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TRAVELING WAVE SOLUTIONS TO THE MULTILAYER FREE
BOUNDARY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS*

NOAH STEVENSONT AND IAN TICEf

Abstract. For a natural number m > 2, we study m layers of finite depth, horizontally infinite,
viscous, and incompressible fluid bounded below by a flat rigid bottom. Adjacent layers meet at
free interface regions, and the top layer is bounded above by a free boundary as well. A uniform
gravitational field, normal to the rigid bottom, acts on the fluid. We assume that the fluid mass
densities are strictly decreasing from bottom to top and consider the cases with and without surface
tension acting on the free surfaces. In addition to these gravity-capillary effects, we allow a force
to act on the bulk and external stress tensors to act on the free interface regions. Both of these
additional forces are posited to be in traveling wave form: time-independent when viewed in a
coordinate system moving at a constant, nontrivial velocity parallel to the lower rigid boundary.
Without surface tension in the case of two dimensional fluids and with all positive surface tensions
in the higher dimensional cases, we prove that for each sufficiently small force and stress tuple
there exists a traveling wave solution. The existence of traveling wave solutions to the one layer
configuration (m = 1) was recently established and, to the best of our knowledge, this paper is the
first construction of traveling wave solutions to the incompressible Navier—Stokes equations in the
m-layer arrangement.
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1. Introduction.

1.1. Eulerian coordinate formulation. In this paper we study traveling wave
solutions to the viscous surface-internal wave problem, which describes the evolution
of a finite number of layers of incompressible and viscous fluid. We posit that the
fluid layers contiguously occupy horizontally infinite, finite-depth, and time-evolving
slabs sitting atop a rigid hyperplane in ambient Euclidean space of dimension n €
N\ {0, 1} (the physically relevant dimensions are 2 and 3, but our analysis works more
generally). Within each layer the fluid dynamics are described by the incompressible
Navier—Stokes equations, and jump conditions couple the dynamics between layers.
The multiple layers serve as a model of stratified fluids. These occur, for example,
when salinity or temperature change rapidly with respect to depth.

In order to properly state the PDEs considered in this analysis, we first set the
necessary notation. Fix the number of layers of fluid m € N\ {0,1}. Let « = {as},,
be a strictly increasing sequence of positive real numbers, i.e., 0 < a3 < -+ < a@,. We
refer to « as the depth parameter. We associate with « the collection of admissible
graph interfaces, which is the subset of m-tuples of continuous and bounded functions

(L) o (o) ={(me)jy CCY(R™) 1 0<ar+m <+ < m+1nmon R},
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Ifn =)y, € & («), then for £ € {1,...,m} we define the slab-like domain

(1.2)

Q] = {{(x,y) ER"IXR : 1 (z)+arm1 <y<me(z)+a} when2<l<m,
{(z,y) eR"IXR : 0<y<m(z)+ar} when £ =1,

and the free boundaries

(1.3) Sem) = {(z,y) eER"IXR : y=ar+n(z)}.

We also define the union of the slabs, entire domain, and rigid lower boundary, re-
spectively, as

(1.4)
Qml=QUMmuU---UQ,Ml, QM) = {(r,y) ER"IXR : 0<y < am+nm (:z:)},
and $o = {(z,y) ER" ' xR : y=0}.

Observe that (Qn])° = Q°¢n]. We will often need to distinguish between derivatives
that are parallel to ¥ and vertical derivatives, so we write V = (V\|78n)~ Note that
the operator V| is the full spatial gradient for the free surface functions, which have
the spatial domain R™"1.

Suppose that 1 = (n¢)}2, € & («) is given and each 7, is Lipschitz. Then for
X € HY(QMm];R?), for some d € N*, the restriction of X to each Qy[n] belongs to
H(QyM];RY), and so from standard trace theory we have trace operators onto the
upper and lower boundaries, ¥,[n] and ¥,_1[n], which we denote by Tr;l[ T]]X and
TrS, g
interfacial jumps via

X, respectively. In turn, for £ € {1,...,m} this allows us to define the

' 1
(1.5) X1, = {Trsz —Trg, (X when 1, <l<m -1,

—Tr;m[n]X when ¢ = m.
Note that [X],, is not really a jump, but we will employ this notation for brevity
in writing PDEs throughout the paper. If w is a weakly differentiable vector field
we define its symmetrized gradient as the matrix field Du = Vu + Vu', where the
superscript “t” denotes the matrix transpose. If u = {,ug}znzl C RT is a sequence
of positive fluid viscosity parameters, we define the associated stress tensor as the
mapping

(16) §%: L2(Qn]) x H'(Qn); R") — L2(Qn); R

via S (pa u) = Z ]]-Qg[n] (pIan - N@DU) ,
=1

m

With the notation established, we are now equipped to describe the model and the
equations of motion in time. At equilibrium, we posit that the layers of fluid occupy
the domain Q[0] with the ¢th layer occupying the region Q,[0]; furthermore, when
perturbed from equilibrium there are free surface functions ¢ (t,-) = ({ (¢,-))72, €
& () for time ¢ > 0 describing the evolution of the fluid layer domains in such a way
that Q[C (¢, )] is the region occupied by the union of all the layers, and the ¢th layer

where RET denotes the set of n x n real symmetric matrices.
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6372 NOAH STEVENSON AND IAN TICE

occupies Q[C (t,-)]. The fluid velocity and pressure are described by the functions
w(t, ) : QL )] = R™, r(t,-) : Q[L(t,-)] = R. The density of the fluid occupying
the region Q[C(t,-)] is the constant p, € RT, and the viscosity of this portion of the
fluid is the constant pu, € RT.

We assume that the fluid is acted upon by the following forces. The bulk (the
region of fluid occupying Q[ (t,-)]) is acted on by a uniform external gravitational
field —ge,, € R™, for acceleration of gravity g € R™; and by a generic force F (¢,-) :
Q[e(t,)] — R™. The fth free surface is acted upon by a force generated by an
externally applied stress tensor T : ¥[((t,-)] — RET; and a force generated by the
surface itself, which is modeled in the standard way by —o/H ({; (¢,-)) for oo > 0 a
surface tension coeflicient and

(1.7) H(ne) = V- (Ve + |V me*)~12)

the mean curvature operator. In addition, the upper surface (the mth one) is acted
on by a constant external pressure Poy € R.
The equations of motion are

(1.8)
pe (O +w-V)w+ V- S*(r,w) =—gpee, + F  in Q[C(t,7)], €€ {1,...,m},
V-u=0 in Q[C(¢,)],
PoxtVim — SY (r,w) vy, — 00 H (G) Vin = TV o0 20, [T (2, )],
[S* (r,w)], ve — oeH (Co) ve = Tyve on Xp[C(¢,7)], e {l,...,m—1},
G +w- (V)¢ 0) =w-e, on X,[L(t, )], L€ {1,...,m},
[w],=0 on X,[¢(t, )], L€ {1,...,m—1},
w=20 on Y.

Here the upward pointing unit normal to the surface X,[((¢, )] is
(1.9) vy = (1+ |V‘|Cz|2)71/2(—VHQ,1)7

and we write V - S*(r,w) to mean the n-vector with ith component equal to the
divergence of the ith row of S*(r, w).

We briefly comment on the physics of the above system of PDEs. The first
two equations of (1.8) are the incompressible Navier—Stokes equations. The first
asserts a Newtonian balance of forces, while the second enforces that the associated
flow is locally volume preserving and, hence, because the density is constant in the
slab domains, mass is conserved. The third and fourth equations are the dynamic
boundary conditions, which are understood as force balances on the interfaces, and
the fifth equation is the kinematic boundary condition, which dictates the surfaces’
motion with the fluid. The final two equations are the no-slip conditions: the Eulerian
velocity vanishes on the lower rigid boundary and is continuous across the free interface
regions. For a more physical description of these equations and boundary conditions
we refer to Wehausen and Laitone [27].

In this paper we construct traveling wave solutions to the system (1.8). These
are solutions that are time independent when viewed in an inertial coordinate system
obtained from the above Eulerian coordinates through a Galilean transformation. In
order for the stationary condition to hold, the moving coordinate system must be
traveling at a constant velocity parallel to ¥y. Up to a rigid rotation fixing the vector
en, we may assume that the traveling coordinate system is moving at a constant
velocity «ye; for a signed wave speed v € R\ {0}.
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In the new coordinates the stationary free surface functions are described by the

unknowns 1 = (1,)j2, € &/ («); these are related to { vian (x — yte1) = C (¢, ). Next
we posit that v (x — tyer,y) = w (¢, z,y),

(110) q(xftfyel,y) :T(t,:c,y) 7Pext

m m
- EZ Loy 1,a0) (¥) |pe(ae —y) + Z pr (ar — ak—1) |,
£=1 k=0(+1

F(x —tvyer,y) = F(t,x,y), and Tp (x —tyey) = Ty (t,x, a0 + (o (¢, ) for t > 0 and
(z,y) € R"1 x (0,a,,), where v : Q] — R", ¢ : Q] — R, F : Q] — R", and
TR - R are the stationary velocity field, renormalized pressure, external
force, and external stresses, respectively. In the traveling coordinate system the PDE
satisfied by the unknowns (q,v, (n,)j~,) with forcing (F, (7¢)j~,) is the following

system:

(1.11)
pe[(v—"e1) - Vjo+V-S*(q,v) =F in QMm], € {1,...,m},
Vou=0 in Q[n],
[S¥ (g, )], Ne = (g [Pl e + oeH (0e)) Ne + TeNy  on Eyn], £ € {1,...,m},
—y0me +v- (Vyne,0) = v-ep on Xyn], £€{1,...,m},
[U]]ZZO OnZg[ﬂ],fe{l,...,m—l},
u=0 on Y.

In the above we write Ny = (=Vn,1) and p = ;" | 1o, [0)p¢. Note that renormaliz-
ing the pressure in this way has the effect of shifting the gravitational term from the
bulk to the interfaces.

We conclude our discussion of the model with a comment about the role of the
forcing and interfacial stresses, (F, (7¢)7;), appearing in (1.11). The simplest con-
figuration occurs when F =0 and 7, =0 for 1 < ¢ <m — 1, but 7,,, = —pl,x, for
a given scalar function ¢ : R*~! — R. In this configuration, ¢ can be viewed as a
spatially localized source of pressure moving with velocity ve; above the fluid. We
have chosen to study the more general framework with (F, (7¢)72,) in order to allow
for more sources of external force and stress.

1.2. Remarks on previous work. Traveling wave solutions to the equations
of fluid dynamics have been a subject of intense mathematical study for more than a
century, so a complete review of the literature is well beyond the scope of this paper.
The vast majority of this work has focused on inviscid models, in which the Navier—
Stokes equations in (1.11) are replaced by the Euler equations. For a thorough review
of the inviscid literature, we refer to the works of Toland [26], Groves [12], and Strauss
[25].

In the viscous literature there are various results on stationary solutions to the
free boundary problems, which correspond to traveling waves with vanishing velocity,
~v = 0. For works on stationary solutions in layer geometries, we refer to Jean [13],
Pileckas [21, 22, 23], Gellrich [10], Nazarov and Pileckas [17, 18], Pileckas and Zaleskis
[24], and Bae and Cho [3]. Traveling wave solutions without a free boundary were
constructed by Chae and Dubovskil [6] in full space and Kagei and Nishida [14] as
bifurcations from Poiseuille flow in rigid channels.

To the best of our knowledge, the first construction of traveling wave solutions to
the free boundary incompressible Navier—Stokes equations (system (1.8) for m = 1)
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was only accomplished recently in the work of Leoni and Tice in [15], and there are no
known results involving multiple layers. The multilayer problem is an important vari-
ant that appears in the study of internal waves in stratified fluids. This stratification
can occur, for instance, due to changes in salinity or temperature.

As mentioned above, the system (1.11) can be used to model a source of spatially
localized pressure translating above the fluid. This configuration has been studied
in recent experiments with a tube of air, translating uniformly above a wave tank,
blowing onto a single layer of viscous fluid and resulting in traveling waves. For
details, we refer to the works of Diorio et al. [§], Cho et al. [7], Masnadi and Duncan
[16], and Park and Cho [19, 20].

1.3. Reformulation in an independent domain. The domain itself is one
of the unknowns in the system (1.11), which presents a fundamental difficulty in
producing solutions. Following the strategy of the single-layer case from [15], we
overcome this obstacle with another change of coordinates and unknowns. We flatten
to a domain that is independent of both time and the free surface functions, which
comes at the expense of worsening the nonlinearities of the system.

We begin by defining the following family of flattening maps. Set ag = 0 and
no = 0. For £ € {1,...,m} we define the mapping F, : Q0] — Q[n] with the
assignment

(1.12) Se(z,y) = (3«”’ ot (ag—1 + me-1 (7)) + 2= (ae + e (m)))

for (x,y) € R" ! x [ay_1,as] = Q[0]. First we observe that each §, is bijective with
inverse given via

-1 — ag+ne(z)—y y—ag_1—ne—1(z)
(1.13) e (z,y) = (‘T’ az-&-w(?:)—aﬂzq—mfﬂx) Ge-1+ al"l"?l(x)_lalfl—lnf—l(x) af)

for (x,y) € QM], whenever ay — ag_1 # 101 — 1¢ pointwise. If this inequality holds,
then §, is a homeomorphism inheriting the regularity of the tuple n. We propose
to paste these functions together to build our sought-after flattening map. That
is, we define § : Q¢[0] — Q°[n] via § = F¢ on Q[0]. This assignment defines a
homeomorphism because §¢ = §¢—1 on Xp_1[0] for £ € {2,...,m}.

Provided that 1 is differentiable, for (z,y) € 9,[0] we can compute the gradient
(1.14)

In—1)x(n-1) O(n—1)x1
V% x, = — —ap_ a z)—ap_1—ne—1(x s
£ ( y) <aza_za[yl anZ—l (93) + ;/e_ae[jl VW}Z (I) e+10( L[—ﬁl@il ne—1(x)

the Jacobian

ag + 1 () — ag—y — ne—1 (x)

(1.15) Jio (z,y) = det VF,(z,y) = ,
Qp — Ap—1
and the geometry matrices
(1.16)
. I( Rl " _(a;_z—y)VW]e—l($)+(y—a£—l)vu77£(93)
— n—1)xX(n— a Tr)—ap—1—MNer—1(T
Ar () = V§ ()~ = |0 A
1x(n—1) ag+ne(r)—ap_1—me—1(x)

We then set A : Q0] - R™ "™ via A = Ay in Q[0], and J : Q[0] — R via J = Jp
in [0]. We may now reformulate (1.11) as a quasilinear system in the fixed domain

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/26/22 to 128.2.149.108 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TRAVELING WAVES: INCOMPRESSIBLE, MULTILAYER CASE 6375

Q[0]:

(1.17)
pel(u—yer) - AV]u+ (AV) - 54 (p,u) = f in Q[0], £€{1,...,m},
(AV)-u =0 in 0],
1S4 (p,w)], Ne = (g [pl, e + oH (ne)) Ne + TeNy  on 3,[0], £ € {1,...,m},
YO e +u- Ny =0 on %4[0], £ € {1,...,m},
[u], =0 on %4[0], £€{1,...,m—1},
u=20 on X

for the flattened velocity field and pressure u = vo § and p = go §. In the above
we have also set f = F o §, allowed A to act on the “vector” V by standard matrix
multiplication, and introduced the operator

(1.18) Sh (pou) =300 Loy [PLxn — e(Vu) A — e A(VU®)]

The n-vector (AV) - S% (p,u) has its ith component equal to the A-divergence of the
ith row of S (p, u).

1.4. Statement of main results and discussion. We now give the two main
results obtained from the analysis in this paper. We provide somewhat informal and
abbreviated statements in order to avoid the need to introduce here some nonstandard
function spaces we employ in our analysis. The proper statements are found later in
the paper at the indicated theorems. The definitions of the function sets C*, CF, and
Ck can be found in section 1.6.

Our first result regards the solvability of the flattened problem in (1.17): it tells
us that if the strict Rayleigh—Taylor condition, 0 < p,,, < --+ < p1, is satisfied along
with certain conditions on the dimension n and the surface tensions {o¢}}*, then the
multilayer flattened free boundary problem (1.17) is well-posed for all nontrivial wave
speeds and small forcing and applied stresses.

THEOREM 1.1 (proved in Theorem 5.5). Suppose that eithern = 2 and {o,}}>, =
0 orelsen > 2 and {0/} CRT. Let R > s >n/2,0< p, < --- < p1, and
N> r < s—n/2. Then there exist Banach spaces

(1.19)  &* < Gy (Q[0]) x [CP(Q[0]; R™) N C7F (QU0; R™)] x (CFF (R=1)™
and  Z* — R x (CyT"(R"HREXM)™ x Cp (Q[0]; R™)

sym
and open sets Vs C X® and Us C Z° such that the following hold:
(1) (0,0.(0)}) € Vs and (B, {0}) x {(0)7, } x {0}  U..
(2) For each (v, (Te)jxy, [) € Us there exists a unique (p,u, (ne)y2,) € Vs that is
a classical solution to (1.17) with the former tuple as data. Moreover, the free
surface functions obey the bound

(1.20) max{||n1||cg Yoy ||77m||c{j} < imin{ar, a2 —a1,...,am — am_1}.

(3) The mapping Us > (v, (Te)y—y , f) = (p,u, (ne)y=,) € Vs is smooth.

Next, we take the solutions constructed by the previous theorem and build their
associated inverse flattening maps. This process results in traveling wave solutions to
the Eulerian formulation of the free boundary problem (1.11).
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THEOREM 1.2 (proved in Proposition 5.6 and Theorem 5.7). Let N > k > n/2,
0<pm <---<p1, and N> r <k—n/2. Suppose the dimension n € N\{0,1} and
the surface tension coefficients {o},~, are related as in Theorem 1.1, and let Uy be
as in the theorem. Then for each (v, (Te)jy, f) € Ui the solution (p,u, (n:)}%,) € Vi
to (1.17) provided by Theorem 1.1 satisfies the following.

(1) When defining the flattening map § from the tuple n = (n,)j>, as in sec-

tion 1.3, the result is a bi-Lipschitz homeomorphism § : Q¢[0] — Qen] that is
a C317-diffeomorphism on the m slab domains. In other words, § and F~!
are Lipschitz and satisfy the inclusions

(1.21) F € C3(Q[0); QM]) and F=F € C3F(Qn]; Q[0)).
(2) Setting

(Qa v, (775)2”:1) = (p o 8:_17 u o 3_1? (nf);nzl)
(1.22) € G (@) x [C(Om]; RY) N C2+ (s B
% (CS+T<R7L—1))m

gives a classical solution to the free boundary problem (1.11) with signed wave
speed v € R\ {0}, applied surface stresses (To)7-, C Cot" (R R ), and
external forcing F = f o' € Cr(QMm];R™).

Following the lead of the single layer analysis in [15], our strategy for proving
Theorems 1.1 and 1.2 can be succinctly described as follows: we find appropriate
Banach spaces such that the locally defined mapping associated with the flattened
problem in system (1.17) is well-defined, smooth, and satisfies the hypotheses of the
implicit function theorem around the zero solution. This grants us the small data
solution operator described in the first theorem. From these solutions to the flattened
problem, we use the free surface functions to build the flattening map and its inverse to
undo the reformulation described in section 1.3. This then yields the second theorem.

The only serious difficulties in progressing from Theorem 1.1 to Theorem 1.2 lie
in verifying that the flattening map § and its inverse preserve not only the standard
Sobolev spaces, but the specialized ones we employ in our analysis. Fortunately,
these difficulties were already overcome in the single layer analysis of [15], and the
solution is readily ported to the multilayer context of the present paper. As such,
the main thrust of this paper is proving Theorem 1.1, which presents a number of
nontrivial difficulties not encountered in the single layer analysis. The remainder of
this discussion describes the path to this theorem in greater detail.

To invoke the implicit function theorem, we are led to study the linearization
of system (1.17), which is recorded in (4.1). Even though this is a linear PDE,
there are several obstacles that make solving it both an interesting and nontrivial
endeavor. The first of these is the selection of appropriate Banach spaces for data
and solutions for the linearized flattened problem. These spaces need be chosen so
that (1) the nonlinear operator associated with the flattened system is locally well-
defined near the zero solution and is at least continuously differentiable; (2) they
embed within subspaces of the classical scales measuring differentiability; and (3) the
linearized problem induces a Banach isomorphism. The first and last point ensure
that the hypotheses of the implicit function theorem are satisfied, and the second
point guarantees that our notion of solution to the nonlinear flattened problem will
be the classical one.
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Unfortunately, for data belonging to subspaces of standard L2-based Sobolev
spaces, the natural a priori estimates associated with the linearized PDE (4.1) are too
weak to force the solution tuple (p,u, (n¢),~,) to belong to standard Sobolev spaces.
The same problem was encountered in the single layer problem; to circumvent the
issue, in [15, section 5] novel scales of specialized Sobolev spaces were introduced,
which satisfy the three requirements mentioned above. Fortunately for us, we find that
the appropriate Banach spaces for the multilayer problem are natural modifications of
the single-layer problem’s spaces; see Definitions 4.2 and 4.4. It is worth pointing out
that, while these spaces arise naturally as the spaces that contain the solutions to (4.1),
they have rather odd properties. For instance, in the most physically important case
of n = 3 the space for the free surface functions is strongly anisotropic in the sense
that it is not closed under composition with rotations (see [15, Remark 5.4]).

We now turn to the question of how to solve the problem (4.1), which is not a
standard elliptic boundary value system (i.e., not in the form studied in the classic pa-
per of Agmon, Douglis, and Nirenberg [2]) due to the fact that some of the unknowns,
namely, (1), ,, appear only on the boundary. Building on the strategy of [15], we at-
tack this problem with the help of the normal stress to normal Dirichlet map (see Defi-
nition 2.14), which is (¢¢),~, — v (¢e)7; = (Trs,v-e,)7~,, where (g, v) solve (2.44).
Then a solution (p, u, (n¢),~,) will take the form p = —g >, [pl, nel(0,a,) + a4+ 7
and u = v+ w for (¢,v) solving (2.44) with data (), = (0¢Ayne)j~, and (r,w)
solving

(1.23)
V- S (r,w) = ypediw = f+ 9300 [ol, Viel,a,) n Qp, £€{1,...,m},
V-w=g in Q,
[S* (r,w) en], = ke on Yy, L e{l,...,m},
w- e, =hy—y01ny — [V_,Y(akAan)}f:l]g on Xy, L e{l,...,m},
[w], =0 on Xy, £e€{l,...,m—1},
w=20 on Y.

At first glance this seems no better than (4.1), but the advantage of this form is that
even for given 1 = (n),~, belonging to the specialized Sobolev spaces, the right sides
of this system belong to standard Sobolev spaces (see Proposition 4.3). However, if we
think of n as given, then this system is overdetermined in the sense that n + 1 scalar
boundary conditions are specified at each ¥, rather than the n needed to uniquely
determine solutions. This leads us to study the overdetermined problem (3.1).

The problem (3.1) cannot be solved for arbitrary data tuples (g, f, (ke)j" 1, (he)721)-
Indeed, data for which a solution exists must satisfy certain compatibility conditions,
which we identify in section 3.1. Remarkably, this then yields a mechanism for solv-
ing (1.23) for general data (g, f, (k)72 ,, (he)72,): we solve for 1 so that the modified
data tuple

(1.24) (97 f+ EZZI [el, Viedio,a,)5 (ke)gey 5 (he — ¥O1me)jey — V—"/(UZA”V)T:l)

satisfies the compatibility conditions, and then we solve for (r, w) using the solvability
theory for the overdetermined problem (3.1), which we also develop in section 3.1.
In following this strategy for determining n in terms of the data, we uncover an-
other remarkable fact: after horizontal Fourier transformation, the bulk term
a> ey [el, Vnel(o,a,) in the compatibility condition shifts back to a boundary term
involving the symbol of the pseudodifferential operator (¥DO) v_., which allows us
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to show that the compatibility condition for the modified data tuple (1.24) is equiva-
lent to a system of pseudodifferential equations (¥DEs) on R"~1. More precisely, we
show in Proposition 2.16 that v, has an associated symbol n, : R?~1 — C™*™ and
we prove that the compatibility conditions are equivalent to the WDEs,

(1.25) P,(§)F (&) = Fo](¢) for ¢ e R™,

where . denotes the Fourier transform on R"~! (acting on each component of the
tuple 1 in the obvious way),

P, (€) = n_, (¢) diag(~g [p], +4x° €] ou,..., ~g[p],, +47° [¢]* on)

(1.26)
—2miv& I € CMX™

)

and @ : R"~! — C™ is a particular tuple depending on the data (g, f, (ke)7%,, (he)yy)-
Note that the symbol p, is a synthesis of the symbols for the differential operator
701, the normal stress to normal Dirichlet operator v_,, and the elliptic capillary
operators g [p], + 0,4 .

Provided that p,, is almost everywhere invertible, we then have the determination
n = Z lp, ' Z[¢]l. However, given the complicated form of p., it is far from
obvious that this holds or that, if it is true, the resulting formula for n produces free
surfaces that are both physically sensible and mathematically useful in our implicit
function theorem scheme. In order to prove these, we need to know two crucial
pieces of information: detailed facts about the regularity of ¢, and precise asymptotic
developments of n,(§) as [{| — 0 and |{] — oo.

It is here where the present paper seriously deviates from the strategy employed
for a single layer in [15], which involved brute forcing the asymptotics of the sym-
bol from an explicit expression given by the solution to the ODE system resulting
from applying .Z to (2.44). Due to essential singularities in the symbol at || = oo,
this approach is rather delicate and involves numerous tedious calculations for which
computer algebra systems are of little assistance. If we were to attempt to port this
brute force approach to the m-layer problem, the number of these tedious asymptotic
developments that we would need to compute by hand would be on the order of m?,
which is already disagreeable when m = 2 and is outright impossible in the general
case m = 2.

In the present paper we thus abandon the brute force strategy and develop a more
elegant and flexible method for deriving the asymptotic developments of the symbol
n,. Our technique is based on a synthesis of novel energy estimates for solutions
of the multilayer traveling Stokes system (2.1), a duality-based formulation of the
compatibility conditions for (3.1), and estimates for solutions to certain prescribed
divergence equations. The key observation is the energy equivalence of Theorem 2.18
for solutions to the applied normal stress problem (2.44), which characterizes the data
space for solenoidal weak formulations (only employing solenoidal test functions to
avoid introducing the pressure), and may thus be of independent interest in the study
of the Stokes system.

The symbol p, !, together with the properties of ¢ (see section 3.2), ultimately
determine the nonstandard Sobolev spaces employed in our analysis. Thus, by em-
ploying this strategy, we can indeed solve for the free surface functions and then
solve the linearized problem (4.1). This leads us to the isomorphism theorems The-
orems 4.9 and 4.11, which then form the backbone of the implicit function scheme
discussed above.
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1.5. Outline of the paper. We begin our linear analysis in section 2, where we
study the multilayer traveling Stokes equations subject to stress boundary conditions,
as well as the specified divergence and normal trace problem. These are systems (2.1)
and (2.2), respectively. The analysis of the latter PDE in section 2.1 explores a
necessary and sufficient compatibility condition for the data. The result is a solution
operator and important technical estimates.

Section 2.2 dives into the analysis of the system (2.1). This system is elliptic, and
the well-posedness theory is straightforward. However, the solution operator for this
system plays a foundational role in our subsequent analysis, as they allow us to define
the normal stress to normal Dirichlet ¥DO, v, as well as build more complicated
solution operators to other PDE systems.

Section 2.3 next studies the normal stress to normal Dirichlet operator. The
asymptotic developments of its symbol are computed using the energy structure of
the multilayer traveling Stokes system and estimates from the specified divergence
and normal trace problem.

In section 3 we analyze the overdetermined variant of the multilayer traveling
Stokes system. In section 3.1 we characterize spaces of compatible data for which this
PDE admits solutions. Then, in section 3.2, we examine more closely what it means
for data to be compatible and develop a particular measurement of compatibility for
general data, which leads us to the tuple ¢ appearing in the YDEs (1.25). We prove
estimates for ¢ in frequency space that aid in the solving of these WDEs.

Section 4 synthesizes the previous two sections and draws from the specialized
Sobolev space analysis of [15] to build the Banach isomorphism solution operator
associated with the linearized flattened problem. Section 4.1 proves that the proposed
solution operator is well-defined and injective. Sections 4.2 and 4.3 prove surjectivity
in the cases n > 2 and strictly positive surface tensions and n = 2 and vanishing
surface tensions, respectively.

Section 5 contains the nonlinear analysis and the proofs of the main theorems. We
combine the linear analysis from section 4 with more results on specialized Sobolev
spaces in order to satisfy the hypothesis of the implicit function theorem. Theo-
rems 1.1 and 1.2 then follow.

Finally, in Appendix A, we record some useful facts from analysis used throughout
the paper. These include notions of real valued tempered distributions, (anti)duality
and the Lax—Milgram lemma, tangential Fourier multipliers, and Korn’s inequality.

1.6. Conventions of notation. The standard Lebesgue measure on the Euclid-
ean space R? is £¢. The symbol K will be used in situations in which both K = R
and K = C are valid.

Whenever the expression a < b appears in a proof of a result, it means that there
is a constant C' € RT, depending only on the parameters implicitly and explicitly
quantified in the statement of the result, such that a < Cb. We also write a < b to
mean a < b and b < a.

Given complex vector spaces X, Y, and Z we say that a mapping B: X XY — Z
is sesquilinear if it is linear in the left argument and antilinear in the right argument.
The dot product - denotes the standard sesquilinear Euclidean inner product on C?,
and we write : for the sesquilinear Frobenius inner product on C%*¢. We denote the
divergence and tangential divergence operators with

n

(1.27) Ve f = $0,(f e) nd (V),0)- £ = £ okl )

Jj=1
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for appropriate C"-valued functions f. Note that this does not violate our sesquilin-
earity rule because the arguments of V - f and (V,0) - f are outside of the domain
of the dot product.

If H is a complex Hilbert space, then H* denotes the set of continuous and anti-
linear functionals on H, i.e., the antidual. Sometimes we will need to simultaneously
refer to complex and real Hilbert spaces. When doing so we will use H* to refer to the
usual dual space when the base field is R and the antidual when it’s C. Given a com-
plex Hilbert H, the antidual pairing is the sesquilinear form (-, )3 4, : H* xH — C
defined via (F,v);+ 3 = F'(v). The Fourier transform is denoted 7.

Finally, we set the following function space notation. If U ¢ R% and V C R%
are open subsets of Euclidean space and r € N we define
(1.28)

C™(U;V)={f:U — V| f is continuous along with its derivatives of order k

VkeNT k<r},

Cy(U:V) ={f € C"(U; V) | maxocnsr sup,ep |D*f(2)| < oo},

C{ (R4 R%2) = {f € CF(R¥;R%2) | lim| ;|00 MaXo<r<r ‘Dkf(z)‘ = 0}.
Let n € &(«), s 20, and K € {R,C}. If t,a € R we identify
(1.29) HYR" ! x {a}; K?) ~ H'(R" !, K9)

in the obvious way. We say that a vector field is solenoidal if its distributional di-
vergence vanishes. The closed subspace of H' consisting of solenoidal fields on Q°[n]
vanishing identically on the lower boundary is denoted

(1.30) oH () K") = {f € HY(Q°M;K") : V- f=0and Trg, f = 0}.

Note that functions in this space are required to be in H* on the entire domain Q°[n]
(see (1.4)). For s € RT U {0} we also define

(1.31)

oH'**(QM);KY) = {f € H'(Q°M;;KY) : f QM| € H'**(Qn];K?) and Try, f = 0}.

Note that functions in this space are required to be in H' of the entire domain but
only H'™$ on each subdomain Q,n]. A norm that makes the above vector space
Banach is given by

(1.32) ||f||(2]H1+S(Q[r|]) = e; 1f T Qe[n]||2Hl+5(Qg[T]]) :

Observe in particular that taking s = 0 implies that we will also denote o H*(Q2¢[n]; K¢)
with o H'(Qn]; K9).

2. Multilayer traveling Stokes with stress boundary and jump condi-
tions. In this section and the two succeeding we analyze linear systems of PDEs in the
fixed domains €,[0] with boundary conditions prescribed on X,;[0] for ¢ € {1,...,m}
and j € {0,1,...,m}. In the interest of concision we make the following change of
notation: Q0] — Q, X,[0] — X;, and Q[0] — Q.

Specific to this section of the paper is analysis of the following system of PDEs:

V- S (p,u) —ypedru=f inQy, £€{1,...,m},

V-ou=g in Q,

(2.1) [S* (p,u) en], = ke on Xy Le{l,...,m},
[u], =0 on Yy Lef{l,...,m—1},
u=20 on X

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/26/22 to 128.2.149.108 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TRAVELING WAVES: INCOMPRESSIBLE, MULTILAYER CASE 6381

with unknown velocity v and pressure p, and with prescribed data f, g, and (k¢)j” .
The viscosity parameters are p = {ue},, C RY, {ps};-, C RT are the density
parameters, and v € R is the signed wave speed. Out of necessity, in this section
we will work with real and complex valued solutions. We recall from section 1.6 that
K € {R,C} and in the complex case the symbols - and : are sesquilinear, which allows
us to suppress writing complex conjugates in many expressions.

2.1. Specified divergence and multinormal trace problem. Before we dive
into the analysis of (2.1), we first develop a few auxiliary results concerning the
following multinormal trace-divergence problem. That is, given a collection of normal
traces (g¢)j~, with g, defined on ¥,, and given f : Q — K one asks for v : Q@ — K"
satisfying

V-u=f inQQ,
(2.2) u-e,=g¢ onXy Le{l,...,m},
u=20 on Y.
In general this problem is overdetermined in the sense that if u is a solution belonging

to an appropriate function space then a nontrivial compatibility condition must hold
among the data f and (g¢)}*,. We codify this precisely in the following result.

PROPOSITION 2.1 (divergence compatibility estimate). Letu € oH' (;K"™) and
set f = V-u € L2(QK) and g = Trs,u-e, € HY?(S;K). Then for each
¢e{l,...,m} we have the inclusion

(2.3) g0 (rar) — /( TGy dye B (R,

Moreover, we have the bound

m

(2.4) E [ge - /() f] <o (Zi f) el 2 -

Proof. As justified by the absolute continuity on lines characterization of o H* (2; K"),

we may integrate the equation V-u = f in the vertical variable over (0, as) and employ
the second fundamental theorem of calculus. This results in the identity

(2.5) / f=90+(V),0)- / u.
(0,a¢) (0,ar)

Therefore, by Holder’s inequality and Tonelli’s theorem,

2 2
(2.6) o | f] <o [ Al <amaule.

(O,ag) H’l Rn—1 (0,(1@)
The stated estimate follows. O

The remainder of this subsection is devoted to the converse of the previous lemma:
the satisfaction of this compatibility condition is also sufficient in guaranteeing the
solvability of the PDE (2.2). The first ingredient we require is some right inverse to
the divergence operator that enforces the vanishing trace on the lower boundary .
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LEMMA 2.2 (A right inverse to the divergence). Let a,b € R with a < b and set
U =R"! x (a,b). There erists a linear and continuous mapping Uy : L? (U;K) —
oHY (U;K™) such that V -y f = f for all f € L? (U;K).

Proof. The existence of such an operator in the case K = R is well known. See,
for instance, [15, Proposition 2.1]. In the instance that K = C one may simply take
the real valued operator to act on real and imaginary parts of the data separately in
the obvious way. 0

Next, we may explicitly construct a solution operator to (2.2) in the special case
of f=0and m=1.

LEMMA 2.3 (solenoidal extension operator). Let W = R"! x (a,b) and ¥ =
R"! x {b} for a,b € R, a < b. There exists a bounded linear operator Py :
HY2 (3 K) N HH(2) = oHY (W;K") such that V - Pyrg = 0 and TrsPyg - e, = g
forall g € HY/? (%, K)n H (3;K).

Proof. 1t is sufficient to consider the case where a = 0 and b € RT. We explicitly
construct the solution operator with the horizontal Fourier transform. Given g €
H= (2;K) N HY? (2;K) we define the auxiliary functions v : R*~! x (0,b) — C*~!
and w : R"™! x (0,b) — C via

i€ sinh (¢¢])
2 [¢] (cosh (b€]) — 1)

cosh (t]¢]) — 1
cosh (b|&]) — 1°

27 vt =3() and w (&) = g (¢)

We propose that setting Pyrg = %~ (v,w) gives the desired solution operator. In
order to check that this is well-defined and continuous, it is sufficient to use Parseval’s
and Tonelli’s theorems and observe the following four computations. First,

(2.8)
L2 2.2 sinh(t[¢])?
17 0l = [ [Pl T acar

1

) o
= [ maslie i 3 O mina, e 2L S (2016)

(cosh (b[¢]) — 1)*

dg

2
<o (O 9l-1nmre -

Second,

9)

(2.9
2
g =L 215 0ey2 _ Cosh (E[€])
|| UH0H1L2 A2 /(O,b) /]Rni1 €719 (&) (cosh (b [€]) — 1)2 d¢ dt

-~ 1
1672

2b|€| + sinh (2b[¢])
(cosh (b[¢]) — 1)

[ malel e ming1 ) "

2
< O lgll-—nme -
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Third,

(2.10)
[Eaul s

42 24 2 (cosh (¢ [¢]) — 1)2
=i /<> I (cosh v1gl) 17

6b £ — 8sinh (b |€]) + sinh (2b[€])
(cosh (b]¢]) — 1)°

= [ max{le],I617} 13 (O min{1, ¢F') a
Rn—1

2
< c2 (0) l9llzr—nm/2 -

Fourth,
(2.11)

_ X inh (¢ [¢])* >
ﬁ1w212=/ / £ 1g(6)) —22 de dt < co ) g% -1 p1s -
| [ o RHI " 19 ()] oo (b [€]) —1)° 0o (0) gl -1/

It is straightforward to check that V-Py g = 0, Tre P g-e, = g, and Trgn-1, {0y Pwg =
0. By Proposition A.2 and Remark A.4 it is also ensured that Py g is real valued
whenever g is real valued. This completes the proof. 0

We may piece together the operators from Lemmas 2.3 and 2.2 to solve prob-
lem (2.2) in the single prescribed normal trace case, m = 1.

PROPOSITION 2.4 (solution operator to (2.2): single layer case). Let a,b € R
with a < b. Define the Hilbert space
(2.12)
W (a,b) = {(f.9) € L*(R"" x (a,0);K) x H2R"™ x {0};K) = [|(f,9)llay < 00}

for the norm

2
2 2 2
(2.13) 1, D llaw = ANz + 9llgs2 + |9 —/ f} :
(a,b) H-1

There exists a bounded linear Q*° : W (a,b) — H (R x (a,b);K") such that
V-Q¥" (f.9) = f and Trgn-1, (13 Q™" (f,9) - en = g.

Proof. Set W =R"™! x (a,b) and ¥ = R"~! x {b}. We propose that the assign-
ment

(2.14) Q" (f,9) =Tw f + Pw [g — Trsllw f - e,] for (f,g) € 2 (a,b)

has the desired properties. Well-definedness and continuity of Q%° are assured as
soon as one observes the bound

f +

(2.15)

9 —en - TrsIlw f] -1 < [g—/( )
a,b

€En - TI‘g;wa — f‘|
H*l (a’b) H—l

<N Dllaw + 27V — al[w fll L2 S N(f5 9)llay -

Note that in the second to last inequality above we have employed the divergence
compatibility estimate from Proposition 2.1. ]

We need one final lemma before we solve the general case of problem (2.2).
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LEMMA 2.5. Let a,b € R with 0 < a < b. There exists a bounded linear extension
operator

(2.16) E®: gHY (R x (0,a) ; K") — H3(R"™! x (0,b) ; K™).
That is, E%*f = f on R"™! x (0,a) for all f € gH*(R"™! x (0,a); K").
Proof. We construct E%® via a simple reflection. Given f € ¢ H*(R"~!1x(0,a);K")
we define
(2.17)

B g (2,y) = f(z,y) when (z,y) € R"~! x (0,a),

f(z,y)=f(r,a—a(y—a)/(b—a)) when (x,y) € R"1 x (a,b).

Thanks to the absolute continuity on lines characterization of H!, we observe that
E%? takes values within the claimed target. This extension is also continuous since
bi-Lipschitz change of coordinates boundedly preserve H' inclusion. ]

We now have tools that are sufficient in solving the general case of problem (2.2).

THEOREM 2.6 (solution operator to (2.2): multilayer case). We define the ap-
propriate Hilbert space for data in problem (2.2). For o = {as},~, C R with
0<a; <--<ay, we define
(2.18)

x™ (o) = {(f, {ge}itr) € L2 (B K) x [TEL, HY? (26K) = [[(f, (90)71)llm (o < 00}

for the norm
9o — / f
(0,(1[)

There exists a linear and continuous mapping Qu, : X™ («) — oH' (; K"™) such that
VQm (fv (gf)znzl) = f and fOT’ each £ € {17 s 7m} one has TrEng (f7 (92)7[;1) Ep =
ge for all data (f, (90)721) € X™ ().

Proof. We construct the desired solution operator by way of mathematical in-
duction on the number of specified normal traces. The precise statement to be
proved, which we denote by statement(m) for m € NT | is as follows: for all strictly
increasing sequences & = {az}znzl C RT there exists a bounded linear mapping
Qm : X™ (o) = oH! (Q;K™) that is a solution operator to problem (2.2).

The case m = 1 is handled by Proposition 2.4. Now suppose that m € N¥ is such
that statement(m) holds true. We will prove that statement(m + 1) is true.

Let B = {bg}m+1 R* be any sequence such that 0 < by < -+ < b, < bypy1 and
set o« = {bs},~,. By hypothesis, there is a solution operator to problem (2.2), Qy,,
for the domain Q,, = R"~! x (0,b,,) and boundary regions ¥, = R*~! x {b,}, for
le {]. m} Set Qm+1 R 1 x (O bm+1) and Em+1 =R 1 x {bm+1}.

We propose to define, for (f, (gg)mﬂ) € Xxmt(B),

Qm+1(f, (gi)?;l )
(2.20) - Ebm’berlQm(f]]-va (95)211)
+ Qbm7bm+l (f]lQm+1\Qm — V- Ebmbmss Qm(fla,,, (.W)Zn:l)ﬂ gm+1)’

where Ebmbm+1 is the extension operator from Lemma 2.5 and Q"=+ is the so-
lution operator from the single-layer problem from Proposition 2.4. First, we check

2

2.19)  [I(f; (90)EL0)]

2 2 i 2
¥m(e) = Ifllz2 +[; NgellFrase +

H-1
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that this assignment is well-defined. It is clear that (flg,,,(g90)72;) € X" (x) with
(L (90) 7 ) lxm < (s (90)74") || 2m+1. Hence the first term appearing on the
right-hand side of the equality in (2.20) is a well-defined and continuous assignment.
To check that these same properties hold for the second term too, we observe the
following compatibility estimate:

[gmﬂ - / f+ / VBt Qu(fla,, (9@)7:1)]
(bmabm+1) (bmfberl)

H-1

< gm+1_gm_/(b , )f‘|
(221) ms¥m+1 H-1
9m + / \7 . E bm7bm+1(;2m(f]197”7 (92)5_1)]
(bmsbm41) .

<2)(f, (9e) 7 lxms

+ 21V b1 = b [ BP0 Qua (1, (90)720) 2

In the above we have employed the divergence compatibility estimate from Proposi-
tion 2.1 and the boundedness of the extension operator Ebm:*m+1 from Lemma 2.5.
Hence @41 is well-defined and continuous. In the set €2,, we have the equality
Qm = Qm+1. The second term in the definition of Q,,+1, (2.20), vanishes on %, and
the first term in the definition vanishes on 3,,41; therefore, @,,+1 is a solution oper-
ator to the problem (2.2) in the (m+ 1)-prescribed normal trace case. This completes
the induction. O

2.2. Isomorphism associated with multilayer traveling Stokes. In this
subsection we construct a solution operator to the multilayer traveling Stokes problem
with stress boundary conditions in (2.1). The validity of this section’s results over
the fields R and C is integral to the proof of Theorem 2.19 in the next subsection.
We remind the reader that the Euclidean inner product is sesquilinear with the left
argument the linear one and that essential information regarding antiduality can be
found in Appendix A.2.

We begin by studying the weak formulation and showing the existence of weak
solutions. First we focus on the existence of a pressure with the following result.

LEMMA 2.7 (imagg of the gradient is the annihilator of solenoidal fields). Suppose
that F € (oH' (Q;K™))* vanishes on solenoidal fields. Then, there exists p € L? (;K)
such that for all u € oH' (;K")

(2.22) (Fou) pgoyeais = /Q p- (V- u).

Proof. The case K = R is handled by [15, Corollary 2.3]. We will show this
is sufficient to justify the case K = C as well. Given an antilinear functional F' €
(0H! (£;C™))* we define the R-linear functionals Fre, Fim € (oH* (©;R™))* via
(2.23) (FRe,v) = Re[(F,v)], (Fim,v) = Re[(F,iv)] for v € oH" (Q;R™).

Observe that if F' annihilates solenoidal fields, then Fre and Fiy, satisfy the hypothesis
of the lemma for the R-valued case. Therefore there are q,r € L? (Q;R) such that for
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all v,w € oH' (;R™)

Re [(F,v + iw)] = (FRre, V) + (Fim, w) = / gV -v+7rV-w
(2.24) &
=Re [/Q(q—l—ir)-(V~(v+iw))]

This suggests that we set p € L?(Q;C) via p = ¢ + ir. It remains to check that
G € (oH' (€;C™))* defined via (G,u) = (F,u) — [, p-(V-u) € C vanishes identically.
The above computation shows that Re [(G, )] = 0 for all u. By antilinearity, the real
part of G determines G entirely, i.e., for all u € oH! (;C") it holds that (G, u) =
Re [(G,u)] + iRe [(G,iu)]. Thus G = 0 and the proof is complete. 0

The truth of the two subsequent results in the R-valued case is a consequence of
[15, Theorem 2.4]. We include a proof here in the K-valued case for K € {R, C}.

LEMMA 2.8. For v € RT we define the sesquilinear (bilinear if K = R) mapping
B, oHY (2 K™) x o H (Q; K™) — C via

> B : Do — YpeO1w - v.

(2.25) B, (w,v) =
i=1.Jq,

Then we have the identity

(2.26) Re B, (w,w)] = 3 % IDw|® Yw € oH (4 K™).

£=1JQ,

In particular, B, is coercive over the H'-norm.

Proof. We observe that

> | prw-w=73 [ pew- 1w
=1JQy, 0=1JQy,

(2.27)

m m
=3 peOw-w = ¥y peO1w - w € iR.
=1 Q[ =1 QZ

Equation (2.26) follows. We now deduce that B, is H'-coercive by Korn’s inequality
(see Appendix A.4). O
We now use the preceding lemmas to construct weak solutions to (2.1).

PROPOSITION 2.9 (existence and uniqueness of weak solutions to (2.1)). For
v € R we define the mapping

(2.28) Xy : LK) x oH (O K") — L2 K) x (oH' (4 K™))*
via Xy (p,u) = (V- u, €, (p,u)),

where the antilinear functional €. (p,u) € (oH'(;K™))* is defined via

m
(&0, 0} oy == [ 2+ (T 00+ 5 [ BDui Do = piduu-o
(2 29) Q (=1JQy
:—/S”(p,u):Vv—*yE peOru - v
Q i=1Ja,

forv e oH' (4 K™). Then X is a Hilbert isomorphism for all v € R.
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Proof. We begin by showing that x, is a surjection. Thanks to the observation
that the sesquilinear (bilinear when K = R) form B, is bounded paired with the
coercive estimate of Lemma 2.8, we are free to invoke the Lax—Milgram lemma (see
Proposition A.5) for B, on any closed subspace of o H! (Q; K").

Let (9, F) € L? (%K) x (oH! (;K"™))* be any data pair. Then Lax—Milgram
implies that there exists a unique w € o H} (Q; K") such that for all v € oH} (Q; K™)

(2.30) By (w,v) = =By (Hag,v) + (F,v) gy oo s

where Ilg is the bounded right inverse to the divergence granted by Lemma 2.2. Next,
we apply Lemma 2.7 to find that there is a pressure p € L? (Q;K) such that for all
v € oH (s K")

231) By (w.0) = =B, (ag.o) + (Fodueyean + [ (7 -0)

We may now conclude that x., (p,w + lqg) = (g, F), showing this mapping to be a
surjection.

On the other hand, suppose (p,u) € L* (;K) x oH! (Q;K") satisfy x-, (p,u) =
(g9, F). Then we decompose u = w + [Igg and take v = w € oH} (;K") in iden-
tity (2.29) to see that
(2.32)

<F7w>(0H1);,0H1 = (&, (p, U)vw>(oH1)7,oH1 = B, (u,w) = By (u,u) — B,(u,1lag).

Again employing Lemma 2.2, we deduce from this that

2
(2.33) Ml gz S By(uw,w) S (gl + 1l g roy=) llull oo s
and so [|ull, g1 S N9l + 1l (o= -

We then take v = IIgp in (2.29) and use (2.33) to deduce that
(2.34) 1Pl L2 S Nully e + 1E gy S Nglle + 1F g prry=-

Estimates (2.33) and (2.34) show that x., is also an injection. |

The following lemma will be useful in the next sections where it will be important
to know that x, ! commutes with tangential multipliers (see Appendix A.3).

LEMMA 2.10. Let v € R and w € L*®(R"1;C), and consider the tangential
multiplier M, as defined in Definitions A.11 and A.13. If (g9,F) € L?(©;C) x
(0H' (,C"))* and (p,u) =X, (9, F), then (Muwp, Muu) =Xy~ (Mg, M F).

Proof. We simply check that M,g = M,V -u = V - M,u and note that if v €
(oH' (Q;C™))*, then
<MwFa’U>(OH1);,OH1 = <Fa MU’U>(0H1);,0H1

= / SH (Myp, Myu) : Vo —v> pe M - v.
Q i=1Ja,

(2.35)

Therefore, X, (Myp, M,u) = (Mg, M, F). d

Next, we examine the regularity of weak solutions. We make the following nota-
tion.
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DEFINITION 2.11. For s € Rt U {0} we define the continuous and linear maps
(2.36) O : I, H V2(Se; K™) — (oH' (9 K™))F,
m
2 H (K" x [ HY*F(S6K") = (0H (4 K")*
=1
with actions on v € cH'(R™; K") given by

(237) <ﬁ(¢()2nzl, U>0H1?70H1 = £;<¢€7 ’I‘I‘Egv>H*1/27H1/2

for (¢z)?’:1 € Hzn:1 H71/2(22§ Kn); and
(239) (7)) vy = [ Fro+ 5 [ kv
Q i=1Js,

for f € H*(Q;K™) and (ko) € [T, HY?+5 (S K™).
We can now state our regularity result.

PROPOSITION 2.12 (regularity of weak solutions to (2.1)). Let s € RT U{0} and
(2.39) (g9, f, (ke)Jry) € HYFS (4 K) x H® (5 K") x [[,L, HY?+5 (25 K™).

Suppose that (p,u) € L* (4 K)xoH! (Q;K") are such that X (p,u) = (g, 2(f, (ke)J™y))-
Then, in fact, we also have the inclusions p € H'** (;K) and u € o H*T (Q;K?),
as well as the universal estimate

(2.40)

m

Zzl[HpHHlJrs(Qg) + HUHH?JrS(QZ)] S e;[||g||H1+S(Qg) + ”f”HS(Qe) + Hk‘E”Hl/us]

Finally the pair (p,u) are a strong solution to the multilayer traveling Stokes problem
with stress boundary conditions in (2.1) with data tuple (g, f, (ke)j2y)-

Proof. This is a standard induction and interpolation argument based on ap-
plying horizontal difference quotients to derive control of horizontal derivatives and
then exploiting the elliptic structure of the Stokes operator to control the vertical
derivatives. For a sketch we refer the reader to the real valued one layer case in [15,
Theorem 2.5]. d

We may now synthesize the previous two propositions to state the isomorphism
of Hilbert spaces associated with problem (2.1).

THEOREM 2.13 (existence and uniqueness of strong and classical solutions to (2.1)).
Let s € RT U {0} and v € R. Define the bounded linear operator
(2.41)
@« H (O K) xo H2H (;K™) — HF (O K) x H* (K™ x [, HY/2+ (S K?)

with the assignment
(2.42) @y (p,u) = (V-u, 3250, 1o, [V - S* (p,u) — ypedru], ([S* (p,u) el )ity) -

Then @., is a Hilbert isomorphism.

Proof. Proposition 2.9 shows @, to be injective. Propositions 2.9 and 2.12 show
that @, is a surjection. 0
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2.3. Analysis of the normal stress to normal Dirichlet ¥DO. In this
subsection we study a YDO built from ®@.. We make the following definition.

DEFINITION 2.14 (normal stress to normal Dirichlet ¥DO). Let v € R and s €
RTU{-1,0}. We define the normal stress to normal Dirichlet W DO to be the bounded
linear mapping v~ : [[j, HY?*5 (2, K) — [[,2, H?** (Z4;K) given by

(2.43) Vo (o) = (Trs,u - en) )y,

where (p,u) € HYS (Q;K) x oH?T5 (Q;K") are the unique solution to the normal
stress problem:

V- SH(p,u) +vpeOu =0 inQy L€{1,...,m},

V-u=0 imn €,

(2.44) [S* (p,u) en], = tren on Xy, L €{1,...,m},
[u], =0 on X, Le{l,...,m—1},
u =0 on Y.

In other words, (p,u) = X— (0, 0(Yeen)i™,) for the operators € and x_,~* from
Definition 2.11 and Proposition 2.9, respectively (note the minus sign preceding 7).

Remark 2.15. The boundedness of v., is a consequence of the boundedness of &,
Proposition 2.9, and Theorem 2.13. The restriction s € RTU{—1,0} is not important.
By interpolation theory we are free to take any s € [—1,00) in the previous definition
statement.

We begin by proving that the Fourier transform diagonalizes v.. This gives us a
representation of this linear mapping as a frequency space multiplication operator.

PROPOSITION 2.16 (diagonalization of v, ). There exists a bounded and measur-
able matriz field n, : R"* — C™ ™ such that n,, (§) = n, (=€) for a.e. £ € R"!
and for all s € [~1,00) and all (Ye)j, € [1,-, HY?** (S4;K) we have the equality

(2.45) F vy (0)iL1] () = 1y (€) F (o)1) (€) for a.e. § €R™

Moreover, there exists a constant ¢ € RT, depending only on the physical parameters,
such that for a.e. £ € R"™! we have |n, (§)] < c(1+ £[)~1/2.

Proof. Let j,k € {1,...,m}. Define vk : H~1/2(5,;K) — H'Y?(5;;K) via
v?;kw = Tryg,u - e, where (p,u) are a solution pair to the normal stress PDE (2.44)
with normal stress ¢ on the surface 3. In other words,

(2.46) (p,u) =X—r 10, Oy pes)7%,) for §.. the Kronecker delta.

It is clear that this assignment is bounded and, by Lemma 2.10, translation invari-
ant. We are in a position to apply Proposition A.10 to obtain a measurable function
n%’k : R"! — C such that nJ" (&) = n%’k (=€) for a.e. £ € R"!, that obeys the
estimate

(247)  esssup{(1+ [¢[*) 722k (©)] : ¢ e R} <2 vEE

‘;C(H*l/z;Hl/2)a

and satisfies the identity .7 [v/F¢] = nd* Z[y] for all ¢ € H~V/2(S4; K).
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We set n, : R*™1 — C™ via n,(¢),, = ny*(¢) for £ € R*™" and j,k €
{1,...,m}. The following computation verifies that this matrix field is the sought
after spectral representation:

(Fh (b)) -e)ey = 5 (I -)ey
=

(n2* F (] - ej)e; = ,kﬁlmwﬂm e5)e;

=10, F[(Ye) 1] o

We next observe how the multiplier n, changes under the map v +— —v.

(248)  Flvy (o)) =

Mz 70z

<.
o
Il
—_

PROPOSITION 2.17 (adjoint of the normal stress to normal Dirichlet multiplier).
If v € RT then for a.e. £ € R"™! we have the adjoint identity n,(£)" =n_.(€).
Proof. Let ()7, (¢0)7y € [~ H"Y/%(Z4;C) and denote (p,u) = x_-
(0, O(een)iy), (q,v) = X+ (0, O(dren)yr,), where we recall that x., and x_- are
defined in Proposition 2.9 and & is from Definition 2.11. By testing v in the weak
formulation for (p,u), recalling that V-v = V -« = 0, and integrating by parts, we
obtain the identities

(2.49)
()i, (Trs,v - en)iiy) g-1/2 g2

> ﬂJD)u Do+ ypediu-v= > ﬂ]D)v : Du — vpedhv - u
Q, 2 i=1Ja, 2

=1
= <(¢£)?;1a (Tre,u- en)2":1>H—1/2,H1/2 = ((Trs,u-en)pty, (¢2)?:1>H1/2,H—1/2'

Hence, we may apply Propositions A.6 and 2.16 along with Definition 2.14 to deduce
that

es0) [ Pl nn Fleol = [ nF ) Fleo
Let a,b € C™ and ¢, ¢ € L2(R"~1;C). In (2.50) we are free to take (10)7%, = (as))y™,
and (¢¢)7, = (be)j, to see that

(2.51) /Rn_1 (a-n_b—nya-b)FW]  Fl¢] =0.

As ¢ and v are arbitrary, we deduce that, up to a null set depending on a and b, we
may equate a -n_.b = n,a-b. By letting a and b range over the members of the
standard basis of C™ and recalling that a countable union of null sets is, again, a null
set we conclude that n.(§)" = n_.(¢) for a.e. £ € R" 1. d

The remainder of this subsection is devoted to a more precise asymptotic devel-
opment of the matrix field n, as £ — 0 and { — oo, which we achieve with energy
estimates. Recall that from Proposition 2.9 and trace theory we have the equivalence

(2.52) 1) il =12 = [lwll e + llpll L

for (o), € TIjL, HY2(24;K) and (p,u) = X—~ " 1(0, O(1bven )i, ). Our next result
shows that if we weaken the control of (¢¢)7~, at low frequencies on the Fourier side,
then we can remove p from the right. The resulting equivalence will play a key role
in our asymptotic developments of n,.
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THEOREM 2.18 (normal stress and velocity energy equivalence). Fory € R there
exists a constant ¢ € RT, depending also on the remaining physical parameters, for
which we have the equivalence

1/2
@59) <l < ([ minf® NGO O P ds) < cllul e

for all data (o), € T[)m, H™Y/2 (S4;K), where (p,u) € L2 (K) x oH! (4 K™) is
the uniquely determined weak solution to the normal stress problem in (2.44), i.e.,
(pyu) = X—~y 10, O(hsen)iry) for the operators € and X_-~'from Definition 2.11
and Proposition 2.9.

Proof. We begin by proving the left inequality of (2.53). By the definition of
(p,u) = X—y 10, O(1pre,) ;) we have that for all v € ¢H*(Q; K")

(2.54) > Dy : Do +ypedru-v = /

m
p- (V . U) + Z <¢@,TI‘Z‘€’U . €n>H*1/2,H1/2'
{=1JQ, Q (=1

Taking v = w in this equation and taking the real part (see Lemma 2.8) implies that

m
lulZyn < Re [zwz,Trw : en>H-1/2,H1/z]

:Re[ ﬁ«wwqyﬁ«ﬂmuemﬁﬂ

Rn—1
(2.55)

< </Rn1 min{|¢]*, €] Y F (o)) (€) 2 d€> 1/2

1/2
- F cen)Tn 2
x(/w_lmaxﬂa NEHZ[(Trs,u - )i ] €)| dg> |

where we have used that u is solenoidal, Korn’s inequality (see Appendix A.4), and the
(anti)duality of Sobolev spaces (see Appendix A.2). Next we use the boundedness of
traces and the divergence compatibility estimate of Proposition 2.1 to further bound

1/2
@30 ([ mox(le HF (s, e ©F e
< Trsy en)iallorsni-s S Nl -

Combining estimates (2.55) and (2.56) gives the left-hand inequality of (2.53).
We now prove the right inequality of (2.53). For £ € {1,...,m} define ¢, €
HY?2 (24, K)N H (24 K) via

(2.57) F [6e] (€) = min{[¢]*, €] }.F [tbe] (€) for & € R,

We bound the norm of ¢, as follows:

pel 1 /2mi—1 < 2 / max{[¢| 72, €]} min{|¢|*, €] 71} 1] () [ d€
(2.58) et

_y / min{|¢[2, €]} .2 [e] ()] de.
Rn—l
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We are in a position to apply Theorem 2.6 to obtain Q,, (0, (¢¢)7,) € oH* (©;K")
with the estimate

1Qm (0, (Se)I D)2 S 50 66l
(2.59) “!

< / min{[€2, €]} F (o)) ()2 de.
Rn—l

Testing v = Qm (0, (¢¢)j2,;) in the weak formulation of the normal stress PDE in
(2.54) and using Proposition A.6 gives the identity

260) > [ min{lel*, €7 [ (€) de

¢=1Jrr-1

Qs He
= ZZ A 5 Du: DQum (0, (d0)iZ1) +7pe01t - Qn (0, (¢0)iZ1) -
=1JQ,
The right inequality of (2.53) now follows by applying the Cauchy—Schwarz inequality
to the right-hand side of (2.60) and then utilizing estimate (2.59). |

We are now in a position for finer asymptotic development of the symbol to the
normal stress to normal Dirichlet ¥DO.

THEOREM 2.19 (asymptotics of normal stress to normal Dirichlet multiplier).
For each v € R there emwists a constant C € RT, depending only on the physical
parameters, such that for a.e. £ € R*! the following hold.

(1) We have the estimate |n, (§)| < Cmin{|¢[*,1€]7'}.

(2) Letting dBc (0,1) denote the unit sphere of C"~1, we have the bound

(261) i Reln, (€)a-a] > O minflgf*, 7).

(3) The matriz n., (§) is invertible, and |n., O~ < Cmax{|¢] 2, €]}

Proof. For item one, we first use the divergence compatibility estimates from
Proposition 2.1. If (v)7%, € [[;-, HY/2(Z,;C) are normal stress data, then their
associated velocity field u solving (2.44) is solenoidal and vanishing on ¥,. Hence, the
normal traces on the hyperplanes ¥, £ € {1,...,m}, belong to HY2nH1 In fact,
we may bound with the divergence compatibility estimate and then the left inequality
of Theorem 2.18 to obtain the bound
(2.62)

ol Sl Sl S [ minief 67317 (0 ©OF de

for all (v)72, € T2, H= Y2 (24;C).

Let b = (b1,...,by) € (Q+iQ)™ and ¢ € L'(R";R) such that ¢ (£) > 0 for
a.e. £ € R"~! and the support of ¢ is compact. Set ¢ € Nacr H*(R"L;C) via ¢ =
F 1 [\/2]. We take (v0)7-, = (be)7"; in inequality (2.62) and use Proposition 2.16
to see that

@63 [ 1€ @ () de<e [

Rn—

(min{[&]”, €7} b (€) de.

This inequality holds for all ¢ as above. Hence there exists E, C B(0,1) ¢ R*~!
with €271 (B (0,1) \ Ey) = 0 and

(2.64) I, ()b < clé b VE€ By Vb e (Q+iQ™.
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Set E' = (Nye(q+igy E» and note that since (Q+iQ)™ is countable, £~ (B(0,1)\ E) =

0. Then (2.64) implies that |n., (§) ] < ¢ |£]% [b] for all € € E and all b € (Q+iQ)™, but
then by the density of (Q +1Q)™ in C™ we find that this estimate continues to hold
for all € € E and b € C™. In turn, taking the supremum over b € C™ with |b| = 1 and
using the equivalence of the operator norm and Euclidean norm on C™*" we deduce
that there is a constant ¢ > 0, depending only on the physical parameters, such that
In, (&) <c |¢|? for a.e. € € B(0,1) € R, Combining this with the estimate from
Proposition 2.16 then proves the first item.

We next prove the second item. Again we let b (b1 oo bm) € (Q+1Q)™
and ¢ € LY(R" 1 R) such that ¢ (&) > 0 for a.e. £ € ]R” and the support of ¢
is compact. Set ¢ € (,cg H*(R""1;C) via ¢ = F ' [\/p]. Notice that (bep)j~, €
[1)~, H=Y/2(34;C). Thanks to Proposition 2.9, there are (p,u) € L? (;C) x oH*
(€; K™), a weak solution to (2.44) with data (bg(b)}” Lies (pou) = x—y 10, O(bep) )
for the operators ¢ and x_~~! from Definition 2.11 and Proposition 2.9, respectively.
We test u itself in the weak formulation and use (2.26) to obtain the identity

(2.65) Re[{(Be) Iy Vo (bed)r) 1172 12] Z /Q B 2.

Next we use the diagonalization of v, from Proposition 2.16, (anti)duality (Proposi-
tion A.6), and finally the right inequality of Theorem 2.18 to obtain the estimate
(2.66)

Re[b-n,b] ¢ = Re
Rn—1

Z (beg, Trs, u - en)]

/=1
_ e U
;/m 9 |Du| EC/Rnilmm{\ﬂ Y B o (€) de,

where ¢ € R* depends only on the physical parameters. Therefore, there exists
F, CR"! such that £""1(R"~1\ F}) = 0 and

(2.67) Relb-n, (€)b] = émin{|¢*, ||} p]> VE€ B, Vb e (Q+iQ)™
Set F' = mbe((@+i(@)m, Fy and note £""1(R"~1\ F) = 0. If £ € F then by the density
of (Q+4iQ)™ in C™ we have

(2.68) ,cdnin | Refb-n, (€)6] > emin{le, 6]}

This proves the second item. In particular, this also shows that n. (§) has a trivial
kernel and thus is invertible.

It remains only to estimate the inverse. If d € B¢ (0,1), then there exists b € C™
such that n, (§) b = d. Thus

emin{¢), [} b

(2.69) i Re[b-n, (§)b] =Re[b-d]

bl = [n, (&) 7'd] < & max{le] 7, l¢]).

Taking the supremum over such d and again using the equivalence of the Euclidean
and operator norms on C™*" we complete the proof of the third item. 0
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3. Overdetermined multilayer traveling Stokes. In this and the other re-
maining sections we exclusively study the R-valued solvability for the PDE systems
considered. We next turn our attention to the following variant of system (2.1):

V- SH(p,u) —ypediu=f inQ L€ {l,...,m},
V-u=g in Q,

(3.1) [S* (p,u) en], = ke on Xy, L€{1,...,m},
u-ep = hy on Yy, £€{l,...,m},
[u], =0 on Xy Le{l,...,m—1},
u=20 on X

with unknown velocity u, pressure p, and prescribed data f, g, (k¢)j",, and (he)},.
We recall that we are continuing to use the abbreviated notation for £, ,, and ¥,
discussed at the start of section 2 and that u = {us},~;, C R" are the viscosity
parameters, {pg}znzl C RT are the density parameters, and v € R is the wave speed.
Our analysis in the previous section shows that the data f, g, and (k;)}", entirely
determine the pressure and velocity field and hence the normal traces (he)j*,. In
this sense problem (3.1) is overdetermined, so we cannot expect to solve it for general

data.

3.1. Data compatibility and associated isomorphism. In this subsection
we find the range of appropriate data for system (3.1). We begin by introducing the
following notation.

DEFINITION 3.1. For v € R we define the R-bilinear mapping

(3.2) A7 |L*(Q) x (oH (S R™))* x ﬁHW (24)1 X [ﬁ H Y22 =R
(=1 {=1
via A7((g, F, (he)i21), (Vo) 2] = <Fvv>(0H1)*,oH1 - /ng - Eil (e, hZ>H*1/2,H1/2

for (g,v) € L? () x o H* (Q;R™) the unique weak solution to the normal stress prob-
lem in equation (2.44) with data ()i, i.e., (q,v) = X—r"1(0, O(een)72,) for the
operators O and X—- "' from Definition 2.11 and Proposition 2.9, respectively. Thanks
to the boundedness of x— "' and O, we have that 77 is continuous.

The set of data for which 7 vanishes identically as a linear functional of its
right argument will be denoted by

(83) ket = {(g. F, (he)iy) : A7 (9, F, (he)fy, (b)) = OV ()i, }
and called the left kernel of 7.

The following result equates the range of data for system (3.1) as exactly being
with the left kernel of 7. In what follows recall that x, and x_, are the mappings
from Proposition 2.9.

PROPOSITION 3.2 (range of compatible data for (3.1)). For v € R the mapping

(34) Xy : L?(Q) x oH' (U R™) — L2 () x (oH' (;R™)* x [T~ H'Y2 (%)
with assignment X~ (p,u) = (Xy (p,w), (Trs,u - en)72;)

«
is an injection with closed range ker 7.
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Proof. Proposition 2.9 tells us that X, is injective, and k?r%”” is closed by in-
spection. It remains only to show that the range of this mapping is the left kernel of
.

.

Suppose first that (g, F, (he)72,) € ker 77 and define (p,u) € L? (Q)xoH® (; R"™)
through (p,u) = x, 7 (g, F). If (o), € [[), H Y2 (Z¢) and (q,v) € L?(Q) x
oH' (Q;R"™) are the associated solution to the normal stress PDE in (2.44), i.e.,
X—~ 10, O(een)i,), then the identity

(3.5)

(9, F, (he)iZy) s (We)itq] = (F, “>(0H1)*,OH1 - /ng - 221 (the, hZ>H*1/2,H1/2 =0
implies that

(3.6)

> (e, Trs,u - €n>H*1/2,H1/2
=1

=> —]D)v:]D)qufypg@l%uf/qg:Z —]D)u:]D)vffypg@lumf/gq
i=1Ja, 2 0 i=1Ja, 2 Q

= (P arye i = [ 90 = 3 Wrshe) s o

As (¥)2, is an arbitrary member of [[,2, H~1/2 (%) we learn that Trs,u - e, = hy
for each ¢ € {1,...,m} Therefore, X~ (p,u) = (g, F, (he)},)-

On the other hand, if (p,u) € L? (Q)xoH' (Q;R™) we let (g, F, (he)72,) = X~ (p, u)
and (q,v) = X_~ 1(0, O(1bven)7,) and compute, for (v)7, € [, H~Y2 (%),

%7[(9’ F7 (he)?:ﬁa (W)E":J

= (F0) oy o bt — /ng - E; (e he) g2 172

3.7 m
(3.7) = (F0) gy g — 20 | Du: Du+ypedio - u
’ i=1Ja, 2
= (F\0) iy om — 2o ﬂID)u:JD)v—vpgaluw =0.
i=1Jq,
-
As this holds for all such (1¢)72,, we conclude that X, (p,u) € kerZ7. d

We now arrive at the isomorphism of Hilbert spaces associated with problem (3.1).

THEOREM 3.3 (existence and uniqueness of solutions to (3.1)). Let v € R and
s € RT U{0}. Consider the bounded linear injection

(3.8) W, : H'™ (Q) x oH*™ (Q; R™) — H'™ (Q) x H* (;R™)

% HH1/2+S (Z@,Rn) % HH3/2+3 (EZ)
=1 =1

with assignment Y., (p,u) = (@, (p,u),(Trs,u-e,)}~,), where @ is from Theo-
rem 2.13. The following are equivalent for (g, f, (ke)jy, (he)jy) belonging to the
codomain of V..

(1) (g, f, (ke)py, (he)y) belongs to the range of V..
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-
(2) The data tuple (g, P(f, (ke)jy), (he)jy) belongs to ker Y, where & is from
Definition 2.11.

Proof. Recall that x, is the mapping from Proposition 3.2. If the first item
holds then X~ (p,w) = (9, Z(f, (ke)}1), (he)j2) for the unique (p, u) belonging to the
domain of ¥, such that ¥, (p,u) = (g, f, (ke)7-,, (he)y~;). Thus, by Proposition 3.2,

(g, 2(f, (ke)jy), (he)py) € k:r%V and the second item follows.

If the second item holds then, by Proposition 3.2 again, we learn that there are
(p,u) € L?(Q) x oH' (Q;R™) such that X, (p,u) = (g, 2(f, (ke)Jy), (he)7y). In
particular X, (p,u) = (g, Z(f, (ke)j2;)) (for X, from Proposition 2.9) and hence we
may apply Proposition 2.12 to deduce that (p,u) belongs to the domain of ¥, and
Y. (p,u) = (g, f, (ke)j>y, (he)}2). This shows the first item holds. |

3.2. Measuring data compatibility. The previous subsection showed us that
a nontrivial compatibility condition must be satisfied by the data in order for a solution
to (3.1) to exist. In this subsection we further explore this compatibility condition.
We associate with each data tuple a tuple of functions that quantify how “close” the
data are to being compatible. We then study the dependence of the regularity and
low Fourier mode behavior of the function tuple on the data.

The sense in which this association quantifies compatibility will be made clearer
in the next section; however, the main idea is that the introduction of the free surface
functions in the multilayer traveling Stokes with gravity-capillary boundary and jump
conditions problem (4.1) modify the data in a way that results in inclusion within the
range of ¥,,. This is achieved by the free surface functions solving certain YDEs with
forcing exactly this measurement of compatibility.

PROPOSITION 3.4. For vy € R there is a bounded linear mapping
(3.9) I L2 (Q) x (oH (BRY)* x [T[L, HY? (Se) — TTL, HY? ()

such that for all data tuples (g, F, (he)fx,) € L? () x (oH' (% R™))* x [[}2, HY2 (%))
the following identity holds for all (vg)7r, € T, HY/2 (%¢):

(3.10)  #7((g, F, (he)iZ1) , (e)iZe] = ((We)ier, 77 (9, F (hf)znzl»H*l/?,Hlﬂ

<wkv¢ﬁV (ngv (hé)?l:ﬂ ’ ek>H*1/2,H1/2 ’

M

where FC7 is the bilinear mapping from Definition 3.1.

Proof. Recall that 7 is continuous thanks to Proposition 2.9. Thus there is a
constant ¢y € R*, depending only on the physical parameters, such that

B.11)  [A7[(g, F, (he)iZ1) , ()2l

<co <||9||L2 1Pl e + 55 ||he||H1/2) (ezl ||¢4Hm)

for all (g, F, (¢¢)j-,) and (1¢)}", belonging to the domain of 7. In particular,
for fixed (g, F, (he)j~,) the assignment (¢g)jr, — €7 [(g9, F, (he)72y), (We)7r,] is
bounded and linear with operator norm at most co(||g||L2+||F||(OH1)*—|-ZZ”:1 |Poel g2 )-

By duality (Proposition A.6) there is a unique .#7 (g, F, {he},~,) € [1,n, HY? ()
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such that (3.10) holds for all ()7, € T[,~, H~/? (%¢); moreover,

312) £ 17 F i) el < o (lalls + 1y + 3 sl

It is also clear that .#7 is linear. O

We next show that .#7 commutes with tangential Fourier multipliers, which are
defined in Appendix A.3.

LEMMA 3.5. Ify € R, (g, F, (o)1) € L2 () x (oH (G R™))* x[[,2, HY? (%),
and w € L®(R" Y, C) satisfies w (=€) = w (€) for a.e. £ € R, then
(3.13)
M7 (g, F, (he)ily) = F T wF[I7 (g, F, (he) i)l = 7 (Mg, MwF, (Muhe)i-y)

where the above is understood in the sense of Definitions A.11 and A.13 and is R-
valued by Proposition A.2.

Proof. Let (o), € [[)-, HY/2(Z,) be normal stress data and denote the
corresponding solution to (2.44) with (¢,v) € L?(Q) x oH! (;R"), i.e., (¢,v) =
x:,ly((),ﬁ(wen)?;l). Then by the definition of #7, Proposition 3.4, and then
Lemma 2.10 we have that

<(’(/)€)2n:1a ]\4&1*}’Y (ga F7 (hf)?L:I»H*l/?,Hl/?
= ((Mz¥e)iZy, 77 (9, F, (hf)znzl»H*l/?,Hl/?
= A7 (g, F, (he)iZr) , (Mzhe) 2]

(3.14) = <F7 MW{U)(OHl)*,ng - /Qngq - @; <MU¢€= hf>H*1/2,H1/2
= <MwFa U>(0H1)*70H1 - /Q M,gq — Z; <wZ’Mwhe>H*1/2,Hl/2

=" [(nga M,F, (Mwhé)znzl) ) (’(/}Z)?L:l]
= ((¥e)iZy, I (Mg, Mo F, (Muhe)iy) H-1/2 H1/2 -
As this holds for all ()72, € [T, H™'/? (X¢), the result follows. 0

The previous lemma allows us to deduce the regularity properties of .#7. We
record these now.

PROPOSITION 3.6. If s € RT U{0}, v € R, and
(3.15) (g, f, (ko)Jy, (he)7ry) € HYT*(Q) x H® (Q;R™)

« HH1/2+5 (Ez,Rn) % HH3/2+5 (22)7
=1 =1

then I (g, 2(f, (ke)72y), (Re)7,) € [1m, H3/?7° (S4), where & is described in Def-
inition 2.11. Moreover, we have the universal estimate

(3.16) kZ 177 (g, F, (he)ils) - ekl rasas
=1

NIE!

S ; gl rae gy + 1 e gy + kel gasase + N1hell grasass ]

where F = 2(f, (ke)j-,).

1
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Proof. For k € N* we define the real valued radial function wy € L>®(R""1;R)
s+1

with the assignment wy, (§) = Lp(0,x) (§) (1+ |€]?)"2" . Using first Lemma 3.5 and then
continuity of .#7, we arrive at the estimate

Moo, 77 (g, F, (he) i) |12
(3.17) = (|77 (Mu, g, Mo, F, (Mo, he)i21) | 112
< @ [”kagHLz + ”MM«F”(OHI)* + H(kahf)zn:IHHl/z]

for ¢g € RT depending only on the physical parameters. By Proposition A.14 there
is ¢; € R* depending only on s and physical parameters such that

(818) 1| Mugllze + 11 Ma Fll g 1y + (Mo )7 | 511/
< er 32 (Mol + Wl + kel oo + lrellgars].

Pairing equations (3.17) and (3.18) with Parseval’s theorem and Fatou’s lemma then
yields the bound

H‘]’Y (97F7 (he)glzl)HH?’“*s
< liminf|M, 57 (g, P, (e} 1
—00

(3.19)
< 0001£§[||9||H1+s(m) + Hf”HS(Qg) + [[Kell grayoes + ||h€||H3/2+s]7
which completes the proof. O

For technical reasons that will become clear in the next section, we want to restrict
to a smaller subspace of the domain of .#7 that guarantees an image whose members’
low Fourier modes are more tame. We label this subspace as follows.

DEFINITION 3.7. We define the Hilbert space

y(©) = { (0. F. (he)fy) € L2 () x (oH' (2 R™))"
(3.20)

< TTHY2(0 + 0. F (he)in) ly < oo}
=1

for the norm

(3.21)

m 2 2 U
(g, F, (R)Z2)N3 = llgllze + [1FIIT, g1y +Z; 1 hellFa/z +

he — / 9]
(0,ar)

In our analysis of the action of #7 over YV () we utilize the following energy
estimates of the normal stress problem with band limited data.

H-1

LEMMA 3.8. Let v € R. There exists C € RT, depending only on the physical
parameters, such that for all tuples (Ye)-, € [T/~ H~1Y2(%,) satisfying

suppZ [(ve)i] € B (0,1) C R™!

we may estimate

(3.22) [ollgm < €2 /R P W] ()F dg
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and

(3.23) /Q

where for each £ € {1,...,m} we have that ¥yl (o,q,) € L?(Q) is defined via R" ™1 x

(O,le) = (xay) = W (I) ]]-(O,az) (y> € R7 and (q,'U) = X—’yil(oa ﬁ(d}@en)?l:l) S
L% () x o H' (Q;R™) are the solution to (2.44) with data (1)},

Proof. The band limited assumption on the data, paired with the left-hand in-
equality in the energy estimate of Theorem 2.18, gives the first estimate.

For the second estimate we test w € o H! (€; R™) in the weak formulation of (2.44),
write ¢ = ¢+ > ;"1 Yel(0,a,) — 2pe1 Yel(0,a,), and rearrange to arrive at the identity

2

< /R P (o] @ de,

m
q+ Z Yel0,a,)
=1

(3.24) V-w (q + ZW]l(o,ae))
Q =1

m

—Z %Dv:Dw—*}/pg81U~w—/ >y

Qy Rn—1 =1

Trglw'enf/ V.w
(0,(114)

Then by the first estimate and the divergence compatibility estimate from Proposi-
tion 2.1 we may bound

629 | [ou(ot Eviton)| S 160l ol + ol

The second estimate now follows by taking w = Ilg(q+ >_;"; ¥¢l(0.q,)), where IIq is
the bounded right inverse of the divergence from Lemma 2.2. ]

We are now in a position to analyze the low frequency behavior of the image of

Y (Q) under .#7.

PROPOSITION 3.9. If (g, F, (he)72,) € Y () and v € R, then 7 (g, F, (he)j2;) €
[T52, H (S0)NHY2 (Zy) with the universal estimate || 77 (g, F, (he)Pe )l gr—1mgire S
H(Q,F, (hf)znzl)Hy

Proof. Recall that Lemma 3.5 guarantees that .#7 commutes with tangential
multipliers. We use this with the continuity of .#7 and the boundedness of tangential
multipliers (Proposition A.8; Definitions A.11 and A.13, and Lemma A.12) to estimate

(3.26)
127 (9, F, ()il
< [Mayn 27 (9. F (h)7)] 5y
I My oy 9 Mg oy By (Mg o BOT20) |12
< Mg #7 (9. F )P oo+ 1Map o 9llee + 1M
My o hOlirse + [Mi gy (9. F. (h)7)] g1 + lgllze
Ny + ) o

Fll(mry

r7—1\ B(0,1)

Thus, it sufficient to show that My, #7 (g, F, (he)j2y) € TT)2, H~' (%) with a
bounded estimate. We do this via duality.
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Let ()72, € [[)-, H~/?(2,) and denote the corresponding solution to the nor-
mal stress problem (2.44) via (q,v) = X—, (0, O(¢een)72,) € L*(Q) x o H! (Q;R™).
We compute

/ Flo)f] €) - FLI (g, F (o)) (€) de
B(0,1)

= <(w€)2n:1’M]15(0,1)‘]7(g7F7 (hé)zn:I»H*l/?,Hl/z
=" [(gv F, (hf)ZL:I) ) (MJIB(O,l)dJZ);n:l}

(3.27) = (F, Mg, 0) (oHY)* o HY — /QnglB(o,l)q —62:1<M13(0,1)¢£,he>H—1/2,H1/2

= <]—7‘7 M]IB(OJ)’U>(0H1)*,0H1 - /QgM]lB(O,l) (q-&-[ZlW]l(o,ae))

+ EMﬂB(011)¢€ <_hé +/ g) .
Rn—1 ¢=1 (0,a¢)

Hence,

/ Fl)Pa] (€) - F15 (g, F (h)iy)] (€) dé
B(0,1)

(3.28)  <IFlan-

m
AJ]I}a(o.u”HoH1 + llgllz M13(0,1)q + ele]lB(O,l)?’/}e]]'(Oval)

+ Z [MJIB(O,I)we]Hl |jW */ g] .
(=1 (0,a¢) -1

Lemma 2.10 ensures us that (My ¢, M1,,,,0) = X—y " (0, O(My,, ,,een)fey)-
As (M1, ©o.1) W)y, is admissible band limited data, we may apply the second estimate
of Lemma 3.8 to (My, ,,%¢)yL; to bound

(3.29)

HMls(o,nq + E;Mls(o,l)qm]l(oﬂz)

L2

s [(M13(0,1)¢@)T:1]H1 < ng[MJIB(o,l)W]HI-
L2 =

Therefore, by (3.28) and (3.29),

(3.30)

/ Fl)f] (€) - F177 (0. F (he)fy)] (€) de
B(0,1)

< g, B ()l 3 M0 el
and so we conclude that
(331) Mg (9 F P
sowf] [ @R ©- P16 F 00 © de] + S0l <1}

(=1
S g, F (he) i) lly-

This completes the proof. 0
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Remark 3.10. For s € RT U {0} we may view

(3.32) H'YWs(Q) x H* (R™) x [T~ HY/2H5 (S R™) x I, H3/2t5 (%))
< L?(Q) x (oH (;R™)* x [T)2, H? (%)
through the inclusion mapping (g, f, (ke)y2,, (he)py) = (9, 2(f, (ke)jy), (he)Py),
for &2 as in Definition 2.11.
We now synthesize the results of this subsection into a single result.

THEOREM 3.11. Let v € R and s € RT U {0}. The linear mapping

(3.33)
Y @N[H (9) x H* (@ RY) x [T, HY2H (SR x [[[L HY2 (5)]
=TT, (S0 0 HY2 5 ()

given by A (g, £, (ke)iy, (he)ioy) = 7 (9, Pf, (ke)fey), (he)7y) is both well-defined

and continuous.
Proof. The result follows from Remark 3.10 and Propositions 3.6 and 3.9. ]

4. Multilayer traveling Stokes with gravity-capillary boundary and jump
conditions. Our linear analysis culminates in this section with the study of the lin-
earized flattened free boundary problem (1.17). More precisely, we study the system

V- S* (p,u) = yperu = f inQy, Le{l,...,m},
Viu=g in Q,

(41) [S* (p,u) en], = ke + (g[p], + oely)meen, on Xy, £€{1,...,m},
u-en = hg — 01, on Xy, Le{l,...,m},
[u], =0 on Xy Le{l,....m—1},
u=0 on Y.

We remind the reader that we are still using the abbreviated notation for €2, €,, and
3¢ discussed at the start of section 2 and that the unknown velocity is u, the pressure
is p, and the free surface functions are in the tuple (n,)}>,. The prescribed data are
Iy 9, (ke)7q, and (he)7™,. The viscosity parameters are u = {pe},"; C RT, the fluid
densities are {ps},—, C RT, 0 = {oy},~, C R* U{0} are the surface tensions, v € R
is the signed wave speed, g € R™ is the magnitude gravitational acceleration, and
p=>y-, pelg,. Unlike the previous two sections, we now assume that the wave speed
is nontrivial, i.e., ¥ € R\ {0} and that the density coeflicients are strictly decreasing
with layer number, ie., 0 < p,, < -+ < p; (this is consistent with the assumptions
made in the introduction). Note that [p], = pry1 —pe <O0for £ € {1,...,m — 1} and
[[pﬂm = —Pm < 0.

Our goal in this section is to prove that the above system induces a linear isomor-
phism between an appropriate pair of Banach spaces. It turns out that the estimates
obtained from (4.1) are too weak to guarantee that the free surface functions and the
pressure belong to standard L2-based Sobolev spaces in dimensions three or higher.
The resolution of this issue requires developing families of specialized Sobolev spaces
to serve as the container spaces for the free surface functions and pressure. In this sec-
tion and the next we establish and utilize variants of the specialized spaces developed
in the single layer analysis of [15] that are appropriate for the multilayer context.
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4.1. Specialized Sobolev space interlude, well-definedness, and injec-
tivity. We first label the space of data for which we will solve (4.1).

DEFINITION 4.1. For s € Rt U {0} we define the space
(4.2)
Yo =D(Q) N [H*(Q) x H (R") x [[iL, HY2+* (S R™) x [Tl HY2H ()]

where Y () is from Definition 3.7 and the intersection is understood in the sense of
the inclusion from Remark 3.10. This space is Hilbert and as an equivalent norm we
set

(4.3) (g, £, (ke)iZy, (he)iZy)|

2
yS
2

m
= e; ||g||:;11+s(m) + ||f||%rs(m) + |[EellFa/2es + el Fs/2es +

he — / 9]
(0,a¢)

Next we define the container space for the free surface functions, which is an
anisotropic Sobolev space introduced in [15]. Note that for notational convenience we
denote this space with a name different from the one used in [15].

H-1

DEFINITION 4.2. For s € Rt U{0} we define the normed space

(4.4) H*(R") ={( e (LR LR))* : F[(] €L (R"5C) and [[(]|3: < oo}
for
(4.5)

€]

= [t e i) 1F O de+ | €P° 12 [ () ae.
(0,1) R"=1\B(0,1)

The following result summarizes the essential properties of this space.

PROPOSITION 4.3. Let s € RY U {0}. Then the following hold for the space
Hs(Rn_l),

(1) H*(R"1) is Hilbert.

(2) Ifk € N, then H*(R"71) — CE(R"1)+H*(R""1); in particular if (n—1)/2+
k < s then we have the embedding H*(R"~1) — CER"1). We remind the
reader that C§ is defined in section 1.6.

(3) If n € HO/2H5(R™Y), then Oy € H3/*H(R™1) N H- YR 1) and An €
H1/2+S(R”_1); moreover, these mappings are continuous. -

(4) (Fourier reconstruction) If 9 € Li _(R"~1;C) satisfies ¥ (=€) = 9 (§) for a.e.
e R and

@o) [l @t 0@ ag+ [ 62 19 @) dé < o0,
B(0,1) Rr-1\B(0,1)
then there exists (y € H¥(R"™1) with F [(y] = 0.
(5) In the case n = 2 we have the equality of vector spaces with equivalence of
norms: H*(R"~1) = Hs(R"1).
(6) If ¢ € H*(R™™Y) satisfies supp.Z[¢] C R"™1\ B(0,¢) for some € € RT, then,
in fact, we have the inclusion ¢ € H*(R"1).
Proof. Ttems (1), (2), (3), and (5) follow from [15, Proposition 5.3 and Theo-
rems 5.6 and 5.7]. Item (4) follows from the definition of H* and completeness. Item
(6) is clear given the definitions of the norms on H?* and H*®. d
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Now we are ready to define and study the container space for the pressure, which
is a multilayer variant of the space introduced in [15], again given a different name
for notational convenience. For the next definition and the subsequent proposition
we switch back to the unabbreviated notation for multilayer domains as defined in
section 1.1.

DEFINITION 4.4. Let s € RT U{0} and ¢ = {(},2, € (C2(R™1)™ be a tuple of
continuous functions satisfying

(4.7) max{||§1||cg yeees ||Cm||cg} < %min {a1,a0 — a1, ..., Qm — Qm-1}.

We define the normed vector space

(4.8) P(Q[]) ={g € Li,. (Qc]) = 3 (p, (me)iLy) € H* () x (H*(R"1))™
such thatq =p — g ZZL:I [[p]]z né]lQI[C]U---UQg[C]}

equipped with the norm
(4.9)

lq]

ps = Inf {Z [”pHHS(Q([C]) + ||77€Hys] P q=p— QZ [[Pﬂg ne]lﬂl[c]umum[c]} .

=1 =1
When ¢ = 0 we will sometimes write P* (2) in place of P* (2]0]).
The following result records the essential properties of these spaces.

PROPOSITION 4.5. The following properties hold for the scale of spaces P* (Q[{])
for s e RY U{0} and ¢ € (CY(R™1))™ satisfying (4.7).

(1) P*(Q[l]) is Banach.

(2) Ifk € N, then P* (Q[C]) — CF(Q[C])+ H® ([C)); in particular if n/2+k < s,
then P* (Q[C]) < CF(Q[C]).

(3) If p e P (Q[C]), then ;" Lo,iVp € H® (QC;R™) and this map is con-
tinuous.

(4) Fort € {1,...,m} there are bounded trace operators: Tr;j[o] : PIHE(Q[0]) —
H1/2+5(Rn71)'

(5) In the case n = 2 we have the equality of vector spaces with equivalence of

norms: P*(Q[L]) = H® (2[(]).-

Proof. The claims follow from simple multilayer adaptations of [15, Theorems 5.9,
5.11, and 5.13 and Remark 5.10]. d

We have all the tools we need to label the spaces which hold the velocity, pressure,
and free surface tuple.

DEFINITION 4.6. For s € RT U {0} we define the Banach space

(4.10) A*° = {(nu, (ne)ity) € PH(Q) x o H* (3 R™) x (H/2H5(R™H™)

m
p 40> [ol meliomy € B (©) }
/=1

which we endow with the norm

(4.11) (P, u, (ne)721) ||+

= |lpllpr+s + ;1 Nl g2+s 00y + mell3gs 2+ + 0+ 825y 0D Mk L0,00) [l 142 (020) -
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Next we introduce the linear map that will turn out to be the Banach isomorphism
solution operator associated with the problem (4.1).

PROPOSITION 4.7 (uniqueness of solutions to (4.1)). For v € R\ {0}, 0 =
{o¢},2; € RTU{0}, and s € R U {0}, the linear mapping Yo : X5 — V* with
action

(412) Y'y,O‘ (p» u, (772)?1:1) = (V - u, Z;n:l ]]'Qe [v : SH (pa 'LL) - 7p231u] 5
([S* (p,w) enl, — (a[p], + ey )meen) iy, (Trs,u - e, +Y0100)7%)

is well-defined, continuous, and injective.

Proof. We begin by checking that the mapping is well-defined and continuous.
This is clear for the first component. The only possible point of contention in the
second component is the expression with the pressure, ZZ; 1q,Vp; however, we are
in the clear thanks to item two of Proposition 4.5. For the third component we use
that p+g> ", [Pl, mel(0,a,) € H'™* (), paired with the usual trace theory and the
jump calculation:

(4.13) ﬂkilup]]knkﬂm,ak)ﬂ =j_% ol = 3 [elme =~ [l

14

to deduce the bounded inclusion

(4.14) [pl, — alpl,ne = ﬂp +g Z [el; ﬁkﬂ(o,ak)u € H'/?™ ().
k=1 Vi

Item two of Proposition 4.3 tells us that o,An, € H'/?*5(%,) boundedly as well;
hence the third component of Y, ; is well-defined and continuous. Using again item
two of Proposition 4.3, we learn that vdym, € H~'(3,) N H3/2%5 (%,); moreover,
thanks to Proposition 2.1 we have the bound

(4.15) < [ 01mel g1 + 27 /ag |Jull 2 -

Trgku-en—i—wam—/ V-u
(0,ar)

H-1

We thus conclude that Y., o (p,u, (ne)j,) € Y with ||Y.,6 (0w, (n0)72)]

H(pa u, (W)?%)HXS-
We next prove that Y, o is injective. Suppose that (p,u, (ne)72;) € ker(Y, o).

Fix r € N* and define (¢,)7"; € ,cp+ [[1ng H /21 (20) via

<
AN

(4.16) (We)ir = (M 0 s(00ry (810D + 008 )0) 51,

where we recall that tangential Fourier multipliers are defined in Appendix A.3. Now
let

(417)  (0) = Xoy M0, O(een)ty) € Myegs [HIFHQ) x o H2 (4 RY)]

be the corresponding solution to the normal stress PDE in (2.44). Note that we have
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introduced the band-limited approximation, in part, so that the above application of
X—~ ', as defined in Proposition 2.9, is well-defined.

Since Yo (P, u, (1¢)72) = 0 we obtain the following string of identities by testing
u in the weak formulation for ¢, v and integrating by parts (recall that v has vanishing
divergence):

(4.18)
U L Lo UL e

> | 0= Y Do Du+ypedrv-u = ) — Du : Dv —ypedru - v
i=1Js, i=1Ja, 2 i=1Ja, 2

=> %Du :Dv —ypeOru - v —/Q <p+9kz Iels nkl(o,ak)) Vv
=1

1=1J8Q,
. T (p+gz upﬂknkmo,ak),u) Vo i v
i=1Jq, k=1

= Z/ [V'SH <p+92 [[P]]knkll(o,ak),u) —W’Pe814 v
Qp k=1

+z/ Hsu (p+gz [[p]]knknm,ak),u) ]] v
e k=1 L

1

o~
I

=gy, [ V {Z [e] nkIl(o,ak)} v

=1JQ, k=1

+ > HS“ (p-i— ng [[p]]knk]l(o,ak),u> enﬂ -,
=1

(=1J%, L

The above manipulations are justified by the fact that p + g> ;" [p]) 7k L(0,ar) €
H'*#(Q) (Definition 4.6) and that V[> ;" [ol, 7k L0,ap)] € H*(Q;R™) (Proposi-
tion 4.5, item 3).

Proposition 2.10, together with the fact that (i)}, defined in (4.16), is band
limited yields the implications

(4'19) (,(/}Z)Zn:l = (MHB(Uygr)\B((]’z—r)wé)?;l = T‘I.ZZU = M]lB(Oygr)\B(ngfr;I‘rEé,U

= supp.Z[Try,v] C B(0,27) \ B(0,27").

Hence, Proposition 4.5, item four, and Proposition 4.3, item six, may be invoked to
see that
(4.20)

F[S*(p,u)en],|-F [ Trs,v], F Mgki lel, Uk]l(o,ak)]] j -F[Trs,v-e,] € LYR";C),

where we recall that over C we take the inner product - to be sesquilinear on vectors
with linearity in the left argument. With these inclusions in hand we can simplify the
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¢th term in the final series of (4.18) Parseval’s theorem:

(4.21)

/ |[S“ (P+QZ Tels Uk]l(o,akyu) enﬂ v
E[ k=1 Y4
:/ F H[S” <p+gz [[p]]knkll(ovak),u> enﬂ } - F[Trg,v]
Rn—1 k=1 ¢

= F[S" (p,w) enle] - F[Trs,v]

Rn—1

= Jou ZUlele ol - FlTrs v - el = glod / F ) F [Trs,v-en)
Rn—l Rn_l

where the decomposition into the two integrands in the middle line above is justified
by (4.20).

In the final term in (4.21), we would like to use the vanishing divergence of and
Yo-trace of v to simplify further. We first compute

,ae)

F[Trs,v-en](§) = F [/(0 v (- y) dy] ©)

(4.22) S [/(O nfaj(v(-,y) “ej) dy] €3]

sae) j=1

= Z v (9] (€) - 27 (€,0) d

(0,ar)

Using (4.22), we may then rewrite

~aled [ Flul-F Trs-c)

Rn—1

=g [[o]]e/()am)/n Lo.a Z [Vyne - F [v].

Summing over £ € {1,...,m} in (4.21) and implementing (4.23) yields the identity

| ﬂs“ (p+gzupﬂknkﬂ<o,ak>7u)]] .
i=1Js, k=1 ’

(4.24) = gl s Fl(glel, +oeld)ne] - F[Trs,v - en

—gZ [Z [e]x 77k11<o,ak,>} ",
Q k=1

(4.23) =—a[p] F[ne)(€) - l/(o )y[v(~7y)] (&) - 27 (£,0) dy] dg

and upon substituting (4.24) into (4.18) we deduce the equality

(4.25) —vé g YeOimy = Z . 19‘[ alel, + oeAy)ne] - F[Trs,v - en).
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Next we use the definition of (1), on the left-hand side and observe that

(4.26)

=2 | el ==y | 80Pl My oy 1OV M e o0y I
=1J%, =1J%, '

+7 Z UvaﬂB(o,ﬂ)\B(o,z—r)ne ~O VM 0.

=1J%,

For the right-hand side of (4.25) we first use Proposition 2.16 and then item two of
Theorem 2.19 to bound

B(0,27‘)\B(0,2—7‘)TM =

0=3 [ Flalole+oedyn] - F[Trsp el
) = [ Re[ZU(alole + oAyl n Fw]

2 | min(€[? 6]} 52 17 (o [ol, + o (€ e
B(0,2r)\ B(0,2—7) =1

Hence the right-hand side above is zero for all r € N*. This proves that for all
¢ € {1,...,m} we have 7, = 0. Thus, we have the inclusion (p,u) € H**(Q) x
oH?%4 (Q;R™). The space on the right is the domain for @.,. Since ()72, = 0 and
Yy, 0(p,u, (ne)72,) = 0 we have that @, (p,u) = 0. In Theorem 2.13 we showed that
®, is an isomorphism, so v = 0 and p = 0. Hence, Y, 5 is an injection. ]

4.2. Isomorphism in the case with surface tension. In this subsection we
characterize the solvability of (4.1) for data belonging to the space }* and positive
surface tensions, i.e., {J@}?zl C R™T. Before we state and prove the relevant isomor-
phism theorem, we show how the data determine the free surface functions.

LEMMA 4.8 (determination of free surface functions: surface tension case). If
v € R\{0}, {oe},2y CRY, and (g, f, (ke)[2y, (he)i2y) € V¥ for some s € RT U {0},
then there exists (no)7t, € (H?/>T5(R"1))™ such that the modified data tuple
(4.28) (g, f+ 9> /21 [Pl Vel (o,a,)s (ke + oo Aymeen)jey, (he — v01me) 72 y)
€ H'*(Q) x H* (;R") x [[,L, HY?+s (S5 R™) x [[)L, H¥2+5 ()

belongs to the range of ., where this latter operator is from Theorem 3.3. Moreover,
we have the universal estimate:

(4.29) 1ne)eZrll3gs iz S (g, S (Re)ir, (Pe) i)

Proof. We divide the proof into three steps.
Step 1: Establishing invertibility of a matriz field. Let

(430) 0Og = —gdlag ([[p]]l sy [[p]]m) , 01 = dlag (0-1) e Um) c ]Rme7
and for & € R"~! we set 0 (¢) = oy + 472 [¢|* 01 € R™¥™ and
(4.31) Py () = ny (5)* o (&) — 2miv&1lnxm = n_, (&)o (&) — 2miv&iLmxm € cmxm,

where n, (&) is as defined in Proposition 2.16 and satisfies n, (£)* = n_.(§) by Propo-
sition 2.17. We claim that there exists a constant C € RT, depending only on the
physical parameters and ~, such that for all b € C™ and a.e. £ € R”~! we have that
(4.32)

C71 Py () B < (&% + €1 L0,1) (€) + €1” Lrn1\5(0,1) ()] [B* < Cpy (€) B

ye-
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We begin the proof of the claim by recalling that there is a full measure set
E C R™ ! such that if £ € E then the estimates from Theorem 2.19 hold for the
matrix ny (§). Let £ € E\ B(0,1) and b € C™. Then from Theorem 2.19 we deduce
that

(4.33) P ()b < [&® + €] 1b1* < 1€ bl

Similarly, since o (§) is self-adjoint, we have that 27iv£1b - 0(£)b is purely imaginary,
so again Theorem 2.19 allows us to bound

(4.34)
€1 [P+ () B] [b] Z Re[p, (§)b-0(£) 8] = Re [0, (§) 0 () b- 0 ()]

> e o (€) b = |e] ™ 32 (~alole + 4n2 €2 00)2[b- erf? 2 |Ef° bl

Combining (4.33) and (4.34) gives estimate (4.32) for £ € E\ B(0,1).
On the other hand, if £ € B(0,1) N E and b € C™, we once again appeal to
Theorem 2.19 to arrive at the upper bound

(4.35) Dy ()b S (&2 +1¢]*) b

For the matching lower bound we combine the following estimates wherein we tacitly
use (1) for each ¢ € {1,...,m} —g[p], > 0 and |y| > 0, and (2) n,on,* is a self-
adjoint matrix field. First,

(4.36)
€] [+ (€)b] [B] = [0(€)P~ (£)b - 1 (€)"0(€)0]
= |n,(€)o(€)n, (€)"0(£)b - 0(€)b — 2min€10(€)b - 0, (€) "0 (£)b]
> |Im(n, (€)o(€)n,(€) 0(£)b - 0(€)b — 2miy&10(€)b - 0y (€) “0(€)D]|
= 21|7& | [Re[n, (£)o(€)b - o(€)b]| 2 27 [v&1| €] [o(€)b]* = [v&r] €1 0]
Second,
437 Iy ()] 6] Z Re[p, (€)b-0(€) ]

= Re[n, (£)"0(£)b-0(£) 8] Z € o (&) " Z 17 8]

Estimates (4.35), (4.36), and (4.37) give (4.32) in the remaining cases.

Step 2: Construction of the free surface functions. Given (g, f, (ke)y2,, (he)jy) €
Y* we propose to define, via item three of Proposition 4.3, ()7, € (H>/?+s(R"~1))™
through

(4.38) F (me)ia] = py T F LA (g, f, (ke)ilys (he)fLy)] -

Recall that £ is the operator from Theorem 3.11. It is clear that since p, (—¢) =
P~ (§) (this realness assertion follows from that of n,—see Propositions 2.16 and A.2)
for a.e. £ then the above assignment will define a real valued tempered distribution

provided it defines a tempered distribution in the first place. For the latter to hold
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we need only observe that (note the use of inequality (4.32) and continuity of )

(4.39)

2
|‘(77£)2n:1||7.[5/2+s

= [ (6% 1) e (€ + 67 Trnony oy (1 [me)ial () de

S [ maxlel 6P HEA 0 £ () ()] F

< g, £ (k)i (he)iZ) [y

This gives (4.29).

Step 3: Modification of the data. To show that the modified data tuple in (4.28)
belongs to the range of V., we use the second item in the equivalence of Theorem 3.3;
solet F € (oH' (;R™))* be defined as F = Z(f, (k¢)}7-,) for & as in Definition 2.11.
Using the definitions of (1)}, and the mappings s7,.#7, and 7 (Definition 3.1,
Proposition 3.4, and Theorem 3.11, respectively), for any (v)72, € [[;2, H~Y/2(Z)
we may compute

%7[(9’ Fa (hf)znzl)? (W)Z}n:l]
= ((Ye)ity, 77 (g, F, (hl)?bzl»H*l/?,Hl/z
= (Vo)1 X7 (g, f, (ke)iers (hé)7:1)>H71/2,H1/2

-/ F(We)iia] - Py F [(ne)724]
(4.40)

= /RTH n, (6) F[(e)71] (€) - 472 (€201 F [(ne) ] (€) dg

- F (o) 7] (€) - 2min&a F [(me) {2, ](€) d€

Rn—1

n / 0, Z ()] - 00 F [(ne)y).
Rn—l

For the first two terms after the last equality above we may use item two of Propo-
sition 4.3 to justify the application of .%’s unitary properties; we also recall Proposi-
tion 2.16 which states that n. is a spectral representation of v,. Hence,

(4.41)

[ O F W) (© 47 I o1 F (0] (€) dE =3 | - o pmee

for (q,v) = x—~ 10, O(¢ren)ir,) € L () x oH' (Q;R™) the solution to the applied
stress PDE in (2.44) with data (1¢¢)7",. We also have the equality
(4.42)

- F (o) f21] () - 2min&1.F [(ne) 1] (€) dE = ((vbe)iZys (YOme)ir) 172, mr /2

For the final term in (4.40) we cannot, in general, apply that % is unitary directly
since (1¢)7"; need not belong to [J;~, L? (X;). Instead we utilize the fact that v is
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solenoidal and vanishes on Xy, which provides us identity (4.22). Hence,

/Rn_1 0,7 (Vo)) - 00.F [(ne) 2]

— a3 Iol, [ F[Trs0-cal - Flud
(4.43) e
=—ox lele [ o )9[v(~,y)] (€) dy - 2mi (&, 0) 7 [ne] (€) dE

= —GKZ [[p]]g/ﬂvmll(o,az) ‘.

The last equality, which is an application of Plancherel’s and Fubini’s theorems, is
justified by the third item of Proposition 4.5. Define G € (¢H! (£2;R™))* through the
assignment

(4.44)

(G th gy i = Fb i + [ (035 0oL 100 | -0t £ [ ortyne-o
= = ¢

=/f-w+2/ ke-w+/ {QZHPHZVM(O@@)] "W
Q =1J%, Q =1
+ Z O'gA”772~w, 'LUGOHI (Qan)
(=1J%,

We now synthesize identities (4.40), (4.41), (4.42), and (4.43):
H (g, F, (he) L), (Vo) iy]

(4.45) = —ZZI v aeAymeen — V(o) iy, (O1m0)721) H-1/2 gris2
: = e

- gi [[p]]e/ Vnel(o,ap) v =70, F — G, (v01me)iLy), (Ye) 4]
=1 Q

Rearranging (4.45) and using that 4#°7 is bilinear shows that
(4.46) (9, G, (he = vOme)iLy) , (Ye) L] = 0.
As the above expression vanishes for all (v)7, € [[;-, H~Y/2(Z¢), we conclude that

b
the modified data tuple of (4.28) belongs to ker.##’”, which Theorem 3.3 establishes
is the range of V.. ]

At last we are ready to state and prove an isomorphism of Banach spaces induced
by the PDE (4.1).

THEOREM 4.9 (existence and uniqueness of solutions to (4.1): surface tension
case). For~y € R\ {0}, 0 = {o¢},2; C RY, and s € R U {0} the bounded linear
mapping Y~.o : X° — Y, with action given by (4.12), is an isomorphism.

Proof. Proposition 4.7 ensures that this mapping is well-defined and injective, so
it remains only to prove surjectivity. Let (g, f, (ke)jLy, (he)j,) € V¥, and define the
associated tuple of free surface functions (n¢)7, € (H%/?+3(R"~1))™ via Lemma 4.8.

Then the modified data tuple in (4.28) belongs to the range of V.. Consequently,
there exists (q,u) € H'7%(Q) x o H** (; R"™) such that

(4.47) Vo (g, u) = (g, f+a >y [Pl Velo,a,), (ketoeAymeen) ey, (he—v01me) 7Ly ).
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Set p € P (Q) viap=q— 9> ;% [Pl nelo,an)- Asp+ a3 [l nel0,a) =a €
H'*#(Q), we have that (p,u, (n,)7,) € X*. We then observe that
(4.48)

[S*(p,w)en]e = [S*(g, wen]e — g [ern: [el, nk]l((),ak)ﬂ en = ke + (g ], +oely)neen.
=1 Y

It is now straightforward to check Y. o (0, u, (n2)7%1) = (g, f, (ke)j2y, (he)72,), which
completes the proof that Y., s is a surjection. O

4.3. Isomorphism in the case without surface tension. In this subsection
we study (4.1) in the case of a two dimensional fluid (n = 2) and vanishing surface
tension (0 = {o¢},-, = 0). Again, we first present how the free surface functions
are determined from the data. In this instance the proof is simpler because item four
of Proposition 4.3 tells us that the function spaces holding the tuple of free surface
functions are familiar Sobolev spaces.

LEMMA 4.10 (determination of free surface functions: case without surface ten-
sion). Ify € R\ {0} and (g, f, (ke)j2q, (he)]y) € V* for some s € RT U {0}, then
there exists (ne)y, € (H/2+s(R"=1))™ = (HY/2T5(R"1)™ such that the modified
data tuple

(4.49) (g, f, (ke + g el neen) iy, (he — v01me) 72 1)
€ H'Ws(Q) x H® (Q;R™) x [T, HY? (S R™) x [[;n, H3/2+5 (Z)

belongs to the range of V.., where this latter operator is from Theorem 3.3. Moreover,
we have the universal estimate

(4.50) 1(ne)iZillagsr2ve S M1(g, S (Re)iZns (Re)iZy )|

ys -

Proof. We again proceed in three steps as in the proof of Lemma 4.8.
Step 1: Estimates and invertibility. Again let oy = diag(o1,...,0,) € R™*™,
We claim that the matrix field

(451)  py (&) =0,y (§) 00 = 2mYE L xm = Ny (§) 00 — 27IVE Ly sem € C™™,

where n,(§) is as defined in Proposition 2.16 and satisfies the estimate

(4.52) C~p, (&) 0 < € b]* < C'lpy (€) b

for a.e. £ € R and all b € C™, for a constant C' € R* depending only on the physical
parameters. Recall that since n =2, £ =¢;.

By the first item of Theorem 2.19, there is a universal constant Cp € RT and a
full measure set E C R such that if &€ € E, then |n., (£)* 0o| < Comin{|¢[*,|¢|™"}.
Thus the left inequality in (4.52) follows from the triangle inequality. Also, as a
consequence of this estimate on n*og, we learn that there are radii (depending only

:
on Cp and |y]) 0 < Ry <1 < Ry such that if £ € R\ [(—R1, —Ro) U (R, R1)], then

(4.53) 2 |y] |€] — Comin{|¢|, €]} = 7 |4] [¢].

Estimate (4.53) gives the right inequality in (4.52) for £ € E with |¢] < Rg or |£] > Ry,
by the reverse triangle inequality. For £ € EN(—R1, R1)\(—Ro, Ro) we use the second
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item of Theorem 2.19. Let b € C™. As oy is self-adjoint, we may estimate
(4.54)
[Py (§) 0] [0] 2 [Re [py (£) b 00b] | = [Re [00b - 1y (£) 00D] |
Z min{[¢[*, €[} [bI* > min{Ro®, Ry ™'} b
Therefore (4.52) is shown.

Step 2: Construction of the free surface functions. Again using item three of
Proposition 4.3 we define, given (g, f, (ke)j,, (he)72,) € Y?, a corresponding tuple of
functions ()7L, € (H/2+3(R"1))™ via

F0)fa] = Py T F (X7 (g, fo (ke)fly, (he)fly)] -
This is well-defined thanks to the estimate
(4.55)

1(me) 22y 34522 X/ (L+ €)1 [(ne)ia) (O dé

Rn—1

S /Rn,ﬂ + €)1 T (A7 (9, f, (ke (o)) (€) €

S g £y (Re)iZs (he)iZa)llys -

Hence the estimate of (4.50) holds.

Step 3: Data correction. To show that the modified data tuple in (4.49) belongs
to the range of W, we appeal to the equivalence presented in Theorem 3.3. Again we
define F € (oH' (Q;R™))* as F = P(f, (ke)j-,), for 2 in Definition 2.11. Using the
definition of £, we compute
(4.56)

H (g, F, (he)iZy), (the) 721]
= ((Ye)iLy, I (9, Fy (he)i1)) 172 e

(W) K (g (R s (V) 172172 = / FlWe)ir] - pyF )]

= [ m 0] o] — [ FUE] € - 2T )] (€ e

for ()72, € T~ H=Y/?(2)). Denote the solution to the normal stress PDE in equa-
tion (2.44) with data (1), as (q,v) = X—~ 20, O(een)iry) € L2 (Q) x o H' (4 R™)
(recall that x_, and & are defined in Proposition 2.9 and Definition 2.11). We next
use the fact that . is unitary on L? to rewrite (4.56) as

(4.57)

(g, F, (he)ils)  (Ye)ila] = —gé [[p]]e/ 1ev-en—{(Ye) e (Y010e)i1) =172 11172

3
Set G € (oH! (Q;R™))* via

m
<G’w>(oH1)*,oH1 = <F’ w>(oH1)*,oH1 + 9521 [[p]]f/z New - en
= ¢

(4.58) :/Qf-w+§ ke - w

=1J%,

+o, [[p]]z/ new - ey for w € oH' (4 R™).
=1 s
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Then (4.57) implies that €7 [(g, G, (he — v01me) 721, (Ye) 7)) = 0 for all ()}, so
we conclude, using Theorem 3.3, that the modified data tuple belongs to the range of
v, d

Finally, we state and prove the analogue to Theorem 4.9.

THEOREM 4.11 (existence and uniqueness of solutions to 4.1: case without sur-
face tension). Fory € R\ {0}, n =2, and s € RT U{0} the bounded linear mapping
Yoo : X% = Y, with action given by (4.12), is an isomorphism.

Proof. Proposition 4.7 ensures that this mapping is well-defined and injective, so
only surjectivity remains. Let (g, f, (ke)jy, (he)j2,) € Y° and define the associated
tuple of free surface functions ()72, € (H°/?+3(R"~1))™ via Lemma 4.10. Then the
modified data tuple in (4.49) belongs to the range of ¥.,. Consequently, there exists
(p,u) € H (Q) x o H?>T% (Q; R™) such that

(4.59) Wy (p,u) = (9, f, (ke + g lplgme)iiys (he = vO1me)ies )

By item four of both Propositions 4.3 and 4.5, we have that (p,u,(nj>,)) € X°*.
It’s also clear that Y. o (p,u, (ne)j2)) = (g9, f, (ke)y2y, (he)j2y). Hence, Y, is a
surjection. O

5. Nonlinear analysis. We now use the Banach isomorphisms constructed in
the previous section to solve the fully nonlinear problems (1.17) and (1.11) for small
data by way of the implicit function theorem. The proofs of most of the results in
this section essentially mirror those used in the one layer analysis of [15] (except that
we use our new isomorphisms), so for the sake of brevity we will mostly sketch the
details. For full details we refer to [15, section 8§].

5.1. Preliminaries. This subsection is dedicated to showing that the nonlinear
mapping associated with the flattened PDE (1.17) is both well-defined and smooth.
We begin by examining the smoothness of the nonlinearities present. First we have a
simple product estimate.

PROPOSITION 5.1. Let £ € {1,...,m} and s € RY with (n —1)/2 < s. If f €
H(R"Y) and g € H® (X)), then the pointwise product satisfies the inclusion fg €
H? (Xy). Moreover the bilinear mapping H® x H® > (f,g) — fg € H® is continuous
and hence smooth.

Proof. This is proved in [15, Theorem 5.13]. 0

The more complicated nonlinearities present in system (1.17) are also smooth, as
a consequence of the following result.

PROPOSITION 5.2. Let s € RT with s > n/2 and m = 1 There exists a positive
radius 6 (s) € RT such that the following hold.

(1) If n € H*(R™™1) satisfies ||n]|,. < 6 (s), then ||77||03 < 3.

(2) By the first item for n € Bys(0,8(s)), w € H*(R"™Y), and v € H*(Q)

we are free to define pointwise To (n,w) = 1¢,. and Ty (n,v) = .. Then
To (n,w) € H*(R"™1) and Ty (n,v) = % € H*(Q), and the mappings Ty :

14n
By (0,6 (s)) x HS(R™™') — H*(R"™1) and T : By (0,0 (s)) x H*(Q) —
H*(Q) are smooth.
Proof. The existence of a 1 (s) € RT for which the first item holds follows from
the supercritical embedding within item 2 of Proposition 4.3.
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Theorem 5.17 in [15] states that for some g € RT the mapping I : Bp:(0,0) x
H?(Q) — H*(Q), for Bp«(0,£9) the open go-ball of the space P?(€2) (Definition 4.4, for
m = 1), defined by I2(¢, u) = 17 is smooth and well-defined. Denote the continuous
(and hence smooth) inclusion mapping: ¢ : H*(R"~1) — P*(2). There then exists
52(s) € RT such that ¢(Bys=(0,02(s))) € Bp:(0,e0). Let §(s) = min{di(s),d2(s)}.
Then I is smooth as Iy = Ty 0 (1, idg=(q)). By letting 9B : H*(2) — H5(R"~!) denote
the smooth projection onto this closed subspace and i : H*(R"™!) — H*(Q) denote
this smooth inclusion we deduce that Ty =P o Ty 0 (¢,7) is also smooth. d

The data spaces Y for which we solve the linearized flattened problem enforce the
divergence compatibility condition from Proposition 2.1. To ensure that the nonlinear
mapping associated with the flattened problem has a target enforcing this condition,
we require the following result.

PROPOSITION 5.3. Suppose that s € Rt satisfies s > n/2, u € o H*** (Q[0]; R"),
and (¢)7-y C Bysszve (0,0) for § = min{ar, a2 — a1, ... ,am — am-1}0 (5/2+s) €
R, where § (5/2+ s) € RT is as in Proposition 5.2. Then for each ¢ € {1,...,m}
we have the identity

(5.1) / J.AV~u:u-/\/'g(-,ag)+(V”,O)-/ J A,
(0,a¢)

(0,ar)

where J, A, and Ny are functions of (n¢)j", as defined in section 1.3.

Proof. Let k € {1,...,£}. Arguing as in [15, Proposition 8.2] we arrive at
(5.2)

JkAkV U =U ./\/g (~,ak) —Uu 'Nk—l (~,ak_1) + (V”,O) . / JkAktu,

(ak—l7a1{) (ak—l7ak)

where we take My = e,,. Summing over k& < £ and using that u vanishes on Xq gives
the result. ]

We now arrive at our final preliminary result, which states that the nonlinear
mapping associated with the flattened problem (1.17) is well-defined and smooth.

THEOREM 5.4. Let s € RT with s > n/2, 0 = {o¢},~, CRTU{0}, and k € RT.
Define the open set

(5.3) U: ={(p,u,(me)jry) € X° : nmg € Byssars (0,5) forl e {l,...,m}}
and the mapping Z¢ : R x [[jL, HY2¥5(S,[0]; RX™) x U — Y with action given via

sym

(5.4)
Zo (77 (ﬁ)znzl’p7 u, (7”)?1:1)

= (JAV - u, @élﬂe[o] [[p/ (U — ")/61) : AV]U + (AV) . S; (p, ’LL)] s
(IS* (p,w), Ne = (g [0l me + oM (ne)) Ne = TeNe) -, (v01me + ~Ne)2”—1)

for J, A, and N defined as functions of (ne)j>, as in sections 1.1 and 1.3. There
exists kg € RT such that for all 0 < k < ko the mapping 2 is well-defined, i.e., maps
into YV?, and is smooth.
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Proof. Theorem A.14 of [15] asserts that there is a 6; € RT for which the mean
curvature operator H : By, (0,01) — HY/2+3(R"1) is well-defined and smooth.
Thus we set kg to be the minimum of d; and §, for § the radius from Proposition 5.3.
By combining the analysis of the nonlinearities from Propositions 5.1 and 5.2 with
the nonlinear divergence compatibility of Proposition 5.3, we may argue as in [15,
Theorem 5.18] to deduce well-definedness and smoothness. d

5.2. Solvability of (1.17) and (1.11). To solve (1.17) we combine the smooth-
ness result from Theorem 5.4 with the linear isomorphisms of Theorems 4.9 and 4.11.

THEOREM 5.5. Suppose that 0 = {o,},-;, CR" andn >2 or 0 =0 and n = 2.
Assume that Rt 3 s > n/2. Then there exists open sets Vs C X* and Us C R\ {0} x
T2, HY?Hs(S[0]; R x H* (Q[0];R™) such that the following hold.

(1) (0,0, (0)71) € Vo and (R\ {0}) x {(0)f} x {0} < Us.

(2) For each (v, (Te)jy, f) € Us there exists a unique (p,u, (ne)j2,) € Vs solv-

ing (1.17) classically.

(3) The mapping Us > (v, (Te) 2y, f) — (D, u, (ne)72,) € Vs is smooth.

Proof. We apply the implicit function theorem to =4 (see, for instance, [1, Theo-
rem 2.5.7]). Denote the Hilbert space £5 = R x [[,2, HY/?+5(%,[0]; R"). Viewing

sym
the domain of = as the product £° x U C £° x X we define the partial derivatives

with respect to the first and second factors via
(5.5) D26 :E° xUj = L(E%Y°) and Do=Zg : £° x U§ — L (X% V%)

For any v € R we have =5 (7, (0)72.,,0,0,(0)72,) = 0and D=4 (7, (0)721,0,0, (0)72,) =
Yo, for the latter operator as in Proposition 4.7. Theorems 5.4, 4.9, and 4.11 witness
the satisfaction of the implicit function theorem’s hypotheses whenever v € R\ {0}.

Therefore for each v, € R\ {0} there exist open sets 2 (v.) C €%, B(y) C
Uz, and €(7.) C Y* such that (1. (0)7,) € (7). (0,0, (0)F,) € B (), and
(0,0,(0)724,(0)72,) € € (%), and a smooth mapping @, : A (7x) X € (v%) = B (V%)
such that

(5:6) Zo (7, (Te)jrys @+, (7, (Te) 71, g5 f5 (Re)y2ys (he)7oy)) = (g, f, (ko) ey, (he)y2y)

for all (g, f, (ke)72y, (he)72,) € € () and all (7, (Te)72,) € A (7«). Moreover the tuple

Py u, Me)y2y) = @+, (7, (Te)721, 95 f, (ke)pys (Re)72y) € B (74) is the unique solution
to (5.6) in B (74).
Define the open sets

€)= {f (0, £, (0721, (0)7) € €(7.)} C H*(Q[0); R™),
U= | A1) x & (%) CE x H (QO);R"), and
(5.7) vER\{0}

Vo= |J B(n) U,
~ER\ {0}

Observe that the first item is satisfied with these open sets. Define ¢ : Us — Vs via
® (’77 (72)?;17 f) = Wy, (7’ (72)?1:17 07 fv (O)Zn:l? (0)?:1) when (’V» (72);1:1) e (’7*) for
some v, € R\ {0}. The map ¢ is well-defined and smooth by the previous analysis.
Taking (p,u, (ne)j=1) = @ (7, (Te)j~y, f) and noting the embeddings of the spe-
cialized Sobolev spaces (see Propositions 4.3 and 4.5) completes the justification of
the second and third items. O
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Next we examine system (1.11). Our first result gives some of the mapping
properties of the flattening map § and its inverse from section 1.3.

PROPOSITION 5.6. Let n,k € N with 1 < n/2 < k; letn = (m)jr, €
(HO/>HE(R™1))™ be such that

(5.8)  maxlmleg.- - [mmllop) < Smin{ar,as —ar.. am — a1}

and define & : Q] — Q0] via & = F, " in the set Qn] for each £ € {1,...,m} as
in (1.13). Then the following hold.
(1) & € C% (QM],Q[0]) is a bi-Lipschitz homeomorphism with inverse given by
T € C%L(Q[0); M), as defined in (1.12).
(2) Set & = & | Q] for £ € {1,...,m}. Then &, € C" (Qn],2[0]) is
a diffeomorphism with inverse given by Fo = § | Q[0] € C" (Q[0], Qe[M]),
where N> r <3+ k—n/2.
(3) If g € oH (Q[0]), then go & € oH' (QM]). Moreover there is ¢ € RT,
independent of g, such that ||go &|| g1 < cllgll z-
(4) ForRTU{0} 3 s <k+2,if f e H*(Q]0]), then fo® € H* (Qn]). Moreover
there is ¢ € R*, independent of f, such that || f o &| . qpm)y < Ellf Il gs(aqo))-

Proof. By inspection, & is a homeomorphism with weak derivative in Q[n] given
by V& (z,y) = A' o & for A the geometry matrix field from section 1.3. By the
embedding of item two in Proposition 4.3, this weak gradient is essentially bounded.
Hence & is Lipschitz. A similar argument shows that § = &~ ! is also Lipschitz.
Hence the first and third items are now shown. The second and fourth items are now
shown by applying the arguments of [15, Theorem 8.4] to the restrictions & [ Q;[n]
for £ € {1,...,m}. |

Finally, we prove the solvability of the free boundary problem (1.11).

THEOREM 5.7. Let n,k € N with 1 < n/2 < k. Suppose that 0 = {o¢},-, C Rt
andn > 2 or 0 =0 and n = 2. For all v € R\ {0}, there exists ¢ € RY such that
i (T, € [Ty HY2H (S0F R, € HY (QQUER™), and Y5 (1Tl ane +
Hf”HS(Qg[O])] < € then there exists a tuple of free surface functions n = (no)j, €
(HO/2HR(R=1))™ satisfying (5.8) such that the following hold.

(1) If & is the diffeomorphism from Proposition 5.6, then we have the inclusion

F:=fo® e HF(Qn);R").

(2) There exists (q,v) € PYF(QMm]) x o H>T* (QM]; R™) such that (q,v,m) is a

classical solution to system (1.11) with forcing F and applied surface stresses

(To)ies -

Proof. We argue as in the proof of [15, Theorem 1.3]. For small data we may solve
the flattened problem via Theorem 5.5. Then we obtain the associated flattening
mapping via Proposition 5.6. Finally, we precompose the solution to the flattened
problem with the inverse of the flattening map to obtain the desired solution to the
free boundary problem. 0

Appendix A. Tools from analysis. This appendix records various tools and
results used throughout the paper.

A.1. Real valued tempered distributions. Recall the notion of a real valued
tempered distribution.
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DEFINITION A.1 (real valued tempered distributions). — We say that F €
(R4 C))* is R-valued if F' equals its complex conjugate F', where we define F €
(*(R%;C))* with action (F,¢) = (F, @) for p € S (R%;C).

The following are useful characterizations of the R-valued tempered distributions.
Here we recall that the reflection operator 5_; acts on functions f : R? — CF via
5_1f(x) = f(—z) and acts on F € (S (R%;C))* via (6_1F,p) = (F,6_1¢) .

PROPOSITION A.2 (characterizations of real-valued tempered distributions). For
F € (L (R%C))* the following are equivalent.

(1) F is R-valued.

(2) FF]|=056_1F[F].

(3) F € (L(R%R))* in the sense that (F, @) € R for all ¢ € .7 (R4 R).

Proof. The equivalence of the first and second items is standard; see, for instance,
[15, Lemma A.1] for a proof. We prove that the first and third items are equivalent.

Suppose first that (3) holds. If ¢ € .7 (R%;C), then Reyp], Im[p] € .7 (R%; R); hence
we are free to equate

(A.1) (F,p) = (F,Relp]) +i(F, Im[g]) = (F,Re[p]) +i(F, Im[¢]) = (F, ).

Therefore (3) = (1). Next suppose that (1) holds. If p € .Z(R%R) then ¢ = .
Hence,

(A.2) (Fyp) = (F,p) = (F,9) = (F) = (F,¢) €R.

Thus (1) = (3). ad

Remark A.3. By the previous proposition it is not an abuse of notation to denote
the space of real valued tempered distributions with (.%(R%; R))*.

Remark A4. If f € (Y (R%C))* N L (RY C) then by the third item of Propo-

sition A.2 f is an R-valued tempered distribution if and only if f(z) € R for a.e.
z € R%

A.2. (Anti)duality and the Lax—Milgram lemma. Recall notions of ses-
quil-inearity and anti-duality as defined in section 1.6 of the introduction. The follow-
ing variant of the Lax—Milgram lemma is adapted to antiduality. For the well-known
R-valued version of this result we refer, for instance, to [5, Corollary 5.8].

ProposITION A.5 (Lax—Milgram). Suppose that H is C-Hilbert and B : H x
H — C is a continuous and sesquilinear mapping for which there exists ¢ € Rt such
that for all w € H one has the coercive estimate ||u|®> < cRe[B(u,u)]. Then, there
exists a C-linear continuous isomorphism 8 : H* — H satisfying

(A.3) B(BF,v) = (F,v)g= yVF € H* and v € H.

Proof. Let K be the R-Hilbert space with underlying vector space equal to that
of H and equipped with inner product (-,-)x = Re[(+,-)r]. The map Re[B(-,)] :
K x K — R is then a bilinear form satisfying the hypotheses of the R-valued Lax—
Milgram lemma,; in other words, Re[B(+, -)] is bounded and coercive. Thus there exists
an R-isomorphism g : K* — K such that for all v € K and all G € K* we have
Re[B(apG,v)] = (G,v)k~ k. Let oy : H* — K* be the R-linear mapping defined via
(a1 F,v) g+ k = Re[(F,v)g= g]. Set B : H* — H via § = apa.
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By the definition of 3 for all F € H* and v € H we have Re[B(BF,v) —
(F,v)g= g] = 0. By antilinearity,
(A.4)
B(BF,v) = (F,v)y= g = Re[B(BF,v) — (F,v) g= u| +iRe[B(BF,iv) — (F,iv) y= g] = 0.

Finally 8 is a C-linear isomorphism as it is the inverse of the following C-linear
mapping: ag : H — H* with action. (v, w) ;= 5 = B(v,w). 0
To conclude this subsection, we review some representation formulas of (anti)-dual
spaces.
PROPOSITION A.6 ((anti)dual representation of Sobolev spaces). Let s € R and

K € {R,C}. Recall that the K*-valued L*-based Sobolev space on R® of order s is
defined as

(A5) H*(R%KF) = {f € (F®REK)))" + Z[f] € L (R% CH)

and |- = [ (04 IERIZE de < .

We have the representation formula (H®(R%KF))* = H=*(R™;KF), where one may
view the (anti)dual pairing as the sesquilinear (bilinear when K = C) L2-pairing of
Fourier transforms. In other words, for all G € (H*(R%;KF))* there exists a unique
g € H*(R%KF) such that for all f € H*(RY,KK) one has the equality

(4.6) G Py e = [ Flal- FU = o e
Conversely, if g € H *(R%:KF), then f — (g, ) p-s g defines a member of
(H*(RHKY))".

Proof. The assertions for the case K = C are a consequence of the discussion after
[9, Theorem 6.3]. Suppose that K = R and that G € (H*(R%;R¥))*. We may define
Go € (H*(R%;CF))* via

(A7) (Go, f)ey=,ue = (G Re[f)) moye e — WG Im[f]) oy mro» | € HY(R%CF).

Applying the result for the C-valued case gives us g € H~*(R%;C*) such that
(Go, f)(r-sy, ;1= = (9, [) -, = for all f € H*(R%CF). We next note that g €
((.#(R%;R))*)* by Proposition A.2, that is, if f € .(R%RF) ¢ H*(R%; CF), then

<g7f><7*,y = <ga f>Y*,y = <gaf>H_57HS

= (G, Re[fl) ey me — G, Im[f]) sy ms = (G, f)ms)-ms €R.
Finally, g is uniquely determined by the following argument. Suppose that gy €
H=*(R%RF) also satisfies (G, f)(msy,us = (9o, [) - = for all f € H*(R%LRF).

Define fo € H*(R*CF) via Z[fo](€) = (1 +[¢[)*Fg — 90](€), € € R™. Again,
Proposition A.2 assures us that, in fact, fo € H*(R? R¥). Therefore,

(A.8)

(A9) 0= (g=go folrwz- = [ (1416717l — sl d = llg = ol - O

Remark A.7. In this paper we choose to identify the functional G with the tem-
pered distribution g and the (anti)duality pairing (-, ~>(H5); s With () gr—s gs-
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A.3. Fourier multipliers. We begin this subsection recalling the characteriza-
tion of essentially bounded Fourier multipliers as L?-bounded translation invariant
linear mappings.

PRrOPOSITION A.8. Let K € {R,C}. The following are equivalent for a continuous
linear mapping T € L(L*(R%;K)).
(1) T commutes with all translation operators.
(2) There exists m € L®(R%C) such that Tf = FYmZ[f]] for all f €
L2(R%K).
In either case ||T| (2 < [[mlpee < 2(|T[(z2) and, if K = R, then m(£) = m(=£)
for a.e. £ € RY.

Proof. The case K = C is handled in [11, Theorem 2.5.10]. It remains to handle
the case K = R. The implication (2) = (1) is clear. On the other hand, given a
translation invariant 7 € £(L?(R%; R)) define Ty € L(L?(R%; C)) via Tof = TRe[f] +
iTIm[f] for f € L?(R%;C). Ty is also translation invariant. Hence by the C-valued
case there is m € L>°(R"™; C) such that the action of T} is given by the multiplication
of m in frequency space. Using Proposition A.2 and Remark A.4 we compute

(A.10) mZ[f] = F[Relf]] = iF [Mmlf]] = 1 FTRe[f]] +16 1.7 (T[]

== 5,1m6,19’[f] = 5,1m [f]

The above equality holds for all f € L?(R";C) and so we deduce that m = §_1m
almost everywhere. ]

We may also generalize the previous theorem to a characterization of continuous,
linear, and translation invariant mappings between the L2-based fractional Sobolev
spaces. First we recall the Bessel potential.

DEFINITION A.9 (Bessel potential). For s € R we define the Bessel potential
of order s as the operator J° € L((.Z(R%C))*) defined via J°F = F~ (1 + | -
|2)s2Z[F)] for F € (Z(R%C))*. Thanks to Proposition A.2, J°F is R-valued
whenever this is true of F. We also recall that for any t € R and K € {R;C},
J° € L(H™*(R%K); HY(RYK)) is an isometric isomorphism.

PRrROPOSITION A.10. Let K € {R,C}, s,t € R. The following are equivalent for a
continuous linear mapping T € L(H*(R%;K); H (R%; K)).

(1) T commutes with all translation operators.

(2) There exists a measurable function y : R? — C such that

(A.11) my[r] == esssup{(1 + [€]*)"/? |u(&)] : € € R} € [0, 0]

is finite for r =t — s and for all f € H*(R%:K) one has Tf = F HuZ[f]).
In either case || Tz (gge. oy < mpft—8] < 2T popro gyey and, f K =R, then d_1p =7,
Proof. Suppose that the first item holds. Using the Bessel potentials from the
previous definition, we obtain the bounded and translation invariant L2-operator
Ty := J'TJ~°. Applying Proposition A.8 grants us w € L>°(R?% K) such that
if K = R, then 6_1w = w and TpF = F Y wZ[F]] for F € L*R%K). Set
1 (€) = (1 + [€)57D/20(€). We check that p is the desired spectral representation
of T:

TF = J'TyJ°F = J ' Ty.Z (1 + |-|)¥/2.Z[F]]

A12 0
A = FL+ )l L+ ) EF) = £ (F)
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for F € H*(R%K). Using Proposition A.8 once more, we arrive at the bounds
(A.13) my [t — 8] = [[wll oo = N Tollger2y) = 1T N 2oy -

Thus the forward direction is shown. The reverse implication is proved in a similar
manner. ]

We now set notation for L2-bounded translation invariant mappings, emphasizing
that this space is parameterized by essentially bounded functions.

DEFINITION A.11 (tangential Fourier multipliers I). Let K € {R,C} and let
w € L>®(R%; CF*F) be a multiplier such that if K = R, then @ = 8_jw. We make the
following definitions.
(1) M, € L(L*(R%KY)) is defined via M, f = F L wZ[f]] for f € L>(R%KF).
(2) If a < b are real numbers we set U = R? x (a,b) and extend M, to be a
member of L*(U;K¥) via M, f(-,y) = FHwZ[f(-,y)]] for y € (a,b) and
f € LA(U;K¥).
We would like to further extend the definitions of M, to the spaces
H*(R? x (a,b); KF) for s € RT and (oH'(R? x (a,b); K¥))* and study their bounded-
ness properties. To do this we need the following preliminary estimates.

LEMMA A.12. Let s € RTU{0}, K, and w be as in Definition A.11, a < b be real,
and U =R x (a,b). Then the following hold.
(1) If f € H*(U;K¥), then M, f € H*(U;KF) and || M, f|lzs < collw|n=|flme
for a constant cg € RY depending only on a, b, d, s. Moreover if s > 1/2,
then for z € [a,b] we have

(A.14) Trras .y Mo f = My Trray 2 f.

(2) If f € H (U;K¥), then setting J°f(-,y) = F[(1+ [-)/2F[f ()] Jor
y € (a,b) defines an L*-function J°f € L*(U;KF¥), and there is a constant
c1 € RY, dependent only upon a, b, d, and s, for which ||J°f||rz < ci||f]lm--

Proof. The first item follows from interpolation, the fact that M, commutes with
distributional derivatives, and Proposition A.8. The second item follows from [15,
Corollary A.6]. 0

By the first item of the previous lemma, we may extend the definition of tangential
Fourier multipliers in the following way.

DEFINITION A.13 (tangential Fourier multipliers IT). Let K and w be as in Defini-
tion A.11, a < b be real, and U = R x (a,b). If F € (oH'(U;K*))* we define M,,F €
(oHY(U; K*))* to be the (anti)linear functional with action on ¢ € oH'(U;KF) given
by

(A15) <MwF, 90>(0H1)7,0H1 = <F, MU§0>(0H1)T,0H1'

Thanks to the first item of Lemma A.12, M,F is well-defined and || My, F|,gy= <
[wll oo [1Ell (g r11)y=-

Finally, we arrive at the principal result of this subsection.
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PROPOSITION A.14. Let s € RY U {0}, K € {R,C}, and w € L®(R% CF**) be
such that if K = R then w = 6_yw. Let m € N and {as},~, C RY be such that
ag=0<ay < - < am, and set Uy = R% x (ag_1,a;), £ € {1,...,m}, U = Ui, Ue,
and W = (U)°. Then there exists a constant c; € RT, independent of w, for which

the following estimates hold, where my,[-] is as in (A.11).
(1) If g € H**(U;KF¥), then M, g € L*(U;K*) and

(A.16) [Mougllze < comg[l + 5] Z g1+ )

(2) If f € H3U;K), (ke), € [T, HY?5(R? x {a,}; KF), and we define
€ (o(H'(W;K")* via (F S P (H) T oH! = fo o+ > 1fRd><{az}k ®,
then M, F € (oHY(W;K*))* with

(AIT) Mgy < eomaft+ 5] 5 1l + Bhelgorons]

Proof. For the first item we use the second assertion of Lemma A.12 to bound

2 s 2 2
(A18)  [|Mygll7> < my[l + ] /;HJH 9llt2(a,) < a1’ my[l + 5] /; 19l 2+ (0, -

We next prove the second item. Suppose that ¢ € (HY(W;KF). If £ € {1,...,m}
then by trace theory and the first assertion of Lemma A.12,

= (T ke, T Map(-, a0)) 172 gr1se

/d ke Mz
(A1) IMFOxladd

< kel e (1Mo@(s an)ll e
< llkellijats 1Maell g < come[L + sll[kell o+

SDHOH1

for ¢ € R*, a constant from trace theory, and the auxiliary multiplier w(§) =
(1+[¢]*)~GTD/24(€), ¢ € RY. By Lemma A.12 item one again, we finally estimate

(A.20)
mp‘ JofLJ
U
< Clgill\fllm(w)IIMlewllm S g1+ ][l g ElllfHHs(Ug)-
Combining (A.19) and (A.20) gives the second item. d

A.4. Korn’s inequality. We record a version of Korn’s inequality stating that
the L?-norm of the symmetrized gradient controls the H! norm on the closed subspace
of functions vanishing on the lower boundary.

PROPOSITION A.15. Leta,b € R witha < b. Then there exists a constant ¢ € R,
depending only on b — a and n, such that for all f € HY(R"™! x (a,b); R™) such that
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Trgn-1yxa}f = 0 we have the inequality

(A.21) 1fllL2 + IVl < clDfl -
Proof. We refer the reader to the proof of [4, Lemma 2.7]. 0
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