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Abstract

Let H be a connected bipartite graph with n vertices

and m edges. We give an nm( ) time algorithm to de-

cide whether H is an interval bigraph. The best known

algorithm has time complexity nm m n n( ( + )log )6

and it was developed by Muller in 1997. Our approach is

based on an ordering characterization of interval bi-

graphs introduced by Hell and Huang in 2003. We

transform the problem of finding the desired ordering to

choosing strong components of a pair‐digraph without

creating conflicts. We make use of the structure of the

pair‐digraph as well as decomposition of bigraph H

based on the special components of the pair‐digraph.
This way we make explicit what the difficult cases are

and gain efficiency by isolating such situations.
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1 | INTRODUCTION

The vertex set of a graph H is denoted by V H( ) and the edge set of H is denoted by E H( ). A
bigraph H is a bipartite graph with a fixed bipartition into black and white vertices. We
sometimes denote these sets as B and W , and view the vertex set of H as partitioned into
B W( , ). A bigraph H is called an interval bigraph if there exists a family I v B W,v ∈ ∪ , of
intervals (from the real line) such that, for all x B∈ and y W∈ , the vertices x and y are
adjacent in H if and only if Ix and Iy intersect. Then, this family of intervals is called an interval
representation of bigraph H .

Interval bigraphs were introduced in [9] and have been studied in [2,11,16]. They are closely
related to interval digraphs introduced by Sen et al. [6]. In particular, our algorithm can be used
to recognize interval digraphs (in time mn( ) ), as well.
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Interval bigraphs and interval digraphs have become of interest in such new areas as graph
homomorphisms, for example, [8].

A cocircular arc bigraph is a bipartite graph whose complement is a circular arc graph. The
class of interval bigraphs is a subclass of cocircular arc bigraphs. Indeed, the former class
consists exactly of those bigraphs whose complement is the intersection of a family of circular
arcs no two of which cover the circle [11]. There is a linear‐time recognition algorithm for
cocircular arc bigraphs [15]. On the other hand, the class of interval bigraphs is a super‐class of
proper interval bigraphs (also known as bipartite permutation graphs), for which there is also a
linear‐time recognition algorithm [11,17].

Interval bigraphs can be recognized in polynomial time using the algorithm developed by
Muller [16]. Muller's algorithm runs in time nm n m n( ( + )log )6 . This is in sharp contrast
with the recognition of interval graphs, for which several linear time algorithms are known, for
example, [1,3,4,10,14].

In [11,16], the authors attempted to give a forbidden structure characterization of in-
terval bigraphs, but fell short of the target. In this paper, some light is shed on these
attempts, as we clarify which situations are not covered by the existing forbidden structures.
We believe our algorithm can be used as a tool for producing the interval bigraph ob-
structions. For the time being, there are infinitely many obstructions, which still lack a
description that fit them into a finite collection of nicely defined families. However, the
main purpose of this paper is to devise an efficient algorithm for recognizing interval
bigraphs.

We use the ordering characterization of interval bigraphs in [11]. A bigraph H is an interval
bigraph if and only if its vertices admit a linear ordering < without any of the forbidden
patterns in Figure 1. Hence, we will rely on the existence of a linear ordering < such that if
v v v< <a b c (not necessarily consecutively) and v v,a b have the same color and opposite to the
color of vc then v v E H( )a c ∈ implies that v v E H( )b c ∈ .

There are several graph classes that can be characterized by the existence of an ordering
without a number of forbidden patterns. One such class is the class of interval graphs. A graph
G is an interval graph if and only if there exists an ordering < of V G( ) such that none of the
following patterns appears [5,7].

• v v v v v v v E G< < , , ( )a b c a c b c ∈ and v v E G( )a b ∉ .
• v v v v v E G< < , ( )a b c a c ∈ and v v v v E G, ( )b c a b ∉ .

Some of the other classes of graphs that have ordering characterizations without forbidden
patterns are proper interval graphs, comparability graphs, cocomparability graphs, chordal
graphs, convex bipartite graphs, cocircular arc bigraphs, and proper interval bigraphs [13]. It is
possible to view the ordering problem for some of these classes in some cases (e.g., interval
bigraphs and interval graphs) as an instance of the 2‐SAT problem together with transitivity
clauses as described below. For every pair u v( , ) of vertices of H , we define a Boolean variable

FIGURE 1 Forbidden patterns
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Xuv which takes values zero or one only such that X X¬uv vu≡ . We introduce appropriate
clauses with two literals expressing the forbidden patterns. Finally, we add all transitivity
clauses, which are clauses of the from X X X( )uv vw wu  , where u v, , and w are distinct. If
X = 1uv then we put u before v; otherwise v comes before u in the ordering. However, we would
like to consider a different approach proven to be more structural and successful in other
ordering problems.

2 | BASIC DEFINITIONS AND PROPERTIES

Note that a bigraph is an interval bigraph if and only if each connected component of it is an
interval bigraph. In the remainder of this paper, we shall assume that H is a connected bigraph
with a fixed bipartition B W( , ).

We define the pair‐digraph H+ of H , corresponding to the forbidden patterns in Figure 1, as
follows. The vertex set of H+ consists of all pairs u v( , ) such that u v V H, ( )∈ and u v≠ — for
clarity, we will often refer to vertices of H+ as pairs (in H+). Then, the arcs in H+ are of one of
the following two types:

• u v u v( , )( ′, ) is an arc of H+ when u and v have the same color with uu E H′ ( )∈ , and
vu E H′ ( )∉ .

• u v u v( , )( , ′) is an arc of H+ when u and v have different colors with vv E H′ ( )∈ , and
uv E H( )∉ .

Observe that if there is an arc from u v( , ) to u v( ′, ′), then both uv and u v′ ′ are nonedges of H .
For two pairs x y x y V H( , ), ( ′, ′) ( )+∈ we say x y( , ) dominates x y( ′, ′) (or x y( ′, ′) is dominated by
x y( , )) and write x y x y( , ) ( ′, ′)→ if there exists an arc (directed edge) from x y( , ) to x y( ′, ′) in H+.
One should note that if x y x y( , ) ( ′, ′)→ in H+ then y x y x( ′, ′) ( , )→ , to which property we will
refer to as skew‐symmetry.

Lemma 2.1. Let< be an ordering of H without the forbidden patterns in Figure 1, and let
u v u v( , ) ( ′, ′)→ with u v< . Then, u v′ < ′.

Proof. According to the definition of H+, we either have

Case (1) u v, have the same color, v v uu E H= ′, ′ ( )∈ , and vu E H′ ( )∉ ; or
Case (2) u v, have different colors, u u vv E H= ′, ′ ( )∈ , and uv E H( )∉

In Case (1) (resp. Case (2)), if v u′ < ′, then vertices v u v′, , (resp. u v u, , ′)— in that order
— would induce a forbidden pattern in H , a contradiction. Hence, in both cases we will
have u v′ < ′, as desired. □

We shall generally refer to a strong component of H+ simply as a component of H+. We shall
also identify a component by its vertex (pair) set. A component in H+ is called nontrivial if it
contains more than one pair. For any component S of H+, we define its couple component,
denoted S′, to be S u v v u S′ = {( , ) : ( , ) }∈ .

The skew‐symmetry property of H+ implies the following fact.
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Lemma 2.2. If S is a component of H+ then so is S′.

In light of Lemma 2.2, for each component S of H S,+ and S′ are couple components of each
other and we shall collectively refer to them as coupled components. It can be easily shown that
coupled components S and S′ are either disjoint or equal—in the latter case, we say component
S is self‐coupled.

Definition 2.3 (Circuit). A sequence x x x x x x x x( , ), ( , ), …, ( , ), ( , )n n n0 1 1 2 −1 0 of pairs in a set
D V H( )+⊆ is called a circuit in D.

Lemma 2.4. If a component of H+ contains a circuit then H is not an interval bigraph.

Proof. Let x x x x x x x x( , ), ( , ), …, ( , ), ( , )n n n0 1 1 2 −1 0 be a circuit in a component S of H+.
Since S is strongly connected, for all nonnegative integers i and j there exists a
directed walkWi j, in H+ from x x( , )i i+1 to x x( , )j j+1 , where indices are mod n + 1. Now,
for all i j, 0≥ , following the sequence of pairs on Wi j, and using Lemma 2.1, we
conclude that x x<j j+1 whenever x x<i i+1. Hence, we must either have x x<i i+1 for
all i, or x x>i i+1 for all i. However, since x x=n+1 0, either case implies x x0 0≠ ; a
contradiction. □

If H+ contains a self‐coupled component then H is not an interval bigraph. This is because a
self‐coupled component of H+ contains two such pairs as u v( , ) and v u( , ), which comprise
a circuit of length 2 (corresponding to n = 1 in the definition of a circuit). We remark that a
similar result to Lemma 2.4 exists for cocircular arc bigraphs [12]. A tournament is a complete
digraph with no directed cycle of length two and no self‐loop. A tournament is called transitive
if it is acyclic; that is, if it does not contain a directed cycle.

Lemma 2.5. Suppose that H+ contains no self‐coupled components, and let D be any
subset of V H( )+ containing exactly one component from each pair of coupled components.
Then, D is the set of arcs of a tournament onV H( ). Moreover, such a D can be chosen to be
a transitive tournament if and only if H is an interval bigraph.

Proof. Suppose D is a transitive tournament. Then we obtain the ordering <, by letting
x y< when x y D( , ) ∈ . It is clear that < is a total ordering because D is transitive, and
when x y D y x D( , ) , ( , )∈ ∉ . Observe that < does not contain any of the forbidden
pattern in Figure 1, and hence, H is interval bigraph. Conversely, if H is an interval
bigraph then there exits ordering<, without forbidden patterns in Figure 1. We add x y( , )

into set D whenever x y< in the ordering. It is easy to see that D is a transitive
tournament. □

In what follows, by a component we mean a nontrivial (strong) component unless we specify
otherwise. For simplicity, we shall use a set S of pairs in H+ to also denote the subdigraph of H+

induced by S, when no confusion arises.
We shall say two edges ab and cd of H are independent if the subgraph of H induced by the

vertices a b c, , , and d has just the two edges ab and cd. We shall say two disjoint induced
subgraph H1 and H2 of H are independent if there is no edge of H with one endpoint in H1 and
another endpoint in H2.
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Lemma 2.6. If uu′ and vv′ are independent edges in H then the pairs u v u v u v( , ), ( ′, ), ( ′, ′),
and u v( , ′) form a directed four‐cycle of H+ in the given order (resp. in the reversed order) when
u and v have the same color (resp. have opposite colors). In particular, u v u v u v( , ), ( ′, ), ( ′, ′),
and u v( , ′) belong to the same component of H+. Moreover, if S is a component of H+

containing a pair u v( , ) then, there exist two independent edges uu′ and vv′ of H and, as such,
the four pairs u v u v u v( , ), ( , ′), ( ′, ), and u v( ′, ′) are contained in S.

Proof. The first part follows from the definition of H+ and independent edges. As for the
seond part, note that since S is a component, u v( , ) dominates some pair of S and is
dominated by some pair of S. First, suppose u and v have the same color in H . Then u v( , )

dominates some u v S( ′, ) ∈ and is dominated by some u v S( , ′) ∈ . Now uu′ and vv′ must
be edges of H , and uv uv u v, ′, ′ , and u v′ ′ must be nonedges of H . Thus, uu′ and vv′ are
independent edges in H . In this case, according to the first part of the lemma, S contains
the directed cycle u v u v u v u v u v( , ) ( ′, ) ( ′, ′) ( , ′) ( , )→ → → → .

Second, suppose u and v have different colors. We note that u v( , ) dominates some
u v S( , ′) ∈ , and hence, uv E H( )∉ and vv′ is an edge of H . Since u v( , ′) dominates some
pair u v S uu E H( ′, ′) , ′ ( )∈ ∈ and u v E H′ ′ ( )∉ . Now uu′ and vv′ are edges of H , and
uv uv u v, ′, ′ , and u v′ ′ must be nonedges of H . Thus, uu′ and vv′ are independent edges in
H . In this case, according to the first part of the lemma, S contains the directed cycle
u v u v u v u v u v( , ) ( , ′) ( ′, ′) ( ′, ) ( , )→ → → → . □

2.1 | Structural properties of the (strong) components of H+

The structure of components of H+ is quite special, and the trivial components interact with
them in simple ways. A trivial component will be called a source if its unique vertex has in‐
degree zero, and a sink if its unique vertex has out‐degree zero. Herein, we further explore these
properties through establishing several lemmas. To this end, we need the following definition
on reachability of pairs in H+.

Definition 2.7 (Reachability closure). Let R be a subset of the pairs of H+. Let N R[ ]+

denote the set of all pairs in H+ that are reachable (via a directed path in H+) from a pair
in R. (Notice that N R[ ]+ contains R.) We call N R[ ]+ the reachability closure of R. We say a
pair u v( , ) is implied by R if u v N R R( , ) [ ]+∈ ⧹ . If R N R= [ ]+ , we say that R is closed under
reachability.

Lemma 2.8. A pair a c( , ) is implied by a component S of H+ if and only if H contains
an induced path a b c d e, , , , , such that N a N c( ) ( )⊆ and S contains all of the pairs
a d a e b d( , ), ( , ), ( , ), and b e( , ).

Proof. If such a path exists, then ab de, are independent edges and so the
pairs a d a e b d( , ), ( , ), ( , ), and b e( , ) lie in a component by the remarks preceding
Lemma 2.6. Moreover, a d a c( , ) ( , )→ is in H+; hence a c( , ) is indeed implied by this
component.

Conversely, suppose a c( , ) is implied by a component S. We first observe that the colors
of a and c must be the same. Otherwise, say a is black and c is white, and there exists a
white vertex u such that the pair u c( , ) is in S and dominates a c( , ). By Lemma 2.6, there
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would exist two independent edges uz and cy. Looking at the edges and nonedges between
u c, and a z y, , , we see that H+ contains the arcs u c a c a y u y( , ) ( , ) ( , ) ( , )→ → → . Since
both u c( , ) and u y( , ) are in S, the pair a c( , ) must also be in S, contrary to what we
assumed. Therefore, a and c must have the same color in H , say black. In this case there
exists a white vertex d V H( )∈ such that a d S( , ) ∈ and a d a c( , ) ( , )→ . Hence dc E H( )∈

and da E H( )∉ . If there was also a vertex t adjacent to a but not to c, then at and cd would
be independent edges of H , placing a c( , ) in S. Thus, every neighbor of a in H is also a
neighbor of c in H . Finally, since a d( , ) is in component S, Lemma 2.6 yields vertices b and
e such that ab and de are independent edges in H . It follows that a b c d e, , , , is an induced
path in H . □

We emphasize that ab and de from Lemma 2.8 are independent edges. The inclusion
N a N c( ) ( )⊆ implies the following corollary.

Corollary 2.9. If there is an arc from a component S of H+ to a pair x y S( , ) ∉ then x y( , )

forms a trivial component of S that is a sink component. If there is an arc to a component S
of H+ from a pair x y S( , ) ∉ then x y( , ) forms a trivial component of H+ that is a source. In
particular, if there is a directed path in H+ from component S1 to component S2, then
S S=1 2.

To give even more structure to the components of H+, we recall the following definition.
The condensation of a digraphG is a digraph obtained fromG by identifying the vertices in each
component and deleting loops and multiple edges.

Lemma 2.10. Every directed path in the condensation of H+ has at most three
vertices.

Proof. If a directed path P in the condensation of H+ goes through a vertex corresponding
to a component S in H+, then P has at most three vertices by Corollary 2.9. Now suppose P
contains only vertices in trivial components and let x y( , ) be a vertex on P which has both a
predecessor and a successor on P otherwise we are done. First suppose x and y have the
same color in H . Then the successor is some pair x y( ′, ) and the predecessor is some pair
x y( , ′), and hence, xx′ and yy′ are independent edges of H , and hence, by Lemma 2.6
x y x y( , ), ( ′, ), and x y( , ′) belong to the same component of H+, contradicting that P goes
through trivial components only. Thus, we continue by assuming that x and y have
opposite colors in H , the successor of x y( , ) in P is some x y( , ′), and the predecessor of x y( , )

in P is some x y( ′, ). Thus, xy E H( )∉ , and hence, x y E H′ ′ ( )∈ , otherwise, we would have
independent edges xx′ and yy′ and conclude as above. By the same reasoning, every vertex
adjacent to x is also adjacent to y′, and every vertex adjacent to y is also adjacent to x′.
Therefore, x y( ′, ) has in‐degree zero, and x y( , ′) has out‐degree zero, and P has only three
vertices. □

Lemma 2.11. Suppose that H+ has no self‐coupled components. Let u v, , and w be three
vertices of H such that Suv, Svw are components of H+ where S Suv wv≠ . Then, Suw is also a
component of H+. Moreover, suppose S S S,uv uw wu≠ , and S S S,vw uw wu≠ . Then, there exist
maximal subgraphs H H,1 2, and H3 of H such that:
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• H H,1 2, and H3 are pairwise independent (no edge between Hi and H i j, 1 < 3j ≤ ≤ ).
• Let X H H H H H H′( ′ = )1 2 3⊆ ⧹ ∪ ∪ be the vertices with at least one neighbor in H′.
Then every x X∈ is adjacent to all the vertices with the opposite color in X H′∪ .

Proof. We assume u v w, , have the same color. The argument for other cases is
similar. Since S S,uv vw are components of H+, by Lemma 2.6, there are independent
edges ua vb,1 1 of H and independent edges va wb,2 2 of H . Notice that by Lemma 2.6,
u v u b a b a v S( , ), ( , ), ( , ), ( , ) uv1 1 1 1 ∈ and v w a w a b v b S( , ), ( , ), ( , ), ( , ) vw2 2 2 2 ∈ . Now a w1 ∉

E H( ), otherwise, a v a b w a( , ) ( , ) ( , )1 1 2 2→ → , and hence, by Corollary 2.9, S S=uv wv.
Similarly, ub E H( )2 ∉ , otherwise, S S=vw vu, and by skew‐symmetry, S S=uv wv. Now
ua wb,1 2 are independent edges, and hence, Suw is a component. Note that
a u E H( )2 ∉ , otherwise, a b u b u w( , ) ( , ) ( , )2 2 2→ → , implying a directed path from
Svw to Suw, and hence, S S=vw uw. Similarly b w E H( )1 ∉ .

Let H H H, ,1 2 3 be maximal subgraphs of H such that ua E H vb va E H( ), , ( )1 1 1 2 2∈ ∈ ,
and wb E H( )2 3∈ and H H H, ,1 2 3 are pairwise independent. It is easy to see that for every
a H b H c H, ,1 2 3∈ ∈ ∈ we have a b S a c S( , ) , ( , )uv uw∈ ∈ , and b c S( , ) vw∈ . Let x H H′∈ ⧹

where H H H H′ = 1 2 3∪ ∪ . W.l.o.g suppose x is adjacent to b2. Since x H x,3∉ must be
adjacent to a vertex in H1 or H2. First suppose xa E H( )2 ∈ . Now a x1 must be an edge of
H , otherwise, u a u x a x a b( , ) ( , ) ( , ) ( , )2 1 1 2→ → → implying a directed path from Suv to
Suw, and consequently S S=uv uw; a contradiction to our assumption. Second, suppose
xa E H( )1 ∈ . Now a x E H( )2 ∈ , otherwise, a b x a a b( , ) ( , ) ( , )1 1 2 2 2→ → , and hence, there
is a directed path from Suv to Svw, and consequently, S S=uv vw, a contradiction. Suppose
xb xb yv yw E H, , , ( )1 2 ∈ . Then xy E H( )∈ , otherwise, v w b w b y x y( , ) ( , ) ( , ) ( , )1 1→ → →

x v b v w v( , ) ( , ) ( , )2→ → → , implying S S=vw wv, a contradiction. □

3 | RECOGNITION ALGORITHM

In this section, we present our algorithm for the recognition of interval bigraphs. First, to
describe the algorithm, we introduce some technical definitions.

Definition 3.1 (Envelope). Let R be a set of pairs of H+. The envelope of R, denoted
N R*[ ], is the smallest set of pairs that contains R and is closed under both reachability
and transitivity (if u v v w N R( , ), ( , ) *[ ]∈ then u w N R( , ) *[ ]∈ ).

Remark. For the purposes of the proofs, we visualize taking the envelope of R as divided
into consecutive levels, where in the zero‐th level we just replace R by its reachability
closure, and in each subsequent level we replace R by the rechability closure of its
transitive closure. The pairs in the envelope of R can be thought of as forming the arc of a
digraph on V H( ), and each pair can be thought of as having a label corresponding to its
level. The pairs (arcs of the digraph) in R, and those implied by R have label 0, arcs
obtained by transitivity from the arcs labeled 0, as well as all arcs implied by them have
label 1, and so on. More precisely, N R*[ ] is the disjoint union of R R R, , …, k0 1 , where
R N R= [ ]0 + (level zero), and each Ri (level i 1≥ ) consists of every pair u v( , ) such that
either u v( , ) is obtainable by transitivity in Ri−1 (meaning that there is some sequence
u u u u u u u v( , ), ( , ), …, ( , ), ( , )r r r1 1 2 −1 in Ri−1), or u v( , ) is dominated by a pair u v( ′, ′)

obtainable by transitivity in Ri−1. Note that R N R N R[ ] *[ ]+⊆ ⊆ .
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Definition 3.2 (Dictator component). Let R R R Sℛ = { , , …, , }k1 2 be the set of components
of H+ such that N A*[ ]A ℛ ∈ contains a circuit. We say S is a dictator if for every subsetW
of Sℛ { }⧹ , there exist a circuit in the envelope of A B(

′
) ( )A W B Wℛ ∪∈ ∈ ⧹ , where

W R R W′ = { ′ }i i ∈ . In other words, S is a dictator if by replacing some of the Ris with R ′i s

in ℛ and taking the envelope of the union of elements we still get a circuit.

Definition 3.3 (Complete set). A set D V H( )1
+⊆ is called complete if for every pair of

coupled components R R, ′ of H+, exactly one of R D1⊆ and R D′ 1⊆ holds.

A component S is a dictator if and only if the envelope of every complete set D1 containing S
has a circuit.

Definition 3.4 (Simple pair, complex pair). A pair x y H( , ) +∈ is simple if it belongs to
N S[ ]+ for some component S, otherwise, we call it complex.

Before describing the algorithm, we establish the following counterpart of Lemma 2.4.

Lemma 3.5. Let S S, ′ be coupled components in H+, so that both N S*[ ] and N S*[ ′]

contain a circuit. Then, H is not an interval bigraph.

Proof. According to Lemma 2.5 the final set D must be a total ordering with transitivity
property. Therefore, one of the S and S′ must be in D. To find a total ordering avoiding
the patterns in Figure 1, one of the N S N S*[ ], *[ ′]must be in D, which is impossible. □

3.1 | An overview of the algorithm:

The algorithm constructs H+ and then considers its coupled components (recall that we
mean strong components that are not trivial). In the preliminary stage, if there is a self‐
coupled component, then the algorithm reports H is not an interval bigraph. Otherwise, the
algorithm takes four main stages. During the algorithm, we maintain a subdigraph D of H+.
Initially, D is empty. At each subsequent step of the algorithm, a set of pairs from H+ are
added to D. The goal is to choose from each couple components (trivial and nontrivials) one
and place into D without creating a circuit. Thus, we need to add into D the pairs that are
reachable from the current pairs in D as well as the pairs that are obtained by applying
transitivity on the existing pairs in D. So each pair is placed in D either by reachability or
transitivity. When we say a pair x y( , ) is by transitivity, we mean x y( , ) is placed into D by
applying transitivity on the existing pairs in D. Likewise, we say a pair is by reachability
when x y( , ) is implied by the existing pairs in D. Finally, at successful termination, D will be
a transitive tournament as described in Lemma 2.5.

For the purpose of the algorithm once a pair x y( , ) is added into D we assign a time (level) to
x y( , ), that is the level in which x y( , ) is added into D. Each pair x y( , ) carries a dictator code, say
Dic x y( , ); that shows the dictator component involved in placing x y( , ) into D. The four main
stages of the algorithm are as follows.

In Stage 1, an empty set D is initialized. Then, from each pair S S, ′ of coupled compo-
nents we select one, say S. If D N S[ ]+∪ does not have a circuit then add N S[ ]+ (all the pairs
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in N S[ ]+ ) into D and discard N S[ ′]+ from further consideration in this stage. Otherwise, we
discard N S[ ]+ in this stage and add N S[ ′]+ into D instead. Again, if D has a circuit then H is
not an interval bigraph and the algorithm terminates. If we succeed in selecting exactly one
of the coupled components S S, ′ of H+ then we proceed to the next stage. Theorem 5.4
implies the correctness of this stage, and Corollary 5.2 provides the first set of obstructions if
we fails to finish this stage.

In Stage 2, N D*[ ] is computed level by level, and is placed into D. If by adding a pair
x y( , ) into D a circuit C appears for the first time, then the length of C is exactly 4 and we
can identify a dictator component S associated with C by using function DICTATOR x y, , (i.e.,
(Dic x y( , )) where x y( , ) is a complex pair in C. Furthermore, in that case, C has to be of the
form C x x x x x x x x= ( , ), ( , ), ( , ), ( , )0 1 1 2 2 3 3 0 , where x x,0 3 belong to the same color class while
x x,1 2 are contained in the opposite one; moreover, no pair x x i( , ), 0 3i i+1 ≤ ≤ has placed in D
by transitivity (the sum is taken module 4). It turns out that if we keep S in D, then
regardless of the selection of other components, we still will end up having a circuit in
computation of N D*[ ]. These facts and, hence, the correctness of Stage 2 will be established
in Lemmas 6.1, 6.2, and 6.3.

In Stage 3, we initialize D1 to be the empty set. Then, for every dictator component
S ∈  we add N S[ ′]+ into D1 and discard N S[ ]+ (since we will encounter a circuit).
Moreover, for every (nontrivial strong) component S D1 ∈ ⧹ we add N S[ ]+

1 into D1 and
discard N S[ ′]+

1 . We then set D N D= *[ ]1 . If there is a circuit in D, the algorithm reports H is

not an interval bigraph and exit, otherwise, it proceeds to the next stage. The correctness of
this stage is established in Lemma 7.1.

In Stage 4, one by one, we add into D the remaining (trivial strong components) compo-
nents of H+ that are outside D. At each step we add a sink component S V H D( )1

+⊆ ⧹ and
discard its coupled component S′ from further consideration. Lemma 7.2 establishes the cor-
rectness of this step.

FIGURE 2 Bigraph H is not interval bigraph
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In Section 8, we discuss the implementation of the algorithm and argue that the running
time of Algorithm 1 is mn( ) , wherem is the number of edges and n is the number of vertices
of the input bigraph H .

Theorem 3.6 (Correctness of Algorithm 1). Let H be a bigraph with n vertices and m

edges. If H is an interval bigraph then Algorithm 1 produces an ordering without forbidden
patterns in Figure 1, otherwise, it outputs NOT. Moreover, the running time of Algorithm 1
is mn( ) .
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Proof. Theorem 5.4 validates Stage 1. Lemmas 6.1, 6.2, 6.3 shows the correctness of
Stage 2. Lemma 7.1 proves Stage 3 is valid, and Lemma 7.2 validates Stages 4. Lemma 8.1
shows the algorithm runs in mn( ) . □

4 | EXAMPLE

We apply Algorithm 1 on the bigraph H depicted in Figure 2 whereby show that H does not
admit an ordering without the forbidden patterns in Figure 1 and, hence, is not an interval
bigraph. In fact, we encounter a circuit at Stage 2 as well as at Stage 3. Note that since
x y x y,0 0 1 1, and ww′ are independent edges of H , both Sx x0 1

and Sx w1 are components of H+.
Likewise, since u v u v z z, , ′1 1 2 2 are independent edges of H S, v u1 2

and Su z2 are component of
H+. Finally, since x y x y v u, ,2 2 3 3 0 0 are independent edges of H S, x x2 3

and Sx v3 0
are component

of H+ (recall that by a component we mean a nontrivial strong component). Note that
x x x v( , ), ( , )2 3 3 0 are in the same component since x y,2 3 are adjacent to w while v0 is not adjacent
to w; and y v,3 0 are adjacent to v1 while x v E H( )2 1 ∉ . Therefore, x x x y y y( , ) ( , ) ( , )2 3 2 3 2 3→ → →

y v x v x v w v w u y u y v x v( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )2 1 2 1 2 0 0 0 3 0 3 0 3 0→ → → → → → → , and hence,
S S=x x x v2 3 3 0

by Corollary 2.9.
Suppose at Stage 1 the algorithm selects components S S,x x x w0 1 1

, Sx x2 3
, alongside components

S S=v u u v1 2 1 2
; S S=

′u z v z2 2
, and adds their pairs into D. Then, x x x w x x u z( , ), ( , ), ( , ), ( , ),0 1 1 1 2 2

x v v u D( , ), ( , )3 0 1 2 ∈ . In addition, note that we have x w x x( , ) ( , )1 1 2→ ; u z u v( , ) ( , )2 2→ ; and
x v x v( , ) ( , )3 0 3 1→ in H+. Therefore, u v x v N D( , ), ( , ) [ ]2 3 1

+∈ . Since the pairs v u u v( , ), ( , )1 2 2 are in
N D[ ]+ , we have v v N D( , ) *[ ]1 ∈ . Then, since x v v v N D( , ), ( , ) *[ ]3 1 1 ∈ , we also have x v( , )3

N D*[ ]∈ . Moreover, x v x x N D( , ) ( , ) *[ ]3 3 0→ ∈ and, hence, we have the circuit C =

x x x x x x x x( , ), ( , ), ( , ), ( , )0 1 1 2 2 3 3 0 in N D*[ ].
Note that since y v v, ,3 0 are all adjacent to v v z, ,1 2 , selecting Sv u2 1

instead of Su v1 2
or selecting

Szu2 instead of Su z2 would yield a circuit in N D*[ ] as long as we select Sx x2 3
to be placed in D.

Moreover, selecting one of S S,x x x x0 1 1 0
alongside one of S S,x w wx1 1

at Stage 1 also yields a circuit in
N D*[ ] as long as we select Sx x2 3

at Stage 1. Note that by adding x v( , )3 into N D*[ ]we close circuit
C. Now, to obtain Dic x x( , )3 0 we need to find Dic x v( , )3 . According to the rules of the algorithm,
since x v( , )3 is by transitivity on x v v v( , ), ( , )3 1 1 , where x v,3 1 are white and v is black, we have
Dic x v Dic x v S S( , ) = ( , ) = =x v x x3 3 1 3 0 2 3

(dictator component). Therefore, to avoid a circuit at
Stage 2 of the algorithm we must select Sx x3 2

and place it into D1 at line 20 of the algorithm.

FIGURE 3 Exobicliques: Here, B d e f W a b c= {4, 5, 6, , , }, = {1, 2, 3, , , } and B d e f W= { , , }, = {1, 2, 3}1 1

and B B W W a b c= {4, 5, 6}, = { , , }1 1⧹ ⧹
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Suppose the algorithm selects S S S S, , ,v u u z x x x w1 2 2 0 1 1
at line 20. This will place the pairs

u v x x x v( , ), ( , ), ( , )2 0 3 0 0 , and v x( , )0 3 in N D*[ ]1 , because u z u v( , ) ( , )2 2 0→ ; x x x x( , ) ( , )3 2 3 0→ ;
x x x v( , ) ( , )0 1 0→ , and v x S( , ) x x0 3 3 2

∈ . Therefore, by applying transitivity, the algorithm places
x v( , )0 into N D*[ ]1 (Line 22). But then from x x x v N D( , ), ( , ) *[ ]3 0 0 1∈ it follows that x v( , )3 →

x v( , )3 1 . This leads to the circuit v u u v v x x v( , ), ( , ), ( , ), ( , )1 2 2 0 0 3 3 1 in D (Line 22). Notice that
selecting any two components from S S S S, , ,v u u v u z zu1 2 2 1 2 2

instead of S S,u v u z1 2 2
also yields a circuit.

Therefore, in any case, the algorithm reports that H is not an interval bigraph.

5 | CORRECTNESS OF STAGE 1: ADDING THE (STRONG)
COMPONENTS

We start this section, by defining the first set of obstructions so‐called exobiclique. We say
bigraph H B W= ( , ) is an exobiclique if the following hold:

• B contains a nonempty part B1 and W contains a nonempty part W1 such that B W1 1∪

induces a biclique in H ;
• B B1⧹ contains three vertices with incomparable neighborhood in W1 and W W1⧹ contains
three vertices with incomparable neighborhoods in B1 (an examples given in Figure 3).

Theorem 5.1. If H has an induced exobiclique then H is not an interval bigraph [11].

Theorem 5.2. Suppose at Stage 1 we have so far constructed a D without circuits,
and then for the next component S we find that D N S[ ]+∪ has circuits. Let C =

x x x x x x( , ), ( , ), …, ( , )n0 1 1 2 0 be a shortest circuit in D N S[ ]+∪ . Then one of the following must
occur:

(i) each pair x x( , )i i+1 is in a component.
(ii) H contains an exobiclique as an induced subgraph.

Proof. Suppose (i) does not occur. Thus, at least one pair x x( , )i i+1 is implied by a
component Si. By Lemma 2.8 there exists vertices a b,i i, and ci of H such that x ai i and b ci i

are independent edges and a x c x E H, ( )i i i i+1 +1 ∈ . Note that xi and xi+1 have the same
color and N x N x( ) ( )i i+1⊆ (see Figure 4). □

FIGURE 4 edges a x x c,i i i i−1 −1 −1, edges x a b c,i i i i, edges x a b x,i i i i+1 +1 +1 +2, edges x a x b,i i i i+2 +2 +3 +2 (left
figure) are independent
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Claim 5.3. xi+1 and xi+2 have different colors, and x x( , )i i+1 +2 is in a component,
say Si+1.

Proof. If xi+1 and xi+2 have different colors then x x( , )i i+1 +2 is in a component and we are
done. Thus, we assume xi+2 have the same color as xi and xi+1. Now c x E H( )i i+2 ∉ ,
otherwise, x c x x( , ) ( , )i i i i+2→ and, hence, x x( , )i i+2 is an implied pair by component Si,
leading to a shorter circuit. Moreover, a x E H( )i i+2 ∉ , otherwise, a c x c( , ) ( , )i i i i+2→ →

x x( , )i i+2 +1 ; a contradiction to C having minimum length. Since x x N S( , ) [ ]i i+1 +2
+∈

for some component S D∈ , there exists some ci+1 such that x c E H( )i i+2 +1 ∈ and
x c E H x c S( )(( , ) )i i i i+1 +1 +1 +1∉ ∈ . Notice that c x E H( )i i+1 ∉ , otherwise, x c( , )i i+1 +1 →

x x( , )i i+1 ; a contradiction to C having minimum length. Now x x a x( , ) ( , )i i i i+1 +2 +2→ →

a c x c x x( , ) ( , ) ( , )i i i i i i+1 +1 +2→ → , leading to a shorter circuit.

1. By Claim 5.3, there exists ai+1 and bi+1 such that x ai i+1 +1 and x bi i+2 +1 are independent
edges of H . Claim 5.3

2. also implies that x x( , )i i−1 is in a component Si−1, and vertices xi−1 and xi have
different colors.

3. c a E H( )i i−1 ∉ , otherwise, x c S( , )i i i∈ dominates x a( , )i i1 and, hence, S S= ′i i−1; a
contradiction. Similarly, x b E H( )i i−1 ∉ .

4. There are independent edges x ai i−1 −1 and x ci i−1 of H , with x c S( , )i i i−1 −1 −1∈ .
5. By Lemma 2.8, N x N x( ) ( )i i+1⊆ . Thus, x c x a E H, ( )i i i i+1 −1 +1 ∈ .
6. x x E H( )i i−1 +1 ∈ , otherwise, x ai i−1 −1 and c xi i−1 +1 would be independent edges and,

hence, x x S( , )i i i−1 +1 −1∈ , implying a shorter circuit.
7. x b E H( )i i−1 +1 ∈ , otherwise, x xi i+1 −1 and b xi i+1 +2 would be independent edges and,

hence, x x S( , )i i i−1 +2 +1∈ , implying a shorter circuit. A similar argument implies
N x N x( ) ( )i i+2 −1⊆ .

8. d a E H( )i i+2 ∈ for every a N x( )i i+2 +2∈ and every d N x( )i i∈ , otherwise, x x( , )i i+1 +2 →

x a d a d x x x( , ) ( , ) ( , ) ( , )i i i i i i i i+1 +2 +2 +2 +2→ → → , implying a shorter circuit in D.
□

In what follows we show that H contains an exobiclique. First suppose x x( , )i i+2 +3 is in
component Si+2 (Figure 4, left). Thus, x ai i+2 +2 and b xi i+2 +3 are independent edges of H . By (6),
x a E H( )i i−1 +2 ∈ . By (7), a c a a E H, ( )i i i i+2 −1 +2 ∈ . Suppose xi+2 and xi+3 have different colors.
Then, x x E H( )i i+3 −1 ∉ , otherwise, x x x x( , ) ( , )i i i i+2 +3 +2 −1→ , a shorter circuit in D. But then,
x x x x( , ) ( , )i i i i+2 +3 +2 −1→ ; a shorter circuit in D. Therefore, xi−1 and xi+3 have to have the same
color. Now, b x E H( )i i+2 −1 ∈ , otherwise, a b x b x x( , ) ( , ) ( , )i i i i i i+2 +2 −1 +2 −1 +3→ → ; a shorter
circuit. Moreover, b c E H( )i i+2 −1 ∈ , otherwise, x c b c b a( , ) ( , ) ( , )i i i i i i−1 −1 +2 −1 +2 +2→ → and,
hence, S D′i+2 ∈ ; a contradiction. By a similar argument, we conclude that ci is adjacent to
b a,i i+2 +2 and bi+1. Similar to (3), x xi i+1 +3 and a bi i+1 +2 are nonedges of H .

Nowwe get an exobiclique, that is, a x x c a b c x a b a x b x{ , , , , , , , , , , , , , }i i i i i i i i i i i i i i−1 −1 −1 +1 +1 +1 +2 +2 +2 +3 .
Note that vertices a x,i i−1 and bi have incomparable neighborhoods in N x c a c= { , , , }i i i i−1 −1 , vertices
a x,i i+1 +2, and xi+3 have incomparable neighborhoods in M x b a b= { , , , }i i i i+1 +1 +2 +2 ; and M N∪

induces a biclique.
When x x( , )i i+2 +3 is implied, by a similar argument again we get an exobiclique (see

Figure 4, right).
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Theorem 5.4. If at Stage 1 of the algorithm we encounter a component S such that we
cannot add either of N S[ ]+ and N S[ ′]+ to the current D, then H has an exobiclique.

Proof. We cannot add N S[ ]+ and N S[ ′]+ because the additions create circuits in
D N S[ ]+∪ , respectively, D N S[ ′]+∪ .

If either circuit leads to (ii) (in Theorem 5.2) we are done by Theorem 5.1. If both lead
to (i) (in Theorem 5.2), we proceed as follows. Assume C x x x x= ( , ), …, ( , )n1 0 1 0 is a
shortest circuit created by adding N S[ ]+ to the current D, and C y y= ( , )2 0 1 , y y…, ( , )m 0 is a
shortest circuit created by adding N S[ ′]+ to the current D. We may assume that N S[ ]+

contributes x x( , )n 0 to C1 and N S[ ′]+ contributes y y( , )m 0 to C2. By Theorem 5.2 each
x x( , )i i+1 is in a component Si and each y y( , )j j+1 is in a component. Since C1 is a shortest
circuit, S S′i i+1≠ , and hence, Sx xi i+2

is also a component. Thus, by Theorem 5.2 there exist
maximal subgraphs H H,i i+1, and Hi+2 containing x x,i i+1, and xi+2, respectively, that are
pairwise independent. By extending this idea we conclude, there exist pairwise
independent maximal subgraphs H H H, , …, n0 1 , of H such that each Hi ( i n0 ≤ ≤ )
contains xi. By Theorem 5.2 (ii) it follows that for every x X H H= ′∈ ⧹ , where
H H H H′ = n0 1∪ ∪ ⋯ ∪ , and every a H′∈ with the same color as x N a N x, ( ) ( )⊆ .
Now it is easy to see that there is no directed path from x x S( , )i i i+1 ∈ to
x x S i j( , ) ,j j j+1 ∈ ≠ because such a path must have a pair x x( , )j for x X∈ , but now
x x( , )j is an implied pair and by Corollary 2.9, Sx xj is a sink component since
N x N x( ) ( )j ⊆ . Similarly, there is no path from y y( , )m 0 to any of y y( , )j j+1 . We also

observe that S S=x x y yn m0 0
. Thus, we may assume that y y x x( , ) = ( , )m n0 0 . Therefore,

x x x x x y y y y y y x( , ), ( , ), …, ( , ), ( , ), …, ( , ), ( , )n m m m0 1 1 2 −1 0 0 1 −2 −1 −1 0 is a circuit in D, contrary
to our assumption. □

6 | CORRECTNESS OF STAGE 2 (FINDING DICTATOR
COMPONENTS)

We consider what happens when a circuit is formed during the execution of Stage 2 (Lines
15–18) of the algorithm. In what follows, we specify the length and some other properties of a
circuit in D, considering level by level construction of N D*[ ]. This section is divided into three
sections. In Section 6.1 we define a minimal circuit and prove that such a circuit should have
length four. In Section 6.2, we further analyze the pairs in D and identify its associated dictator
component. We will show that for a pair x y( , ) in D S Dic x y, = ( , ) is the sole component
responsible for placing pair x y( , ) into D, regardless of the choice made at Stage 1 between any
component not in S S{ , ′} and its dual. Finally, in Section 6.3 we prove the following three
lemmas which collectively show the correctness of Stage 2 of the algorithm.

Lemma 6.1. Let C x x x x x x x x= ( , ), ( , ), ( , ), ( , )0 1 1 2 2 3 3 0 be a minimal circuit, form at
Stage 2 of the algorithm. Let S Dic x x S Dic x x S Dic x x= ( , ), = ( , ), = ( , )0 0 1 1 1 2 2 2 3 , and S =3
Dic x x( , )3 0 . Then the following hold:

1. If x x( , )1 2 is a complex pair and x x( , )2 3 is also a complex pair then S S=1 2.
2. If x x( , )1 2 is a complex pair and x x( , )0 1 is in a component S0 then x x S( , )0 1 1∈ , and

hence, S S=0 1.
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3. If x x( , )2 3 is a complex pair and x x( , )3 0 is a simple pair implied by component S3 then
S S=3 2.

4. If x x( , )2 3 and x x( , )3 0 are complex pairs then S S=2 3.
5. If x x( , )1 2 and x x( , )3 0 are complex pairs and x x( , )0 1 and x x( , )2 3 are simple pairs then

S S=1 3 and x x x x S( , ), ( , )2 3 0 1 1∈ .

Lemma 6.2. If we encounter a minimal circuit C x x x x x x x x= ( , ), ( , ), ( , ), ( , )0 1 1 2 2 3 3 0 at
Line 18 then there is a component S such that the envelope of every complete set D1, where
S D1⊆ contains a circuit.

Lemma 6.3. The algorithm correctly computes Dic x y( , ).

6.1 | The length of a minimal circuit

We start this section by defining minimal chain and minimal circuit.

Definition 6.4. Let x y D( , ) ∈ by transitivity at (the earliest) level l. Then, by aminimal
chain between x y, we mean a sequence x x x x x x( , ), ( , ), …, ( , )n n0 1 1 2 −1 of minimum length
(n) of pairs in D with x x=0 and x y=n , such that each x x D i n( , ) , 0 − 1i i+1 ∈ ≤ ≤ , and
at some level before l, and by reachability (and not by transitivity). We also say x x( , )n0 is
by transitivity on the minimal chain x x x x x x( , ), ( , ), …, ( , )n n0 1 1 2 −1 .

Definition 6.5. Let C be a circuit in N D*[ ]. We say C is a minimal circuit if first, the
latest pair in C is created as early as possible (the smallest possible level) during the
execution of N D*[ ]; second, C has the minimum length; third, no pair in C is by
transitivity.

Lemma 6.6. Let x y( , ) be a pair in D after Stage 1 of the algorithm, and current D has no
circuit. Suppose x y( , ) is obtained by a minimal chain CH x x x x x x= ( , ), ( , ), …, ( , ),n n0 1 1 2 −1

x x( , )n n+1 (x x=0 and x y=n+1 ). Then the following hold:

1. xi and xi+2 have always different colors.
2. If x and y have the same color then n 3≤ and x y,n have different colors.
3. If x and y have different colors then n 2≤ .

• If n = 2 then x y,n have the same color.
• If n = 1 and xy is not an edge of H then x and x1 have the same color.
• If n = 1 and xy is an edge of H then x1 and y have the same color.

Proof of 1. First suppose all three vertices x x,i i+1, and xi+2 have the same color, say
black. Since x x( , )i i+1 is not obtained by transitivity, there exists a white vertex a of H
such that the pair x a D( , )i ∈ dominates x x( , )i i+1 in H+, that is, a is adjacent in H to xi+1
but not to xi. For a similar reason, there exists a white vertex b of H adjacent to xi+1 but
not to xi, that is, the pair x b D( , )i+1 ∈ dominates x x( , )i i+1 +2 in H+.

We now argue that a is not adjacent to xi+2. Otherwise, x a D( , )i ∈ also dominates
the pair x x( , )i i+2 , and hence, x x( , )i i+2 is also in D (at the same level as x x( , )i i+1 ),
contradicting the minimality of CH .
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Next we observe that x a( , )i is not by transitivity. Otherwise, x x( , )i i+1 and x x( , )i i+1 +2 can
be replaced by a chain obtained from the pairs that implies x a( , )i together with the pair
a x( , )i+2 . The pair a x( , )i+2 lies in the same component of H+ as x x D( , )i i+2 ∈ since the
edges x ai+1 and x bi+2 are independent. Since all pairs of a component are chosen or not
chosen for D at the same time, this contradicts the minimality of CH . Thus, x a( , )i is
dominated in H+ by some pair c a D( , ) ∈ . Since a and xi have different colors, this means c is
a white vertex adjacent to xi. Note that c is not adjacent to xi+2, otherwise, c a D( , ) ∈ would
dominate x a( , )i+2 , placing x a( , )i+2 in D; and we get the circuit a x x a D( , ), ( , )i i+2 +2 ∈

which is a contradiction.
Now, we claim that bx E H( )i ∉ . This is the case, otherwise, the pair x b D( , )i+1 ∈

would dominates the pair x x( , )i i+1 , while x x D( , )i i+1 ∈ , a circuit in D. Finally,
cx E H( )i+1 ∉ , otherwise, cxi+1 and bxi+2 would be independent edges in H , and cxi
and bxi+2 would also be independent edges in H ; thus, the pairs x x( , )i i+2 and x x( , )i i+1 +2

are in the same component, contradicting again the minimality of CH . Now x x( , )i i+1 ,
x x( , )i i+1 +2 , and x x( , )i i+2 are in components. Since there is no circuit in D, according to
the rules of the algorithm we have x x D( , )i i+2 ∈ , contradicting the minimality of CH .

We now consider the case where xi and xi+2 are black and xi+1 is white. As before,
there must exist a white vertex a and a black vertex b such that the pair a x( , )i+1

dominates x x( , )i i+1 and the pair b x( , )i+2 dominates x x( , )i i+1 +2 ; thus, axi is an edge of H
and so is bxi+1. Note that the pair a x( , )i+1 dominates the pair x x( , )i i+1 , which dominates
the pair x b( , )i . Therefore, we can replace xi+1 by b and obtain a chain which is also
minimal. Now, b x( , )i+2 is by transitivity which contradict the minimality of CH . □

Claim 6.7. n 4≤ .

Proof of the claim. Set x x=0 and x y=n+1 . Let i be the minimum number such that xi
and xi+1 have color, say, black; and xi+2 and xi+3 are white. Let x′ be a vertex such that
x x D( , ′)i ∈ dominates x x( , )i i+1 . Note that if xi+4 exists then it is black. If xi+4 exists
and n 5≥ then xi+4 is white, and x x′ i+4 is not an edge, otherwise, x x x x( , ′) ( , )i i i+4→ and
we get a shorter chain. Now let y′ be a vertex such that x y D( , ′)i+4 ∈ dominates
x x( , )i i+4 +5 . Now y x E H′ ( )i+1 ∉ , otherwise, x y x x( , ′) ( , )i i i+4 +4 +1→ and we get a circuit
x x x x x x x x( , ), ( , ), ( , ), ( , )i i i i i i i i+1 +2 +2 +3 +3 +4 +4 +1 in D. Now x x′ i+1 and y x′ i+4 are
independent edges, and hence, x x( , )i i+1 +4 is in a component. Note that each
component or its coupled is in D. x x( , )i i+4 +1 is not in D, otherwise, we get a circuit in
D, and hence, x x D( , )i i+1 +4 ∈ , and we get a shorter chain. Thus, we may assume that
xi+4 does not exist, and hence, x y=i+4 . Now by minimality assumption for i x x, =i−1 0,
and hence, n 4≤ . □

Proof of 2. Suppose x and y have the same color. We show that n 3≤ . Toward a
contradiction, suppose n = 4. Now according to (1) x x x, ,1 4, and y have the same
color which is opposite to the color of x2 and x3. Let y′ be a vertex such that x y( , ′)4

dominates x y( , )4 , and let x′ be a vertex such that x x D( , ′)0 ∈ dominates x x( , )0 1 . Note
that y x E H′ ( )∉ , otherwise, x y x x( , ′) ( , )4 4 0→ , implying a circuit in D. Similarly, x y1 is
not an edge of H . Finally, x y′ is not an edge of H , otherwise, x x x y( , ′) ( , )→ ,
contradiction to the minimality of CH . Now, x x′1 and y y′ are independent edges and,
hence, x y( , )1 is in a component; thereby, x y D( , )1 ∈ , contradicting the minimality of
CH . Therefore, n 3≤ .
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We continue by assuming n = 3. We first show that x3 and y have different colors. On the
contrary, suppose x3 and y have the same color. According to (1), x1 and x2 have the same
color opposite to the color of x y, , and x3. Let x x D( , ′)1 ∈ be a pair that dominates x x( , )1 2 , and
y″ be a vertex such that x y( , ″)3 dominates x y( , )3 . y x E H″ ( )∉ , otherwise, x y x x( , ″) ( , )3 3→

and we would get a circuit. Let x″ be a vertex such that x x D( ″, )1 ∈ dominates x x( , )1 . Now,
x x E H′ ″ ( )∉ , otherwise, x x( , ′)1 would dominate x x( ″, )1 and we would get a circuit in D. We
continue by having x x E H( )2 ∈ , otherwise, x x′2 and xx″ would be independent edges and,
hence, x x( , )2 would be in a component that has already been placed in D, contradicting the
minimality of CH . Then, the chain x x x y( , ), ( , ″)2 3 3 would imply the pair x y( , ″)2 , and that
x y x y x y( , ″) ( , ″) ( , )2 → → . The latter is a contradiction to the minimality of CH . □

Proof of 3. Suppose x and y have different colors. We show that n 3≤ . For
contradiction suppose n = 4. Now, according to (1), x x, 3, and x4 have the same color
and opposite to the color of x x,1 2, and y. We observe that xy E H( )∉ , otherwise, x y( , )4

would dominate x x( , )4 and, hence, we would get a circuit in D. Let x′ be a vertex such
that x x D( , ′)1 ∈ dominates x x( , )1 2 and x″ be a vertex such that x x D( ″, )1 ∈ dominates
x x( , )1 . Now, x x′ ″ is not an edge, otherwise, x x( , ′)1 would dominate x x( ″, )1 and we would
get a circuit in D. Moreover, x x E H( )2 ∈ , otherwise, x x′2 and xx″ would be independent
edges and, hence, x x( , )2 would be in a component that has already been placed in D;
contradicting the minimality of CH . Now, the chain x x x x x y( , ), ( , ), ( , )2 3 3 4 4 implies x y( , )2

and that x y( , )2 dominates x y( , ). This is a contradiction to the minimality of CH . In fact,
we would obtain x y( , ) in fewer steps of transitivity. Therefore, n 3≤ . Now it is not
difficult to see that either n = 1 or, otherwise, n = 2 and vertices x and x1 have the same
color opposite to the color of x2 and y.

Suppose n = 1. First assume xy is an edge. Now, x1 and y have the same color, otherwise,
x y x x( , ) ( , )1 1→ ; a contradiction. Thus, we continue by assuming xy is not an edge. We show
that x1 and x have the same color. Toward a contradiction, suppose x1 and y have the same
color. Let x x D( ′, ) ∈ be a pair that dominates x x( , )1 and let x y D( , ′)1 ∈ be a pair that
dominates x y( , )1 . Now, x y′ ′ is not an edge and, hence, yy′ and xx′ are independent edges.
This shows that x y( , ) is in a component, contradicting the minimality of CH . □

Corollary 6.8. Let x y( , ) be a pair in D after Stage 1 of the algorithm, and assume the
current D has no circuit.

• Suppose x and y have the same color and x w x y( , ) ( , )→ such that x w( , ) is by tran-
sitivity with a minimal chain x w w w w w( , ), ( , ), …, ( , )m1 1 2 . Then m = 2 and vertices x
and w1 have the same color and opposite to the color of w2 and w.

• Suppose x and y have different colors and w y x y( , ) ( , )→ such that w y( , ) is in a trivial
component. Then w y( , ) is by transitivity with a minimal chain w w w w w y( , ), ( , ), ( , )1 1 2 2 ,
where w1 and w2 have the same color opposite to the color of w and y.

Proof. If x and y have the same color then by Lemma 6.6 we have m = 2 or m = 1. If
m = 2 then x and x1 have the same color and opposite to the color of x2 and w. If m = 1

then, by Lemma 6.6 (3), w1 and y have the same color. Note that w w( , )1 dominates w y( , )1

and w y( , )1 is in N D*[ ] at the same time w w( , )1 is placed in D. Therefore, we can use the
chain x w w y( , ), ( , )1 1 to obtain x y( , ); a contradiction. If x and y have different colors then by
Lemma 6.6 either m = 2 or m = 3. If m = 3 then w w, 1, and y have the same color and
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opposite to the color of w2 ans w3. Let w′ be a vertex such that w w D( , ′) ∈ dominates
w w( , )1 . We observe that w x E H, ( )1 ∉ , otherwise, w y x y( , ) ( , )1 → and, hence, we obtain
x y( , ) in an earlier level or in fewer steps of transitivity application because w w w w( , ), ( , )1 2 2 3 ,
and w y( , )3 are in N D*[ ]. Now, wx , and w w′1 are independent edges and, hence, x w( , )1 is
already in D. In this situation, we can use the chain CH = x w w w w w w y( , ), ( , ), ( , ), ( , )1 1 2 2 3 3

to obtain x y( , ) in some earlier step since w1 and w2 have different colors; a contradiction by
Lemma 6.6 (1). Therefore, n = 2 and Lemma 6.6 is applied. □

Now by Lemma 6.6 and Corollary 6.8 we have the following.

Corollary 6.9. Let C x x x x x x x x= ( , ), ( , ), …, ( , ), ( , )n n n0 1 1 2 −1 0 be a minimal circuit,
formed at Stage 2 of the algorithm. Then n = 3. Moreover, x0 and x3 have the same
color and opposite to the color of x1 and x2.

Lemma 6.10. Suppose the current D is circuit‐free. Let x x D( , )1 3 ∈ be by transitivity on a
minimal chain x x x x( , ), ( , )1 2 2 3 in D where x1 and x2 have the same color and different from
the color of x3, and x x( , )1 3 is not dominated by any other pair y x( , )3 . Then there are u1 and
w1 with the same color as x3 such that:

(1) If x x( , )1 2 is complex then there exists x w D( , )1 1 ∈ such that x w x x( , ) ( , )1 1 1 2→ , and
x w( , )1 1 is place in D by transitivity.

(2) If x x( , )2 3 is complex then there exists u x D( , )1 3 ∈ such that u x x x( , ) ( , )1 3 2 3→ , and
u x( , )1 3 is placed in D by transitivity.

Proof. Suppose x w( , )1 1 is not by transitivity and there is w w D( ′, )1 ∈ such that
w w x w( ′, ) ( , )1 1 1→ . Notice that x x E H( )1 3 ∉ , otherwise, x x x x D( , ) ( , )2 3 2 1→ ∈ , and,
hence, we get a circuit in D.

Now, by Corollary 6.8, there are vertices w ′1 and w ′2 so that w w( ′, )1 is by transitivity on the
minimal chain w w w w w wℳ = ( ′, ′), ( ′, ′), ( ′, )1 1 2 2 1 . Let w v D( ′, )1 ∈ where w v( ′, )1 → w w( ′, ′)1 2 .

Note that vx E H( )2 ∉ , otherwise, w v w x D( ′, ) ( ′, )1 1 2→ ∈ and, hence, we would get the chain
w w w x x x( ′, ′), ( ′, ), ( , )1 1 2 2 3 in D. In this situation, w x x x( ′, ) ( , )3 1 3→ ; contradicting that x x( , )1 3

is by transitivity. Hence, vx E H( )2 ∉ . Next, note thatw v′2 and x w2 1 are independent edges, and
w w( ′, )2 1 and w x( ′, )2 2 are in the same component. Therefore, we have the chain
w w w v v x x x( ′, ′), ( ′, ), ( , ), ( , )1 1 2 2 3 in D and, hence, w x D( ′, )3 ∈ . Now w x x x( ′, ) ( , )3 1 3→ ,

contradicting that x x( , )1 3 is by transitivity. Number (2) follows from Corollary 6.8. □

Lemma 6.11. Let x x D( , )0 3 ∈ where D is circuit‐free. Suppose x x x x x x( , ), ( , ), ( , )0 1 1 2 2 3 is a
minimal chain in D between x x,0 3 where x0 and x3 have the same color and opposite to the
color of x1 and x2. Then x x E H( )0 2 ∈ .

Proof. For contrary, suppose x x E H( )0 2 ∉ . Let p x( , )1 be a pair in D that dominates
x x( , )0 1 ( x x( , )0 1 is not by transitivity). Let w be a vertex of H such that x w x x( , ) ( , )1 1 2→ .
Now wp E H( )∉ , otherwise, x w( , )1 would dominate x p( , )1 , implying an earlier circuit in
D. Now, px0 and wx2 are independent edges and, hence, x x( , )0 2 would be in a component;
consequently, x x( , )0 2 would have been already placed in D (if x x( , )2 0 was in D then we
would have an earlier circuit), implying a shorter chain. Therefore, x x E H( )0 2 ∈ . □

18 | RAFIEY



In what follows, we often use a similar argument to the one for Lemma 6.11 and, hence, we
do not repeat the details of it again.

6.2 | Relationship between dictator components of the pairs in D

In this section, we trace back the creation of a complex pair, say, x x( , )1 2 . For pairs x y( , ) and
x y( ′, ′) in H+, we say x y( ′, ′) is reachable from x y( , ) and write x y x y( , ) ( ′, ′)⇝ when there is a
directed path in H+ from x y( , ) to x y( ′, ′). For a component S and pair x y( , ) we write S x y( , )⇝

if x y( , ) is reachable from a pair in S. Notice that if x y x y( , ) ( ′, ′)⇝ , then y x y x( ′, ′) ( , )⇝ , due
to the skew‐symmetry property.

Remark. In all of the following lemmas in this section, we assume that the current D is
circuit‐free.

In the next two lemmas we consider the process of obtaining a complex pair. In other
words, we unravel the consecutive the rechability and transitivity operations in placing a pair in
D.

Lemma 6.12 (Decomposition of same‐color pairs). Let x x D( , )1 3 ∈ be by transitivity on a
minimal chain x x x x( , ), ( , )1 2 2 3 in D, where x1 and x2 have the same color and opposite to
color of x3. Suppose x x( , )1 2 is a complex pair. Then, there exists the smallestm, and vertices
y z w v y z w v a b w V H, , , , …, , , , , , , ( )m m m m m1 1 1 1 −1 −1 −1 −1 ∈ such that for i m1 − 1≤ ≤ the
following hold:

(1) x w x w D( , ), ( , )i1 1 1 +1 ∈ , where x w x x( , ) ( , )1 1 1 2→ and x w x y( , ) ( , )i i1 +1 1→

(2) x w( , )i1 is obtained by transitivity on x y y z z w D( , ), ( , ), ( , )i i i i i1 ∈ , where w z,i i have the
same color as x1;

(3) z v D( , )i i ∈ , and z v z w( , ) ( , )i i i i→ , where x v z, ,i i1 have the same color.
(4) w y E H i( ), 2i i+1 −1 ∉ ≥ ;
(2) y w E H( )i i ∈ ;
(6) v w E H( )i i+1 ∉ ;
(7) w v E H( )i i+1 ∈ ;
(8) ay ax E H, ( )m−1 2 ∈ ; and
(9) x a1 and w bm are independent edges of H .

Moreover, x w x v( , ) ( , )m1 2 1⇝ , and x w x v Dic x x( , ), ( , ) ( , )m1 2 1 1 2∈ .

Proof. Since x x x x( , ), ( , )1 2 2 3 is a minimal chain, by Lemma 6.10 there exists x w D( , )1 1 ∈

so that x w x x( , ) ( , )1 1 1 2→ and x w( , )1 1 is by transitivity. Now, by Corollary 6.8, there are y1
and z1 such that x y y z z w D( , ), ( , ), ( , )1 1 1 1 1 1 ∈ , and x1 and y1 have the same color and
opposite to the color of z1 and w1. Notice that x w E H( )1 1 ∉ . Let v1 be a vertex such that
z v D( , )1 1 ∈ and z v z w( , ) ( , )1 1 1 1→ . Observe that x v,1 1, and v2 have the same color. By
applying the above argument for pair x y( , )1 1 (when x y( , )1 1 is a complex pair) we conclude
that there exists a smallest m and vertices
w y z v w y z v w a b w V H, , , , , …, , , , , , , ( )m m m m m1 1 1 1 1 −1 −1 −1 −1 ∈ , satisfying (1,2,3). □
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Proof of (4). Otherwise, x w( , )i1 +1 — which is in D—dominates x y( , )i1 −1 and, hence,
we obtain the chain x y y z z w( , ), ( , ), ( , )i i i i i1 −1 −1 −1 −1 −1 in D. Consequently, x w( , )i1 −1 →

x y( , )i1 −2 . The latter implies x w( , )1 1 was obtained at some earlier step; a contradiction. □

Proof of (5). Otherwise, by (3,4), y wi i+1 and y wi i−1 are independent edges and, hence,
y w( , )i i is in a component. Since y z z w D( , ), ( , )i i i i ∈ , we conclude that y w( , )i i is in D and,
hence, so are x y( , )i1 and y w( , )i i . Therefore, by transitivity, x w D( , )i1 ∈ ; a contradiction to
Corollary 6.8. □

Proof of (6). Otherwise, z v D( , )i i+1 +1 ∈ dominates z w( , )i i+1 and, hence, we get the
chain x y z w( , ), ( , )i i i1 +1 +1 in D, which implies x x( , )1 2 has been placed in D in fewer thanm
steps; a contradiction. □

Proof of (7). Otherwise, by (6) w vi i+1 +1 and w vi i are independent edges and, hence,
w w y v( , ), ( , )i i i i+1 , and w v( , )i i+1 are in the same component. Since y z z v D( , ), ( , )i i i i ∈ , we
conclude that y v D( , )i i ∈ , and consequently, since y v w v( , ) ( , )i i i i+1→ , we have
v w D( , )i i+1 ∈ . Now the chain x w w w( , ), ( , )i i i i+1 +1 in D places x x( , )1 2 in D in fewer than
m steps; a contradiction. □

Proof of (8). Suppose ay E H( )m−1 ∉ . Then ax1 and w ym m−1 −2 are independent, thereby,
x w( , )m1 −1 is in a component and x x( , )1 2 is placed in D in fewer steps than m; a
contradiction. Notice that by the same logic we have ax E H( )2 ∈ . □

Proof of (9). Finally, since x w( , )m is in a component, we have independent edges x a1
and w bm .

Notice that x w( , )1 1 is by transitivity on x y y w( , ), ( , )1 1 1 1 and, hence, by definition of a
dictator, Dic x x Dic x w Dic x y( , ) = ( , ) = ( , )1 2 1 1 1 1 (see Line 6 of DICTATOR function).
Observe that x w( , )m1 and a w( , )m are in component S1 and, by definition, S Dic x x= ( , )1 1 2 .
First suppose m > 2. By (8,9) we have a w y w y v( , ) ( , ) ( , )m m m m m−2 −2 −1→ → . Moreover,
x w a w( , ) ( , )m m1 → . Thus, x w y v( , ) ( , )m m m1 −2 −1⇝ . By (6), y v w v( , ) ( , )i i i i+1 +1→ and, by (2),
w v w w( , ) ( , )i i i i+1 +1→ . Therefore, y v w w( , ) ( , )i i i i+1 +1⇝ . Moreover, by (6,5) w w( , )i i+1 →

y w y v( , ) ( , )i i i i−1 +1 −1→ . Thus, w w y v( , ) ( , )i i i i+1 −1⇝ . Now, we have x w( , )m ⇝

y w w w y v w w( , ) ( , ) ( , ) ( , )m m m m m m−2 −1 −2 −1 −3 −2 1 2⇝ ⇝ ⇝⋯⇝ . Notice that w x2 2 ∉

E H( ) and v w E H( )1 2 ∈ . These imply that w w x v( , ) ( , )1 2 2 1⇝ and, consequently,
x w x v( , ) ( , )m 2 1⇝ .
When m = 2, we have a w x w x v( , ) ( , ) ( , )2 2 2 2 1→ → ; hence, again we get

x w x v( , ) ( , )1 2 2 1⇝ . □

Analogous to Lemma 6.12 we have the following lemma.

Lemma 6.13 (Decomposition of different‐color pairs). Let x x D( , )1 3 ∈ be by transitivity
on a minimal chain x x x x( , ), ( , )1 2 2 3 in D, where x1 and x2 have the same color, and opposite
to the color of x3. Suppose x x( , )2 3 is a complex pair. Then there is a minimum number t , and
p q u s p q s u c d q V H, , , , …, , , , , , , ( )t t t t t1 1 1 1 −1 −1 −1 −1 ∈ such that for i t1 − 1≤ ≤ the
following hold:

(1) u x u x D( , ), ( , )i1 3 +1 3 ∈ , where u x x x( , ) ( , )1 3 2 3→ and u x q x( , ) ( , )i i+1 3 3→
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(2) u x( , )i 3 is by transitivity on pairs u p p q q x D( , ), ( , ), ( , )i i i i i 3 ∈ , where ui and qi have the
same color as x3

(3) p s D( , )i i ∈ and p s p q( , ) ( , )i i i i→ where x3 and si have the same color
(4) u q E H i( ), 2i i+1 −1 ∉ ≤

(5) ) u q E H( )i i ∈

(6) s q E H( )i i+1 ∉

(7) q s E H( )i i+1 ∈

(8) ds du E H, ( )t−1 1 ∈

(9) x d3 and q ct are independent edges of H .

Moreover, q x q x( , ) ( , )t1 2 3⇝ and q x q x Dic x x( , ), ( , ) ( , )t1 2 3 2 3∈ .

In the next five lemmas we investigate the relationships between the dictators of two
consecutive pairs x y y z( , ), ( , ) in D.

Lemma 6.14. Let x x D( , )1 3 ∈ be by transitivity on a minimal chain x x x x( , ), ( , )1 2 2 3 in D,
where x1 and x2 have the same color and different from x3 color. Suppose x x x x( , ), ( , )1 2 2 3

both are complex pairs. Then, Dic x x Dic x x( , ) = ( , )1 2 2 3 .

Proof. Let y z w v, , ,1 1 1 1, and wm be the vertices in the decomposition of x x( , )1 2 according to
Lemma 6.12. It follows from the lemma that x w x v( , ) ( , )m1 2 1⇝ . Let u q,1 1, and qt be the
vertices in the decomposition of x x( , )2 3 according to Lemma 6.13. Then, we have
x q q x( , ) ( , )t2 1 3⇝ .
Notice that v u E H( )1 1 ∉ , otherwise, we would have z v z u( , ) ( , )1 1 1 1→ and, hence,

there would exist a chain x y y z z u u x( , ), ( , ), ( , ), ( , )1 1 1 1 1 1 1 3 ; contradicting the minimality of
the chain x x x x( , ), ( , )1 2 2 3 . Now, x v u v u w( , ) ( , ) ( , )2 1 1 1 1 1→ → and, hence, x v( , )2 1 ⇝ u w( , )1 1 .
On the other hand, w q E H( )1 1 ∉ , otherwise, x w x q( , ) ( , )1 1 1 1→ and we would obtain the
chain x q q x( , ), ( , )1 1 1 3 ; a contradiction to minimality of the chain x x x x( , ), ( , )1 2 2 3 . Thus,
u w q w q x( , ) ( , ) ( , )1 1 1 1 1 2→ → and, hence, u w q x( , ) ( , )1 1 1 2⇝ . From above, we conclude that
x v x q( , ) ( , )2 1 2 1⇝ . By Lemma 6.13 and the skew‐symmetry property we have q x( , )1 2

q x( , )t 3⇝ . Therefore, x w x v q x q x( , ) ( , ) ( , ) ( , )m t1 2 1 1 2 3⇝ ⇝ ⇝ , and by Corollary 2.9
Dic x x Dic x x( , ) = ( , )1 2 2 3 . □

Lemma 6.15. Let x x D( , )0 2 ∈ be by transitivity on a minimal chain x x x x( , ), ( , )0 1 1 2 in D,
where x1 and x2 have the same color and different from x0. Suppose x x( , )0 1 is a simple pair
and x x( , )1 2 is a complex pair. Then, Dic x x Dic x x( , ) = ( , )0 1 1 2 .

Proof. Since x x( , )0 1 is simple and x0 and x1 have different colors, by Lemma 2.6, there
exist independent edges x e0 and x f1 of H . Let y z w v, , ,1 1 1 1, and wm be the vertices in the
decomposition of x x( , )1 2 according to Lemma 6.12. Note that, according to Lemma 6.12,
x w E H( )1 1 ∉ . Then, w e E H( )1 ∉ , otherwise, we would get x x e x w x( , ) ( , ) ( , )0 1 1 1 1→ → ;
contradicting x w D( , )1 1 ∈ . Furthermore, x x E H( )0 2 ∈ , otherwise, x e0 and w x1 2 would be
independent edges; thereby, x x( , )0 2 would be in a component. The latter contradicts the
assumption that x x( , )0 2 is by transitivity. Likewise, observe that fx E H( )2 ∈ , otherwise,
x f1 and x w1 1 would be independent edges; a contradiction with the assumption that
x x( , )1 2 is a complex pair. Finally, x v E H( )0 1 ∉ , otherwise, z v z x( , ) ( , )1 1 1 0→ , resulting in a
circuit x x x y y z z x( , ), ( , ), ( , ), ( , )0 1 1 1 1 1 1 0 in D; a contradiction with the assumption that the
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current D is circuit‐free. Now, we have x v x v x f x x( , ) ( , ) ( , ) ( , )2 1 0 1 0 0 2→ → → and, hence,
x v x x( , ) ( , )2 1 0 1⇝ . Therefore, by Lemma 6.12, x w x v( , ) ( , )m1 2 1⇝ . Thus, x w( , )m1 ⇝ x x( , )0 1 ,
implying that Dist x x Dist x x( , ) = ( , )1 2 0 1 . □

Analogous to Lemma 6.15 we have the following lemma.

Lemma 6.16. Let x x D( , )2 4 ∈ be by transitivity on a minimal chain x x x x( , ), ( , )2 3 3 4 in D
where x2 and x4 have the same color and opposite to the color of x3. Suppose x x( , )2 3 is
complex and x x( , )3 4 is implied by a component. Then, Dic x x Dic x x( , ) = ( , )2 3 3 4 .

Lemma 6.17. Let x x x x( , ), ( , )1 2 2 3 be a minimal chain in D between x1 and x3. Let x x( , )1 2 be a
complex pair in D where x1 and x2 have the same color. Let x w D( , )1 1 ∈ , where x w( , )1 1 →

x x( , )1 2 .Moreover, suppose x w( , )1 1 is by transitivity on the minimal chain x y( , ),1 1 y z z w( , ), ( , )1 1 1 1

where z w( , )1 1 is a complex pair. Then, Dic x y Dic y z( , ) = ( , ) =1 1 1 1 Dic z w( , )1 1 .

Proof. By Corollary 6.8, x1 and y1 have the same color and opposite to the color of z1 and w1.
Let z v D( , )1 1 ∈ such that z v z w( , ) ( , )1 1 1 1→ . Let u x D( , )1 3 ∈ so that u x x x( , ) ( , )1 3 2 3→ . Notice
that v u E H( )1 1 ∉ , otherwise, we would have z v z u( , ) ( , )1 1 1 1→ , resulting in the chain
x y y z z u u x( , ), ( , ), ( , ), ( , )1 1 1 1 1 1 1 3 in D; contradicting the minimality of the chain x x x x( , ), ( , )1 2 2 3 .
By Lemma 6.12 we have S x v( , )1 2 1⇝ , where S Dic x w= ( , )1 1 1 . According to the

definition of dictator components, we have Dis x w Dis x y( , ) = ( , )1 1 1 1 . Now, since z w( , )1 1 is
a complex pair, by Lemma 6.12 for pair z w( , )1 1 , we conclude that there exists p q,1 1, and
s1 such that z p,1 1, and s1 have the same color and opposite to the color q1 and v1; the pairs
z p p q q v q s( , ), ( , ), ( , ), ( , )1 1 1 1 1 1 1 1 are in D; and q s q v( , ) ( , )1 1 1 1⇝ . By Lemma 6.12 for w z( , )1 1 ,
we have S w s( , )2 1 1⇝ . Notice that s x E H( )1 2 ∉ , otherwise, we would have q s( , )1 1 →

q x( , )1 2 resulting in the chain x y y z z p p q q x x x( , ), ( , ), ( , ), ( , ), ( , ), ( , )1 1 1 1 1 1 1 1 1 2 2 3 with pairs in
D; contradicting the minimality of the chain x x x x( , ), ( , )1 2 2 3 . Therefore, w s( , )1 1 →

x s x v( , ) ( , )2 1 2 1→ , implying that S x v( , )2 2 1⇝ . Since u x1 2 and v s1 1 are independent edges,
x v( , )2 1 is in a component. We then have S x v( , )1 2 1⇝ and S x v( , )2 2 1⇝ . Since x v( , )2 1 is in
a component, by Corollary 2.9, we conclude that S S S= = x v1 2 2 1

.
Now, it follows from lemmas 6.15 and 6.14 that Dis y z S( , ) =1 1 2 and, hence,

Dis x y Dis y z Dis z w( , ) = ( , ) = ( , )1 1 1 1 1 1 . □

Analogous to Lemma 6.17 we have the following lemma.

Lemma 6.18. Let x x x x( , ), ( , )1 2 2 3 be a minimal chain in D between x1 and x3. Let x x( , )2 3 be a
complex pair in D, where x1 and x2 have different colors. Let u x D( , )1 2 ∈ , where u x( , )1 3 →

x x( , )2 3 . Moreover, suppose u x( , )1 3 is by transitivity on the minimal chain u p p q( , ), ( , ),1 1 1 1

q x( , )1 3 , where q x( , )1 3 is a complex pair. Then Dic u p Dic q x( , ) = ( , ) =1 1 1 3 Dic p q( , )1 1 .

The following lemma shows the role of a dictator component in placing a pair in D,
alongside its independence from selection of other components.

Lemma 6.19. Let x x D( , )1 3 ∈ be by transitivity on a minimal chain x x x x D( , ), ( , )1 2 2 3 ∈ ,
where x1 and x2 have the same color and opposite to the color of x3. Suppose x x( , )1 2 is a
complex pair, and let S S S, , …, k1 2 be the distinct components involving in the creation of
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x x( , )1 2 . Suppose Dic x x S( , ) =1 2 1. Let D1 be a set of pairs which contains S1 and exactly one
of S S, ′i i for every i k2 ≤ ≤ . Then, x x N D( , ) *[ ]1 2 1∈ .

Proof. We use induction on the number of steps in the decomposition of x x( , )1 2

according to Lemmas 6.12 and 6.13. Since x1 and x2 have different colors, it follows by
Lemma 6.12 that there exists x w D( , )1 1 ∈ such that x w x x( , ) ( , )1 1 1 2→ and x w( , )1 1 is by
transitivity on the minimal chain CH x y y z z w= ( , ), ( , ), ( , )1 1 1 1 1 1 . By definition of a
dictator, Dic x y Dic x x( , ) = ( , )1 1 1 2 . Let z v D( , )1 1 ∈ such that z v z w( , ) ( , )1 1 1 1→ . Observe
that v w E H( )1 2 ∈ , otherwise, we would have y z z v D( , ), ( , )1 1 1 1 ∈ , implying that
y v w v w w( , ) ( , ) ( , )1 1 2 1 2 1→ → and, hence, we get the earlier chain x w w w( , ), ( , )1 2 2 1 in
D— the latter contradicts the minimality of CH .

We will consider two possible cases. First, consider the case where y z( , )1 1 and z w( , )1 1 are
simple. According to Lemma 2.6 there exist independent edges y y′1 1 and z z′1 1 and
independent edges z e1 and v f1 so that w e w z E H, ′ ( )1 1 1 ∈ . According to the argument for
Lemma 6.11, y w1 1 is an edge of H . Note that [ ]y z y e N S( , ′), ( , ) y z1 1 1

+
1 1

∈ . Also, note that

w z E H′ ( )2 1 ∈ , otherwise, we would have y z w z w w( , ′) ( ′, ′) ( , )1 1 1 1 2 1→ → and, consequently,

w w( , )2 1 would be simple. But then we would get an earlier chain x w w w( , ), ( , )1 2 2 1 with pairs
in D; a contradiction to the minimality of CH . Likewise, we conclude that w e E H( )2 ∈ .
Notice that by definition, Dic x w S( , ) =1 2 1, and observe that x w( , )1 2 dominates every pair in
x y x v x z x e{( , ), ( , ), ( , ), ( , )}1 1 1 1 1 1 1 . By induction hypothesis, if S1 is in D then Dic x w S( , ) =1 2 1.

If we place into D components Sy z1 1
and Sz v1 1

at Stage 1, then y z z w D( , ), ( , )1 1 1 1 ∈ . Thus,CH
will have its pairs in D and, consequently, we get x w x x D( , ), ( , )1 1 1 2 ∈ . If we place into D
components Sv z1 1

and Sz y,1 1
then v z z w D( , ), ( , )1 1 1 1 ∈ (since z y z w( , ) ( , )1 1 1 1→ ) and, hence,

x v v z z w D( , ), ( , ), ( , )1 1 1 1 1 1 ∈ . Consequently, in this case we get x w x x D( , ), ( , )1 1 1 2 ∈ . So, we
may assume that Sy z1 1

and Sv z1 1
are selected to be placed in D at Stage 1 of the algorithm.

Now, y v E H′ ( )1 1 ∉ , otherwise, y z v z( ′, ) ( , )1 1 1 1→ and, hence, S Dz v1 1
∈ ; a contradiction.

Similarly, we get y f E H( )1 ∉ . Therefore, y y′1 1 and v f1 are independent edges and, hence,
S S,y v v y1 1 1 1

are components. Now, without loss of generality we may assume the algorithm
selects Sv y1 1

at Stage 1. Then, v y D( , ′)1 1 ∈ and y v y w D( ′, ) ( ′, )1 1 1 1→ ∈ . Moreover,
x w x v( , ) ( , )1 2 1 1→ . Therefore, x v v y y w( , ), ( , ′), ( ′, )1 1 1 1 1 1 D∈ and, hence, x w D( , )1 1 ∈ .

Finally, consider the case where z w( , )1 1 is complex. By Lemma 6.17, we conclude that
Dis x y Dis y z Dis z w( , ) = ( , ) = ( , )1 1 1 1 1 1 and, hence, by induction hypothesis, if Dis x y( , )1 1 is
selected at Stage 1 of the algorithm then each of the pair x y y z( , ), ( , )1 1 1 1 and z w( , )1 1 is
placed in D; hence, x x( , )1 2 is placed in D. □

6.3 | Proofs of lemmas 6.1, 6.2, and 6.3

Proof of Lemma 6.1. (1) follows from Lemma 6.14 on the minimal chain
x x x x( , ), ( , )1 2 2 3 . (4) follows from Lemma 6.14 on the minimal chain x x x x( , ), ( , )2 3 3 0 .
(2) follows from Lemma 6.15. (3) follows from Lemma 6.16. Finally, (5) follows from
the arguments in Lemma 6.17 (considering the x x x x x x( , ), ( , ), ( , )1 2 2 3 3 0 instead of the
chain x y y z z w( , ), ( , ), ( , )1 1 1 1 1 1 ), and Lemma 6.18. □

Proof of Lemma 6.2. This follows from lemmas 6.1 and 6.19. □
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Proof of Lemma 6.3. The purpose of computing Dic x y( , ) is to identify a component that
is responsible for creating a circuit in D. Therefore, we may assume that a minimal
circuit C in D is created once x y( , ) is added into D. By Corollary 6.9, C is on four pairs.
Suppose C x x x x x x x x= ( , ), ( , ), ( , ), ( , )0 1 1 2 2 3 3 0 and assume, without loss of generality, that
x0 and x3 are white vertices, and x1 and x2 are black vertices. Recall that the following
determine the dictator of a pair x y( , ).

(a) If x y N S( , ) [ ]+∈ for some component S then Dic x y S( , ) = .
(b) If x and y have different colors and u y x y( , ) ( , )→ then Dic x y Dic u y( , ) = ( , ).
(c) If x and y have the same color and x w x y( , ) ( , )→ then Dic x y Dic x w( , ) = ( , ).
(d) If x and y have the same color and x y( , ) is by transitivity on x w w y( , ), ( , ) then

Dic x y Dic w y( , ) = ( , ).
(e) If x and y have different colors and x y( , ) is by transitivity on x w w y( , ), ( , ) then

Dic x y Dic x w( , ) = ( , ).

In what follows, we assume x y( , ) is one of the pairs on C.
Let u x( , )1 3 be a pair in (the current) D and u x x x( , ) ( , )1 3 2 3→ . According to definition,

Dic u x Dic x x( , ) = ( , )1 3 2 3 . By Corollary 6.8, u x( , )1 3 is by transitivity on a minimal chain
u p p q q x( , ), ( , ), ( , )1 1 1 1 1 3 in D.
When we compute N D u x*[ ], ( , )1 3 appears in D at some earlier level,i.e., when pairs of

the forms u f( , )1 and f x( , )3 appear in N D*[ ] at some earlier level. According to the
minimality of the chain between u1 and x3 we must have either f q= 1 or f p= 1. First
suppose f q= 1. Then, according to (d), we have Dic x x Dic q x( , ) = ( , )2 3 1 3 . By induction
hypothesis, we also have Dic q x S( , ) =1 3 2, where S2 is the component obtained after
decomposing the pair x x( , )2 3 in accordance with Lemma 6.13. Therefore, Dic x x( , ) =2 3

Dic u x Dic q x( , ) = ( , )1 3 1 3 . Now, consider the case where f p= 1. Then, according to (d), we
have Dic u x Dic p x( , ) = ( , )1 3 1 3 . Thus, using (e), we obtain Dic p x Dic q x( , ) = ( , )1 3 1 3 because
the chain p q q x( , ), ( , )1 1 1 3 implies p x( , )1 3 where p1 and x3 have different colors. A similar
argument can be applied to the pair x x( , )1 2 , where x1 and x2 have the same color. □

7 | CORRECTNESS OF STAGES 3 AND 4 (LINES 19–25)

If we encounter a circuit C in D in Stage 2 then, according to Lemma 6.2, there is a component
S that is a dictator for C. By Lemma 6.2, it is clear that we should not add S to D, otherwise, we
would not get the desired ordering. Therefore, we must take the coupled component of every
dictator component of a circuit appearing at Stage 2. With this consideration, we continue to
show the correctness of Stages 3.

Lemma 7.1 (Correctness of Stage 3). If the algorithm encounters a circuit at Stage 3 (Line
20) then H is not an interval bigraph.

Proof. According to line 22 of the algorithm, D1 contains components S S S, , …, j1 2

chosen at Stage 1, alongside components S S′ , …, ′j t+1 where S S, …,j t+1 are dictator
components. Suppose we encounter a minimal circuit C x x x x= ( , ), ( , ), …,0 1 1 2

x x x x( , ), ( , )n n n−1 0 in line 22. If all the pairs in C are simple then, according to
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Theorem 5.4, we find an exobiclique and, hence, H is not an interval bigraph. Therefore,
we may assume at least one pair, say, x x( , )i i+1 is a complex pair. Let S Dic x x= ( , )i i+1 .
Notice that S is not among S S S, , …, j1 2 , otherwise, we would have detected S as a dictator
component at Stage 2, according to Lemma 6.2. Thus, S belongs to S S S{ ′ , ′ , …, ′}i i t+1 +2 . But

the latter means H is not an interval bigraph because we can not select either of S S, ′ at
Stage 1; a contradiction in light of Lemma 3.5. □

Lemma 7.2 (Correctness of Stage 4). The algorithm does not create a circuit by choosing
a sink component S H D+∈ ⧹ (satisfying N S S[ ] =+ ) and adding it to D after taking its
transitive closure.

Proof. Suppose adding— according to the algorithm— a sink trivial component x y{( , )}

into D creates a circuit. By definition, there is no arc from x y( , ) to any pair in H D+⧹ —
i.e., x y( , ) is a terminal pair. According to the algorithm, neither of x y y x( , ), ( , ) is
presently in D. Moreover, x y( , ) is not by transitivity on any of the pairs presently in D

(otherwise x y( , ) would have been placed in D, since D is closed under transitivity).
Now, since x y( , ) is a terminal pair at the current step of the algorithm, x y( , ) can only

dominate pairs in D. Therefore, the only way that adding x y( , ) into D creates a circuit is
when x y( , ) dominates a pair u v( , ) while there is a chain v y y y y u D( , ), ( , ), …, ( , )k1 1 2 ∈ ; in
which case we have v u D( , ) ∈ . However, since D is closed under reachability and
transitivity, by the skew‐symmetry u v y x D( , ) ( , )→ ∈ ; a contradiction. □

8 | IMPLEMENTATION AND COMPLEXITY

In this section, we prove the following lemma.

Lemma 8.1. Let H be a bigraph with n vertices and m edges. Then, Algorithm 1 runs in
mn( ) time and produces an interval vertex ordering when H is an interval bigraph;

otherwise, reports H is not an interval bigraph.

Proof. In this proof, we denote the degree of a vertex z of H by dz. To construct digraph
H+, we need to list all the neighbors of each pair in H+. If vertices x and y in H have
different colors then the pair x y( , ) of H+ has dy out‐neighbors; and if x and y have the
same color then the pair x y( , ) has dx out‐neighbors in H+. For simplicity— without
affecting the generality of the argument— we assume that W B n= =    . For a fixed
black vertex x , the number of all pairs which are neighbors of all pairs x z z V H( , ), ( )∈ ,
is nd d d d+ + + +x y y yn1 2

⋯ , where y y y, , …, n1 2 are all of the white vertices. We can use
a linked list structure to represent H+, therefore, overall, it takes time mn( ) to construct
H+. Notice that to check whether a component S is self‐coupled, it is enough to pick any
pair a b( , ) in S and check if b a( , ) is in S, as well. The latter task can be done in time
mn( ) , using Tarjan's strongly‐connected component algorithm. Since we maintain a

partial order on D, once we add a new pair into D we can decide whether that pair closes
a circuit or not. Computing N D*[ ] also takes time n n m mn( ( + )) = ( )  since there are
mn( ) edges in H+ and n( )2 vertices in H+. Note that the envelope of D is computed at

most twice (at Lines 15 and 22).
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Once a pair x y( , ) is added into D, we put an arc from x to y in the partial order and
give the arc xy a time label (also called level). Once a circuit is formed at Stage 2, we can
find a dictator component S by using DICTATOR function, and store S into set  .
Therefore, we spend at most nm( ) time to find all the dictator components. Stage 4, in
which we add the remaining pairs, takes time at most n( )2 . Therefore, the overall
running time of the algorithm is nm( ) . □
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