENSON AND IAN TICE

for F ∈ Hs(Rd;K). Using Proposition A.8 once more, we arrive at the bounds

(A.13) mµ[t− s] = ∥ω∥L∞ ≍ ∥T0∥L(L2) = ∥T∥L(Hs;Ht) .

Thus the forward direction is shown. The reverse implication is proved in a similar
manner.

We now set notation for L2-bounded translation invariant mappings, emphasizing
that this space is parameterized by essentially bounded functions.

Definition A.11 (tangential Fourier multipliers I). Let K ∈ {R,C} and let
ω ∈ L∞(Rd;Ck×k) be a multiplier such that if K = R, then ω = δ−1ω. We make the
following definitions.

(1) Mω ∈ L(L2(Rd;Kk)) is defined via Mωf = F−1[ωF [f ]] for f ∈ L2(Rd;Kk).
(2) If a < b are real numbers we set U = Rd × (a, b) and extend Mω to be a

member of L2(U ;Kk) via Mωf(·, y) = F−1[ωF [f(·, y)]] for y ∈ (a, b) and
f ∈ L2(U ;Kk).

We would like to further extend the definitions of Mω to the spaces
Hs(Rd × (a, b);Kk) for s ∈ R+ and (0H

1(Rd × (a, b);Kk))∗ and study their bounded-
ness properties. To do this we need the following preliminary estimates.

Lemma A.12. Let s ∈ R+∪{0}, K, and ω be as in Definition A.11, a < b be real,
and U = Rd × (a, b). Then the following hold.

(1) If f ∈ Hs(U ;Kk), then Mωf ∈ Hs(U ;Kk) and ∥Mωf∥Hs ⩽ c0∥ω∥L∞∥f∥Hs

for a constant c0 ∈ R+ depending only on a, b, d, s. Moreover if s > 1/2,
then for z ∈ [a, b] we have

(A.14) TrRd×{z}Mωf =MωTrRd×{z}f.

(2) If f ∈ Hs(U ;Kk), then setting Jsf(·, y) := F−1[(1 + |·|2)s/2F [f(·, y)]] for
y ∈ (a, b) defines an L2-function Jsf ∈ L2(U ;Kk), and there is a constant
c1 ∈ R+, dependent only upon a, b, d, and s, for which ∥Jsf∥L2 ⩽ c1∥f∥Hs .

Proof. The first item follows from interpolation, the fact thatMω commutes with
distributional derivatives, and Proposition A.8. The second item follows from [15,
Corollary A.6].

By the first item of the previous lemma, we may extend the definition of tangential
Fourier multipliers in the following way.

Definition A.13 (tangential Fourier multipliers II). Let K and ω be as in Defini-
tion A.11, a < b be real, and U = Rd× (a, b). If F ∈ (0H

1(U ;Kk))∗ we define MωF ∈
(0H

1(U ;Kk))∗ to be the (anti)linear functional with action on φ ∈ 0H
1(U ;Kk) given

by

(A.15) ⟨MωF,φ⟩(0H1)∗,0H1 = ⟨F,Mωφ⟩(0H1)∗,0H1 .

Thanks to the first item of Lemma A.12, MωF is well-defined and ∥MωF∥(0H1)∗ ≲
∥ω∥L∞ ∥F∥(0H1)∗ .

Finally, we arrive at the principal result of this subsection.
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Proposition A.14. Let s ∈ R+ ∪ {0}, K ∈ {R,C}, and ω ∈ L∞(Rd;Ck×k) be
such that if K = R then ω = δ−1ω. Let m ∈ N+ and {aℓ}mℓ=1 ⊂ R+ be such that
a0 = 0 < a1 < · · · < am, and set Uℓ = Rd × (aℓ−1, aℓ), ℓ ∈ {1, . . . ,m}, U =

⋃m
ℓ=1 Uℓ,

and W = (U)◦. Then there exists a constant c2 ∈ R+, independent of ω, for which
the following estimates hold, where mω[·] is as in (A.11).

(1) If g ∈ H1+s(U ;Kk), then Mωg ∈ L2(U ;Kk) and

(A.16) ∥Mωg∥L2 ⩽ c2mω[1 + s]
m∑
ℓ=1

∥g∥H1+s(Uℓ).

(2) If f ∈ Hs(U ;Kk), (kℓ)
m
ℓ=1 ∈

∏m
ℓ=1H

1/2+s(Rd × {aℓ};Kk), and we define
F ∈ (0H

1(W ;Kk))∗ via ⟨F,φ⟩(0H1)∗,0H1 =
∫
U
f · φ +

∑m
ℓ=1

∫
Rd×{aℓ} kℓ · φ,

then MωF ∈ (0H
1(W ;Kk))∗ with

(A.17) ∥MωF∥(0H1)∗ ⩽ c2mω[1 + s]
m∑
ℓ=1

[∥f∥Hs(Uℓ) + ∥kℓ∥H1/2+s ].

Proof. For the first item we use the second assertion of Lemma A.12 to bound

(A.18) ∥Mωg∥2L2 ⩽ mω[1 + s]
2

m∑
ℓ=1

∥J1+sg∥2L2(Ωℓ)
⩽ c1

2mω[1 + s]
2

m∑
ℓ=1

∥g∥2H1+s(Uℓ)
.

We next prove the second item. Suppose that φ ∈ 0H
1(W ;Kk). If ℓ ∈ {1, . . . ,m}

then by trace theory and the first assertion of Lemma A.12,∣∣∣∣∣
∫
Rd×{aℓ}

kℓMωφ

∣∣∣∣∣ = |⟨J1+skℓ,J
−1−sMωφ(·, aℓ)⟩H−1/2,H1/2 |

⩽ ∥kℓ∥H1/2+s ∥Mϖφ(·, aℓ)∥H1/2

⩽ c̃∥kℓ∥1/2+s ∥Mϖφ∥
0H1 ⩽ c̃c0mω[1 + s]∥kℓ∥H1+s∥φ∥

0H1

(A.19)

for c̃ ∈ R+, a constant from trace theory, and the auxiliary multiplier ϖ(ξ) =

(1 + |ξ|2)−(s+1)/2ω(ξ), ξ ∈ Rd. By Lemma A.12 item one again, we finally estimate

∣∣∣∣∫
U

f ·Mωφ

∣∣∣∣ = ∣∣∣∣∫
U

Jsf · J−sMωφ

∣∣∣∣
⩽ c1

m∑
ℓ=1

∥f∥Hs(Uℓ)∥MϖJ1φ∥L2 ≲ mω[1 + s] ∥φ∥
0H1

m∑
ℓ=1

∥f∥Hs(Uℓ).

(A.20)

Combining (A.19) and (A.20) gives the second item.

A.4. Korn’s inequality. We record a version of Korn’s inequality stating that
the L2-norm of the symmetrized gradient controls theH1 norm on the closed subspace
of functions vanishing on the lower boundary.

Proposition A.15. Let a, b ∈ R with a < b. Then there exists a constant c ∈ R+,
depending only on b− a and n, such that for all f ∈ H1(Rn−1 × (a, b);Rn) such that
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TrRn−1×{a}f = 0 we have the inequality

(A.21) ∥f∥L2 + ∥∇f∥L2 ⩽ c ∥Df∥L2 .

Proof. We refer the reader to the proof of [4, Lemma 2.7].
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