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ABSTRACT: Solid-state nanopore technology delivers single-molecule resolution information, and the quality of the deliverables
hinges on the capability of the analysis platform to extract maximum possible events and fit them appropriately. In this work, we
present an analysis platform with four baseline fitting methods adaptive to a wide range of nanopore traces (including those with a
step or abrupt changes where pre-existing platforms fail) to maximize extractable events (2X improvement in some cases) and
multilevel event fitting capability. The baseline fitting methods, in the increasing order of robustness and computational cost, include
arithmetic mean, linear fit, Gaussian smoothing, and Gaussian smoothing and regressed mixing. The performance was tested with
ultra-stable to vigorously fluctuating current profiles, and the event count increased with increasing fitting robustness prominently for
vigorously fluctuating profiles. Turning points of events were clustered using the dbscan method, followed by segmentation into
preliminary levels based on abrupt changes in the signal level, which were then iteratively refined to deduce the final levels of the
event. Finally, we show the utility of clustering for multilevel DNA data analysis, followed by the assessment of protein translocation
profiles.

I——

S olid-state nanopores (SSNs) offer capabilities transcending
those of average ensemble tools with an expanding
footprint in single-molecule science with advantages such as
low cost, high throughput, scalability, and robustness. The
operational principle is ostensibly simple: an analyte is added
to one side and driven across the pore in response to an
applied voltage perturbing the open-pore current, stamping
analyte-specific information. The applications of SSNs span a
host of bio-macromolecules,' > bio- and synthetic particles,"
and polymers.7’8 SSNs, unlike their biological counterparts, are
somewhat notorious for open-pore drifts due to pore
enlargement over time,g'10 among other reasons. Moreover,
even when open-pore drift is absent, current fluctuations (i.e.,
noisy open-pore profiles) are not uncommon in most SSNs
and become more apparent at higher applied voltages, as noted
in our previous work."'""'* The open-pore current drift due to
pore enlargement (with time) could be largely negated with a
window-based analysis, where the analysis is performed on
equisized trace segments rather than on the entire trace itself."
However, local and more pronounced open-pore fluctuations
are more challenging and could easily lead to flawed event
detection (i.e., baseline structures being flagged as events) and/
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or undercounting of event populations. Although one could
argue to use a smaller window size where fluctuations become
insignificant, it would alienate longer duration events from the
analysis and become problematic where such events are
significant in the event population. Thus, baseline processing is
particularly important to extract maximum possible events,
especially in vigorously fluctuating current profiles. Such
current fluctuations are more apparent in 2D materials such
as graphene,'* hexagonal boron nitride (h-BN),"” and
molybdenum disulfide (MoS,)"® and somewhat less in silicon
nitride (SixNy) pores fabricated using controlled dielectric
breakdown (CDB) and chemically tuned CDB (CT-CDB),"'
as will be shown later. Thus, the noise level depends on the
fabrication method and device architecture.'”'® The noise and
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baseline fluctuations can be quantified through, for example,
power spectral density graphs and root mean square of the
open-pore current as a function of time. Analysis methods are
challenged by pores that have high noise factors and
fluctuations.

While a simple duration and depth analysis might be
adequate for preliminary analysis, it would not yield
information on finer conformations (e.g, knots in the case of
DNA). Thus, there has been great interest in the nanopore
community to develop tools and methods for robust data
analysis. More notable methods include the CUSUM-based
multilevel ﬁtting,l‘z’lg’20 MOSAIC algorithm,21 and hidden
Markov model approaches.””** The OpenNanopore application
(CUSUM-based) developed by the Radenovic group'” has, to
some extent, paved the way for a standardized analysis
approach. Like baseline profiles, the current signal within the
event is not immune to fluctuations. This could lead to over/
underestimation of signal levels. Here, we used a clustering-
based method (density-based spatial clustering of applications
with noise, dbscan clustering, for which technical information
about the execution of the clustering method can be readily
found in the MathWorks website) to (i) identify the
boundaries of the event and for (ii) preliminary estimation
of the levels within the event. These clusters (ie, points
grouped based on the likelihood to be similar to each other
than to those in any other group) then serve as the initial guess
for the number of levels within the event for segmentation of
the event to levels based on abrupt signal level changes.
However, the performance of unsupervised clustering methods
hinges on the initial parameter thresholds defined by the user.
Thus, we have introduced a set of checkpoints in the proposed
algorithm for the analysis to be insusceptible to improper
clustering. For example, if overclustering takes place, the initial
guess for the number of levels would exceed the true level
count. In such cases, adjacent levels are iteratively compared
using a user-defined current or standard deviation-dependent
threshold (discussed later in the manuscript) to see if the levels
should stay separated or be merged. Furthermore, in multilevel
events (ie, events with more than one step change such as
those arising from non-linear DNA translocations**°), a
simple mean of the data points could sometimes be insufficient
to represent the current value of the level (AI,) due to
capture of edge points leading to adjacent levels. This could,
especially in attenuated levels, underestimate the Al A
turning point-based method is used in the program to
overcome this shortcoming. The versatility of our program
was tested with both double-stranded DNA (dsDNA) and the
holo form of the human serum transferrin (holo-hSTf) protein,
using two different membrane types, and three fabrication
methods. While dsDNA is the gold standard for nanopore
experiments, proteins offer unique challenges due to their
charge heterogeneity and conformational changes in solutions
in response to external stimuli such as solution chemistry and
applied voltage. Any analyte, irrespective of its type, must first
diffuse from the bulk to the capture zone of the nanopore, after
which its transport becomes drift-dominant and is eventually
funneled through the pore in response to the applied electric
field. The transport could be either diffusion- or barrier-
limited, largely depending on the applied voltage and size of
the molecule. Moreover, the capture rate provides insights into
the limiting mechanism with a linear voltage response,
indicating a diffusion-limited transport mechanism, and an
exponential response, pointing to a barrier-limited transport

phenomenon. However, we did not explore the transport
phenomena in detail, as this study is more focused on the
extraction of events. The protein hSTf plays an important role
in iron homeostasis, its primary function being the transport of
iron from the blood into the cells. Voltage-driven protein
unfolding during electrophoretic translocation through nano-
pores has been studied previously."'> The conformation of
hSTf and thereby its function is pH-dependent, presenting
challenges during both nanopore experiments and data
extraction. We coined the name EventPro for the program
developed in this study, which is downloadable through the
research websites of the corresponding authors. Supporting
Information Section S1 outlines the graphical user interface of
EventPro and the settings associated with it.

It is worthwhile to note that much of the focus has been on
the multilevel fitting of events, overshadowing the significance
of baseline processing. In this paper, we first discuss baseline
processing methods tailored for both fluctuating and
appreciably stable pore profiles, with the former requiring an
adaptive baseline fitting approach that is sensitive to local
variations. Such pre-processing allows for the identification of
events that would otherwise be subsumed by local baseline
variations. This step can thus be identified as the first critical
step to determine the proper flagging of events and by
extension their final cumulative count. Second, the multilevel
fitting of events is discussed. These two steps are discussed
separately so that they can be adopted independently of each
other depending on the requirements of the user. Since all
functions are MATLAB-based, they can be integrated easily
into existing workspaces.

B EXPERIMENTAL SECTION

Nanopore Fabrication, Biomolecule and Electrolyte
Preparation, and Data Acquisition. The h-BN nanopore
fabrication processes are outlined in our previous work,"*°
and the nanopores in Si,N, purchased from Norcada
(NBPX5001Z-HR, nominally ~12 nm thick) were fabricated
using CDB and”” CT-CDB.'' dsDNA (10787018, Fisher
Scientific) was used as supplied, and the stock solutions of
hSTf (T066S, Sigma-Aldrich, USA) were prepared by
dissolving the as-supplied solid in >18 MQ cm ultra-pure
water (ARS-102 Aries high-purity water systems). Electrolytes
(purchased from Sigma-Aldrich) were prepared by dissolving
LiCl (213233) or KCl (P9333) in ultra-pure water. All
electrolytes were buffered using 10 mM tris-buffer (J61036,
Fisher Scientific), and the pH was adjusted by adding
concentrated drops of HCl (H1758, Sigma-Aldrich) and/or
KOH (306568, Sigma-Aldrich) and measured using an Orion
Star pH meter. All electrical measurements were acquired
using an Axopatch 200B (Molecular Devices, LLC), low-pass
filtered at either 10 kHz (hSTf) or 100 kHz (dsDNA) using
the inbuilt Bessel filter of the Axopatch, sampled at 200 kHz
(hSTf) or 250 kHz (dsDNA), and digitized using Digidata
1440A (Molecular Devices, LLC). The basis for oversampling
stems from the requirements of reconstructing the analogue
signal from digitized samples with minimal distortion. For an
ideal aliasing filter, this requires 2X the bandwidth. Since it is
not possible experimentally, for time-domain analysis, it is
recommended to sample at least 5X the bandwidth with at
least 10X being considered good. However, in most cases, we
have resorted to a 20X sampling rate, which is not uncommon
in the nanopore community. For 100 kHz low-pass filtering,
we have used the maximum sampling rate allowed by the
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Figure 1. Representative S s traces corresponding to (a) dsDNA translocating through the Si,N, nanopore fabricated by CT-CDB, (b) dsDNA
translocating through the Si,N, nanopore fabricated by CDB, and (c) holo-hSTf translocating through the h-BN nanopore fabricated by a
transmission electron microscope (TEM). For h-BN, we deliberately chose an inferior trace to test the performance of each fitting approach. Each
open-pore trace was fitted using the arithmetic mean (first row), linear fit (second row), Gaussian smoothing (third row), and Gaussian smoothing
and regressed mixing (last row) approaches discussed in the main text. A S s analysis window (rather than 500 ms as outlined in the main text) was
chosen to highlight the performance of each fitting approach.

digitizer (i.e, 250 kHz). For hSTf, it was not possible to use the increases (or decreases) with time partly due to pore
100 kHz low-pass filter setting due to insufficient signal-to- enlargement or other reasons. The open-pore current trace
noise ratio. It should be noted that faster translocations require in the analysis window is fitted with a first-degree polynomial
operating at higher bandwidths, which comes at the cost of to construct a fit for the I, profile (Figure la—c, second row).
higher baseline noise. Although the use of a lower low-pass The same method can also be used for nanopores with stable
filter setting permits circumventing the noise issues to some open-pore currents that have slight fluctuations with time for
extent, it comes at the expense of signal attenuation, as better estimation of the baseline. This method is the second-
outlined in Supporting Information Section $4. fastest method computationally (typically ~10% slower than
type 1).

B RESULTS AND DISCUSSION Baseline Fitting Method 3: Gaussian Smoothened I, A fit

Baseline Fitting. We discuss four baseline fitting strategies to the open-pore current trace in the analysis window is
along with their (i) pros and cons, and (ii) suitability for a developed by smoothing it using a Gaussian filter with the
given nanopore platform. We used baseline fitting strictly to inbuilt smoothdata function of MATLAB (Iymoothdats Figure
detect events, whereas further analysis to identify levels was la—c, third row). This is the third-fastest method computa-
done using raw data rather than the baseline-corrected data tionally (typically ~5X slower than type 1) and is suited for
because the latter could change the event structures. The open- pores that have fluctuating baselines (i.e, random fluctuations
pore current (I)) trace is first segmented into windows of within the analysis window). The method is more adaptive to
identical length defined by the user (typical length is about 500 baseline fluctuations, unlike the first two methods. Its use for
ms with the choice dependent on the average duration of a traces with step changes should be done with utmost caution,

resistive pulse and the open-pore stability).

) - Al ) ) as it could lead to poor estimation near the edges of the steps,
Baseline Fitting Method 1: Arithmetic Mean of |, As the

as seen in Figure Ic (third row).

name suggests, in this method, the arithmetic mean of the Baseline Fitting Method 4: Gaussian Smoothing and
open-pore current trace (y;,) in the analysis window is Regressed Mixing of ly. Using the Iy ;noothdaa developed under
computed (Figure la—c, first row). This is the fastest method baseline fitting method 3, a secondary fit line is developed by
computationally and is most suitable for nanopores where the gradually increasing the values of the fit line by modifying it
baseline dOCS not appreciably change Wlth time (e'g" CT-CDB Wlth nz/f,thresh'atrace (i'e') I?)?scx?xr(;i:}%:gper = IO,smoothdata + nz/r,thresh'o-trace
nanopores). However, this method could provide a false where 11 4. is a numerical variable) until ~99.5% of the trace
estimation of Uy, for nanopores with vigorous open-pore is <I§f§§£oat}rzim (the upper boundary of the current trace). The
current fluctuations (Figure 1c, top row). lower boundary is then defined as IBT;’;?,‘:%L‘;Z’“ = IO,smoothdata -
Baseline Fitting Method 2: Linear Fit to Iy This method is N thresh'Otracer THus, the baseline can be defined as current
more suitable for pores where the open-pore current gradually points that are within the Iy g oothdata &= o thresh Crrace TaNge. A fit
11712 https://doi.org/10.1021/acs.analchem.1c01646
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Figure 2. Flow diagram of the multilevel fitting approach. In brevity, (a)b) baseline fitting is first performed using one of the four methods
described in Figure 1 followed by extraction of events. In this instance, events are defined as perturbations that are at least @ppc-Gpaseine deep. ()
Turning points (ie., peak and valley points) of the padded event are then used as the data points for dbscan clustering. (d) The clusters (fgygters)
found in panel (c) are then used as the seeding points to find abrupt changes in the signal level. This step tends to overestimate levels than what is
truly present since we use 1 gers + 2 as the seed value (reasons outlined in the main text). The vertical magenta dashed lines bracket each level. (e)
A weighted mean approach (see Supporting Information Section S2) is then used to calculate the current value for each level. (f) The events are
iteratively checked against their adjacent levels to see if they are sufficiently apart compared to a user-defined threshold (i.e., to see if they should be
merged or kept as individual levels).
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Figure 3. (a) Falling and rising edge refining method where (i) falsely identified levels due to subtle current fluctuations in the falling/rising edges
(zoomed-in on either end of the event) are removed through (ii) Gaussian smoothing. (b) (i) The current value of each level (Al,,) for a given
event could be calculated either with (ii) arithmetic or (iii) weighted mean of the data points. However, since this could sometimes underestimate
the Al we first find (iv) turning points in each level followed by (v) structure- and length-dependent mean calculation, as outlined in the main
text and Supporting Information Section S2.

to this baseline is then developed using the inbuilt msbackadj
function. This type of baseline development is computationally
expensive (typically >10X slower than type 1), yet it offers
capabilities to successfully develop a fit line for vigorously
fluctuating baseline profiles and even for those with step

changes (Figure lc, last row). However, this should only be

11713

used if neither of the previous baseline types can be used
because of the computational resources it requires.
Multilevel Fitting and Event Characterization. After
the identification and fitting of the baseline using one of the
abovementioned four methods, events are flagged as current
perturbations that have deviated at least (i) @ppcObaseline from
the baseline fit, where @ppc is the peak detection coeflicient
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Figure 4. S s event traces corresponding to (a) dsDNA translocating through a CT-CDB-fabricated Si,N, pore, (b) dsDNA translocating through a
CDB-fabricated Si,N, pore, (c) holo-hSTf translocating through a CT-CDB-fabricated Si,N, pore, and (d) holo-hSTf translocating through a TEM-
fabricated h-BN pore (extended traces are shown in Figures S4 and S6). (e) Event counts from each of the four baseline fitting methods normalized
to the counts from the Gaussian smoothing and regressed mixing, I,, (method 4) fitting approach. All pores used in this comparison are ~9—10 nm in

diameter.

and 6y, ne is the standard deviation of the baseline in the
analysis window, or (ii) Alppc, where Alppc is a user-defined
current threshold. Most elementary analysis (ie., simple
analysis) metrics of an event include the maximum depth
(AI_,,) and the duration (At). However, these metrics are
highly susceptible to point variations and do not yield insights
into multilevel features of an event—commonly seen with long
polymeric molecules such as DNA. Steps 2 and 4 of the
Multilevel Fitting and Event Characterization section highlight
measures taken to safeguard against such subtle variations. The
multilevel fitting flow of EventPro is shown in Figure 2.

Step 1: Identification of Levels and Baseline Points. The
events are padded by adding f,me points (typically S0) to
either side of the event (i.e., padded event). Then, the peak and
valley points (ie, turning points) of the padded event are
identified. These points provide a preliminary collection of
selected points in each level for robust clustering (Figure 2c).
Without this step, the points in the padded event would be too
closely populated for adequate clustering—adjacent levels
would be evaluated as a single cluster rather than separate
clusters. Afterward, these points are clustered using the dbscan

11714

method with the threshold for a neighborhood search radius
set to Opygelines OQur choice for dbscan stems from the fact that
levels could be arbitrarily shaped and the knowledge of the
number of levels in a padded event is typically unknown.
Abrupt changes in the padded event are then deduced using
the inbuilt findchangepts function (Figure 2d) with the
maximum number of abrupt changes defined using the cluster
count (Mgugers + 2). The “+2” is to safeguard against poor
clustering of events where 71, is <2, which does not permit
the findchangepts function to identify event boundaries
properly. The newly found abrupt change points allow for
proper differentiation of the event region from the baseline
region and, by extension, levels within the event. This newly
defined event region could be different from the previously
defined event region using the simple analysis because the
latter is susceptible to point variation and is prone to failure
with structures that have falling/rising edges that convolve
gradually with the baseline region. To safeguard against
oversegmentation of the padded event, the algorithm looks at
the mean current level difference of the nearest neighboring
levels. If they are within a user-defined threshold (either a user-
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Figure S. (a) Concatenated events corresponding to dsDNA translocations (through a CT-CDB-fabricated Si, N, pore) with black and red traces
corresponding to raw and fit data, respectively. (b) Scatter plot of AG,, vs log(Atrgs) and (c) histogram correspondmg to AG,,,, from simple
event analysis. (d) Scatter plot of the deepest current level from the multilevel fitting approach (AGg ) s log(Atgwing) and (e) histogram
corresponding to AGg . (£) Scatter plot of single-level events clustered into two groups using Gaussian mixture clustering with blue and magenta
scattered populations corresponding to single-file and looped translocation conformations, respectively. (g) Histogram of AGg,,, corresponding to
single-file translocations from panel (f). (h) Scatter plot of dual-level events clustered into two groups using Gaussian mixture clustering with green
and black scattered populations corresponding to deep and shallow dual-level translocations, respectively. (i) Histogram of AGy ,, corresponding
to deep dual-level translocations from panel (h). (j) Concatenated events corresponding to hSTf translocations (though h-BN at +800 mV) with
black and red traces corresponding to raw and fit data, respectively. Scatter plots corresponding to (k) AG,,, vs log(Atrss) and (1) AGg e vs

log(Atgyiy) with red and green scattered populations corresponding to +100 and +800 mV, respectively. Histograms of AGg; .,y at (m) +100 and
(n) +800 mV.
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defined current, Al Or as n-Gp,gine Where n is typically set
to 3), the two levels are merged (Figure 2e,f). This is done
iteratively until there are no levels to be merged further.

Step 2: Refining Rising and Falling Edges. The first and
last levels of the event tend to be affected by the structure of
the rising and falling edges of the event, respectively. That is, if
these edges are not smooth (have point fluctuations), such
fluctuations could be misidentified as separate levels (Figure
3a). This would lead to a false overestimation of the level
count of the event. Thus, we used a Gaussian smoothing step
for the rising and falling edges, and if any peaks or valleys are
present in the smoothened edges, assigning levels to the same
is permitted and eliminated otherwise (Figure 3a).

Step 3: Calculation of the Current Value of Each Event
Level. While the more straightforward method is to use the
mean of the data points in each level to calculate the
representative current value of the level, this method is more
suitable for long levels and for levels that do not appreciably
capture the edges leading to adjacent levels. However, for short
events, this could drastically underestimate the current level.
Thus, to eliminate these subtleties, EventPro looks at the peak
and valley points of each level. These define the upper and
lower boundaries of a given level, and the mean of these
essentially provides an estimation that is less susceptible to the
presence of portions of adjacent edges (Mievelruming points)s 25
seen in Figure 3b. The assignment of the current value for a
given level (Aly,) is discussed in Supporting Information
Section S2 that takes level length and its structure (i.e., upward,
downward, or leveled) into account. Events are then qualified
as acceptable or poor based on the standard deviation of the
longest level and existence of points deviating greater than the
threshold used to iteratively refine levels (see Supporting
Information Section S3 for more details).

Step 4: Translocation Time Calculation. The more
commonly used methods for At estimation include full width
at half maximum (Atzyy), modified stop point,”*** and two
sides of the event (Atrgy). The Atygy approach has been
shown to drastically overestimate At, whereas Atpyyy and
modified stop point methods yield values in close agreement
with expected At.”® EventPro uses the Atgyy method. If At <
2T, where T, = 0.3321/f. with f, being the cutoff frequency of
the filter, the event would be attenuated due to the finite
response time of the filter. For example, if f. = 10 kHz (the
commonly used filter setting), 2T, would be ~66 us.® To
account for the finite spacing of points in the falling and rising
edges of the event, 10—90% of the step height of each edge is
fitted with a linear function for Atpyy calculation to be
independent of point spacings and subtle variations in the
edges. To validate this approach, we used a function generator
to simulate events with a known pulse width (Atinput) and
compared the calculated Afpyyyy from the linear fit approach
with Af; ., as discussed in Supporting Information Section S4.
We observed that Aty was in good agreement with At
for pulses longer than 40 us, as seen in Figure S3. Thus, one
must be mindful of the erroneous (over) estimation of At for
pulses shorter than 40 us with the 10 kHz low-pass filter
setting.

Implementation of EventPro with Biomolecules. In
this step, we tested the performance of EventPro with dsDNA
and protein (hSTf). Figure 4 shows representative current
traces and the normalized event count with each baseline
fitting type for the conditions outlined in the caption. From
Figure 4, it is apparent that with deteriorating open-pore

current quality, the fraction of events extracted decreases
drastically from method 4 to method 1. For example, for hSTf
translocating through h-BN nanopore under +800 mV, only
~0.5X events were extracted using method 1 compared to
method 4, whereas for dsDNA translocating through a CT-
CDB-fabricated nanopore, the fraction obtained using method
1 improves to ~0.95X compared to that in method 4. One
should be mindful of the fact that method 4 is >10X slower
than method 1, and thus, a tradeoff between the event count
and the computational economy should be considered when
choosing a method for baseline fitting.

Data Analysis. While it is possible to perform a lengthy
analysis for all the analytes and pore fabrication conditions
provided herein, for brevity, we restrict further analysis to the
two extreme cases: dsDNA translocation through the CT-CDB
nanopore (ultra-stable open-pore trace, Iy = 130 pA, where
I4q is the standard deviation of the open-pore current
computed from a ~S00 ms section) and hSTf translocation
through h-BN nanopore (most vigorously fluctuating trace, Iy,
= 320 pA). Further representations of noise and baseline
fluctuations are shown in Supporting Information Section S6.
Resistive pulses resulting from the translocation of dsDNA
through a ~10.8 nm-diameter Si,N, nanopore were extracted
by first fitting the baseline using the arithmetic mean of I,
method and then setting @ppc to S. The events were then fitted
using the multilevel fitting approach (Figure Sa). The scatter
plot corresponding to the maximum change in conductance
due to dsDNA translocation (AG,,,) versus log(Atrgg) is
shown in Figure Sb (i.e., simple analysis), while the deepest
current blockade of the fit levels (AGg,,,) versus log-
(Atpwun) is shown in Figure Sd. The histograms correspond-
ing to AG,,, and AGg ., are shown in Figure Sce,
respectively. Both the histograms were then fitted with a
Lorentzian mixture model (see the Histogram Fitting in
Supporting Information Section S7 for more details). From
the histograms, it is evident that the simple analysis yields a
wider distribution of AG compared to the multilevel fitting
approach. This is not surprising since the simple analysis is
susceptible to point variations and would invariably result in a
wider distribution. The multilevel analysis permitted us to
separate single-level (Figure Sf) and duallevel (Figure Sh)
translocations from other multilevel translocations. Single-level
translocations can be either single-file or looped translocations
with the latter typically producing 2X deeper blockades
compared to the former. Thus, to separate each of these
from the scatter plot shown in Figure 5f, we performed a
simple Gaussian mixture clustering (see the Clustering of Scatter
Plots in Supporting Information Section S7), whereby the
single-file translocations (blue) were separable from the looped
translocations (magenta). Fitting of the histogram correspond-
ing to single-file translocations (Figure Sg) yielded a mean
value of ~5.4 nS, which is in good agreement with that from
the fit of the histogram of the total population (i.e., Figure Se,
first peak). This clustering approach revealed that ~69% of
translocations were single-level type with 60% (~87% of the
single-file population) being single file and ~9% being looped
translocations. Similarly, the dual-step translocations were also
clustered, as seen in Figure 5g. As seen in Figure S10, there are
shallow dual-level events that have been observed previously."”
Fitting of the histogram corresponding to deep dual-level
translocations (Figure 5i) yielded a mean value of ~10.7 nS,
which is in good agreement with that from the fit of the
histogram of the total population (i.e., Figure Se, second peak).
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Furthermore, only ~15% of translocations were dual-level with
~11% (~75% of the dual-level population) being deep
blockades and 4% being shallow dual-level blockades. The
change in open-pore conductance due to dsDNA through a
~10.8 nm-diameter pore was estimated to be between 4.95
and 6.9 nS (see the Modeling DNA Translocation under
Supporting Information Section S7 for more details). This was
found to be in close agreement with the peak values from each
of the analyses corresponding to single-file DNA trans-
locations: ~6.4 and ~5.6 nS from simple and multilevel
analysis, respectively.

Finally, the more vigorously fluctuating current trace—hSTf
through an h-BN nanopore—was analyzed. For this, we used
the Gaussian smoothing and regressed mixing of I, baseline fitting
method (raw traces are shown in Supporting Information
Figure S6) with the corresponding scatter plots and histograms
shown in Figure Sk—n. While the simple analysis yields a broad
scatter plot distribution (Figure Sk), the multilevel fitting
approach with the log(Atgyy) approach yields a narrow
distribution (Figure SI). Histograms corresponding to AGg .y
at +100 and +800 mV are shown in Figure Sm,n, respectively.
It is interesting to note that with increasing applied voltage, the
translocation time slows down and the change in conductance
decreases. We believe that as shown in our previous work, the
voltage-driven protein unfolding is the reason for these
observations, where the increase in molecular length due to
voltage-driven unfolding could outweigh the increasing
velocity with increasing voltage with the former (i.e.,
unfolding) elongating the molecule (slowing down the
translocation), while the latter (i.e., increasing voltage)
would increase the translocation speed.”’ Furthermore, the
voltage-driven unfolding would reduce the molecular volume
and, by extension, the magnitude of the blockade depth. Each
of the AGp,, distributions shown in Figure Sm,n was fitted
with a Lorentzian—Lorentzian mixture distribution. Although
the bimodal distribution is not as well separated as dsDNA, it
could correspond to unfolded (lower AG) and folded (hi§h

AG) conformations of the protein, as noted previously."”"

B CONCLUSIONS

We present four baseline fitting methods, viz., arithmetic mean,
linear fit, Gaussian smoothing, and Gaussian smoothing and
regressed mixing, each with increasing robustness and
computational cost, that can be implemented across a wide
spectrum of open-pore current traces. The baseline fitting must
be chosen depending on the behavior of the open-pore trace:
ultra-stable profiles can be fitted with the arithmetic mean
method (eg, CT-CDB-fabricated nanopores), while more
rigorously fluctuating baselines require the more adaptive yet
computationally expensive Gaussian smoothing and regressed
mixing approach. Proper identification of the baseline is
imperative for the effective identification of events. For
example, when the open-pore current fluctuates with time
(i.e., noisy open-pore traces), the baseline fitting method must
be adaptive to such fluctuations; otherwise, it could over/
underestimate the open-pore current and, by extension, fail to
recognize events. We note that identification of the maximum
number of events may come at the expense of analysis
efficiency, especially in the case of fluctuating open-pore
profiles (more time needed to complete the analysis), yet it
compiles a better representation of the translocation
population. Afterward, multilevel fitting was performed,
which startsed with clustering of turning points of the events

using the dbscan method. Subsequently, abrupt changes in the
signal levels were found, followed by iterative refining of the
event levels based on the user-defined step height threshold.
The current representation of each level was calculated using a
combination of the mean of turning points and weighted mean,
which takes the structure (i.e, upward, downward, or
connecting) and length of events into account. The rising
and falling edges of the event were refined, as these were found
to be susceptible to subtle current fluctuations, leading to false
generation of levels. Events were then qualified as acceptable or
poor based on the standard deviation of the longest level and
existence of points deviating greater than the threshold used to
iteratively refine levels. The performance of the program was
tested using data collected from the translocation of dsDNA
and hSTf through nanopores fabricated by CDB, CT-CDB,
and TEM through Si,N, and h-BN membranes. Finally, the
translocation characteristics of the two extreme cases were
examined: dsDNA through CT-CDB nanopores (ultra-stable
open-pore current) and hSTf through h-BN nanopores
(vigorously fluctuating open-pore trace). Clustering was used
to separate looped events from single-file translocations and
shallow dual-level events from deep duallevel events in
dsDNA. In a nutshell, the proposed analysis platform carries
advantages such as iterative level refining to safeguard against
subtle current fluctuations that lead to false levels, calculation
of the level mean based on turning points to counter shallow
falling/rising edges, the full width at the half maximum
approach to calculate the event duration instead of using the
two sides of the blockade method, refining of falling and rising
edges of the events to prevent false event classifications,
especially in the case of shallow and/or noisy drops, and
classification of events as acceptable or poor for the ease of the
user.
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