
1620 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 6, JUNE 2022

A Tensor Processing Framework for

CPU-Manycore Heterogeneous Systems
Lin Cheng , Peitian Pan, Student Member, IEEE, Zhongyuan Zhao, Krithik Ranjan , Jack Weber ,

Bandhav Veluri, Seyed Borna Ehsani, Max Ruttenberg, Dai Cheol Jung ,

Preslav Ivanov, Graduate Student Member, IEEE, Dustin Richmond , Michael B. Taylor , Senior Member, IEEE,

Zhiru Zhang , Senior Member, IEEE, and Christopher Batten , Member, IEEE

Abstract—Future CPU-manycore heterogeneous systems can
provide high peak throughput by integrating thousands of sim-
ple, independent, energy-efficient cores in a single die. However,
there are two key challenges to translating this high peak
throughput into improved end-to-end workload performance:
1) manycore co-processors rely on simple hardware putting
significant demands on the software programmer and 2) many-
core co-processors use in-order cores that struggle to tolerate
long memory latencies. To address the manycore programma-
bility challenge, this article presents a dense and sparse tensor
processing framework based on PyTorch that enables domain
experts to easily accelerate off-the-shelf workloads on CPU-
manycore heterogeneous systems. To address the manycore
memory latency challenge, we use our extended PyTorch frame-
work to explore the potential for decoupled access/execute (DAE)
software and hardware mechanisms. More specifically, we pro-
pose two software-only techniques, naïve-software DAE and
systolic-software DAE, along with a lightweight hardware access
accelerator to further improve area-normalized throughput. We
evaluate our techniques using a combination of PyTorch operator
microbenchmarking and real-world PyTorch workloads running
on a detailed register-transfer-level model of a 128-core many-
core architecture. Our evaluation on three real-world dense and
sparse tensor workloads suggests these workloads can achieve
approximately 2–6× performance improvement when scaled to a
future 2000-core CPU-manycore heterogeneous system compared

Manuscript received December 16, 2020; revised March 22, 2021 and
July 2, 2021; accepted July 18, 2021. Date of publication August 10, 2021;
date of current version May 20, 2022. This work was supported in part by
NSF CRI Award under Grant 1512937; in part by NSF SHF Award under
Grant 1527065; in part by NSF SHF under Grant 1909661; in part by DARPA
SDH Award under Grant FA8650-18-2-7863; and in part by Facebook and
Xilinx. This article was recommended by Associate Editor G. Tagliavini.
(Corresponding author: Lin Cheng.)

Lin Cheng, Peitian Pan, Zhongyuan Zhao, Krithik Ranjan, Preslav Ivanov,
Zhiru Zhang, and Christopher Batten are with the School of Electrical
and Computer Engineering, Cornell University, Ithaca, NY 14853 USA
(e-mail: lc873@cornell.edu; pp482@cornell.edu; zz546@cornell.edu;
kr397@cornell.edu; pi57@cornell.edu; zhiruz@cornell.edu;
cbatten@cornell.edu).

Jack Weber was with the School of Electrical and Computer Engineering,
Cornell University, Ithaca, NY 14853 USA. He is now with Accenture, New
York, NY, USA (e-mail: jlw422@cornell.edu).

Bandhav Veluri, Max Ruttenberg, Dustin Richmond, and Michael
B. Taylor are with the Paul Allen School of Computer Science
and Engineering, University of Washington, Seattle, WA 98105 USA
(e-mail: bandhav@uw.edu; mrutt@cs.washington.edu; dustinar@uw.edu).

Seyed Borna Ehsani was with the Paul Allen School of Computer Science
and Engineering, University of Washington, Seattle, WA 98105 USA. He is
now with Apple Inc., Los Altos, CA, USA (e-mail: borna.ehsani@gmail.com).

Dai Cheol Jung is with the Department of Electrical and Computer
Engineering, University of Washington, Seattle, WA 98105 USA (e-mail:
dcjung@uw.edu).

Digital Object Identifier 10.1109/TCAD.2021.3103825

to an 18-core out-of-order CPU baseline, while potentially achiev-
ing higher area-normalized throughput and improved energy
efficiency compared to general-purpose graphics processing units.

Index Terms—Accelerator architectures, open source software,
parallel programming, software libraries.

I. INTRODUCTION

M
ANYCORE architectures integrate a large number

of simple cores within a single die using a tiled

physical design methodology, and these cores are usu-

ally interconnected through a packet-based on-chip network.

Compared to general-purpose multicores, the manycore

approach can improve energy efficiency and throughput

per unit area on highly parallel workloads. Compared to

application-specific accelerators, the manycore approach can

be tailored to accelerate a wider range of applications. Early

manycore research prototypes included 16–110 cores [1]–[6]

and manycore processors in industry now include 64–128

cores [7]–[12]. Recent research prototypes have scaled core

counts by an order-of-magnitude, including the 496-core

Celerity [13], 1000-core KiloCore [14], 1024-core Epiphany-

V [15], and 4096-core Manticore [16]. General-purpose graph-

ics processing units (GPGPUs) also seek to integrate a massive

number of execution pipelines on a single die [17], [18],

but GPGPUs take a fundamentally different microarchitectural

approach from manycore architectures. GPGPUs group 16–

32 execution pipelines and shared local memory into tens of

SIMT/SIMD processors to amortize overheads with lock-step

execution, while manycore architectures turn each execution

pipeline into its own simple core with its own small local

memory to enable completely independent execution. Like

GPGPUs, manycore architectures are unlikely to completely

replace traditional multicore CPUs as standalone comput-

ing platforms. Manycore architectures will likely remain as

co-processors in CPU-manycore heterogeneous systems. We

identify two key challenges to translating high peak through-

put into improved end-to-end workload performance on such

systems.

Manycore Programmability Challenge: The flexibility

offered by manycore co-processors means programmers must

navigate a broad software design and optimization space. This

is compounded by the fact that manycore co-processors rely

on simple hardware that requires programmers to manage

1937-4151 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on June 26,2022 at 20:43:28 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: TENSOR PROCESSING FRAMEWORK FOR CPU-MANYCORE HETEROGENEOUS SYSTEMS 1621

many concerns explicitly in software. For example, some

manycore co-processors leverage scratchpad memories to cre-

ate a partitioned global address space (PGAS) instead of

using hardware-based cache coherence, and this requires pro-

grammers to control data movement explicitly in software.

In addition, programmers must carefully consider work dis-

tribution, load balancing, and on-chip network congestion.

Compared to other architectures that have been studied exten-

sively, the software stack of CPU-manycore heterogeneous

systems remains less explored.

A promising approach to addressing the manycore pro-

grammability challenge is through high-level libraries that pro-

vide ready-to-use hand-optimized operators embedded within

a high-level language. GPGPUs now provide many such

libraries, including CuPy [19], PyTorch [20], TensorFlow [21],

and cuGraph [22]. In this work, we demonstrate the potential

for a high-level library approach to address the manycore pro-

grammability challenge by extending the PyTorch framework

for both dense and sparse tensor processing on a representative

CPU-manycore heterogeneous system with a RISC-V many-

core co-processor. Our extended PyTorch framework currently

provides over 100 operators that leverage both a traditional

optimized data-parallel approach (as in GPGPUs), and novel

programming models and optimizations enabled by the unique

features of manycore co-processors. For example, we propose

a new cyclic bank sparse row (CBSR) sparse matrix format

and padding technique that optimizes the data layout for many-

core co-processors with global caches and memory controllers

at the edge.

Manycore Memory Latency Challenge: Memory latency

hiding is now at the center of modern microarchitecture

design as the performance gap between compute and memory

continues to increase. Multicore CPUs rely on complex out-

of-order execution to hide memory latency, while GPGPUs

rely on extreme temporal multithreading with fine-grain con-

text switching to also hide memory latency. Both of these

techniques require extensive hardware resources and are not

applicable to the simple cores used in manycore arechitec-

tures. Stall-on-use, which allows independent instructions to

be issued while a long-latency memory instruction is still

pending [23], [24], is a lightweight mechanism to enable

memory latency hiding in simple in-order cores. However,

our results show this technique alone cannot fully resolve

the memory latency issue, and it still dominates the execu-

tion time of manycore co-processors for many critical PyTorch

operators (e.g., matrix multiplication, 2-D convolution, sparse

matrix–vector multiplication, and matrix–vector multiplica-

tion). Moreover, as manycore architectures generally adopt a

mesh-like on-chip network topology, both network bisection

bandwidth and the bandwidth to higher levels of the memory

hierarchy become scarcer when scaled to future manycore

architectures with thousands of cores, leading to increased

network congestion and memory access latencies.

Decoupled access/execute (DAE) architectures have been

proposed in the literature to aid memory latency hiding by

splitting one program into two instruction streams: 1) an

access stream and 2) an execute stream [25]. The access

stream contains all instructions related to accessing memory,

and the execute stream contains the remaining instructions

for computation. If the access stream can run sufficiently

far ahead, the execute stream will no longer stall due to

load-use dependencies. In this work, we use our extended

PyTorch framework to explore DAE in the context of the tar-

get manycore co-processor. In Section IV, we propose two

software-only techniques, naïve-software DAE and systolic-

software DAE: naïve-software DAE pairs an access core

with an execute core interconnected through software queues

allocated in each core’s scratchpad memory, while systolic-

software DAE exploits data reuse to share one access core

across multiple execute cores. In Section V, we propose

combining lightweight access accelerators with our software

techniques to further improve area normalized throughput. Our

evaluation on several important PyTorch operators shows soft-

ware/hardware co-design to enable DAE programming can

achieve up to 1.32× throughput improvement compared to

an aggressive data-parallel baseline.

In Section VI, we evaluate three real-world workloads using

the extended PyTorch tensor processing framework includ-

ing: a dense residual neural network (ResNet) for computer

vision, a dense deep-learning autoencoder-based recommender

system (RecSys) for movie recommendations, and a sparse

local graph clustering system based on an iterative shrinkage-

thresholding algorithm for personalized page ranking. We

execute the PyTorch CPU software natively and co-simulate

the PyTorch manycore software on a detailed register-transfer-

level model of a 128-core manycore co-processor with 32-bit

RISC-V cores and a high-bandwidth main-memory system.

Our results suggest these workloads can achieve approxi-

mately 2–6× performance improvement when scaled to a

future 2000-core CPU-manycore heterogeneous system com-

pared to an 18-core out-of-order CPU baseline. At the same

time, we argue that the manycore approach can enable higher

area-normalized throughput and improved energy-efficiency

compared to GPGPUs.

The primary contributions of this work are: 1) we extend

PyTorch to enable optimized dense and sparse tensor process-

ing on CPU-manycore heterogeneous systems with minimal

modifications to existing workloads (Section III); 2) we pro-

pose two software-only techniques, naïve-software DAE and

systolic-software DAE, to enable access/execute decoupling in

the context of a manycore co-processor (Section IV); 3) we

propose to combine lightweight hardware access accelerators

with both software schemes to further improve area-normalized

throughput on the target CPU-manycore heterogeneous system

(Section V); and 4) we conduct an end-to-end evaluation on

three real-world tensor workloads to demonstrate the promise

of the proposed framework (Section VI). While we conduct our

studies on a specific manycore architecture, our techniques can

be broadly applied to any manycore architecture that allows

direct core-to-core communication.

II. TARGET CPU-MANYCORE HETEROGENEOUS SYSTEM

Although the manycore software and hardware design space

is broad, there are several common features, including rela-

tively simple cores, mesh-based on-chip networks, software-

managed memory systems, and low-level software APIs. In

Authorized licensed use limited to: Cornell University Library. Downloaded on June 26,2022 at 20:43:28 UTC from IEEE Xplore. Restrictions apply.

1622 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 6, JUNE 2022

Fig. 1. Target CPU-Manycore Heterogeneous System Hardware: (a) target system includes a CPU with its own attached DRAM and a manycore co-processor
also with its own attached DRAM; (b) manycore co-processor includes 16×8 simple cores (C) and 32 LLC (L) banks interconnected via mesh-based on-chip
network; and (c) each core is a RISC-V RV32IMAF processor (RV32) with instruction cache and 4-KB scratchpad memory.

this section, we describe an early version of the HammerBlade

(HB) architecture [26] that captures these common features.

A. Target System Hardware

The HB manycore architecture includes hundreds of inde-

pendent cores with simple scalar pipelines, low-latency

software-managed scratchpad memories, and support for inte-

ger, floating-point, and atomic memory instructions. Cores

communicate over the memory-mapped 2-D mesh on-chip-

network (OCN), and adopt stall-on-use for exploiting pipeline

parallelism and memory latency hiding. In addition to the

scalar cores, there is a stand-alone host CPU that manages exe-

cution. Fig. 1 presents an architectural diagram of a small-scale

HB CPU-manycore heterogeneous system.

The HB manycore memory hierarchy has four levels:

1) DRAM; 2) a banked, last-level cache (LLC); 3) intercore

scratchpad(s); and 4) a core-local scratchpad. The core-local

scratchpad, remote scratchpads, caches, and other network

locations are mapped to nonintersecting regions of a core’s

address space. Consequently, the HB manycore architecture

exposes a PGAS-like memory model with software control

over data placement.

B. Target System Software

The HB manycore architecture provides a kernel-centric

programming abstraction, similar to CUDA. Kernel code is

written from the perspective of a single thread executing on

a core. Kernel execution and scheduling is managed through

runtime software on the host processor. This provides an

SPMD-like execution model. Unlike CUDA, the target system

software supports remote store programming [27], which

allows a core to perform remote stores into any other core’s

scratchpad.

C. Manycore Challenges

We identify two key challenges to realizing the promised

peak throughput of CPU-manycore heterogeneous systems.

Manycore Programmability Challenge: Similar to other

manycore architectures, the target manycore architecture

exposes low-level hardware details to the software stack. This

requires programmers to manage many concerns explicitly. In

addition, programmers must carefully consider work distribu-

tion, load balancing, network congestion, and even instruction

cache pressure. Facing vast options and a broad software

design space, programmers can struggle to quickly develop

optimal implementations.

Manycore Memory Latency Challenge: Memory latency

hiding is critical to modern microarchitectures as the

performance gap between compute and memory continues to

increase. This memory wall has a more significant impact

on manycore architectures for two reasons: 1) with a strong

emphasis on area efficiency, the cores in a manycore archi-

tecture cannot leverage traditional complex hardware mech-

anisms for memory latency hiding (e.g., out-of-order exe-

cution and fine-grain multithreading), and have to rely on

lightweight approaches such as stall-on-use and 2) manycore

architectures almost always adopt a mesh-like topology for

their OCNs. As we scale to large-scale manycore architec-

tures with thousands of cores, both mesh bisection band-

width and mesh perimeter bandwidth to higher levels of the

memory hierarchy scale slower (i.e., linearly) than the num-

ber of cores (i.e., quadratically). Scarce bandwidth can easily

lead to severe congestion increasing overall memory access

latencies.

III. TENSOR PROCESSING FRAMEWORK FOR

CPU-MANYCORE HETEROGENEOUS SYSTEMS

PyTorch [20] is a widely adopted open-source tensor pro-

cessing framework that provides an easy to use Python

frontend for highly optimized tensor operators implemented

in a low-level C++ ATen library [28]. In this section, we first

present our tensor processing framework for CPU-manycore

heterogeneous systems developed from PyTorch. We then

evaluate and analyze a set of representative operators with

microbenchmarks on the target system to identify performance

bottlenecks.

A. PyTorch on CPU-Manycore Heterogeneous Systems

We extend PyTorch and build an open-source tensor pro-

cessing framework for CPU-manycore heterogeneous systems

Authorized licensed use limited to: Cornell University Library. Downloaded on June 26,2022 at 20:43:28 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: TENSOR PROCESSING FRAMEWORK FOR CPU-MANYCORE HETEROGENEOUS SYSTEMS 1623

Fig. 2. Different Backends for Extended PyTorch Framework: (a) native execution on CPU without new backend; (b) emulation backend: host code executes
natively on CPU and device code also executes natively on CPU for functional testing; (c) cosimulation backend: host code executes natively on CPU and
device code executes on Verilog RTL simulator for cycle-accurate performance evaluation; and (d) prototype backend: host code executes natively on CPU
and device code executes on a real FPGA/ASIC prototype.

Fig. 3. Extended PyTorch Framework for CPU-Manycore Heterogeneous Systems: Blue lines 26 and 29–30 in (a) are the only changes required to port
an existing workload (e.g., training a deep neural network) written with PyTorch to run on the target CPU-manycore heterogeneous system. Red lines show
the (simplified) dispatch chain for the PyTorch ReLu operator: Python frontend (a) dispatches to platform agnostic ATen operator (b), which dispatches to
manycore backend CPU host function (c), which finally launches the manycore device function (d).

to address the manycore programmability challenge. PyTorch’s

Python-level operators are platform agnostic; a dynamic dis-

patcher in ATen chooses the appropriate implementation for

execution at runtime. The actual ATen operators can be either

platform agnostic or platform specific. Platform specific imple-

mentations are grouped into backends (e.g., a CPU backend

or a GPGPU backend). Platform agnostic operators are part

of the CPU backend as well. New platforms can be easily

supported by plugging new backends into ATen’s dynamic

dispatcher. We extend PyTorch with a new ATen backend

to support both dense and sparse tensor processing on the

target manycore co-processor. With our framework, tensor

workloads can run exclusively on the CPU of the target het-

erogeneous system without any changes to the code. In this

scenario, the CPU backend supports the framework’s Python

APIs and data are stored in CPU host memory [see Fig. 2(a)].

One can also choose to accelerate tensor workloads on the

manycore co-processor with minimal changes to the existing

code [see Fig. 3(a)]. Only changing three lines is necessary:

one for migrating the neural network model to the many-

core co-processor and two for migrating the input data and

expected labels. PyTorch operators that are platform specific

Authorized licensed use limited to: Cornell University Library. Downloaded on June 26,2022 at 20:43:28 UTC from IEEE Xplore. Restrictions apply.

1624 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 6, JUNE 2022

will be dispatched to the manycore backend, and data will be

automatically migrated as needed [see Fig. 2(d)].

An example workload using the proposed framework is

shown in Fig. 3. When the PyTorch operator nn.ReLu()

is used in Python code, its ATen counterpart relu() is

called. In this case, relu() is platform agnostic (i.e., runs

on the CPU), and is implemented by reusing a platform-

specific ATen operator [i.e., threshold()]. Since model

in line 26 of Fig. 3(a) is on the manycore co-processor, the

call to threshold() in line 4 of Fig. 3(b) is dispatched to

the manycore implementation [Fig. 3(c)], and compute is then

offloaded to the manycore co-processor [Fig. 3(d)].

We have ported over 100 tensor operators, including matrix

multiplication, 2-D convolution, most elementwise operators

(e.g., add and subtract), reductions (e.g., sum and mean), and

sparse operators (e.g., sparse matrix–vector multiplication). All

operators are hand tuned and aggressively optimized: scratch-

pad memory is utilized to enable data reuse and increase arith-

metic intensity; stall-on-use is leveraged to exploit pipeline

parallelism and hide memory latency; and unrolling is used to

balance instruction cache performance and loop overhead.

For sparse operators, prior work has shown that the layout of

sparse tensors can significantly impact performance [29]–[31].

In our framework, we implement a novel CBSR tensor layout.

CBSR is designed to reduce LLC bank conflicts and network

congestion by ensuring cores only access LLC banks located

in the same column. Fig. 4 shows an example using traditional

compressed sparse row (CSR), CBSR, and CBSR+Padding

formats for a 4 × 4 sparse matrix. In this simplified example,

our architecture has one DRAM channel with four LLC banks.

Each core only accesses one row of the sparse matrix. The data

block size within each bank is two data elements and follows

the cyclic memory partitioning scheme of [32]. In CSR, the

indices of nonzero values of different rows may fall into the

same bank, which leads to memory bank conflicts when dif-

ferent cores access either column indices or values (i.e., C0

accesses v2 and C1 accesses v3). Using CBSR can eliminate

the memory bank conflict between cores when accessing either

indices or values, but memory conflicts still remain when one

core is accessing the indices and the other core is accessing

the values (i.e., C0 is accessing v0 and C1 is accessing col-

umn indices of v3). CBSR+Padding makes indices and values

aligned to the same LLC bank, and memory bank conflicts

can be completely eliminated.

Our tensor processing framework and the emulation infras-

tructure are open source.1 We use state-of-the-art test-driven

design based on pytest,2 Hypothesis [33],3 and contin-

uous integration.4 Operator development proceeds through

three levels of emulation, simulation, and finally, hardware

execution.

1) Emulation Backend: We first develop both the CPU and

manycore functions of PyTorch operators using the emulation

backend [Fig. 2(b)]. Emulation provides the same APIs as the

1https://github.com/cornell-brg/hb-pytorch
2https://pytest.org
3https://github.com/HypothesisWorks/hypothesis
4https://travis-ci.com/github/cornell-brg/hb-pytorch

Fig. 4. CSR and CBSR sparse tensor formats. (a) CSR format. (b) CBSR
format. (c) CBSR+Padding format.

actual manycore co-processor runtime. It enables functional

verification, fast turnaround time, and standard debugging

tools (e.g., gdb) on manycore device functions. When building

with the emulation backend, offloading uses native function

calls, data migration uses regular memory copy, and device

functions will be executed natively on the host.

2) Cosimulation Backend: After functional verification,

we move to cycle-accurate RTL simulation [Fig. 2(c)]. In

this environment, we again verify correctness, and iterate to

optimize performance with architectural counters. The cosim-

ulation backend leverages an RTL simulator (e.g., Verilator)5

to model a small-scale version of the HB system running

at 1 GHz with 16 columns and 8 rows. To model DRAM

timing, we use the open-source DRAMSim3 library [34], a

timing accurate simulator. Architectural performance coun-

ters are inserted using nonsynthesizable SystemVerilog bind

statements for no-cost performance analysis of kernels. The

RTL for this design has been validated in silicon. Host code

executes natively on an Intel Xeon E7-8867v4 CPU.

3) Prototype Backend: Eventually, we plan to sup-

port moving to a real FPGA/ASIC prototype [Fig. 2(d)].

Preliminary work has demonstrated the feasibility of using

an FPGA prototype to study larger workloads than possible in

simulation.

B. Microbenchmarking

We conduct a scalability study on a set of representative

PyTorch operators shown in Table I. These operators vary in

arithmetic intensity and enable understanding the performance

5https://github.com/verilator/verilator

Authorized licensed use limited to: Cornell University Library. Downloaded on June 26,2022 at 20:43:28 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: TENSOR PROCESSING FRAMEWORK FOR CPU-MANYCORE HETEROGENEOUS SYSTEMS 1625

TABLE I
OPERATOR MICROBENCHMARKING

Fig. 5. ATen Operator Micro-Benchmarking: Scalability of a representative
set of ATen operators. See Table I for operator description and input sizes.
Normalized to single core performance.

of our framework on the target CPU-manycore heterogeneous

system. Fig. 5 shows that arithmetic-intensive operators, such

as MatMul and Conv2D, scale well and achieve a sustained

throughput of 78.5 GFLOP/s and 68.0 GFLOP/s, respectively.

Memory-intensive dense operators, such as AddMV, Sum,

and Add, show only moderate scalability, as they can eas-

ily saturate the manycore co-processor’s memory bandwidth.

EmbBack is implemented with fine-grained locking, in which

each embedding (Emb) entry is associated with a spin lock

to resolve update conflicts and scales well up to 64 active

cores. However, increased memory latency, instead of lock

contention, is the primary reason EmbBack scales poorly to

128 active cores. SpMV scales better than other memory-

intensive operators because of the CBSR tensor layout, which

is specifically designed to avoid LLC bank conflicts on the

target manycore co-processor.

We study four operators that are critical to many real-

world tensor workloads in more detail: MatMul, Conv2D,

AddMV, and SpMV. Fig. 6 shows that the cycles per instruc-

tion (CPI) increases with the number of active cores. For

arithmetic-intensive operators, such as MatMul and Conv2D,

the number of stall-on-network cycles (i.e., load/store requests

to LLC cannot be sent due to network congestion) reduces

the overall performance after reaching 64 active cores [see

Fig. 6(a) and (b)]. Even with only one active core, MatMul

and Conv2D cannot hide enough memory latency to avoid

stall-on-use (i.e., true data dependency). Both MatMul and

Conv2D can use tiling. Larger tiling blocks increase data

reuse resulting in higher arithmetic intensity and thus, bet-

ter performance. However, the necessity of moving large data

blocks to the scratchpads with in-order scalar cores introduces

phased behavior into these arithmetic-intensive operators. A

data-loading phase moves a large block of data into the

scratchpad, followed by an execute phase to consume the data

block. To move data to the scratchpads, we use a pair of regular

load and store instructions. A core first loads a word into one

of its registers and then explicitly stores the data into its core-

local scratchpad. We can hide memory latency by unrolling the

loop so that the instruction stream has a long sequence of loads

followed by a long sequence of stores. With stall-on-use, we

are able to have many memory requests in-flight, which amor-

tizes the memory latency. However, even after applying these

optimizations, memory latency still contributes significantly to

the overall execution time.

For memory-intensive operators, such as AddMV and

SpMV, the number of stall cycles increases quickly beyond

16 active cores [see Fig. 6(c) and (d)]. This is likely due to

a limited number of LLC banks. With more active cores than

available LLC banks, even if memory accesses from cores

can be evenly distributed, LLC contention remains. Fig. 6

shows that unlike AddMV, SpMV execution time is dominated

by stall-on-use cycles instead of stall-on-network cycles. This

indicates the CSBR tensor layout is able to significantly reduce

network congestion.

IV. SOFTWARE-ENABLED DAE

Section III confirmed that memory latency is a major factor

in the performance of both dense and sparse tensor opera-

tors on the target architecture. We expect memory latency

to become an even more significant issue in future CPU-

manycore heterogeneous systems with thousands of cores and

2-D mesh on-chip networks, as bisection bandwidth and band-

width going off the mesh to higher levels of the memory

hierarchy scale linearly while the number of cores scales

quadratically. We can either tolerate the ever growing memory

latency, or we can reduce the amount of data transferred.

GPGPUs explored both directions through extreme temporal

multithreading with fine-grain context switching (latency hid-

ing) and memory coalescing (reducing data movement). As

demonstrated for conventional processors in prior work [25],

[35], [36], DAE can reduce or eliminate memory latency and

Authorized licensed use limited to: Cornell University Library. Downloaded on June 26,2022 at 20:43:28 UTC from IEEE Xplore. Restrictions apply.

1626 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 6, JUNE 2022

Fig. 6. Per Core CPI: CPI continues to increase with the number of active cores. Memory latency dominates execution time in all four operators when
using 128 cores. Stall-on-Network = load request cannot be sent due to OCN contention; Stall-on-Use = load request has been sent but response have not
received; memory latency = Stall-on-Network + Stall-on-Use. (a) MatMul. (b) Conv2D. (c) AddMV. (d) SpMV.

improve performance. In this section, we leverage software-

based DAE to realize both latency hiding and data movement

reduction in the context of a manycore architecture. We pro-

pose naïve-software DAE and systolic-software DAE, and we

then evaluate their performance against optimized data-parallel

baseline implementations.

A. Naïve-Software DAE

We first explore DAE using pairs of cores: one as the access

core and one as the execute core. In a typical DAE architec-

ture, access and execute are connected by hardware queues for

communication. In the context of a PGAS manycore, we lever-

age remote store programming and create software queues in

the execute core’s scratchpad for the same purpose. We refer

to this software DAE scheme as naïve-software DAE.

In naïve-software DAE, the access core sends requests

to higher levels of the memory hierarchy to load data into

its registers. Unlike the data-movement scheme described in

Section III, the access core stores the loaded value into its

peer’s scratchpad (i.e., the software queue). When data become

available, the execute core reads the data block, performs com-

putation, yields the queue space, and writes back the results

(if necessary). In many DAE architectures, writing back the

results is also done by the access core. However, our early

analysis suggested writing results from an execute core to an

access core, and then to higher levels of memory hierarchy

provided no benefit. Thus, in naïve-software DAE, execute

cores write results directly back to DRAM. Since the block

currently being processed stays in the software queue (i.e., the

execute core pops the entry only after finishing computation),

at least two entries in each software queue are necessary to

enable access/execute decoupling. This puts increased demand

on the scratchpad resulting in smaller tile sizes compared to

a data-parallel baseline.

We implement six operators with naïve-software DAE:

1) MatMul; 2) Conv2D; 3) Conv2D-iB (i.e., Conv2D backward

w.r.t. input images); 4) Conv2D-fB (i.e., Conv2D backward

w.r.t. filters); 5) AddMV; and 6) SpMV. The baselines are

hand-tuned data-parallel implementations. We add a second

baseline for each operator, in which we only activate 50%

of the cores in the manycore co-processor using the data

parallel implementation. We refer to this second baseline as

50%-idle. We include this baseline to understand if the ben-

efit of naïve-software DAE comes from fewer cores making

Fig. 7. Naïve and Systolic Software DAE: TP/CC = throughput per compute
core; TP/Sys = overall throughput per system; MatMul showing 768×768×

768; Conv2D, Conv2D-iB, and Conv2D-fB showing 32 images batch; AddMV
showing 768×768; and SpMV showing FB-Johns55. See Table II for detailed
input specification.

memory requests. Since the target manycore is built with scalar

cores, each core can inject at most one memory request every

cycle. With only 50% cores active, the maximum possible

new requests per cycle is halved. This may relieve network

congestion and improve operator performance.

The results are summarized in Fig. 7 and Table II. Compared

to the baseline, 50%-idle generally achieves much lower over-

all throughput, as expected with half of the cores active.

However, we also observe an increase in per-core throughput,

especially in the cases of AddMV and SpMV. This improve-

ment matches our observation in Section III that increasing the

number of active cores can reduce performance due to network

congestion. We also observe that for these two operators,

naïve-software DAE only provides marginal improvement, or

hurts performance because low arithmetic intensity means

there is not enough time for the access core to load a block

before the execute core needs to consume this block. However,

for arithmetic-intensive operators (i.e., MatMul, Conv2D,

Conv2D-iB, and Conv2D-fB), naïve-software DAE signifi-

cantly improves the per-compute-core throughput. Compared

to the baseline, naïve-software DAE is able to improve per-

compute-core throughput by 1.5–1.9×. Compared to 50%-idle,

naïve-software DAE is able to improve per-compute-core

Authorized licensed use limited to: Cornell University Library. Downloaded on June 26,2022 at 20:43:28 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: TENSOR PROCESSING FRAMEWORK FOR CPU-MANYCORE HETEROGENEOUS SYSTEMS 1627

throughput by 1.3–1.5×, despite using smaller tiling block

sizes than both the baseline and 50%-idle. While this improve-

ment over 50%-idle partially comes from having 2× the

resources and offloading load and address generation instruc-

tions to access cores, the main source of performance benefit

comes from memory-latency hiding. In Conv2D, 13% of

the dynamic instructions are related to load and address

generation, and these instructions are offloaded to access

cores. However, we observe 53% performance improvement

over 50%-idle.

B. Systolic-Software DAE

While naïve-software DAE implementations show signifi-

cant per-compute-core improvement, the overall performance

decreases because the per-compute-core improvement does not

outweigh the reduced number of compute cores performing

useful work. To translate the high per-compute-core through-

put to an overall performance improvement, we must change

the ratio of access to execute cores. However, having one

access core serve two or more execute cores can also degrade

performance when the execute cores finish faster than the

access core can supply data. For example, in MatMul, an

access core cannot finish loading data for two execute cores

before its execute counterparts finish consuming their cur-

rent blocks, and thus, the execute cores will need to stall.

Alternatively, multiple access cores could fetch data for a sin-

gle execute core. Unfortunately, an asymmetric ratio of access

and execute cores results in access cores writing data to exe-

cute cores located multiple hops away, which can increase

network congestion and further slow down data transfers.

Instead of having an access core load independent data blocks

for each execute core it serves, we can exploit the fact that the

same data are needed by multiple execute cores by intelligently

placing the compute and having execute cores pass data blocks

in a systolic fashion (i.e., in-compute array reuse). We call

this scheme systolic-software DAE. Since systolic-software

DAE is only feasible for operators with significant data reuse,

we focus on the arithmetic-intensive operators (i.e., MatMul,

Conv2D, Conv2D-iB, and Conv2D-fB) in the following

sections.

The systolic-software DAE implementation of MatMul

uses a similar approach as output-stationary systolic hard-

ware accelerators for MatMul, although the systolic-software

DAE implementation operates at block granularity instead

of scalar value granularity. In systolic-software DAE, blocks

of input data are loaded by access cores on the West and

North edges of the manycore array, and these blocks are

passed along either horizontally or vertically [see Fig. 8(a)].

The systolic-software DAE implementation of Conv2D is

implemented in a 1-D systolic manner with replication. An

input block is passed along a chain of execute cores, in

which each execute core applies a different filter to the

block [see Fig. 8(b)]. MatMul and Conv2D implemented

with systolic-software DAE on a 128-core device that has

64% or 88% more, respectively, execute cores compared to

naïve-software DAE.

Fig. 8. Systolic Mapping: SSD = systolic-software DAE; ID = idle core;
AC = access core; and EC = execute core. In (a), data are loaded by access
cores, and is passed along by execute cores to the South and to the East,
while in (b), data are passed in one direction only.

We implement the four arithmetic-intensive operators (i.e.,

MatMul, Conv2D, Conv2D-iB, and Conv2D-fB) with systolic-

software DAE. The results are summarized in Fig. 7 and the

systolic-software DAE columns of Table II. Conv2D-iB and

Conv2D-fB can be implemented in ways that are similar to

Conv2D and MatMul, respectively. Across all four operators,

systolic-software DAE has a per-compute-core throughput that

is lower than naïve-software DAE, but still up to 1.5× higher

than the data-parallel baseline. This is because execute cores

in systolic-software DAE need to pass data blocks to their

neighboring execute cores in addition to performing the actual

computation. Additional instructions for data movement lead

to lower throughput. However, systolic-software DAE benefits

from the additional execute cores, and achieves up to 1.25×

increased system throughput. Note that systolic-software DAE

also has fewer compute cores than the baseline. There are three

cases (i.e., Conv2D with a batch size of 2 and Conv2D-fB with

a batch size of 2 and 4) where systolic-software DAE performs

worse than the baseline. This is because in systolic-software

DAE, data blocks need to be passed from execute core to

execute core. Thus, there is a much longer warmup phase for

systolic-software DAE, and this results in worse performance

when the batch size is small.

V. HARDWARE-ACCELERATED DAE

Naïve-software DAE and systolic-software DAE leverage

existing hardware mechanisms in the CPU-manycore hetero-

geneous system and demonstrate both per-compute-core and

per-system throughput improvements. However, software-only

approaches have two disadvantages. First, general-purpose

cores are area inefficient for data access tasks. Most access

tasks only require basic integer arithmetic and simple con-

trol flow for 1-D and 2-D array accesses, but cores in the

manycore co-processor are equipped with instruction caches,

data scratchpads, and floating point units. Second, dedicat-

ing general-purpose cores to data access tasks reduces the

peak throughput of the manycore co-processor. While systolic-

software DAE can help mitigate this issue by reducing the

number of access cores, most operators still require the

first column and/or the first row of cores in the manycore

co-processor to load data.

We adopt a software/hardware co-design approach to

address these challenges. We design and implement an access

accelerator (AX), a configurable hardware unit that streams

data from the LLC to the scratchpad of a target execute core.

Authorized licensed use limited to: Cornell University Library. Downloaded on June 26,2022 at 20:43:28 UTC from IEEE Xplore. Restrictions apply.

1628 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 6, JUNE 2022

TABLE II
OPERATOR THROUGHPUT

Compared to general-purpose cores, an access accelerator is

significantly more area efficient, yet still provides the benefits

of DAE. This lightweight access accelerator also achieves the

same peak computation throughput as the baseline manycore

with very low area overhead. While having hardware engines

that are dedicated for moving data (e.g., DMA engines) is

not a new idea, the proposed access accelerator is unique in

its ability to act as a first-class citizen in both the mesh-

based on-chip network and the remote store programming

model.

A. Access Accelerator Design

Data Access Tasks: Fig. 9 shows the data access pseudocode

of the Conv2D kernel and illustrates how the access cores load

data from the LLC and pad zeros to the input feature map

block. While we explored several operators with software-only

DAE schemes, their data access patterns are all similar. In gen-

eral, data access tasks involve two nested for loops that load

a matrix of size dim_x by dim_y into the scratchpad of

the target execute core and an optional padding process that

pads zeros around the matrix. This generic data access pattern

can be efficiently implemented as an access accelerator that

Fig. 9. Conv2D Forward Data Access: In the Conv2D forward kernel, the
access cores run program in (a) and load input feature map blocks into the
target data scratchpad as shown in (b). Note the access cores calculate src

and pad zeros (in red) to the imap buffer.

correctly performs common data access tasks given the meta-

data about the accesses (i.e., the source address, dimensions,

strides, padding information, and the destination address).

Authorized licensed use limited to: Cornell University Library. Downloaded on June 26,2022 at 20:43:28 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: TENSOR PROCESSING FRAMEWORK FOR CPU-MANYCORE HETEROGENEOUS SYSTEMS 1629

Fig. 10. Access accelerator architecture and integration: (a) architecture
of the access accelerator and how it connects to a mesh network router and
(b) access accelerators integrated in the first row and first column of the target
manycore. X = access accelerator (AX), L = LLC bank, and C = compute
core (CC).

Accelerator Design: Fig. 10(a) shows the architecture

of the access accelerator and how it is connected to a

mesh network router. At the core of the access accel-

erator is a configurable address generator and a padding

engine. These two modules generate a stream of memory

requests. Since the mesh network in the target manycore

system is only point-to-point ordered, the access accelera-

tor also includes a reorder queue to reorder the memory

responses from different LLC banks. The request arbiter

arbitrates between memory read requests to the LLC and

remote store requests to the target scratchpad because there

is only one master interface exposed by the mesh network

router. Finally, an address translator is required because

the execute cores configure access accelerators using virtual

addresses.

Accelerator Integration: Fig. 10(b) illustrates how access

accelerators are integrated. In the baseline manycore, each

mesh network router is connected to a RISC-V core. To inte-

grate the access accelerators, we extend the mesh network

and instantiate access accelerators at the top row and the left-

most column. This composition works particularly well with

systolic-software DAE implementations where most on-chip

network traffic is between neighboring cores or accelerators.

This composition also ensures a fair comparison with the

baseline manycore system for two reasons. First, the access

accelerator manycore (AX manycore) has the same number of

LLC banks and the same DRAM bandwidth as the baseline

manycore. Second, the AX manycore has the same effective

mesh network bandwidth as the baseline. The AX manycore

mesh network does have larger bisection bandwidth than in

the baseline manycore. However, this additional bandwidth

does not translate into improved throughput because the extra

network links and routers are mostly used to provide access to

LLC banks to the access accelerators. The AX is a first-class

citizen in the remote store programming model: execute cores

control a neighbor AX by performing remote stores into the

AX’s memory-mapped control registers, and the AX performs

Fig. 11. Access accelerator (AX) and general-purpose core (GC) Normalized
Area: AX eliminates instruction cache, data scratchpad, FPU, etc., and is 5×

smaller than a GC in a similar CMOS technology. RX/TX = RX/TX adapter,
Ctrl = control logic, and Dpath = data path.

remote stores into its neighboring execute core’s scratchpad

upon receiving data from the LLC.

B. Access Accelerator Evaluation

Area: Fig. 11 compares the post-place-and-route area of an

access accelerator in a CMOS 14/16 nm technology and a GC

from prior work in a similar process [37]. We can see from

the figure that the access accelerator is highly area efficient.

The network router and endpoint consumes about 40% and the

accelerator data path consumes about 30% of the access accel-

erator area. The transmit adapter (TX) includes a 32-element

FIFO to buffer responses from the LLC, and consumes around

30% of the accelerator area. Overall, the access accelerator is

5× smaller than the general-purpose core, making it an area-

efficient choice for data access tasks. The AX manycore [with

an extra AX row and AX column as shown in Fig. 10(b)] only

increases the overall area by 2.9% compared to the baseline

manycore.

Naïve-Accelerated DAE: Similar to the naïve-software DAE

evaluation (NSD, see Section IV-A), we evaluate the area effi-

ciency of the access accelerators using a naïve-accelerated

DAE (NAD) composition. In NAD, each execute core is

paired with an access accelerator that replaces the access core.

Fig. 12(a) and the NAD column of Table II show the per-

compute-core throughput and the area-normalized per-system

throughput of different operators under NAD. We can see

that compared to NSD, NAD has similar per-compute-core

throughput since both access cores and access accelerators

are able to decouple data access from the computation on

execute cores. However, NAD has significantly higher area-

normalized per-system throughput (46% on average) than

NSD. This difference is the largest on the matrix multipli-

cation (MatMul) operator, where NAD achieves 52% higher

area-normalized per-system throughput. The superior area-

normalized per-system throughput of NAD over NSD confirms

that our access accelerator is significantly more area efficient

on data access tasks than general-purpose cores, and still

provides the same throughput benefits of DAE. We did not

implement and evaluate NAD versions of memory-intensive

operators (i.e., AddMV and SpMV). NAD cannot address the

fact that these operators are largely limited by memory band-

width. Prior evaluation has shown that a data-parallel scheme

is more effective (see Section IV-A).

Authorized licensed use limited to: Cornell University Library. Downloaded on June 26,2022 at 20:43:28 UTC from IEEE Xplore. Restrictions apply.

1630 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 6, JUNE 2022

Fig. 12. Naïve and Systolic Accelerated DAE: TP/CC = throughput per
compute core; TP/Sys = overall throughput per system; MatMul showing
768 × 768 × 768; Conv2D, Conv2D-iB, and Conv2D-fB showing 32 images
batch; AddMV showing 768 × 768; and SpMV showing FB-Johns55. See
Table II for detailed input specification. (a) Naïve accelerated DAE. (b)
Systolic accelerated DAE.

Systolic-Accelerated DAE: As discussed earlier, systolic-

software DAE dedicates multiple general-purpose cores to load

data at the cost of manycore compute resources. Based on

the systolic-software DAE (SSD, see Section IV-B), we cre-

ate the systolic-accelerated DAE composition (SAD), which

uses the access accelerator manycore described in Section V-A

to run systolic-software DAE implementations. Fig. 12(b)

and the SAD column of Table II show the per-compute-

core throughput and area-normalized per-system throughput

of different operators under SAD. We can see that compared

to SSD, SAD has similar per-compute-core throughput since

both designs are able to achieve decoupled access/execute.

In terms of overall area-normalized per-system throughput,

SAD has an average of 4.8% better throughput than SSD.

On MatMul, SAD is able to achieve 13.9% better average

throughput than SSD. On the target 16×8 manycore array,

the SSD approach uses eight (Conv2D and Conv2D-iB) or

23 (MatMul and Conv2D-fB) general-purpose cores for data

accesses. Therefore, the maximum overall per system through-

put improvement of SAD on the same manycore is 6% or

18% (depending on the kernel). In addition, the execute cores

in SAD need to perform remote memory stores to configure

the access accelerators for every input feature map block,

which occupies computation cycles. Despite having more

moderate throughput improvements over the highly optimized

SSD design, SAD still achieves the highest area-normalized

throughput on the four evaluated kernels among all six designs

(baseline, 50%-idle, NSD, SSD, NAD, and SAD). Compared

to the baseline, the AX manycore introduces one extra cycle to

the memory latency when accessing LLC banks in the north.

However, this should have negligible performance impact on

operators that cannot leverage SAD, as our prior results in

Section III-B have shown that network congestion is the main

source of stalls for operators implemented with a data-parallel

scheme.

VI. FIRST-ORDER ANALYSIS OF SW/HW SCALABILITY

In this section, we conduct first-order end-to-end evaluation

on three tensor workloads to evaluate our framework’s abil-

ity to enable optimized dense and sparse tensor processing on

CPU-manycore heterogeneous systems with minimal modifi-

cations to existing workloads. We first introduce the workloads

and then describe our evaluation methodology. We finish

by estimating the performance of the these workloads when

scaled to a future 2000-core CPU-manycore heterogeneous

system against an aggressive multicore CPU.

A. Emerging Tensor Workloads

1) Residual Neural Network: ResNets are one form of con-

volutional neural networks (CNNs) for image classification,

which won the 2015 ImageNet large-scale visual recognition

challenge by allowing the network’s accuracy to scale with

its depth [38]. ResNet introduces residual blocks, which are

shortcut connections between nonneighboring layers, to over-

come a number of training difficulties (e.g., vanishing gradient

problem) faced by conventional CNN models. In this work, we

build and train a 9-layer ResNet model (i.e., ResNet-9) on the

CIFAR-10 dataset.

2) Recommender System: The input to a RecSys is a list

of items a user has previously “liked,” and the output is a list

of items with scores predicting how much the user might like

an unseen item. An autoencoder is a specific kind of unsu-

pervised artificial neural network that learns to copy its input

to its output through an intermediate “bottleneck” layer for

dimensionality reduction. In this work, we build and train this

RecSys on the MovieLens 10M dataset.

3) Local Graph Clustering (LGC-ISTA): Local graph clus-

tering is an approximate variant of the personalized PageRank

algorithm. Its goal is to find a cluster of nodes that are neigh-

bors of a given seed node. We implement iterative shrinkage

thresholding, which minimizes the loss function of a graph

signal vector such that all nodes in the neighborhood of the

seed node are associated with high scores, while other nodes

receive low scores. The algorithm uses the input adjacency

matrix and degree matrix to generate a sparse matrix. It then

iteratively updates the gradient, vector, and loss function using

SpMV, elementwise multiply, add, and subtraction operations.

We run 50 iterations for each seed node on the FB-Johns55

dataset.

Authorized licensed use limited to: Cornell University Library. Downloaded on June 26,2022 at 20:43:28 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: TENSOR PROCESSING FRAMEWORK FOR CPU-MANYCORE HETEROGENEOUS SYSTEMS 1631

B. Methodology

A common practice to evaluate full-size workloads on simu-

lators is to extract each occurrence of the kernels, and evaluate

them individually with either random data or reconstructed

data outside of PyTorch. However, this approach leads to

inaccuracies since random or reconstructed data may not rep-

resent the actual data layout during execution. To address this

challenge, we have developed a redispatching approach that

automates the evaluation process and preserves runtime data

layout. We first determine which operators in a workload we

would like to evaluate, flag them, and then start running the

workload on the CPU. When a call site is reached, the exe-

cution is forked into a CPU instance (running natively) and

a manycore instance (running on an RTL simulator). After

both runs return, manycore results are validated against CPU

results. With redispatching, workload evaluation can be easily

parallelized by launching many copies of the workload; one

copy for each kernel of interest.

Since it is not feasible to simulate a 2000-core many-

core architecture at reasonable simulation speed, we simulate

a smaller 128-core heterogeneous system running 1/16 of

the work using the co-simulation infrastructure described in

Section III. We then scale the performance of the manycore

co-processor to a full 2000-core system via weak scaling. We

compare the scaled performance against the performance of

running the full workload on the host multicore CPU, which

is an aggressive 18-core out-of-order superscalar running at

2.4 GHz (Intel Xeon E7-8867v4).

C. Results

By leveraging 2-D convolution operators with SAD imple-

mentations in ResNet, we estimate ResNet can achieve 2×

better performance on the target manycore system than on

the aggressive multicore CPU (see Table III). 2-D convolu-

tion operators run much faster on the manycore system by

exploiting massive parallelism, but batch normalization and

its backward pass (i.e., BatchNorm and BatchNormBack) per-

form worse on the manycore system compared to the CPU.

This is because frequent synchronization is needed in batch

normalization operators, and synchronizing the manycore

system currently involves higher overhead than synchronizing

a multicore CPU. Compared to having 2-D convolution opera-

tors implemented with a traditional data-parallel approach, we

are able to train ResNet-9 13% faster with systolic-accelerated

DAE. Specifically, we observed that Conv2D-fB with systolic-

accelerated DAE achieves 2.1× better performance than

its data-parallel counterpart, which is higher than we have

observed in microbenchmarks (see Table IV). Further inspec-

tion reveals that unlike the microbenchmarks we used in prior

sections, inputs to convolution layers in ResNet do not fit in

the LLC. Unstructured memory accesses in the data-parallel

implementation lead to significantly more LLC misses.

We estimate RecSys can achieve 5.9× better performance

on the target manycore system than on the multicore

CPU. Compute intensive operators, such as AddMM and

AddMMBack, generally have better performance on the target

TABLE III
RESNET EXECUTION BREAKDOWN

TABLE IV
RECSYS EXECUTION BREAKDOWN

TABLE V
LOCAL GRAPH CLUSTERING EXECUTION BREAKDOWN

system because the manycore can better exploit the paral-

lelism in these operators. We also observe that the largest

performance improvement comes from Emb, EmbBack, and

Sum. This improvement can be traced to two causes: 1) these

operators are memory intensive, and compared to a multicore

CPU, the manycore co-processor has a much higher total

memory bandwidth (1 TB/s) and 2) we apply optimization

techniques that are not available by default in the CPU ATen

Authorized licensed use limited to: Cornell University Library. Downloaded on June 26,2022 at 20:43:28 UTC from IEEE Xplore. Restrictions apply.

1632 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 6, JUNE 2022

backend, such as kernel fusion and intermediate value removal.

On the manycore co-processor, we are able to fuse Emb

and Sum together to eliminate intermediate value reads and

writes. We also explored leveraging systolic-accelerated DAE

MatMul in RecSys. However, the dimensions of MatMul

instances in RecSys generally lead to severe internal fragmen-

tation [39], and thus, worse than baseline performance due

to wasted computation. TPUv1 faced a similar issue. Unlike

specialized hardware accelerators, we have the flexibility of

falling back to a data-parallel implementation with a many-

core architecture. We believe other workloads that have more

systolic DAE friendly MatMul dimensions will see significant

benefits.

We estimate LGC-ISTA can achieve 5.7× better

performance on the target manycore system than on the

multicore CPU (Table. V). We observe that unlike RecSys,

clustering spends more time on the CPU host than on the

co-processor. This is because the input graph has high spar-

sity, and thus, manycore device functions for those operations

will not run for long enough time to cover the offloading

overhead.

In summary, we estimate all three workloads will be able

to achieve much higher (i.e., up to 5.9×) performance on the

target CPU-manycore heterogeneous system compared to an

aggressive multicore CPU baseline. Note that the weak scaling

approach we adopt is optimistic and meant for demonstrating

the potential of a future full manycore system, rather than

as a rigorous comparison. While computing 1/16 of the out-

put on a 128-core system demonstrates that we have enough

software parallelism to fully utilize the 2000-core system, var-

ious architectural challenges (e.g., LLC coherence, DRAM

channel scaling, and cross channel data movement) must be

solved with minimal performance penalty to realize the esti-

mated performance. This work provides a software stack that

lays the groundwork for researchers to explore solutions to

these challenges in future work. To help estimate how a future

2000-core system might compare to a GPGPU, we can con-

sider a previously proposed manycore architecture with 496

RISC-V cores [37], [40]. This prior work has shown the

ability to achieve 93.04 Giga RISC-V instructions/s per watt

and 45.57 GRVIS/mm2. Given these prior results, the target

CPU-manycore heterogeneous system can potentially achieve

significantly higher area-normalized throughput and energy

efficiency compared to GPGPUs. Again, this work provides

a software stack that can enable more detailed comparative

analysis of manycore architectures versus GPGPUs and other

programmable accelerators.

VII. RELATED WORK

A wide variety of coarse-grain parallel architectures has

been developed over the past decade to exploit pipeline paral-

lelism. Architectures, such as Eyeriss [41] and DianNao [42],

are domain-specific accelerators for CNNs. Later versions sup-

port operations on sparse tensors. These proposals demonstrate

similar parallel dataflow patterns. The TPU [43] and VTA [44]

architectures integrate systolic matrix-multiply and vector pro-

cessing units to accelerate more general machine learning

computations. More general purpose architectures also exist:

RAW [45] uses an interprocessor scalar operand network to

forward results between processors. Plasticine [46] contains a

mesh of general-purpose compute units for processing work-

loads from machine learning, data, and graph analytics. These

architectures exploit pipeline parallelism by composing coarse

grain functional units, similar to our work.

Many architectural solutions have been proposed to decou-

ple memory and compute operations [25]. Decoupled supply

compute (DeSC) [35] is an automatic extension of DAE

for general-purpose CMPs that uses a “supplier device”

and a “compute device,” similar to our naïve-software DAE

approach. The load slice core [24] is a form of restricted

out-of-order machine. With an additional pipeline, load and

address generation slices can be issued out-of-order and

speculatively with respect to compute slices, while remain-

ing in-order within a slice. Slice formation is handled by

hardware. Tran et al. [47] proposed an SW/HW co-design

method. Instructions are grouped into access and execute

phases at compile time. Access phases can run and commit

out-of-order with respect to execute phases at runtime. Both

techniques rely on hardware that is more complex than the

target manycore architecture provides (e.g., superscalar cores).

Manticore [16] introduces custom ISA extensions to leverage

DAE and improve FPU utilization. Techniques proposed in this

work aim to enable DAE in the context of a manycore with

thousands of simple stall-on-use in-order scalar cores, and with

existing programming model and core microarchitecture. The

cell processor [36] includes per-core DMA engines to overlap

computation with data transfer. The Epiphany processor [15]

also includes a DMA engine. This prior work explores pairs of

memory and compute engines, while our approach extends this

idea with AX’s along the periphery of the target architecture.

Our approach is more similar to CoRAM [48], where a control

thread can manage multiple scratchpads on an FPGA device.

Recent work has shown the potential of using a chiplet-based

approach to scale the target manycore achitecture to thousands

of cores [6], [16].

Several high-level languages have been created to express

complex pipeline parallelism in programming. StreamIt [49]

exposed pipeline parallelism for the RAW architecture. More

recent work has enabled pipeline parallelism for general-

purpose machines. Interstellar [50] is an extension to Halide’s

scheduling with pipeline parallelism expressions. Spatial [51]

is a general-purpose DSL for expressing pipelines and can

target Plasticine [46]. These languages are higher level than

our own development language and can be used in the future

to ease programmer expression of pipeline parallelism on

manycore architectures.

One approach to exploiting software pipelines is through

parallel frameworks such as PyTorch [20]. These frame-

works use prebuilt libraries with hand-optimized primitives

that exploit software pipelines, and abstract designers from

the complexity of expression. For example, TVM [44] sup-

ports CPUs, GPUs, and also the VTA [52] architecture.

TensorFlow [21] has backends for CPUs, GPUs, as well as

the Google TPU [43]. Our work adds another backend to these

state-of-the-art software stacks.

Authorized licensed use limited to: Cornell University Library. Downloaded on June 26,2022 at 20:43:28 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: TENSOR PROCESSING FRAMEWORK FOR CPU-MANYCORE HETEROGENEOUS SYSTEMS 1633

VIII. CONCLUSION

Programmability and memory latency are the key challenges

in CPU-manycore heterogeneous systems. In this article,

we addressed the programmability challenge with a tensor

processing framework in a high-level library that abstracts

hand-optimized operators for dense and sparse workloads.

Through end-to-end evaluation of dense and sparse tensor

workloads, we showed that the proposed framework can poten-

tially achieve up to 5.9× better performance on a 2000-core

CPU-manycore heterogeneous system compared to an aggres-

sive multicore CPU. We addressed the manycore memory

latency challenge by exploring both software and hardware-

accelerated DAE schemes on the manycore co-processor.

Operators implemented with our techniques achieve up to

1.32× throughput improvement, compared to an aggressive

data-parallel baseline.

ACKNOWLEDGMENT

The authors would thank Intel, Synopsys, Cadence, and

ARM for and equipment, tool, and/or physical IP donations.

The authors acknowledge and thank Kexin Zheng, Janice

Wei, Angela Zou, Yuwei Hu, and Adrian Sampson for using

the proposed PyTorch framework and providing useful feed-

back. The authors also thank Shunning Jiang and Hanchen

Jin for their advice in developing domain-specific accelerators

for integrating into manycore co-processors, and Zichao Yue

for his contributions to the proposed CBSR format. Finally,

the authors thank the entire Bespoke Silicon Group at the

University of Washington for manycore RTL development and

the PyTorch and RISC-V communities for developing and

supporting the software infrastructure that serves as the foun-

dation for this work. The U.S. Government is authorized to

reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright notation thereon. The views

and conclusions contained herein are those of the authors and

should not be interpreted as necessarily representing the offi-

cial policies or endorsements, either expressed or implied, of

AFRL, DARPA, or the U.S. Government.

REFERENCES

[1] M. B. Taylor et al., “A 16-issue multiple-program-counter microproces-
sor with point-to-point scalar operand network,” in Proc. Int. Solid-State

Circuits Conf. (ISSCC), Feb. 2003, pp. 170–171.

[2] M. McKeown et al., “Piton: A manycore processor for multitenant
clouds,” IEEE Micro, vol. 37, no. 2, pp. 70–80, Mar./Apr. 2017.

[3] J. Howard et al., “A 48-core IA-32 message-passing processor with
DVFS in 45nm CMOS,” in Proc. Int. Solid-State Circuits Conf. (ISSCC),
Feb. 2010, pp. 108–109.

[4] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-GHz
mesh interconnect for a teraflops processor,” IEEE Micro, vol. 27, no. 5,
pp. 51–61, Sep./Oct. 2007.

[5] M. Lis, K. S. Shim, M. H. Cho, I. Lebedev, and S. Devadas, “Hardware-
level thread migration in a 110-core shared-memory multiprocessor,”
Dept. Comput. Struct. Group, MIT CSAIL, Cambridge, MA, USA,
Rep. 512, Nov. 2013.

[6] P. Vivet et al., “2.3 a 220GOPS 96-core processor with 6 chiplets 3D-
stacked on an active interposer offering 0.6ns/mm latency, 3Tb/s/mm2

inter-chiplet interconnects and 156mW/mm2@ 8%-peak-efficiency DC-
DC converters,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC),
Feb. 2020, pp. 46–48.

[7] S. Bell et al., “Tile64—Processor: A 64-core SoC with mesh
interconnect,” in Proc. Int. Solid-State Circuits Conf. (ISSCC),
Feb. 2008, pp. 88–89.

[8] C. Ramey, “TILE-Gx100 manycore processor: Acceleration interfaces
and architecture,” in Proc. Symp. High Perform. Chips (Hot Chips),
Aug. 2011, pp. 1–21.

[9] D. Kanter, Knights Landing Reshapes HPC, Microprocess. Rep.,
Mountain View, CA, USA, Sep. 2015.

[10] B. Wheeler, Ampere Maxes Out at 128 Cores, Microprocess. Rep. Linley
Group, Mountain View, CA, USA, Jul. 2020.

[11] T. R. Halfhill, Thunderx3’s Cloudburst of Threads: Marvell Previews

96-Core 384-Thread Arm Server Processor, Microprocess. Rep. Linley
Group, Mountain View, CA, USA, Apr. 2020.

[12] D. Wentzlaff et al., “On-chip interconnection architecture of the tile
processor,” IEEE Micro, vol. 27, no. 5, pp. 15–31, Sep./Oct. 2007.

[13] S. Davidson et al., “The Celerity open-source 511-core RISC-V tiered
accelerator fabric: Fast architectures and design methodologies for fast
chips,” IEEE Micro, vol. 38, no. 2, pp. 30–41, Mar./Apr. 2018.

[14] B. Bohnenstiehl et al., “KiloCore: A 32-nm 1000-processor computa-
tional array,” IEEE J. Solid-State Circuits, vol. 52, no. 4, pp. 891–902,
Apr. 2017.

[15] A. Olofsson, “Epiphany-V: A 1024 processor 64-bit RISC system-on-
chip,” Aug. 2016. [Online]. Available: arXiv:abs/1610.01832.

[16] F. Zaruba, F. Schuiki, and L. Benini, “Manticore: A 4096-core RISC-
V chiplet architecture for ultraefficient floating-point computing,” IEEE

Micro, vol. 41, no. 2, pp. 36–42, Mar./Apr. 2021.

[17] J. Burgess, “RTX on: The NVIDIA turing architecture,” in Proc. Symp.

High Perform. Chips (Hot Chips), Aug. 2019. [Online]. Available:
https://old.hotchips.org/hc31/HC31_2.12_NVIDIA_final.pdf

[18] M. Mantor, “7nm ‘Navi’ GPU—A GPU built for performance and effi-
ciency,” in Proc. Symp. High Perform. Chips (Hot Chips), Aug. 2019,
pp. 1–28.

[19] R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis, “CuPy: A
NumPy-compatible library for NVIDIA GPU calculations,” in Proc.

Conf. Neural Inf. Process. Syst. (NeurIPS), Dec. 2017, pp. 1–7.

[20] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Conf. Neural Inf. Process. Syst. (NeurIPS),
Dec. 2019, pp. 8024–8035.

[21] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. Symp. Oper. Syst. Design Implement. (OSDI), Nov. 2016,
pp. 265–283.

[22] (2020). cuGraph—GPU Graph Analytics. Accessed: Nov. 22, 2020.
[Online]. Available: https://github.com/rapidsai/cugraph

[23] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture optimizations
for exploiting memory-level parallelism,” in Proc. Int. Symp. Comput.

Archit. (ISCA), Jun. 2004, pp. 76–89.

[24] T. E. Carlson, W. Heirman, O. Allam, S. Kaxiras, and L. Eeckhout, “The
load slice core microarchitecture,” in Proc. Int. Symp. Comput. Archit.

(ISCA), Jun. 2015, pp. 272–284.

[25] J. E. Smith, “Decoupled access/execute computer architectures,” ACM

Trans. Comput. Syst., vol. 2, no. 4, pp. 289–308, Nov. 1984.

[26] A. Brahmakshatriya et al., “Taming the zoo: The unified graphit com-
piler framework for novel architectures,” in Proc. Int. Symp. Comput.

Archit. (ISCA), Jun. 2021, pp. 429–442.

[27] H. Hoffmann, D. Wentzlaff, and A. Agarwal, “Remote store program-
ming,” in Proc. Int. Conf. High Perform. Embedded Archit. Compilers

(HiPEAC), Jan. 2010, pp. 3–17.

[28] (2020). ATen: A TENsor Library for C++11. Accessed: Nov. 22, 2020.
[Online]. Available: https://github.com/zdevito/ATen

[29] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt, “A high
memory bandwidth FPGA accelerator for sparse matrix-vector multipli-
cation,” in Proc. IEEE 22nd Annu. Int. Symp. Field Program. Custom

Comput. Mach. (FCCM), May 2014, pp. 36–43.

[30] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang,
“Tensaurus: A versatile accelerator for mixed sparse-dense tensor com-
putations,” in Proc. Int. Symp. High Perform. Comput. Archit. (HPCA),
Feb. 2020, pp. 689–702.

[31] N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, “MatRaptor: A
sparse-sparse matrix multiplication accelerator based on row-wise prod-
uct,” in Proc. Int. Symp. Microarchit. (MICRO), Oct. 2020, pp. 766–780.

[32] Y. Wang, P. Li, P. Zhang, C. Zhang, and J. Cong, “Memory partitioning
for multidimensional arrays in high-level synthesis,” in Proc. Design

Autom. Conf. (DAC), Jun. 2013, pp. 1–8.

[33] D. R. MacIver et al., “Hypothesis: A new approach to property-based
testing,” J. Open Source Softw., vol. 4, no. 43, p. 1891, Nov. 2019.

Authorized licensed use limited to: Cornell University Library. Downloaded on June 26,2022 at 20:43:28 UTC from IEEE Xplore. Restrictions apply.

1634 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 6, JUNE 2022

[34] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “DRAMsim3: A
cycle-accurate, thermal-capable dram simulator,” IEEE Comput. Archit.

Lett., vol. 19, no. 2, pp. 106–109, Jul.–Dec. 2020.
[35] T. J. Ham, J. L. Aragón, and M. Martonosi, “DeSC: Decoupled supply-

compute communication management for heterogeneous architectures,”
in Proc. Int. Symp. Microarchit. (MICRO), Waikiki, HI, USA, Dec. 2015,
pp. 191–203.

[36] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and
T. Yamazaki, “Synergistic processing in Cell’s multicore architecture,”
IEEE Micro, vol. 26, no. 2, pp. 10–24, Mar./Apr. 2006.

[37] A. Rovinski et al., “A 1.4 GHz 695 Giga RISC-V Inst/s 496-core many-
core processor with mesh on-chip network and an all-digital synthesized
PLL in 16nm CMOS,” in Proc. Symp. VLSI Technol. Circuits (VLSI),
Jun. 2019, pp. C30–C31.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” Dec. 2015. [Online]. Available: arXiv:abs/1512.03385.

[39] Y. E. Wang, G.-Y. Wei, and D. Brooks, “Benchmarking TPU, GPU,
and CPU platforms for deep learning,” Jul. 2019. [Online]. Available:
arXiv:abs/1907.10701.

[40] A. Rovinski et al., “Evaluating celerity: A 16-nm 695 Giga-RISC-V
instructions/s manycore processor with synthesizable PLL,” IEEE Solid-

State Circuits Lett., vol. 2, no. 12, pp. 289–292, Dec. 2019.
[41] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “14.5 eyeriss: An

energy-efficient reconfigurable accelerator for deep convolutional neural
networks,” in Proc. Int. Solid-State Circuits Conf. (ISSCC), Feb. 2016,
pp. 262–263.

[42] T. Chen et al., “DianNao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” in Proc. Int. Conf. Archit. Support

Program. Lang. Oper. Syst. (ASPLOS), Mar. 2014, pp. 269–284.
[43] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor pro-

cessing unit,” in Proc. Int. Symp. Comput. Archit. (ISCA), Jun. 2017,
pp. 1–12.

[44] T. Chen et al., “TVM: An automated end-to-end optimizing compiler for
deep learning,” Aug. 2018. [Online]. Available: arXiv:abs/1802.04799.

[45] M. B. Taylor et al., “Evaluation of the RAW microprocessor: An
exposed-wire-delay architecture for ILP and streams,” in Proc. Int. Symp.

Comput. Archit. (ISCA), Jun. 2004, pp. 2–13.
[46] R. Prabhakar et al., “Plasticine: A reconfigurable architecture for par-

allel patterns,” in Proc. Int. Symp. Comput. Archit. (ISCA), Jun. 2017,
pp. 389–402.

[47] K.-A. Tran, A. Jimborean, T. E. Carlson, K. Koukos, M. Själander, and
S. Kaxiras, “SWOOP: Software-hardware co-design for non-speculative,
execute-ahead, in-order cores,” in Proc. ACM SIGPLAN Conf. Program.

Lang. Design Implement. (PLDI), Jun. 2018, pp. 328–343.
[48] E. S. Chung, J. C. Hoe, and K. Mai, “CoRAM: An in-fabric memory

architecture for FPGA-based computing,” in Proc. Int. Symp. Field

Program. Gate Arrays (FPGA), Feb. 2011, pp. 97–106.
[49] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-grained

task, data, and pipeline parallelism in stream programs,” in Proc. Int.

Conf. Archit. Support Program. Lang. Oper. Syst. (ASPLOS), Oct. 2006,
pp. 151–162.

[50] X. Yang et al., “Interstellar: Using Halide’s scheduling language to ana-
lyze DNN accelerators,” in Proc. Int. Conf. Archit. Support Program.

Lang. Oper. Syst. (ASPLOS), Mar. 2020, pp. 369–383.
[51] D. Koeplinger et al., “Spatial: A language and compiler for application

accelerators,” in Proc. ACM SIGPLAN Conf. Program. Lang. Design

Implement. (PLDI), Jun. 2018, pp. 296–311.
[52] T. Moreau et al., “A hardware–software blueprint for flexible deep learn-

ing specialization,” IEEE Micro, vol. 39, no. 5, pp. 8–16, Sep./Oct. 2019.

Lin Cheng received the five year B.S./M.S. degree
in computer Science from the University of Illinois
at Urbana-Champaign, Champaign, IL, USA, in
2017. He is currently pursuing the Ph.D. degree in
computer science with Cornell University, Ithaca,
NY, USA.

His research interests include improving the
performance of dynamic languages and supporting
them on emerging compute platforms.

Peitian Pan (Student Member, IEEE) received the
B.S. degree in computer science from Shanghai
Jiao Tong University, Shanghai, China, in 2018. He
is currently pursuing the Ph.D. degree in electrical
and computer engineering with Cornell University,
Ithaca, NY, USA.

His research interests include agile hard-
ware development methodologies and computer
architecture.

Zhongyuan Zhao received the B.S. degree from
the School of Electronics and Information, Harbin
Institute of Technology, Harbin, China, in 2012,
and the Ph.D. degree from the Department
of Nano/Micro Electronics, Shanghai Jiao Tong
University, Shanghai, China.

He is currently a Postdoctoral Research Associate
with Cornell University, Ithaca, NY, USA. His
research interests include compiler and architec-
ture optimization for coarse-grained reconfigurable
computing platform and deep learning accelerators,

programming language design, and performance optimization for manycore
architectures.

Krithik Ranjan is currently pursuing the B.S.
degree in electrical and computer engineering with
Cornell University, Ithaca, NY, USA.

He is an Embedding Software Engineering Intern
with Qualcomm Technologies, San Diego, CA,
USA. His research interests include embedding
systems, robotics, human–computer interaction, and
assistive technology.

Jack Weber received the B.S. degree in electrical
and computer engineering with Cornell University,
Ithaca, NY, USA, in 2021.

He is currently an Advanced Application
Engineering Analyst with Accenture, New York,
NY, USA.

Bandhav Veluri received the B.Tech. degree from
IIT Roorkee, Roorkee, India, in 2016, and the M.S.
degree from the University of Washington, Seattle,
WA, USA, in 2020, where he is currently pursuing
the Ph.D. degree with Bespoke Silicon Group and
Networks & Mobile Systems Lab.

His research interests include systems, low-power
sensing, and machine learning.

Authorized licensed use limited to: Cornell University Library. Downloaded on June 26,2022 at 20:43:28 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: TENSOR PROCESSING FRAMEWORK FOR CPU-MANYCORE HETEROGENEOUS SYSTEMS 1635

Seyed Borna Ehsani received the B.Sc. degree in
computer engineering from the Sharif University of
Technology, Tehran, Iran, in 2018, and the M.Sc.
degree in computer science and engineering from
the University of Washington, Seattle, WA, USA, in
2020.

He is a Graphics Software Engineer with Apple
Inc., Los Altos, CA, USA. His research interests
include computer architecture, GPUs and manycore
systems design, 3-D graphics, application program-
ming Interface design, and parallel programming.

Max Ruttenberg received the B.S. degree from
Lehigh University, Bethlehem, PA, USA, in 2014.
He is currently pursuing the Ph.D. degree with the
Bespoke Silicon Group, University of Washington,
Seattle, WA, USA.

His research interests include computer architec-
ture, parallel programming, high-performance com-
puting, graph analytics, and emerging memory
technologies.

Dai Cheol Jung received the B.Sc. degree from
Brown University, Providence, RI, USA, in 2015,
and the M.Sc. degree from the University of
Washington, Seattle, WA, USA, in 2019, where he
is currently pursuing the Ph.D. degree.

His research interests include parallel architecture,
network-on-chip, and VLSI.

Preslav Ivanov (Graduate Student Member, IEEE)
received the B.S. degree in electrical and computer
engineering from Old Dominion University, Norfolk,
VA, USA, in 2020. He is currently pursuing the
Ph.D. degree in electrical and computer engineer-
ing with Cornell University, Ithaca, NY, USA.

His research focus is in computer architecture,
particularly modeling application specific accel-
erators for combinations of performance, energy
efficiency, and lowered cost while optimizing algo-
rithms to leverage the new hardware.

Dustin Richmond received the B.Sc. degree from
the University of Washington, Seattle, WA, USA, in
2012, and the Ph.D. degree in computer engineer-
ing from the University of California at San Diego,
San Diego, CA, USA, in 2018.

He is a Postdoctoral Research Associate with the
Bespoke Silicon Group, University of Washington.
His research interests include programming lan-
guages, reconfigurable systems, and hardware
security.

Dr. Richmond was awarded the National Science
Foundation Graduate Research Fellowship in 2012, and a Powell Fellowship
in 2013.

Michael B. Taylor (Senior Member, IEEE) received
the A.B. degree in computer science from Dartmouth
College, Hanover, NH, USA, in 1996, and the S.M.
and Ph.D. degrees from the Massachusetts Institute
of Technology, Cambridge, MA, USA, in 1999 and
2007, respectively.

He has been an Associate Professor with the
Paul Allen School of Computer Science and the
Department of Electrical and Computer Engineering,
University of Washington, Seattle, WA, USA, since
2017. Previously, he was a Visiting Research

Scientist with Google, Mountain View, CA, USA, and YouTube, San Bruno,
CA, USA, and an Associate Professor with tenure in the Computer Science
and Engineering Department, University of California at San Diego, San
Diego, CA, USA.

Zhiru Zhang (Senior Member, IEEE) received
the B.S. degree in computer science from Peking
University, Beijing, China, in 2001, and the M.S.
and Ph.D. degrees in computer science from the
University of California at Los Angeles, Los
Angeles, CA, USA, in 2003 and 2007, respectively.

He is an Associate Professor with the School
of Electrical and Computer Engineering, Cornell
University, Ithaca, NY, USA. Prior to joining Cornell
University, he was a Co-Founder of AutoESL Design
Technologies Inc., Cupertino, CA, USA, a high-

level synthesis start-up company. He later served as a Software Development
Manager with Xilinx Inc., San Jose, CA, USA, after Xilinx acquired AutoESL.
His current research interests include new algorithms, architectures, design
methodologies, and automation tools for heterogeneous computing.

Dr. Zhang’s research has been recognized with the DAC Under-40
Innovators Award, the Rising Professional Achievement Award from the
UCLA Henry Samueli School of Engineering and Applied Science, the
DARPA Young Faculty Award, the IEEE CEDA Ernest S. Kuh Early Career
Award, the NSF CAREER Award, the Ross Freeman Award for Technical
Innovation from Xilinx, as well as multiple best paper awards.

Christopher Batten (Member, IEEE) received
the B.S. degree in EE from the University of
Virginia, Charlottesville, VA, USA, in 1999, the
M.Phil. degree in engineering from the University of
Cambridge, Cambridge, U.K., in 2000, and the Ph.D.
degree in EECS from the Massachusetts Institute of
Technology, Cambridge, MA, USA, in 2010.

He is currently an Associate Professor of
ECE with Cornell University, Seattle, WA, USA.
His research is at the intersection of computer
architecture, electronic design automation, and
digital VLSI.

Authorized licensed use limited to: Cornell University Library. Downloaded on June 26,2022 at 20:43:28 UTC from IEEE Xplore. Restrictions apply.

