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Well-posedness of free boundary hard phase fluids in
Minkowski background and their Newtonian limit*

SHUANG MIAO, SOHRAB SHAHSHAHANI, AND SIJUE WU

The hard phase model describes a relativistic barotropic irrota-
tional fluid with sound speed equal to the speed of light. In this
paper, we prove the local well-posedness for this model in the
Minkowski background with free boundary. Moreover, we show
that as the speed of light tends to infinity, the solution of this
model converges to the solution of the corresponding Newtonian
free boundary problem for incompressible fluids. In the appendix
we explain how to extend our proof to the general barotropic fluid
free boundary problem.

1. Introduction

Let (R13,m) be the Minkowski space-time with metric components m,,,,,
M?V: 0’172737

(1.1)  meo=—1, miui=mo2=mg3=1, and my =0, if up#v.

The motion of a relativistic perfect fluid occupying a domain Q C R'*3 in
Minkowski background (R'*3 m) is governed by the conservation laws

v, " =0,
VI =0,
where
(1.4) T = (p+ p)ulu’ + p(m™ )
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is the energy-momentum tensor, and
(1.5) " = nut

is the particle current. Here w is the fluid velocity, which is a dimensionless
future-directed unit timelike 4-vector, so its components satisfy

(1.6) maguauﬁ =1, u® > 0;

and p is the energy density, p is the pressure, n is the number density of
particles, and V is the covariant derivative associated to m. Let s be the

entropy per particle, and 0 be the temperature. The laws of thermodynamics
state that p and p are functions of n and s; p > 0, p > 0, and

10

_ 9

on

The sound speed n is defined by

and is assumed to satisfy 0 < 1 < ¢, where c is the speed of light.!
Assume that the perfect fluid is barotropic, that is, the pressure is a
function of the energy density:

p=f(p)

Then (1.3) decouples from (1.2), which by themselves form a closed system.
In this case, both p and p are functions of a single variable o, defined by

dp
1.9 = oL,
(1.9) prp=o_

'We have chosen not to normalize units leading to ¢ = 1, because as a byproduct
of our well-posedness result and a priori estimates (to be discussed below) we are
able to rigorously justify the Newtonian limit of the problem as ¢ — co. The exact
powers of ¢ that appear in the equations below will be explained in the discussion
following the statement of Theorem 1.1. Note also that even though the speed of
light is taken to be ¢ rather than 1, the coordinates (z°,...,2%) on (R!*3 m) are
chosen so that the metric components are (1.1).
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Assume that the function f is strictly increasing and the integral

P _dp

0o PP F)
exists. Let
V=|Vlu
where
V]| == e”
and
_ptp
VI

Then (1.2) can be reduced to the following equations in the fluid domain Q:

1
(1.10) VYV, VHF 4 iv“(uvuz‘) =0 inQ,
(1.11) V.(G(IVI)V#) =0 in Q.

See [2] for the derivation of (1.10)—(1.11).

Assume further that the fluid is irrotational, that is
(1.12) VH =Vt

for some scalar function ¢, and the sound speed n equals to the speed of
light c. Then we arrive at the hard phase model®. During the gravitational
collapse of the degenerate core of a massive star, when the mass-energy
density exceeds the nuclear saturation density, the sound speed is thought
to approach the speed of light, cf. [2, 12, 7, 29, 25]. The hard phase model is
an idealized model for this physical situation, cf. [2]. See also [1]. As derived
in [2], by choosing appropriate units for the mass, length and time, the
equation of state relating p and o for the hard phase model is

L, o

(1.13) p=5(0"- ch,
the energy density satisfies

L 9, 4
(1.14) p= 5(0 +c),

2This is also referred to as a stiff or incompressible fluid in the relativistic fluid
literature.
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and
(1.15) V] = o, G=1.

For the hard phase fluid, the variable ¢ is the enthalpy, which satisfies 02 >
¢ in the fluid domain Q. Equations (1.10)—(1.11) in this case reduce to

(1.16) -V, Vit =0 = V,V¥=0, inQ.

In terms of the potential function ¢, where V# = V¢, equations (1.16) can
be equivalently written as:

(1.17) ~V, 6V’ = a2, O¢ =0, in Q.

Observe that the first equation in (1.16) or (1.17), from which (1.10) follows
by taking a covariant derivative, is a direct consequence of (1.6). The energy-
momentum tensor 1" and the particle current I for the hard phase model
are

TH = VIV — %(mfl)ﬂy(vava +c), "=V,

In this paper we study the motion of a hard phase fluid with free bound-
ary, surrounded by vacuum. Let (2%, 2!, 22, 23) be the rectangular coordi-
nates for a point in Minkowski spacetime (R!*3 m). We also use ¢ for 20,
and z = (2!, 22, 2%), and 0; for Vg, 9, for (V1,Va, V3). Let Q = {t > 0}NQ
be the fluid domain, Q; := {20 = ¢t} N Q, and 9Q; be the boundary of €.
Let 0Q = [J,~( 0§% and T0Q be the tangent space of 0f). Besides equations

(1.16), we assume that on the boundary 052,

(1.18) o?=c"  on o0
(1.19) Voo € TON.

The first condition (1.18) is equivalent to p = 0 on 052, and the second states
that the fluid particle on the boundary 0f2 will remain on 92 at later times.

To summarize, we study the Cauchy problem for the following system
of equations

=V, V= o2, in Q

V,V#=0, dV =0 in 2
(1.20) S o

0% =%, on 0f)

Viea € TON
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where V, 02 and 0 are the unknowns. Here dV is the exterior derivative
of the 1-form V' (we will abuse notation to write V' for both the vectorfield
and the corresponding 1-form Vb), so dV = 0 means that V is irrotational.
We assume that the initial data (Vp, 0p) and Qg are given and satisfy

( 0 (Vo) ot >ct VO, in Qo

B = dVo=0 in Q
(1.21) V(o 1 0= R
UO c*, on 0€)
V,08VHod > ¢kt > 0 on 0

where ¢ is a nonzero constant.®> We show that if the domain Qg and (Vb,00)
are sufficiently smooth and satisfy (1.21), then (1.20) is uniquely solvable in
a time interval [0, Tp], with Ty > 0 depends only on the initial data, and the
solution has the same regularity as the initial data. Furthermore we show
that for suitably given initial data relative to the speed of light ¢, the life
span of the solution is Ty = T, with 71 > 0 independent of ¢; and as ¢ — oo,
the solution of (1.20)—(1.21) converges to the solution of the corresponding
free boundary problem of the Newtonian incompressible fluid.

The free boundary problem (1.20) is a fully nonlinear system defined
on a free domain. The key to solving (1.20) is to reduce it to a quasilinear
system.

Consider the Newtonian counterpart of our problem, the water wave
problem, which concerns the motion of an incompressible, irrotational ideal
fluid in free domains, neglecting surface tension. Let V be the velocity and
the pressure. Assume that the fluid occupies the domain €y at time ¢, with
boundary d€Y, and let 72 be the unit outward normal to 9. An important
condition for the well-posedness of the water wave system is the Taylor sign
condition?:

i

op ~

1.22 ——>¢ >0 on 0€Y;.
It was shown in [27, 28] that for the water wave system, taking one material
derivative to the Euler equation gives rise to a quasilinear equation. This

3The last assumption in (1.21) is the relativistic Taylor sign condition, which

we will explain next.
1t is known that the failure of this condition leads to instability; cf. [22].
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quasilinear equation is®
(1.24) (D~t2 +aVa)V = —VDyp, on ?Qt
AV =0, in €y
where D; = 8, + V - V is the material derivative, a = —%, and Vj is the

Dirichlet-Neumann operator. Observe that by Green’s identity, the Dirichlet-
Neumann operator Vj; is a positive operator:

/ 'UVﬁ'UdS:/ Vo2 dz > 0
GIoN Q

for v harmonic. In [27, 28] boundary integrals were used to express the
quantities @ and —V D,p, and the first equation in (1.24) was shown to be
a quasilinear equation of hyperbolic type, with the left-hand side consisting
of principal terms, and a local-wellposedness result was obtained. In [4] a
similar quasilinear equation as the first in (1.24) was used to study the
more general case that allows for non-zero vorticity (see also [30]). Instead
of boundary integrals, elliptic regularity estimates and equations

(1.25)
—Ap=0;,VIo;Vi, in Q, p=0 ondY
—ADp = d;pAV + G(8V,0%p), in Q, Diyp=0 ondy
were used in [4] to control the regularity of VVp and VVD;p via the reg-

ularity of Ap and ADyp, and an a priori estimate was obtained under the
assumption that the Taylor sign condition (1.22) holds.

Let g be the gravity. The motion of water waves is described by

D,V +Vp=g, in Q, p=0, on O€Y
divV =0, curlV =0, in Q,’ (1,V) e TORQ, on Q)

Taking a D, derivative to the Euler equation and computing the commutator
[Dy,V]p = =Vp - VV yields
(1.23) D2V —Vp-VV = —=VD;p.

Since p = 0 on dQ, —Vp = aii on the free boundary 99, with a = —%. Also
AV = 0. Restricting (1.23) on 9Q; gives (1.24).
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This motivates us to take a Dy := V#V, derivative of the equation
(1.10) to obtain®

1 1
(1.26) DVY — iv,ﬂv“v'/ = —§VVDVa2.

Since 02 = ¢* on 90 by assumption, Vo? is normal (with respect to m) to

0. Let n be the unit outward pointing (spacetime) normal to 9€2. Assume
that the relativistic Taylor sign condition

(1.27) V,0?VFe? >0  on 09
holds.” Then we can write
Vo? = —an, on 05,

where a > 0 is given by

(1.28) a=1/V,02VHo?.,

Observe that the second equation in (1.20) gives
(1.29) Ov =0,

where [J is the D’Alembert operator. Going back to (1.26) and restricting it
to the boundary we get

(1.30) {(D%/ +1av,)V¥ = -1V Dyo?, on 09

OvY =0, in Q

Here V,, can be thought of as the hyperbolic Dirichlet-Neumann map. That
is, V.0 is the normal derivative on 0f of the solution © for the wave equation

)

00 =0 in €
=0 on 0N

SWe know ||V|| = o for the hard phase model. In the rest of this paper we will
not work with the fluid velocity v again, and will refer to V' simply as the velocity.

"This is consistent with the fact that ¢ > ¢* in the fluid domain €. Assume
that the relativistic Taylor sign condition V#02V 02 > cdc* > 0 holds initially and
that the solution exists. Then by continuity, (1.27) will remain to hold for a short
period of time. During this time Vo? is space-like, and hence 92 is timelike.
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provided the initial data for © are given. Applying V, to (1.10) and (1.26)
and summing over v yields

(1.31)
Oo? = (=2VAVY)(V,V,) in Q, o2 =c* on 00
ODyo? = 4(VHVY)V, V02
+ 4(VAVY)(VA\VH)(V,V,) in Q, Dyo? =0 on 09.

Here Dy o2 = 0 on 99 follows from the boundary conditions (1.18)-(1.19).

Although equations (1.30)—(1.31) take similar forms as the quasilin-
ear system (1.24)—(1.25) of the water waves, there are fundamental differ-
ences. Most notably the Laplacian A for water waves is replaced by the
D’Alembertian [ for our problem. It is not clear whether the hyperbolic
Dirichlet-Neumann map V,, is still positive, and if (1.30)—(1.31) is a quasi-
linear system with a lower order right-hand side. Most importantly, it is not
clear in which functional analytic settings the Cauchy problem for (1.30)-
(1.31) can be solved.

In §2.1 we will develop the necessary analytic tools to resolve these issues.
In particular in Lemma 2.3, we will show that in the energy functional for
equation

(1.32) {(D%/ +3aV,)0 = f, on 9N

e =g, in

the hyperbolic Dirichlet-Neumann map V,, controls fQT V20| dz, minus
some integrals involving lower order terms and the initial data, provided V
is timelike; and the energy functional for (1.32) controls

/ \DVG\QdS—i—/ |V:..0% da.
8QT QT

Using the tools in §2.1, we will show that the quantities a and —%VVD\/O'Z
in (1.30)-(1.31) are of lower order. We will first solve the Cauchy problem
for the quasilinear system (1.30)—(1.31), and then prove that a solution of
(1.30)—(1.31) is also a solution of the Cauchy problem (1.20)—(1.21), provided
the data for the Cauchy problem of the system (1.30)—(1.31) are derived from
those of equation (1.21).

To solve the system (1.30)—(1.31), we will first construct an energy func-
tional by applying the basic energy estimate in Lemma 2.3 to © = D{,V for
integers 0 < j < k, and prove an a priori estimate. We find it advantageous
to work with D{,V instead of other types of derivatives of V, since we know
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D{,a2 = 0 on 092, for j > 0 integers, thanks to the boundary conditions
(1.18)—(1.19). Using equation (1.30), we can control the Sobolev norms in-
volving derivatives in all directions by showing D%/ ~ V on . We will also
include in our energy functional a quantity involving some L? integrals of
Di,o?, see (2.5), to control the quantities a and —3V”Dyo? in (1.30). To
prove the existence of solutions of the system (1.30)—(1.31), we will use the
Galerkin method, discretizing the system (1.30)—(1.31) into a system of finite
dimensional ODEs. This appears to be one of the most natural methods to
construct approximate systems for (1.30)—(1.31), since it allows us to almost
effortlessly extend our proof for the a priori estimate for (1.30)—(1.31) to the
discretized system. In Section 1.2.1 we will give an extended outline of the
approach in this paper.

We now state our results. Let (Vp, 0g) and Qg be given and satisfy (1.21).
Observe that we can use the second equation in (1.21) to compute the co-
variant derivative VOV, hence Dy, Vy, and subsequently the higher order
derivatives D{“/O Vo and D‘k/oag .

Assume that there is a diffeomorphism Y : Qg — B with B the unit ball
in R?, and assume that the following regularity and compatibility conditions
are satisfied by the data:

%Y € L*(Q), 2a<K+2,

(133 LDy, Vo, 03Dy log € L* (), k< K+1, 20+k<K+2,
' DtV € L*(09),
Dy, o € Hy(Q), k< K+1.

Theorem 1.1. Let K be sufficiently large. Then for initial data (1.21) satis-
fying the regularity and compatibility conditions (1.33), there exists Ty > 0,
a unique domain 2 = Usc(o 1,82, and a unique solution (V,o) to (1.20) for
t € [0,Tp]. Moreover, (V,o) and Q satisfy the same regularity properties as
their initial data.

Remark 1.2. By examining the proof of Theorem 1.1 one can find a nu-
merical value for K (for instance K = 20 is sufficient), but since achieving
the optimal reqularity is not our concern in this work, we have stated the
theorem without specifying the optimal value of K that can be derived from
our proof.

Remark 1.3. The life span Ty depends only on the norm of the initial data,
the constant ¢y and the speed of light c. For suitably set up data relative to
c, Ty = I, with Ty independent of ¢, see Theorem 1.5 for the precise
statement.
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Remark 1.4. For the top order Dy, derivative of Vo we use the weak for-
mulation to define Df,leO on the boundary. See for instance Lemma 3.10.

To treat the Newtonian limit, we need to introduce some notation. We
will use t’ and 2’ to denote the time and space variables in the non-relativistic
setting. We define the flow map of V by 9% (t ) = (“fo> (t,®(t,-)), so that

O(t,-) maps Qp to Q, and let U.(¢', ) = <I>(ct’, -). The non-relativistic fluid
velocity components are defined by

NN ui(ct',x/)
(134) v (t , L ) = CW’

where ' = W (', z(), x, € Qo, so for i =1,2,3.

1 P '>/c

V1=|o(t,x 2/c2 V1= o, 22/

Unlike for the fluid velocity, for some of the thermodynamical variables one
has to subtract the contribution of the rest mass to arrive at a quantity which
has a limit as ¢ — oo (see for instance Section 1.1 of [3]). In particular, the
non-relativistic enthalpy, h, is defined by (again with o' =W (', z(), z(, € Qo)

u(ct',x') =

(1.35)
h(t',x') = o(ct',z") — 2, so  o(ct',z') =ct+22n(t, ) + W3, 2).

The robust a priori estimates we establish in this paper allow us to con-
clude that in the limit ¢ — oo, (h,v) converge to a solution (h',v’) of the
Newtonian problem

Oyt + v -Vt = =V h, in Dy
(1.36) V,zr v =0, Vg xv =0, in Dy .
h' = 0, on GDt/

(1, U/) eT (Utf (t/, 8Dt/))
Here Dy = U(¥', Q) with ¥(¢,-) defined by

du(t, )

1.37
(1.37) W

= U,(tlv \Ij(t,7 ))
To state our result precisely, we introduce the notation

(1.38) Vi(t,z) = c 1V (t, x), 72(t,x) = ¢ 202 (t, x) — ¢,
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and define the renormalized initial energy norm

=K
& = 3 (10 DEV(O0)| () + IDEV(0) 132000,
k<K

+ 11012 DET(0) (1220 )) -

Theorem 1.5. Let K be sufficiently large, and v and h be defined by (1.34)
and (1.35). Suppose the initial data for (1.20) are chosen so that the compo-

nents V'(0,-), i = 1,2, 3, are independent of ¢ and the component |V0(0, )=

c| and the energy 55 are bounded with bounds independent of c. Then the
solution from Theorem 1.1 can be extended to time Ty = c17, with T1 > 0
independent of c. Moreover as ¢ — oo, v(t',W.(t',-)), v (t',V(t',-)), and
h(t',W.(t',-)) converge strongly in H?(Qo) to (v'(t',W(t,-)), vi.(t', ¥ (t,")),
and W (', (t',-))), respectively, with (v(t',-),ve(t',-),h(t',-)) a solution of
(1.36).

Remark 1.6. Theorem 1.5 gives a different proof of existence for (1.36),
originally considered in [4, 13].

Remark 1.7. The choice of H® for the convergence norm is arbitrary and
the convergence can be made as strong as we wish by taking K large.

The method in this paper works for the more general free boundary rel-
ativistic barotropic fluid model (1.10)—(1.11)—(1.18)—(1.19). In Appendix A
we will give a brief outline to show how to prove the well-posedness of the
Cauchy problem for (1.10)—(1.11)—(1.18)—(1.19). We choose to work on the
hard phase model (1.20) for the sake of simplicity, as it already captures the
main challenges in the more general problem.

The work in this paper and in [27, 28] suggest that the general ap-
proach here should work for a variety of free boundary problems. Consider
for instance the Newtonian compressible fluid, V would again satisfy a wave
equation U V = 0 in the interior, where h is a conformal metric of the
acoustical metmc (cf. [5, 15])

3
hi=n*(dt)> + > (dz’ — V'dt)>.

=1

Here 7 is the sound speed. While the wave equation in this case is quasilinear,
we again see a formal similarity with (1.30).
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1.1. Earlier works

With the exception of [21] which shows existence of a class of solutions to
certain relativistic gaseous models based on earlier work [16], other advances
for well-posedness of relativistic free boundary problems are quite recent. A
priori estimates were obtained in [9, 10] for some gaseous models. In [24] an
existence result was obtained for a gaseous model using Nash-Moser itera-
tion, and in [17] the existence of solutions was proved for a liquid model in
two spacetime dimensions. In [19, 20, 18], using different methods, Oliynyk
derived a priori estimates and an existence result for a similar liquid model.
The same barotropic fluid free boundary problem as in this article was con-
sidered by Ginsberg in [8], who proved an a priori estimate under additional
smallness assumptions on the initial data.

1.2. Main ideas for a priori estimates and local well-posedness

1.2.1. A priori estimates. The a priori estimates for the proof of local
existence in Theorem 1.1 and the uniform in ¢ time of existence in Theo-
rem 1.5 can be combined by working with the renormalized variables V and
&2 defined in (1.38). Introducing @ := ¢~ 2a it can be seen that V and 72 sat-
isfy the same system as (1.30)-(1.31) with (V, 0?2, a) replaced by (V,52,a);
see (2.3)—(2.4). We begin by discussing the energy identity in Lemma 2.3.
For general quantities © satisfying equation (1.32), with a and Dy replaced
by @ and Dy, we have, by Lemma 2.3,

(1.39)
—0

/ <0_1D79VQ@ + %V“@Vu@) dz —|—/ V—_ (Dv@)Q ds
Qr oQr

v v
:/Q <C_1D76V0@ + %V“®vu@> dz +/a i (Dv@)Q ds

Qo ca

T T
1
—ct / / gDwOdzdt + 2¢7! / / — fDyOdSdt
0o Jo, 0 Joq, @
T {77
+e! / / v (Dy©)? dSdt
o Joo, @

T T
+ct /0 / (V'V")V,0V,0dzdt — ¢ /0 /8 . %(DVE)(DV@)Zdet,
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here divV denotes the (spacetime) divergence of V as a vectorfield on OS2
and should be thought of as a lower order term. Since V is future-directed
timelike,® the first term on the left satisfies

7

(C_leg) (Vo@) + 2_0

(V,0)(V"0) 2 Vi
Therefore as long as a is positive (see (1.27)), the left hand side of the energy
identity (1.39) controls

/ |DVG)|2dS+/ V;..0%dz.
8QT QT

The factor ¢! in front of the space-time integrals, which appears naturally
in this renormalized formulation, is what allows us to prove the uniform in
c time of existence. As mentioned earlier, we will construct our energy by
working on DkVV. Applying (1.39) to © = D%VU and summing over v we
get control for [, ]DkVHVFdS—!— fa. |VMD%V|2dm by the right hand side

of (1.39) with © = D%VU. This motivates the definition of our k-th order
energy:

Ep(T) = /8 X | DEFIV?dS + /Q Vi DEV | da.

The equations satisfied by DkVV are derived in Lemmas 2.8 and 2.9, based on
the commutator identities (2.15)—(2.18). Observe that Dy is defined globally
both in the interior of the fluid domain and on the free boundary, being tan-
gential there. As demonstrated in (2.15)—(2.18), commuting Dy derivatives
preserves all important structures of our equations.

Next we discuss how to estimate the right-hand sides of (1.39) for © = V.
The main contribution is from the inhomogeneous term in the boundary
equation in (1.30), for which we need to control

T
¢t / / |V D752 |d Sdt.
0 o0

For this we use the fact that DVEQ satisfies the analogue wave equation
(1.31) with zero boundary data and with V and o? replaced by V and 72;

8 Assume that the solution exists. By the assumption (1.21) on initial data and
continuity, V will remain future-directed and timelike for a short period of time

[0,7] and 7 ~e
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see (2.4). In Lemma 2.4 we show, by an appropriate choice of multiplier field
Q for the wave equation, that

/ V1o Dyo?|” do 4 ¢! / ' / |V, Dy?| dSdt
Q t
- / / (ODy5?) (QDyo )dxdt‘

s ]/ / #)(V, Dya?) (VDo)

— (VHQ")(V . Dy2)(V, Dy5?)) da dt’.

/ |VioD V02|2dx + e

(1.40)

We will also need the analogue of this estimate with Dy —&2 replaced by Dk o
(also contained in Lemma 2.4), and the wave equation satisfied by D‘k/a is

derived in Lemma 2.10. For 0Dy on the right-hand side of (1.40), we
note that the term with two derivatives of 2 on the right-hand side of
(1.31) can be seen to be lower order by converting the wave equation for 72
in (1.31) into an elliptic equation with DQVEQ as the source term, as done in
Lemma 2.6, and using elliptic regularity.

For the right-hand side of (1.39) with © = Dk’vv, and the higher order
analogue of (1.40), we need to estimate spacetime integrals involving the
right-hand sides of the equations satisfied by D%V and DkVHEQ as derived
in Lemmas 2.8, 2.9, and 2.10. The idea for treating the main source terms is
similar to what was outlined above, and the treatment of the commutator er-
rors is carried out in Subsection 2.4. Here we only mention that the most del-
icate commutator error is ¢! fo Joo, |VDk 'V|2dSdt, and estimating this
term using the energy & defined above 1nvolves one more multiplier identity
for wave equations on bounded domains, which is derived in Lemma 2.5.

Finally, we explain how our energies give control of Sobolev norms. This
will be needed, for instance, to bound lower order terms in L in our esti-
mates. The details of deriving Sobolev estimates from our energies are con-
tained in Subsection 2.3, so here we mention the main idea which is quite

simple: Boundedness of ;42 gives us control of ||Dk+2VH 89) on the

boundary (by the trace theorem), and HD‘Q/D{“/VHLz (Q,) and ||VDVV||L2(Qt)
in the interior (in fact we get more in the interior). Then using the higher
order versions of (1.30), as derived in Lemmas 2.8 and 2.9, this gives us
control of VnDkVV in Hz (0€) and an elliptic operator applied to D%V in
L%() (see Lemma 2.6). Elliptic regularity with Neumann boundary condi-
tions (see Lemma 2.7) then allow us to deduce an H?(£%;) bound for D%V.
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Similar ideas allow us to get control of V in H%(€;) in terms of &, as long
as 2a < k, and similarly for DVEQ. See Proposition 2.11.

1.2.2. The iteration and Newtonian limit. The a priori estimates
outlined in the previous subsection can be carried out completely in Eulerian
coordinates (that is, over the fluid domain 2), and contain the main ideas
for proving well-posedness. In practice, however, it is more convenient to set
up the iteration for the proof of well-posedness in Lagrangian coordinates.
The main reason is that in this way the domain becomes fixed, and all
norms and function spaces are defined with respect to this fixed domain. To
recast the equations in Lagrangian coordinates we define the (renormalized)
Lagrangian map X : [0,7] x B — R!*3 by the requirements that X (¢, ")
map B to €; C R'*3 and

X (1) = 2 (8 Xt y)).

dt Vo
In other words, ¢ — (t, X(t,-)) is the flow of the vectorfield {%. Note that
0Oy in these coordinates is just the renormalized material derivatives %Dv.
The pullback Minkowski metric on I x B is

(Vi)? 2 vio_axt o,
g=- (1—Z(V0)2 oX |dt* +2) vo ° X e dtdy

i=1 i0=1
i )

A 74y ay
i,k =1 8]/ 8y

We denote the Lagrangian velocity V by O, the enthalpy o2 by 3, and its
material derivative Dy o? by A:

O =VoX and X:=0%0X=1/-gasVoVh, A := (Dyo?) o X.

The wave operator then becomes (¢®° denote the components of the inverse

metric g~! and |g| := —det g)

Ogf = —=0a(/19l9*"95.1).
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Let (by a slight abuse of notation we continue to denote the normal in
Lagrangian coordinate by n)

/ V,02VHg? VHa? g 8,0

=t _—— 06X, and nf=-———0X= .
! 2V0 N s V9P 00020502
Equation (1.30) then becomes
(1.41)

(02 +~V,,)0" = —Wgaﬁ(%x”)a&z\ + &0,0°9,0", on [0,T] x OB

0,0 =0, in[0,7]xB ’
(1.42)

0,A = S(O,%), inlxB

A=0, onlx9dB’
(1.43)

1

Y=—A
at @O )
where
(1.44) 5(0,%) = 4¢°%(950" )0 (Mg (9;X") (0, X))

+ 41,k g®P 70 (05 X7 (040" (950H)(0,07),

The idea for the iteration is to iteratively define O A(™) and R0 ag
solutions of

(1.45)
m m+1)\v Gy (05 (X ™)) 9o A
(07 + 7V ) (O D) = e (5§<g><m)>2>z>
+ 28 n(le)(,?j)(? i on I x OB »

Oy (O = 0, in I x B
(1.46)

Oy A = 5(00m), $0m), inIxB

A+l = onlxdB’
(1.47)

atz(m+l) _ 1 A(m—i—l)’

(@(erl))O
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where S(X®), ©(*)) is defined from (1.44) by replacing ©, g, A, and X by
their iterates ©®), ¢(®) and B(*) respectively. See Section 4 for the pre-
cise definition of ¢g(¥). Once we can show the existence of solutions to each
of these linear systems satisfying appropriate energy identities, the ideas
from the previous subsection nicely carry over to prove the convergence of
O™ to a solution of (1.41). For (1.46) the existence theory is standard,
as this is a wave equation with variable coefficients and constant Dirichlet
conditions. The only non-standard part is proving existence and energy es-
timates for the linear system (1.45). This can be achieved by formulating
an appropriate weak version of the equation (the main challenge is treat-
ing the hyperbolic Dirichlet-Neumann map) and using Galerkin approxi-
mations. The weak equations are derived in Subsection 3.1. The advantage
of this weak formulation for proving existence is that it does not involve
the hyperbolic Dirichlet-Neumann map, while it still allows us to derive
the main energy identity as for (2.10) in Lemma 2.3 (see Proposition 3.2).
Existence, higher regularity, and energy estimates for the weak solution of
the linearized problem are proved using Galerkin approximations in Subsec-
tion 3.2 (see [6, 26, 14] for some explanations of the Galerkin method). Once
energy estimates, which are modeled on our a priori estimates, are proved at
the linear level, a standard iteration scheme produces our desired solution.
This is carried out in Section 4.

Finally, for the proof of Theorem 1.5, the uniform in ¢ time of existence
follows from the local existence result in Theorem 1.1 and the uniform in ¢ a
priori estimates in Proposition 2.1. The existence of a limit also follows from
standard compactness arguments and boundedness of higher order energies.
The most delicate remaining point is that even though 7 and 0y are treated
at the same order as V' and 9; in the energy estimates in Proposition 2.1,
after the solution is obtained, one can use the equations to show that these
quantities have further decay in c. This allows us to conclude that the limit-
ing equations coincide with the classical equations in the Newtonian setting.
The details of the argument are presented in Section 5.

1.3. Notation and conventions
On R'*3 containing the fluid we use x = (2%,...,23) as coordinates. On
the Lagrangian side we use y = (3°,...,y%). We also use t for y° and ¥
for (y',...,%%). An arbitrary spatial derivative of order a is denoted by 05
Indices are raised and lowered with respect to the Minkowski metric m and
Greek indices run over {0, ..., 3} while Roman indices run over {1,2,3}. On
the Lagrangian side we use 0 and ¢ interchangeably for the index of the time
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coordiante, and sometimes use 7 for the radial coordinate r? = Zf’:l(yi)2.

For a tensor T" in rectangular coordinates we use the notation TH" :=
S, .

For the derivative of a function © along a vectorifeld X, such as the
normal n, we use the notations V,,0 and n© interchangeably. The derivative
along the fluid flow line will be denoted by Dy := V#0,,.

The dependency of constants on other parameters or unknowns is de-
noted by subscripts, so for instant Cs denotes a constant depending on Cj.
The exact value of constants may differ from inequality to inequality as
should be clear from the context.

On the Lagrangian side B denotes the unit ball of radius one, which
we use to parameterize the constant z slices of the fluid, and OB denotes
the boundary of B. The L? pairing on B is denoted by (-,-) and the L?
pairing on B by (-, ). The duality pairing between H'(B) and (H'(B))*
is denoted by (-, ).

2. A priori estimates

In this section we assume that V, 02, and Dyo? already exist and satisfy

(2.1) {(D2v +3aVy)V = —3VDyo?,

Ov =0.
and

(2.2) Oo? = (—2VFVY) (V. V).
' ODvo? = 4(VHVY)V, V02 + 4(VAVY) VAV (V, V).

Here n denotes the exterior unit normal to the timelike boundary of €2, which

we denote by 92, and a is as in (1.28). With 72 := ¢ 202 — ¢? (see (1.35)),
2

@ = c 2a, and V = ¢~V these equations can be written as
1o \77— 1 —
o (D + 77 = 47Dy
av = 0.
and

(2.4) 062 = (—2VHV")(V,.V,).
' ODyo? = A(VFV )V, V.52 + 4(VAV)(VAVH) (VL V ).
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Motivated by the discussion in the introduction, for any function © we define
the energies

E[O,1] ;:/Q \am@|2dgc+/89 |D©[2dS,

T
E[0,T]:= sup / \&t,m@]de—i-cl/ / |0,..0]?dSdt,
0<t<T JQ, 0o Jog,
where for 7'=0
E[©,0] ::/ 0,0 dz.
Qo

Higher order energies are defined as

M-

Ej[0,1] = E[DLO,1], E<[06,1 =) FE0,1],

<
Il
o

k
E,;[0,T] = E[DLO,T], E,[6,T]=) E,
7=0

To simplify notation we introduce the unified energy

(2.5) E(T) i= E<j1[0%,T] + sup E<[V,1].
0<t<T

Our goal in this section is to prove the following a priori estimate.

Proposition 2.1. Suppose V is a solution to (2.3) with
(2.6) &E(T) < Ch,

for some constant C1 > 0 and £ sufficiently large and let

G(T) = sup > (1D I, + 10552 Fq,) + EdT).
tElOT] p<pra—2;

If T = cT with T > 0 sufficiently small, depending on C1, &(0), co, and ¢,
then

(2.7) &(T) < Py(&(0))

for some polynomial function Py (independent of C1 ).
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Remark 2.2. Proposition 2.1 is the backbone of the proof of both Theo-
rems 1.1 and 1.5. Indeed, for local existence as in Theorem 1.1, we set up an
iteration based on these a priori estimates for a fixed value of ¢ (which we can
taken to be ¢ = 1, as we suggest the reader do on first reading). For the New-
tonian limit as in Theorem 1.5, we use Proposition 2.1 to extend the solution
to time 20 = ¢T and use boundedness of higher energies to extract a limit.

2.1. General identities and estimates

In this section we record a number of general identities and estimates which
will be used in the proof of Proposition 2.1. We start by recording a general
multiplier identity for the wave equation. Let @ = Q*V, be an arbitrary
first order multiplier. Then a direct calculation shows that

oy (0009 V,(QO)(V*0) ~ 2Q(V,0)(V"6))
| (V,Q")(V,0)(V"6) — (VQ")(V,0)(V, ).

l\’)l'—‘

Our first lemma is the main energy identity for (2.3).

Lemma 2.3. Suppose © satisfies

(2.9) (D% + jan)® = f
' e =g
Then
(2.10)
v Vv
/ (c ' DyOV0 + 52 V'OV, 0) d:c—l—/ —(D +0)2dS
Qr a0y ca
_0 J—
:/ (¢ 1Dy @vo@+v—v“@v 0) dx+/ V—_ )2dS
BQO ca

/ / gDyOdzdt + 2¢~ / / - fDyOdSdt
Qy BQt

T
+e! / v (Dy©)? dSdt
0 o0,

a

T T
+ct /0 / (V'V")V,0V,0dzdt — ¢ /0 /a . %(Dva)(DVGFdet,
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where div denotes the divergence operator on 9.7

Proof. Multiplying the first equation in (2.9) by %DVG we get

1 1 1 1 1
§DV (5(1)‘/@)2) + 5(”@)(177@) = 5fDV9 - ﬁ(DVE)(DV@)2’

which upon integration over 0€2 = U;c[g 110¢2: gives

750

T
/ VT(DV@)QdS—i— / / (n©)(Dy0)dSdt
0y @ 0 Jo.
—0

Vv T 2
(2.11) — / L (Dy©)2dS + / / ~ fDyOdsdt
00 8Qt

a

/ / Dya)(Dy©)%dSdt + / / i (Dy©)? dSdt.
o0, oq, @

To treat the second term on the left, we integrate (2.8) with Q = V over
QN{0 <t <T}. Using the fact that V' is tangent to 0S2, we get

0
/ (DyOVO + V—vu@v O)dz — / / 0)(n©)dsdt
Qr o0,

—0
(2.12) / (Dyr @v0@+V—VVev 0) dx—// gD-Odzdt
Qo
+ / / (VH7)(V,,.0)(V, ©)dadt.
Q

The lemma follows by adding (2.12) to (2.11) and multiplying by ¢=1. O

9For a simpler model, suppose u satisfies

Cu = 0, in [0,7] x B
(02 + 0 )u=f on [0,T] x OB’

where B is the unit ball in R? with normal 9,. Then a similar argument using the
multiplier d,u gives

l/ |8t,xu(T)|2dx+1/ (3tu(T))2dS: l/ |8mu(0)|2dx+l/ (8tu(0))2d5’
2 /B 2 Jom 2 Jp 2 Jom
T
+/ (Opu) fdSdt.
o Jom



290 Shuang Miao et al.

We will apply Lemma 2.3 to © = D%VV, for 0 < k < 4. The next
energy estimate is used for the second equation in (2.2) (see (1.40)), as well
as (2.22).

Lemma 2.4. There is a (future-directed and timelike) vectorfield @ such
that for any © which is constant on OS2,

(2.13)

T
/ 90OPde + ¢! / / 0,.0dSdt
Qr
! / / (06)(QO)dzdt

_1/ / V,.Q")(V,0)(VO) — (VFQV)(V,0)(V,0))dzdt| .

Proof. Since © is constant on 952,
V,0V”0 = (n0)?

and
nu((QO)(V46) — 1Q(V,0)(V"8)) = 10" (n6)’

on 99, where Q" := m(Q, n). Therefore letting @ be a future-directed time-
like vectorfield with @™ > 0, in particular Q@ = ¢~ !(aV + n) for some large
a, we get the desired estimate upon integrating (2.8) over €2. O

Our last application of (2.8) will be to control arbitrary derivatives of an
arbitrary function on the boundary in terms of the normal and Dy deriva-
tives.

Lemma 2.5. There exists a (future-directed and timelike) vectorfield Q such
that or any function ©

(2.14)

T
sup 10;,,02dz 4 ¢! / / |0, »O[*dSdt
0<t<T JQ, 0 00,

T
5/ |8t7x@2dx+cl/ / ((n©®)? + (Dw©)*)dSdt
Qo 0 o

¢t /OT /t(DG)(Q@)dxdt’
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1/ /Qt V,.Q")(V,0)(V*0) — (VFQ)(V,0)(V,0))dxdt|.

Proof. The proof is similar to that of Lemma 2.4, but this time we choose
Q" = m(Q,n) < 0. For instance, let Q = ¢! (aV —n) with a > 0 chosen so
that @ is future-directed and timelike. Then on 0f2,

1((QO)(V"6) ~ 1 Q"(V,0)(V"6))
=c! <(aDvG)) (n@®) — (n®)% + %VUGV”(%)
> (e1]0,201” = e2((nO)? + (Dy®)?)

for some constants c1,co > 0 depending only on V. The lemma now follows
by integrating (2.8) on (. O

The next lemma will be used to control [[V?O|12¢,) in terms of
106 12(q,) and [|[V D30 r2(q,)-

t

Lemma 2.6. Let A be defined as A := @ 0%

75, where a7 = (m~hHv — %;—
Then for any O,

1 1

A0 =00+ L any0 -~ oo+ |- a7 |ae
v’ (V)2

(")

oV’ | 9,0 - (_ioaovo) 800 — <_ioaovj> 9;0.
v v

1

W

_|_

Moreover,
020 = A6 — 06,
02,0 = % (apve -V o2e — (a7") oo - (a77) 9,0).

Proof. The proof is a direct calculation using the identities

80Dy = V°920 + V' 83,0 + (86V")0O + (8,V")9;0,
8Dy = V' 030 + V7 02,0 + (9,V") 20 + (9,V);0.
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To use Lemma 2.6, we will apply the following standard elliptic estimates
(cf. [23]).

Lemma 2.7. For any t > 0, we have

IVl 120,) < I[46|L2() + 1013 o,

and

IVl 120,) S [[A8llL2(0) + INOl 4 o,

where N is a transversal vectorfield to 0y C Q, and where the implicit
constants depend on ).

2.2. Higher order equations

Here we derive the higher order versions of (2.3) and (2.4). The main com-
mutator identities, valid for any ©, are:

(2.15)

[Dy,V,]6 = —(V, V')V, 6.

(2.16)

(D7, V,VAIO = (VA V)V, V,0 — (V,V)V.VAO — (V, VA V)V,6.
(2.17)

Dy, 06 = —2(V*V')V,V,0.
1 1 — 1 —
[Dyr, DZ — §v“52vu]@ = §(VAEQ)(VAV )(V,0) + §(VA62)(V”VA)(V,,@)
(2.18)
(V”( 7°))V,0.
Applying these identities we can calculate the higher order versions of (2.3)

and (2.4), which we record in the following lemmas.

Lemma 2.8. For any k >0

1 1
2 — k k+1-2
(2.19) (D% + Zan) DRV = — VDI 5" + F

where Fy is a linear combination of terms of the forms

1. (VDEV)... (VD%"V)(VD%"“EZ), where ki + -+ + kmy1 <k — L.
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2. (VDEV).. (VDL V)(VDE* Dya?), where ky+ -+ ki1 < k—1.

Proof. We proceed inductively. For £ = 0 the desired identity holds with
Fj. = 0. Assume it holds for k¥ = j and let us prove it for £ = j + 1. First,

—Dy(@nDLV) = Dy(V"5*V,DLV) = anDL'V + (V" Dy* )V, DLV
— (V'V")(V,8°)V . DLV
+ (V%) V,DLV),

so [Dy + 3an, DV]D%V has the right form. Next, in view of (2.15), Dy

applied to the terms in (1) and (2) with k replaced by j, as well as VD] 52,

also has the desired form. D

The wave equation for Dkvv in Q is derived in the next lemma.
Lemma 2.9. For any k>0
(2.20) ODLV = Gy,
where Gy, is a linear combination of terms of the form
(221) (VDEV) .. (VDEV)(VEODIYV), kit 4 by <k — 1
Proof. Again we proceed inductively. For k = 0, G = 0 so suppose the
lemma holds with £ = j and let us prove it for k£ = j + 1. By (2.17),

[Dy7, D]D%V has the right form. Similarly, Dy, applied to (2.21) has the
desired form by (2.15) and (2.16). O

Next we derive the wave equation satisfied by DkVHEQ

Lemma 2.10. For any k >0
(2.22) ODI5? = Hy,

where Hy is a linear combination of terms of the forms

1. (VDBV) .. (VDEV)VE DI v52, where ky + -+« + kmy1 < k.
2. (VDEV).. (VD’“ V) (VD 52) VA DY | where ky + - +

km+2 § k and km+2 < k—1.
(VDEV) .. (VD V) with ky + -+ + k= k.
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Proof. For k = 0 the statement already contained in the second equation
n (2.2), so let us assume it holds for k = j and prove it for k = j + 1. By
(2.17) the commutator [Dy, D]DJVJr1 has the right form. By (2.15), Dy

applied on terms of the form (3) also has the right form. Finally Dy apphed
to terms in (1) and (2) has the desired form in view of (2.15) and (2.16). O

2.3. Sobolev estimates

To prove Proposition 2.1 we need to show that higher order energies give
pointwise control of lower order derivatives of V and L? control of lower
order Sobolev norms of V. The main result of this subsection is the following
proposition.

Proposition 2.11. Suppose

(228) > ROV )+ D 100D T, < Cur

k+2p<M+2 k+2p<M+2

If M > 0 is sufficiently large and T = T with T > 0 sufficiently small, then
under the assumptions of Proposition 2.1, for any t € [0,T)

k7|12 Ft1z2
E 107 D3V 1720, + E 108, D HL?(Qt
k+2p<M+2 k+2p< M+2

(2.24) S Sup E<M+1[U 7]+ sup B<m[V,7]
0< 0<r<t

k k
+ Z Haf,xDvV”B(QO) + Z 107 D3 g 2||L2(Q)
k+2p<M+2 k+2p<M+2

The implicit constant in this estimate is independent of Cypr and c.

Before discussing the proof of Proposition 2.11 we state a few immediate
corollaries.

Corollary 2.12. Assuming the bootstrap assumption

sup Z IDEV | 7202, +Z Z Hv(j)DkVVHL‘X’(Q)

te0T] | 1<k<m—2 J<2 1<k<M—2(j+1)
1
1 _ 1
SENM A+ D> IVPDEV e+ Y, IVPDENE|12q,),
k+2p< M+2 k+2p< M+2

where the implicit constant is independent of Cyr in (2.23).
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Proof. This is a direct consequence of Proposition 2.11 and the Sobolev
embedding H2(Q;) < L>®(). O

In order to use the energy estimates from the previous section we also
need to show that V' remains timelike and a stays bounded away from zero.
These statements are summarized in the following corollary.

Corollary 2.13. Suppose the hypothesis of Proposition 2.1 hold. Then there
are constant ag,vg > 0 and v > 1 such that
=0
= : V)’ 2

. 0
inf @ > ayg, inf V7 > vy, inf ————— > ~¢“.
0<t<T 0<t<T 0<t<T 23 (VJ)Q
J=1

Proof. The proof is by integrating in time combined with the L*°-bounds in
Corollary 2.12. O

Before we give the proof of the proposition, we need some preparation.
First, we introduce some notations:

(2.25)
(8152, 8252, 8352)

vi = 0y, n = , oy

30902

= byn?, V;:=0; —n;n’9;.

Note that V;,i = 1,2, 3 are defined globally, are tangential to 9, and span
TOQ,.
The following lemma is used to estimate HDkVHEQH Hi(,), and plays a

crucial role in estimating HDkVVH Hi ()
Lemma 2.14. For any smooth function O, the following estimate holds:
101l i) S 1O mi-1(00) + IV AB| 1200,y + I[A, VU210 120
+ IV, VU210l 11(0,) + IV Ol mri-1(02,)-
Proof. Using the first estimate in Lemma 2.7 and the trace theorem
111520y S 1Olls1s-10) + IAVY 2] 2y + 1YV 2O 1
+V0 Zenm o
SOlas-1 () + IAVY 20| 20, + IV VY20 i -

H (0€2)

The desired estimate follows after commuting the operators. O

The next lemma allows us to bound lower order terms in L°°.
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Lemma 2.15. Under the bootstrap assumption (2.23), if T > 0 is suffi-
ciently small, then

Hvapkv (VO _¢, vi)

a nk+1=2 <
’met) + VDT L) S 1

VO<a<p—2 k<M-2p—3, tel0,T],

(2.26)

where the implicit constant is independent of Cyy.

Proof. Let € be the Lagrangian parameterization, that is,
_ vV _
O:&(T,y) = = €y, &0y =y

If p; is a point on €, we let py be the point on Qg such that £(¢,pg) = p;.
For any function ©

(227) 0(p) -~ 0tm) = | (257) o

It follows that, using the standard Sobolev estimate,

H@”LOO(Qt) < ||@||L°°(QO) +Cc 't sup HDV@HLW(QS)
0<s<t

S11Ollmz(ao) + ¢t sup | DyO||p2(q,)-
0<s<t

We apply this estimate to © = V“D"“/V. Then, by (2.23), as long as a+2 < p
and k+ 1< M +2—2(a+2),

sup |[[DvOl g2, Sc, 1-
0<s<t

Therefore, estimate (2.26) follows by taking T small. The argument for
VaD{ M o? is similar. O

We have a similar estimate for the L2 norms:

Lemma 2.16. Under the bootstrap assumption (2.23), if T > 0 is suffi-
ciently small, then

|vept (V' - 7)

VeDEFIG?| 1200y S 1,
’Lz(gt) + | v 0 2y S

V2a+k<M+1, tel0,T],

(2.28)

where the implicit constant is independent of Cyy.
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Proof. The proof is again an application of the fundamental theorem of cal-
culus, this time applied to ||©] 2(q,), where we also bound the Jacobian of
the Lagrangian coordinate transformation from Qg to €; using the funda-
mental theorem of calculus. We omit the details. O

Proof of Proposition 2.11. Note that we only need to consider 3§Dk77. In-
deed, using induction on the order of 0, for Gtﬁé’_leVV, we have

0,007\ DEV = V'0,00 ' DEV = — (Do ' DEV — Vo007 DLV
v

_ 1
v
_ L (ag;—lpgﬂv ~ V29,00 ' DEV + Dy, ag—lw’fvv) .

If we can estimate ag"a;?‘p’DkVV, for 8f/+18§_p/_1DkVV, we have

e A VR VAR NG/ i Y VAT

The induction argument follows exactly the same way as we treat the case
when p’ = 0. The argument for 2 is the same. Turning to 8£Dkvv, we will
use an induction argument on p. When p = 1, the result follows directly by
definition. Now we assume that the estimate holds for index less or equal to
lgpSW—l,thatis,

(2.29)
ks k
Y. > LDV +d . D 10LDET I,
q<p k+2q<M+2 q<p k+2q<M+2
< sup E<M+1[a T] + sup E<M[V 7]
0<r<t 0<r<t
k k
Yoo D oDV Ty Y Y. 10LDE A g,
q<p k+2q<M+2 q<p k+2q<M+2

and prove the estimates for p + 1, that is,

(2.30)
+1 ok +1 k=
> NS DEV e+ D, 1082 DETETx )
k<M—2p k<M—2p

S; sup E<M—i—1[ﬁ2a7—]+ sup ESM[VvT]
o<r<t 0<r<t

o> N0LDEV I+ >, Y. 108, DEE3 g,

q<p+1k+2q<M+2 q<p+1k+2q<M+2
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We start with the estimate for HVPHDI““Jr1 72| 12(q,) and in fact first estimate
Vx V P=U pk+152) , o\ To apply Lemma 2.6 to © = \Vaan L DEHIF2 o
I v o llze) pply o

need to estimate |’ZWP_1D]€V+1EQ||L2(Qt). Using the notation of Lemma 2.10,

we have!?

(2.31)

ZWPfIDkVJrlEQ ~ Wplek + [Wpfl’ D}D%JAEQ + m

(V')

V[Dy, V' DENF?.

Wp le+1—2

v —1 k+2-2
+ S VYV DR+
V) V)

Except for Y*~ ' H, the L?(;) norms of all the terms on the right-hand side
of (2.31) are bounded by the right-hand side of (2.30) using the induction
hypothesis (2.29). Here for the terms where derivatives hit the coefficients
of YV it suffices to observe that these coefficients are functions of V&2 =
—2DVV. Next we investigate the structure of Y7 71Hk. In view of Lemma
2.10, the top order terms in WpilHk are

41k =2 41 Nek—177
VP DVU and VP DV V.

The L?(£%;) norm of all other term appearing in VA % can be bounded
by the right-hand side of (2.30) using the using induction hypothesis (2.29).
For the two top order terms above, since k£ < M — 2p we can use Lemma
2.16 to bound the L?(£);) norms of these terms by the right-hand side of
(2.30) as well. Based on this discussion, Using (2.31) and Lemma 2.6, for
any k < M — 2p we obtain

IVY" D0 S s Bearnlp®, 7+ s BenlV. ]
T

q k
(2.32) Z > 0LDEV I,

q<p+1k+2q<M+2

k —
LD DD DI 2 che g A

q<p+1 k+2¢<M+2

10We use the schematic notation A ~ Ay + --- + A,, to mean A is a linear
combination of terms of the forms A;,..., A,,.



Well-posedness of free boundary hard phase fluids 299

Next we apply Lemma 2.14 to © := VVP_2D5+1E2 to get

VYD s S IVYY T ADE 120,

+VY” 2,‘1D§“02um<m
(2.33) 9 DE T e

+ IV, VY DEE | 1o

+ ||Y7p71DkV+152HH2(Q )
By (2.32) and the arguments leading to it, all the terms on the right-hand
side of (2.33) except

\|VVP_2ZD%+152HL2(Q )

are bounded by the right-hand side of (2.30). The term
||VY7P72ZDRVHEZ||L2(QJ is bounded in the same way as in the treatment

of Y* _1Hk above, using Lemmas 2.10 and 2.16. Summarizing we have ob-
tained

2
V3P~ Dk“ 7l 220 <OSUP E_yn[°, T]+OS<UI;tE<M[V 7]

(2.34) + Y Y 0L DEV )

q<p+1 k+2q<M+2

LD DED DR g FORE

q<p+1 k+2q<M+2

Repeating the argument inductively for © = V2’ 73Dkv+162,
V3Y7p74DkV+162,..., we finally obtain

||Vp+1DkV+162HL2(Q < sup E<M+1[J 7]+ sup E<um[V,7]
0< 0<r<t

k
(2.35) + Z > 10L.DEV |20

q<p+1 k+2q<M+2

+ 3 Y 0 DEE -

q<p+1k+2q<M+2

Next we use the second estimate in Lemma 2.7 to estimate

VP DEV 120, k420 +2< M +2,
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under the induction hypothesis (2.29). The second estimate in Lemma 2.7
gives

IVPHIDEV | 20 S IAVP T DEV 120

(2:30) + (v#52)9, (V"' DEV)

HH2 (0%)"

The term ZVP*ID{“,V has the similar structure to the corresponding term
in (2.31) and can be handled using similar considerations, so we concentrate

on the boundary contribution ||(V#3?%)d, (Vp 1Dk ) Using the
trace theorem and Lemma 2.8

||H2 (00)"
(770 (V7 DRV )l 13 00,y S 179200 (V77 DET ) s
S V450 VP DLV s o)
+ VP DE V)
+ 192 DEE2 11 0, + VP il o

Except for the last term ||Vp_1Fk||H1(Qt), all other terms on the right above
are bounded by the right-hand side of (2.30) using the induction hypothesis!*
(2.29) and (2.35). For ||[VP~1Fy||g1(q,), in view of Lemma 2.8 the highest
order terms in VPF}, are

vp+1D§*1V, and VPt DEG?.

The term ||vp+1DkVE2||L2(Qt) was already bounded in (2.35), and

HVPHD%%VHLZ(Q» can be handled using Lemma 2.16. Putting everything
together we have proved that

(2.37)

1(v*5%)9, (V"7 DEV ) | sup By, 7+ sup B[V, 7]

o<r<t 0<7<t

> > 0L DEV e

q<p+1 k+2q<M+2

+ Z Z 10} DkH 2HL2 Q)"

q<p+1 k+2q<M+2

, <
HZ(09,) ~

Here note that k& < M — 2p is equivalent to £ +2 < M + 2 — 2p, so
||Vp_1DkV+2VHH1(Qt) can indeed be bounded by the induction hypothesis (2.29).
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Combining (2.36) and (2.37), we finally obtain

IVPH DEV |20 S sup E<prn[0°, 7]+ sup E<y[V, 7]
0<r<t 0<r<t

k7712
(2.38) Z Z HaZCCDVV”B(QU)

q<p+1k+2q<M+2

k+1=
2 2 9L Py,

q<p+1 k+2q<M+2

which completes the proof of (2.30). O
2.4. Proof of Proposition 2.1

We are now ready to prove Proposition 2.1. Throughout the proof we use
the fact that in view of Corollary 2.13

—0 —0
El6,1] ~ / (e‘lDVe)at@ + ‘Q/—Cvu@vu@) do + / V. (Dy©)2ds.
¢ 0,

ca

Recall that our goal is to prove estimate (2.7). The following auxiliary lemma
which relies on elliptic estimates for A is an important ingredient of the
proof.

Lemma 2.17. Suppose the hypotheses of Proposition 2.1 hold. Then for any
k<{¢andtel0,T)

/ IVODEGPde S E(T) + > 107, D3V 3200
(2.39) > i

2 1=22
+ Y 102D qy)-
m+2<4

Here the implicit constant depends polynomially on Ex_1(T) if k is suffi-
ciently large, and on Cy1 for small k.

Proof. For k = 0 this follows for instance by writing
V’uEQ == —2vau

Inductively, suppose the statement of the lemma holds for k <j—-1</¢—1
and let us prove it for k = j. In view of Corollary 2.13 the operator A is
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elliptic, so applying Lemma 2.6 with © = D%E2 we get

/Q VD72 2dx < /Q 01,0 DL 72 2da + /Q 01,0 DL + /Q |H;|dx,

where H; is given in Lemma 2.10. The first two terms already have the
right form so we concentrate on the last term for which we use Lemmas 2.10
and 2.15. The contribution of line (1) in Lemma 2.10 is bounded by

(2.40) > / VODEE P+ > / VDLV |?da.
Q; Q;

k<j—1 k<j—1

The first term in (2.40) can be bounded using induction hypothesis, while
the second term is directly bounded by &_1(T") < &/(T). The contribution
from line (2) in Lemma 2.10 is bounded by

(241) 2. /Q VDGV Pde + /Q (IVDES? + |VDEV?) da.

k<j—2 k<j—1

The second term in (2.41) is bounded by &_1(T"). The first term can be
bounded using Proposition 2.11, because 2-2+¢—2 = £+2. The contribution
of line (3) in Lemma 2.10 is directly bounded by &1 (7). O

The next lemma allows us to estimate VDkV_IV on the boundary assum-
ing boundedness of the kth energy.

Lemma 2.18. Suppose the hypotheses of Proposition 2.1 hold. Gien n > 0
(small), if T > 0 is sufficiently small then for any k < £ (recall that T = ¢T')

T .
(2.42) ¢! / /8 . VDLV [2dSdt $60(0) + Rjy(Ex—1(T)) + néx(T),
0 ¢

where the implicit constant is independent of C, and R;,, is some polynomial
function for each j < k — 1.

Proof. For j = 0 this follows for instance from Corollary 2.12 and the trace
theorem. Proceeding inductively, we assume (2.42) holds for j <i—1 < k—2
and prove it for j = i. We apply Lemma 2.5 to © = Divv. The last integral
on the right in (2.14) can be absorbed in the left if T is sufficiently small.
The term

cT
¢! / / (Dy-DLV)* dSdt
0 0
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is bounded by the right-hand side of (2.42) if T is sufficiently small. For the
contribution nDiVV on 0f) in the right-hand side of (2.14) we use (2.19) to
write

2 PR 2
% _ “p_nit+l - i+1=2 <
(2.43) —nDyV = =DyDy V4 VD o” — = I,

where F; is as in Lemma 2.8. Using Lemma 2.15, the contribution of F; is
bounded by

T cT
(2.44) IZ/ / VDI Pde + ¢! Z / / VDIV *da.
09 m< o9,

m<i

The first term on the right-hand side of (2.44) is bounded by &;_2(T"), and
hence by the right-hand side of (2.42). Using the trace theorem, Proposi-
tion 2.11, and choosing T > 0 sufficiently small, the second term in (2.44)
is bounded by the right-hand side of (2.42).

Next, the integral

2
1i+177
— DDV | dSdt

T
1
ol
0o Joq, |a

from the right-hand side of (2.43) is bounded by n&,(T) if T is small, because
by assumption ¢ < k — 1. By the same restriction on ¢ the integral

T
1
o Joq, |

is bounded by &;_1(T"). To complete the proof of the lemma we still need to

consider the term
T PR— Ppp—
¢t / / (ODLV)(QD%V )dadt
0 ¢

on the right-hand side of (2.14). Here @ is the multiplier in Lemma 2.5. By
Lemma 2.9, DDiVV contains terms which involve V(Q)Dg V. Sincei < k—1,

this corresponds to (at worst) V(Q)D%*QV. But in view of Corollary 2.12,
L Jo, IV?DiZ'V|2dadt is bounded by the right-hand side of (2.42), if

T > 0 is sufficiently small. The term ¢! fOT Jo, |QDiVV|2dxdt is simply
bounded by &1 (T). O

2
D52 dSdt
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We turn to the proof of Proposition 2.1.

Proof of Proposition 2.1. We prove estimate (2.7) inductively. First by Lem-
ma 2.3 applied to (2.3), and Corollary 2.12

sup E[V,t] S E[V,0]+ ¢ 'T(1 4 Cy)™,
0<t<T

for some m > 0. Therefore, if T = ¢~'T is sufficiently small

sup E[V,t] < E[V,0].
0<t<T

Similarly, by Lemma 2.4 applied to each of the equations in (2.2) (note that
&2 and DVEQ are constant on 0€2), and Corollary 2.12,

B\ [0 1) $ E<V.0] + By [7.0)
It follows that
E(T) S E<[V,0] + E§é+1[52’ 0].
Now we assume that smallness of T’ implies
(2.45) &r-1(T) < Pr—1(£(0))
for some 1 < k < ¢ and some polynomial P, and use this to prove
(2.46) £(T) < Pu(&(0)),

for some polynomial P, possibly by taking T even smaller. In (2.45) and
(2.46) the polynomials P;_; and P, are taken to be independent of Cj.
In fact, below we assume that k is sufficiently large, because otherwise the
desired bounds follow Corollary 2.12 by taking T small, in the same manner
as above.

Step 1: First we show that

(2.47) Ej1[0%,T) < Py(€0(0)) + rE,(T),

for some polynomial Py, and where & is a given small absolute constant
to be chosen later. The idea is to apply Lemma 2.4 with © = DkV'HEQ to

equation (2.22), which can be done because D%HEZ = 0 on 0. Note that
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using Corollary 2.12 to estimate VQ in L (here @ is as in the statement of
Lemma 2.4) the last term on the right-hand side of (2.13) can be absorbed
on the left, provided T is small, to give

)
/Q 81 DEF 1522 + 1 / / 10D s
(2.48) - 0 Jon
5/ |0, DEF1E? P dae +

Qo

.
! / H, QD%“Ezdxdt ,
0 Q,

for any 7 < T', where Hj, is as in Lemma 2.10. If Hy, is of the form (3) in
Lemma 2.10, then we can use Corollary 2.12 and Cauchy-Schwarz on the
last term on the right in (2.48), to bound this contribution by

et

VDLV |*dzdt 4 ¢ / / |VDEFE? P dzdt.
i<k 0 Jou 0 Jo

If T is small, the first term can be bounded by k& (T) and the second
term can be absorbed on the left-hand side of (2.48). If Hy, is of the form
(1) in Lemma 2.10 we use elliptic estimates. The term that needs special
attention is when k11 = max{ki,...,km+1}, in which case, after using
Cauchy-Schwarz and Corollary 2.12 as above, we need to estimate

¢! / |V DEF22dzdt.
0 JO

But, by Lemma 2.17 this term is bounded by the right-hand side of (2.47)
provided T is sufficiently small.

It remains to treat the contribution of Hy, replaced by (2) in Lemma 2.10
to (2.48). Here, we only treat the most difficult case when ky,4o = k — 1,
and for brevity write the resulting expression in (2) in Lemma 2.10 as

v k—137
FIN N, DY v,
where in view of Corollary 2.12, F' satisfies
1E N ey + IVENl oo iy < (Ep—a(T)"

for some positive integer n. Replacing Hj, on the right-hand side of (2.48)



306 Shuang Miao et al.

by this expression, we write
(2.49)
(F*'V, NV, DEIV)(QDET5%) = V,[(F*'V, DE-TV)(QDE5?)]
— (V") (Vo D V)(QDE )
— (F*V, D V)(V,. Q) (VADE %)
— (F"™V,DEV)(QV,DEFE?).

The last term can again be massaged as

(F"¥,DEAV)(QV,DEG?) = VA [(FM'V, DEV) (V' QY DES?)]

— (F*V,DEV)(QV,DEF?)
(DyF*™)V, DEV)(QV . Dya?)
FH (N, VA VADEV)(QV, DEa?)
FPN, D V) (DyQY) VAV, Dye?)
FHv, Dk V) (Q Dy, VAV, DET?).

—(
+(
—(
—(

Plugging back into (2.49) we get
(2.50)
(F*'V, N, DETV)(QDEN5%) = V,[(F*'V, DE-TV) (QDE5?)
— (FYV, Dy 'V)(VQVADyo?))
— (V") (Vo D V)(QDE )
— (F™V, Dk 1V)(V Q’\)(V Dk+1—2)
+ (FH"'V, D’c V)(QV,.Dyo?)
+ ((DyF*™)V, DEV)(QV . DE5?)
— (F™(V,V )V,\D’“V V) (QV,.DEF?)
(FH¥, DEV)((Dy QN VAV L Dyo?)
(FH'V, Dk V) (QM Dy, VAV, DET?).

+ o+

We need to consider the integration of the terms on the right in (2.50) over
the space-time region Up<;<-{};. The terms

(VuF™)(V,DEV)(QDENS?) and (FMV,DE'V)(V,.QY)(VADE5?)
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can simply be bounded by Cauchy-Schwarz, assuming 7 is sufficiently small.
The last five terms,

(F*V,DEV)(QV,DEa?)  (DyF*™)V, DE'V)(QV,DEs?),
(P (V,V)VADE V) (QV, Dk o?),
(FN, DE V) (DyQY VAV, D),
(F*V, DEIV)(QMDy, ViV, DET?),
can also be treated by Cauchy-Schwarz, this time combined with elliptic

estimates as above, using Lemma 2.17 and (2.16). For the first term, V,I#,
with

I* := (F*V,DETWV)(QDENS?) — (FAV, DE'V) (VI QVADET?),

on the right-hand side of (2.50), by the divergence theorem

c_l/ Vul”dxdt:c_l/ Iodx—c_l/ Iodx—l—c_l// n,I*dSde.
0 Ja, Q Q o Joq,

.

The first term on the right is bounded by the initial data. The second term
on the right is bounded by

(2.51) Cs / \at,ng—lv\deM / |8t7mD%+162|2d:c,
Q. Q.

where Cj depends polynomially on &_1(T). The second term on the right
in (2.51) can be absorbed on the left-hand side of (2.48) if ¢ is chosen
sufficiently small (an absolute constant). The first term in (2.51) is bounded
by the right-hand side of (2.47) by the induction hypothesis. Finally, using
the fact that V“n# = 0 on 01,

¢! / / n,I*dSdt < Csc? / / |VDEV|2dSde
0 JoQ: 0 Jo

+ ¢! / / VDI dSdt,
0 JoQ

where again Cj can depend polynomially on £;_1(T"). The last term on the
right can be absorbed on the left in (2.48) if § is chosen sufficiently small.
For the first term on the right in (2.52) we use Lemma 2.18 with 7 small
(depending on Cs in (2.52) and & in (2.47)), where the second term on the

(2.52)
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right in (2.42) is bounded by the right-hand side of (2.47) using the induction
hypothesis. This finishes the proof of (2.47). Step 2: Here we prove that
given ¢ > 0, if T is sufficiently small then for any j < k

(2.53) (DI'V)(ODLV)dzdt| S E(0) + Py(E_1(T)) + 664(T)

Q

where the polynomial ]5j and the implicit constant are independent of Cf.
In view of Lemma 2.3 this estimate is needed in estimating

sup E<[V,1].
o<t<T

Recall that DD%V = (j where G is as in Lemma 2.9. We treat the hardest
case when ky, 11 = max{ki, ..., kn41} (the other cases can be handled using
Cauchy-Schwarz and Corollary 2.12). In fact we concentrate on the most
difficult case k,,+1 = j — 1. In this case we write G; as

v =177
G* VHVZ,DJV V,
where G satisfies
Gl e @) + IVG Lo @y < (Ep—a(T))"
for some integer n > 0. We now proceed as in the derivation of (2.50). First
(GM'V Y, DIVY(DIY) = V. [(G"V, DIV (DY)
(2.54) — (VuG™)(V, DI V(DY)
v —177 i+177
—(G" VVD]V V)(VMDJV V).
The last term can again be massaged as
(G"V, D 'V)(V,DETV) = VA[(GH'V, DL V) (VY DLV))
G"'V,DLV)(V,DLV)
(DyG™)V, DL 'V)(V,DLV)
1 i T
+ (G*"(V, v )V DJv V)(VHDJVV)

—(
— (
+ (
+(G"V, DL V)(V,V)VADLY).
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Plugging back into (2.54) we get

(G99, D VYD) = V(69D V) (D7)

— (G, DI 'V)(V'VADLY)]

— (VuG"™)(V, Dy V) (DG

(2.55) (G, DLV)(V,DLT)

+ ((DyG")V,DIV)(V,,DLV)
v —A L o
— (G"™(V,V)VADL IV)(VuD]VV)
(GH'V, DL V) (V. V) VAD

+ 7).

J
\%4
We want to integrate (2.55) over Use(o 7)€% The contribution of the last five
terms can be bounded by &/(0), as required in (2.53), provided T is small.
It remains to consider the divergence terms

VIl =V, (G, DI V(DI
Vol =V, [(GMV, DL V) (VIVADLY)].

Note that nulg = 0 on 0f) because an“ = 0 there. Therefore the contri-
bution of V,I} is bounded by the initial data plus

/ ]VD%_IVHVD%V\deC(;/ \VD%_IV\deer/ VDLV |*dz,
QT QT QT

with Cs depending polynomially on E;_1(T"). The second term on the right
is in the form required by (2.53), and the first term on the right is bounded
by the induction hypothesis. The contribution of V,I{' on Q7 is bounded in
an identical fashion. On 99 the contribution of V,I}" is bounded by

T o T o
cl/ / ]VDJV_1V|2det+c1/ / | DIV PdSdt
0 o0, 0 o,

which, using Lemma 2.18, can be bounded by the right-hand side of (2.53)
by choosing T and 7 in Lemma 2.18 small. This completes the proof of
(2.53).

Step 3: Finally we show that

(2.56) S, Ex[V, 1] < S(E:(0)),
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for some polynomial S;. Note that (2.56) and (2.47) complete the proof of
the proposition upon taking « in (2.47) small. We apply the energy identity
(2.10) to © = D%V. The first two terms on the right in (2.10) are bounded
by the initial data. The last three terms there can be absorbed on the left by
taking 7T sufficiently small. The term ¢~* fOT Jo, 9DyOdadt with g = DDkVV
was treated in Step 2 above. Indeed, by (2.53) and the induction hypothesis,
this term can be bounded by a polynomial of £/(0) plus a term which can
be absorbed in the left in (2.10) and (2.47). Finally we consider the term

r 1
¢! / / = fDy©dSdt
o Joq, @

on the right-hand side of (2.10), where f = (DZV— %En)DkVV as in Lemma 2.8.
The main term VD]“VHE2 was already treated in (2.47) in Step 1 above. The
contribution of the terms of the forms (1) and (2) in Lemma 2.8 are also
bounded by a polynomial of &(0) or absorbed in the left in (2.10) and
(2.47), in view of Corollary 2.12 and Lemma 2.18, and by the induction

hypothesis. O
3. The linear theory

In this section we discuss the linearized equations for V and Dyo? and
prove existence and energy estimates for them. Since this concerns the local
existence result of Theorem 1.1 which is for fixed ¢, to simplify notation we
simply let ¢ = 1 in this section and in Section 4. Since the parameter c is
a constant it is clear that the proof is identical for any other choice of c.
The assumptions on the coefficients and the source terms are of course such
that they can be recovered in the iteration for the quasilinear system. The
general scheme is the one outlined in Subsection 1.2.1 above, and involves
proving Sobolev estimates in terms of the energies. However, as explained in
Subsection 1.2.2 this scheme will be carried out on the Lagrangian side. The
actual iteration for the nonlinear problem will be the subject of the next
section.

3.1. The weak formulation of the equations

3.1.1. The equation for V. Recall from (1.30) that the boundary equa-
tion for V is

1 1
(3.1) <D2V + §avn> VY = —§V”DV02.
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When considering the linearized equation for V' we assume that in (3.1)
the V appearing in Dy, a and n are given, and that the right-hand side is
replaced by a fixed function. To be more precise, we consider the following
linear system for the unknown ©O:

0e =0, in Q,

3.2 1 -
(3:2) D‘Q/G—i— iaVnG) =f, on 0f.

At the linear level the Eulerian coordinates are given by

dz(t, ) da'(t,y) (V' .

On the Lagrangian domain the parameterization domain is [0,7] x B with
timelike boundary [0,7] x 0B. The linearized Minkowski metric becomes

(3.4)

V)2 18x
9=—<1—§i:((v))>dt2+22:voaa +Za y'dy".

i,a,b

By redefining the source function f, we write the linear system (3.2) on the
Lagrangian side as

0,0=0 in Bx][0,T],

(3.5) 926
PO +4V,©=f on 0B x][0,T],

where v := 2(‘};0)2 as in Subsection 1.2.2. To derive the weak formulation as
in Subsection 1.2.2, we assume all functions are smooth and multiply the
first equation in (3.5) by a test function ¢ and integrate by parts to get

S S 1
Oz//gz)D @dﬂdt://—ﬁa@ glg*P850) dydt
)P o Js Tl (v 19lg*"950)

— / / 9°%9,005p dydt
0 B

- / 90 dy + / ¢'9,0p dy — / g0,0¢dy
B B By

1 S
+§/ /cpgo‘ﬁ@ﬁ@@alog lg| dydt
o JB

S 1 s
+ / / —(f — 07©)pdsdt — / / 9°%0,005¢ dydt.
0o JOB Y 0 JB
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Since this identity holds for all s, we can differentiate in s to get, after some
manipulation,

/ lfgodS:/ 53@90(1@—1—/ la,?@@dS—/ g7 9,00 dS
oB Y B 8B Y dB

- / 0a0p01g" 7 + / D:0pug™ df
B B

+/ gaﬁaa@ﬁﬂgod@—/ &gcpgoaaa@dy—F/ 009" 0y d7
B B B

1

) / 9°P 9500, log |g| 7.
B

Simplifying the line before last, we arrive at

(3.6)

/ lf<p<15:/ a§@<pdy+/ laf@wds
oB Y B oB Y

+/gab8a@8bg0dy+2/ gm&g@aaapdy—/ ¢"9,0pdS
B B OB
1
~5 [ 0050001089l dy - | 2,009 dy
B B
+ / 910, g'" dy.
B

Equation (3.6) is our guide for formulating a weak problem. Recall that (-, )
denotes the inner product in L?(B) with respect to d7, and (-,-) denotes
the inner product in L?(9B) with respect to the induced Euclidean measure
dS. The pairing between (H'(B))* and H'(B) is denoted by (-, -). We define
the bounded linear map ® : H'(B) — (H'(B))* by

(®(u),v) := (u,v) + (v Hru,tro).

Note that if w is a sufficiently regular function of time, and v is independent
of time, we have

(W vy + (v M tro) = (@(u)’,v) = 2((y 1) tr o, tro))
— ((vH"tru, tro).

Also note that & is an embedding, because if ®(u) = ®(w), then for all
y € G (B)

(u—w,¢) =0
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implying u = w almost everywhere in B. But then
(tru —trw,y tro)) =0, Vve HY(B),

and since tr : H'(B) — L%(0B) is onto, it follows tru = trw. We define the
following bilinear forms:

B:HY(B)x HY(B) - R, C:L*B)x H'B) =R,
D,E: L*0B) x H'(B) - R,

1
B(u,v) = <gab8au, Opv) — §<8au,vg‘w‘8a log|g|) — <8au,v8tgm>,
C(u,v) = 2(u,gta8av> — %(u,vgtaﬁa log |g|) + <u,v8agm>,

D(u,v) := —{(u, g"trv)) — 2(u, (v71)'trv)),
E(u,v) == —{u, (v71)"trv)).

To simplify notation, for any © : [0,7] — H'(B) satisfying

(3.8)
O € L*([0,T]; HY(B)), © e L*([0,T],L*(B)),
(tr©)" € L*([0,T]; L*(9B)), ®(0),9(0),®(0)" € L*([0,T]; (H'(B))*),

let

(3.9) L(©,v) := B(0,v) + C(0',v) + D((tr ©)',v) + E(tr ©,v).
The weak equation then becomes

(3.10) (®(©)",v) + L(O,v) = (v f,trv),  Vve HYB),

for almost every t € [0, T]. To complete our formulation of the weak problem
we also need to discuss the initial data. As in the model problem, the initial
data consists of

o € HY(B), 6, ¢ L*B), 6, e L*B),
and the initial requirement on © is that

0(0) =6y in L*(B),

(3.11) _
(®(0)(0),v) = (61,v) + (b1, trv)), Vo € H'(B).
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Note that since we seek © € L2([0,T]; H'(B)), ©' € L*([0,T]; L*(B)) we
must in fact have © € C([0,7T7]; L?(B)) (after possible modification on a set
of zero measure), so the initial value ©(0) makes sense in L?(B). By a similar
reasoning we can make sense of ®(0)'(0).2

Remark 3.1. Suppose © satisfies (3.10) and that it is sufficiently regular
(say C3). Then taking v = ¢ € C§°(B), we can integrate by parts back in
the definition of L to conclude from (3.10) that

/ (0y0)pdz =0 Vo € C§°(B).
B

It follows that Ug© = 0 in B. Then using this fact and the surjectivity of
tr: HY(B) — L*(0B), we can take v = p € C*(B) arbitrarily, and integrate
by parts again in the definition of L in (3.10) to conclude that

9?0 +9V,0 = f.

A similar conclusion holds for equation (3.18) below if A is sufficiently reg-
ular.

We also need to consider the equations obtained by commuting several o
derivatives. To be more systematic, let us denote by Fy = 0 and fo =~y f
the right-hand sides of the interior and boundary equations respectively.
Similarly, we use F} and fi to denote the right-hand sides of the interior and
boundary equations obtained by commuting J; derivatives k times, and let
Oy, be the k-times differentiated unknown. Now we compute the commutator
in the weak form. Assuming for the moment that all functions are sufficiently
regular,

((2(©)",v) + L(©,v)) =(8(6')",v) + L(O,v)
+{019"0,0, ) — (0,0, vi(g"* 04 o |g)
— (00,007 ")
200/, (219') 0uv) — (6, vi(9' 0 08 o))
+ (0, v010,9")
— (O, (Bg")trv) + (O, (Au(y ™))t v).

12Tn fact, with a little more work one can argue that ©’ € C([0,T]; L*(B)) and
(tr®)" € C([0,T); L*(0B)); see for instance [14, 26]. This will not be needed to
prove energy estimates.
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If we define

1
(€(©),v) 1= =5(0u0,v0:(g"*Da log |9])) — (0,0, v0% g™
1
- §<@,7 Uat(gtozaa log |g|)> + <®/> Uataagta>a

(3.12) (C*(©), 0gv) = (019" 0,0, Dgv) + 2(6, (01g"™) Duv),

(€a(0),trv) = (6 (Arg™)trv),
(C5(0). trv) = ~((tr6)'. (7)'trv).
(€5(©).v) = ((1r6). (y7)"trv)),

then we have the following formula for the weak form of the commutator:

(2(8)",v) + L(©,v)) — (2()",v) = L(©',v) — (Cp(©"), trv)
(C(©),v) + (C*(©), Bav) + (CB(O), trv).

I &l e

(3.13)

Therefore, ©1 := 0,0 satisfies the weak equation (again assuming sufficient
regularity)

(®(81)",v) + L(O1,v) + (C5(O1),v) = (Fi,v) + (F}, 8av) + ( f1, trv)),
where in terms of ©y := ©
Fy =0y —C(©0), Fi =0F5—C"O0), f1=0fo—Cs(O0).

For the next derivative, note that with O := 9?0 and C:B as in (3.12)

S (Cs(01), ) = (Cs(02), ) — (C(O1), ),

(2(02)",0) + L(O2,v) + 2(C5(O2),v) = (F2,v) + (F5, 0av) + (f2, trv),

where

B =0,F) —C(©1), F§=0Ff—C%O1), fo=20f1—Cs(O1)—Cp(O1).
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Continuing in this way we see that O := 9FO satisfies the weak equation

(3.14)
((0r)",v) + L(O, v) + k(Cp(Ok), v) = (Fi, v) + (Ff, 0av) + (fi, trv)),
Vv € HY(B),

where the source terms are defined by the following recursive formulas:

F(]:Oa gzoa fOZ’Y_lf»
(3.15) F = 0iFp—1 — C(Ok-1), Fi =0F;_1 —C*(Ok-1),
fr = Oifr—1 — C8(Or_1) — (k — 1)Cp(O_1).

Using an induction argument, one can derive the following explicit formulas
valid for £ > 1:

k—1 k—1

Fp =0/ Fo — Y 0{C(Or—-1) = — Y _ {C(Or 1),
=0 =0
k-1 k-1

(3.16)  Fp =0fF§ = 0{C*(Ok—r-1) == _ 0[C* Ok 1),

=0 =0
k—1 k—2 ~

fe=0Ffo = 0{CB(Or—r—1) = Y _(k — £ —1)0{CB(Ok_r—1).
=0 =0

To rigorously justify the derivations above we would of course need © to be
sufficiently regular, which we cannot a priori assume. Instead, in the next
subsection we will inductively define © to be the solution of (3.14) (with
appropriate initial data) and show that ©; = ©},_,, proving regularity of ©.

3.1.2. The equation for Dy o2. The derivation of the weak formulation

for the linearized equation for Dy o? is similar to that of V, but simpler
because the boundary condition is the standard zero Dirichlet condition.
Recall from (1.31) that this equation is

ODyo? = 4(V*VY)V, V0% + 4(VVY)(VAVH)(V,V,), Dya® =0 on 9.

We will use A to denote the linearized unknown for the equation of Dy 2.
Going through similar computations as for © above, we can derive the weak
equation for A. Let us restrict the domains of the bilinear forms B and C:

B:H)B)x HY(B) =R and C:L*B)x Hj(B) =R,
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To write the weak equation for A we use the standard embedding of H}(B)
in H-Y(B) := (H}(B))* given by
(t(u),v) = (u,v),  we€ Hy(B), wve Hy(B).

By a slight abuse of notation we will simply write u for ¢(u) from now on.
For any A with

(3.17)
A e L*([0,T]; Hy(B)), A e L*([0,T],L*(B)), A" e L*([0,T};H '(B)),

and v € H}(B) define

L,(A,v) := B(A,v) + C(N,v).
The linearized weak equation for A then takes the form
(3.18) (A" 0) + Lo (A,v) = (Fy,v), Vv € H)(B),

where F, € L?([0,T); L*(B)) is a given function. Also given initial data
Ao € HY(B) and A\; € L?(B) the initial conditions are

(3.19) A(0) = Ao, (M) (0),v) = (\1,v), Yo € Hy(B).

The discussion of the higher order equations for A¥ := 9FA is also similar
to the case of © but simpler. Let

FU,O = Fo, f;o = 0,

k-1
=0/ Fpp— > OfC(Ap—y—1) = Zacz\k“
(3.20) —
k—1 k—1
e =OFFe =Y 0fC (Ak—g1) = = > 0C(Ak—r-1),
=0 =0

The higher order equations for Ay are then
(3.21) (AL, v) + Lo(Ag,v) = (Fyp,v) + (Fo > Oav), Yv € H&(B).
3.2. Existence and uniqueness of the weak solution

This subsection contains the existence theory and energy estimates which
are the main ingredient of the nonlinear iteration. Let K be a fixed large in-
teger representing the total number of derivatives we commute. Throughout
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this section we assume that g, v, fo, Fo, F§, Foo0, Fo

o0 are given functions
satisfying the following conditions:

(3.22)

20 < K+1—-k, k>1
229Fg € L°([0,T]; L*(B)), k<K +1, = =
70t g ([0,T];L%(B)), k< K+ {%SK’ Lo

of(trg) € L*([0,T); L*(0B)), k<K,

ofy' 0y € L*(0,T}; L*(9B)), k < K,
oy 0fy € L™((0,T); L(9B)), k<K -5,

ok fo € L*([0,T]; L*(8B)), k<K,

OFF, o€ L*([0,T); L*(B)), k<K.

We will also use the notation introduced in (3.12), (3.16), and (3.20).

We start with the more difficult case of equation (3.14) for ©. The treat-
ment of (3.14) is divided into two parts. First, in Proposition 3.2 we prove
existence and uniqueness for the linear systems under quite general assump-
tions, and prove higher regularity of the solution up to order K —5. Then in
Proposition 3.9 we prove higher regularity up to order K. The reason for this
distinction is that for the first K — 5 derivatives we can always bound the
coefficients appearing in the commutator errors in L°°, whereas for the last
five derivatives we sometimes need to bound these coefficients in L?. This
requires estimating the lower order derivatives of the solution in L°°, which
in turn calls for Sobolev estimates in terms of the energies. The main step
in going from Proposition 3.2 to Proposition 3.9 is proving these Sobolev
estimates.

Proposition 3.2. Suppose (3.22) holds and that there exist
0, € HY(B), 0.1 € L*(B), 0ps1 € L*OB), k=0,..,K—6

such that the following two conditions hold:
o fork=0,..., K—-7

(Orr2:0) + (B2, v tro) + L (O, ) + k(Cr(0k), v)
= (fr(0), trv)) + (Fi(0),v) + (F;(0), Oav).

Here fi, Fy,, Fi are given by the formulas in (3.16), where the initial
values of Oy and 0,0y, are defined to be Oy and Oy 1 respectively (see
Remark 3.4).

o O =trfy fork=1,..., K —6.
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Then there exists a unique Oy satisfying (3.8) and (3.11) (with (60,61, 61)
replaced by (Ox,0k41,0k41)), such that for all v € HY(B) equation (3.14)
holds for almost every t € [0,T]. The solution satisfies

(3.23)

sup (|04 L2(m) + 1Okl () + 1t O%l 2(0m))
te[0,7)

< 01602T<||9k||H1(B) + 1041l L2) + 10ks1llz20m) + | fell 20,1702 (08))
+ 1 Fell 2 o,17;22(B)) + Hf/?||Loo([o,T};L2(B))>,

In these estimates Cq, Co, and C3 are constants depending only on
||9||Loc([o,T}xB); Hat,@gHLoo([o,T xB)» Hg_l”LOO([O,T]xB): ||5t,§9_1”L°°([0,T]xB)7
||7_1||Lm([07T}XaB), and [|0yy ™ || < (jo,r)x0B) - Moreover, we have ©)_; = O
fork=1,..., K —5.

Before presenting the proof let us make a few remarks about the as-
sumptions of the proposition.

Remark 3.3. Note that in assuming existence of 6, 03, etc, we are not
imposing additional data. Rather, we are requiring additional regularity on
0o, 01, and 0. Indeed, if 0o, 03, etc, exist they are uniquely determined by 6,
01, and éo, so there is no freedom in prescribing them. To see this note that
for instance in the reqularity condition for 03,05 we can first take v € H}(B)
to get uniqueness of B and then use the surjectivity of tr: H*(B) — L?*(0B)
to get uniqueness of 0. Similarly, 63 and 05 are determined by 0.

The compatibility conditions are there to guarantee that the initial and
boundary conditions match on the initial boundary, as required for wave
equations on bounded domains.

Remark 3.4. We clarify the meaning of the initial value of fi, Fy, and
Fy. By definition, these are simply given by replacing ©j, arid 04Oy by their
initial data Oy and Oy1. For instance, the reqularity for (02,02) is (see (3.7),
(3.9), and (3.12))

(B2, 0) + (B2, 7 Ltrv) + B(6g,v) + C(61,v)
+ D(61,v) + E(trg,v) — (01, (97 1) trv)
= (fo(0), tro)) + (Fo(0), v) + (FG(0), Dav).

For higher values of k we also replace ©, and 9,0, appearing in (3.16) by
O¢, Ory1, and Op11 in the same way as above.
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Proof of Proposition 3.2. Existence. We proceed inductively. For £ = 0,
we have Fy = 0 and F§ = 0. Once ©y_; is constructed, then Fj and F}! is
defined as in (3.16), and satisfy

[ Fkllz2(o,11xB) < 00, and || FE| L= (o,17:22(B)) < 0

Let {e/}3°, be an orthogonal basis of H!'(B) which at the same time is
an orthonormal basis of L?(B) (see for instance [11]). All inner products
are with respect to the time-independent measure dy. The linear span of
{e1,...,en} is denoted by E,, and the L?(B) orthogonal projection onto
E,, by P,,. Note that P, is also the H'(B) orthogonal projection. Indeed,
if v =92, v’e is an arbitrary element of H!(B), then both the L?(B) and
H'(B) projections of v on E,, are given by >_;", v’e;. We define the map
®,, : H'(B) — (H'(B))* by

(Pm(u),v) == (®(u), Prv) = (u, Ppv) + (tru, 771“‘ va>>7

and say that
Orm(t,z) =Y Of ,(ee(x),  ©f,, € C*([0,T]), L=1,...,m,
/=1

satisfies the m'" approximate weak equation if for £ =1,...,m,

((I)m(@k,m)ﬂv 66) + [’(@k,ma ef) + k<<C~B(®k,m)’ U>>

(3.24)
= <<fk7tref>> + <Fk765> + <./T"]?,aaeg>,

and

(3.25)
04 (0) = (Br,ec),  £=1,....m,

<@§§7m(0), er) + ((tr @27m(0), er) = (Op+1,€0) + <<§k+1, treg), £=1,...,m.
Existence and uniqueness of Oy ,, satisfying the m'™ approximate weak
equation is a consequence of existence theory for ODEs. Indeed, the equa-
tion reduces to a system of linear second order ODEs for the unknowns
Ol ...,0". The matrix coefficient of the second order derivative is

Im4+Gm
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where G™ is the positive semi-definite matrix'® with entries
-1
G = (v trei,treg).

It follows that I™ + G™ is invertible and the ODE can be put in standard
form. Similarly, for the initial data for the time derivatives (©F,)’(0) we use
the invertibility of I™ + G™ and the second equation in (3.25), where G™ is
the positive semi-definite matrix with entries éf} = ((tre;, tre;)). The initial

data for ©F (0) are given by the first equation in (3.25).

Our next goal is to prove energy estimates for the m*™ approximate weak
equation. For this we multiply (3.24) by (®£7m)’ andsumupinf=1,...,m
to get, with |V, ul? := g**0,udpu,

)
t 1 d / 2 2 —1 / 2
5&(H@k,mHL2(B) +IVgOrmlllzz(my + IV 2t O 1 ll720m)) ) ds
tr1 1
= [ (5O O ®0u o ) + 50001, O a0 0 9) ) s

¢ 1
+/ (<@k,m7 OmOag™) + §<atgab8a@k,ma 5b@k,m>> ds
0

[ 5 08 B + (1161

(i O ) + (F, 0000 1) ) ds.

To obtain an energy estimate, we need to bound the initial norms
11V 4Ok,m (0)[[| 2(B): 1O 1, (0] 12(5). and ||tr ©F .., (0)[|12(a5)- The first term,
11V 4Ok, (0)]l| 12(5), can be bounded by the H'(B) norm of 6. For the time
derivatives we multiply the second equation in (3.25) by (@im)’ (0) and sum

13To see that G™ is positive semi-definite, let g"(x) be the m x m matrix with
entries e;(x)e;(x). For each z, ¢"(z) has m — 1 zero eigenvectors (take m — 1 lin-
early independent vectors which are perpendicular to é(z) := (e1(z),. .., em(2))T)
and one positive eigenvector (namely €(z)) with eigenvalue |€(z)||%... In particular
g™ (x) is positive semi-definite for each . Then note that for each constant vector
Xo € R™

XJG"Xo= | XJg™(x)Xoy *dS(x) > 0.
OB
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upinf=1,...,m to get
1€ Oz ) + It O (O )
< Hek-‘rIHLZ(B)|’@;§7m(0)||L2(B) + Hek—&—lHLZ(aB)Htr ez,m(o)”Lz(aB)’

from which it follows that

105 m )72y + 167 O ()22 0y < N0k41l172) + ”§k+1H%2(aB)-

To obtain the uniform bounds on Oy ,,,(t), we use (3.26) to get

sup (|0, mll72(m) + I1VgOrmll72(m) + 1tr O nllT2(0m))
te[0,7

<|

Oull () + 10r-+11l72(5) + H9~k+1”%2(33)

T
+ /0 (I fkll 22 @)1t O il L2(am) dt

2k +1 (T
5 /OH&W iz @815 m 2 (om)dt

T
/ / ]-",‘jaa@;cvmdydt‘
0 B

T
T /O (190 = 1023108 gl =5 + 10: 9]l e (2)

T
+ /0 1 Fll x5 | O oll oyt +

X (1€%mll72) + 105Okm 725 d-
The term fOT [5 Fi0a©y, ., dy dt needs some special care:

T T
/ / F{0,0  dy dt = — / / OrF(0uO i dt
0 B 0 B

+ /B FE ()0, O g (T — /B FE0)040km (0)dF,

which gives

T T
Iy fzaa@;,mdydt's JRACEATRT
0 B 0

T
+ /0 V4@t )2y
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+6 sup [|VyOpm(t, )HL?(B
t€[0,T

+Cs sup || FE(t, )”L2(B)7
te[0,T

where 0 > 0 is sufficiently small. Then it follows from Gronwall that

(3.27)

sup (104 L2y + 1Okmllm () + tr O 1l L2 (om))
te[0,T]

< 01602T<||9k:||H1(B) + 101l L2) + 10kl z20m) + | fll 20,1702 (08))
+ 1 Fell 2 jo,17:22(B)) + \|f1?||Lw([o,T};L2(B)))-

Here the constants C; and 5 depend only on

191l = ((0.11xB): 1039l L= (o.11xB)s 197 = j0,71x BYs 10659 | L= ((0.7)x B)

17 Ml L (o,r1%0m)s 1067 L (0,11 %08) -

Estimate (3.27) is the main energy estimate on Oy ,, which allows us to
pass to a limit. To get a bound on ®,,(0y ,,,)"” note that by (3.24) and the
definition of @y ,,, for any v € H!(B)

(q)m(@k,m)”vv) = ((Dm((ak,m)”a Pnv)
= (fk, tr o)) + (Fi, Pmv) — (F, 0aPrv) — L(Ok m, Prmv).

Appealing to the bounds (3.27) we get!*

1@ (Ok,m)” | 220,150 (BY)) < Cs

where C' depends on the upper bounds on the right-hand side of (3.27). This
means that Oy, € L*([0,T]; H'(B)), Ohm € L%([0,T); L*(B)), (tr Og.m)’ €
L%([0,T); L*(8B)), and ®(O.,)" € L*([0,T];(H'(B))*), and they form
bounded sequences, and hence have weak limits (along a subsequence) in the
same spaces. Let ©y, denote the limit of © ,,, and U the limit of ®,,(0O ).
We claim that U = ®(©) and that Oy satisfies (3.14). For the former
claim suppose v := Y37, v’ey is element in H'(B) belonging to the span of

Since tr Oy, and trO} are well defined, uniform (H'(B))* bounds on
D, (O, m) and D, (O 1)’ also follow from the bounds on ©y ,, ©) ., and tr @;C_’m.

k,m>?
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{e1,...,en} for some M. Then

(®(0),v) = (O, v) + (tr O,y 'trv) = lim (O m,v)

m—ro0

+ lim (tr O m, vy~ Hr v))

. . -1
n’%l—r>noo<®k’m7 P v) + %gnoo«tr Okm,Y  tr Ppv)
= li_r}n (P (Ok,m),v) =: (U,v).

Since elements v of this form are dense in H!(B), it follows that U and
®(Oy,) agree as elements of (H'(B))*. Since ®,,(Ok,)" — U" it follows
that ®,,(O,m)" — ©(0)". Indeed, for any smooth compactly supported (in
(0,7)) ¢:(0,T) — HY(B)

T T
/ (®(Or),¢")dt = lim (P (Ok.m), ¢ )dt
0 m—00 0
T
= lim (‘bm(@k,m)/la@)dt
m—0o0 0

Using a similar argument as above, starting with elements of the form v :
Zz]\; v'ep, we can pass to the limit in (3.24) and conclude that Oy is a
solution of (3.14), and the initial data are attained. Finally, the energy
estimates (3.23) follows from passing to the limit in (3.27).

Uniqueness. To prove uniqueness (to ease notation we consider only
the case k = 0, but the proof easily extends to other values of k) suppose ©
is a solution with initial data g, 61, 61, and sources f, F, and F all equal
to zero, and for some fixed s € (0,7) let

() = {;ft oldr =

Then ((t) € H'(B) for each t so integrating (3.14) with v = ((t) gives
[@er.qars [*(B6.0+ 0.0+ D6y, + Ewe,q) Jar
0 0
=0.

Note that ¢’(t) = ©(t) for t < s, so in particular ¢'(0) = 0. Also by definition
¢(t) = 0 for t > s. Since © has zero initial data by assumption, it follows
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(0, 0)dt

[
|

— ((((tr 0), v 1trO) + (tre, (y ) 'tr 9))>dt
0

N =

1, 1
= 510725 ~ 57> OllZa(om)

- /0 (0, (1Y tr ©)dt.

Next replacing © by ¢’ and integrating by parts we can write

1 1 1
B(6,0) = 500G, 9™01C) — 5(0uC, (919™)0hC) + 5 (¢, (aC)g" Dalog 1)
1
+ §<C/7 (0a(9"“0aloglgl))
— S Co0nToglgl) — (¢ COg) + (¢ (BC)ug'™)
+ (¢, €059
Similar calculations give
C(O',¢) = 20,(¢', 9" 8aC) + (' (9ag"™)C') + (¢, 97 ") = 2(¢, (Deg")u)
~ 50U¢ G B log o)
1 1
+ 5(¢ (g™ Dalog |g]) + 5(¢", COi(g" Dulog |g])) + Di{C", COag™)
- <C/7 Claagta> - <C/7 Caaatgta>7
and

D((tr©)',¢) = —0p{tr ¢, g"tr C) + (tr ¢, g"tr ¢") + (tr ¢’ (Drg™)tr C))
=20, (tr ¢’ (vt ) +2{(tr ¢, () 1)
+2(tr ¢, (v ")),

as well as

E<tr o, <) = _<<tr Clv (’7_1)”“" C>>
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Putting everything together (and keeping in mind that ¢'(0) = {(s) = 0) we
arrive at

IVC(O)Z: 5y + 1©(5) 1725y + lItr O(s)l|72 o)

SC/O USONFr ) + IS O + ltr (O 0m)dt

where the constant C depends only on

2
su Ol i + ||OF N TPV >
OgthkZ:OO‘ 9ll=B) + 10/l =08y + 110" [lL=08)

Since ¢(0) = — [; ¢(t)dt we can add ||§(O)||%2(B) to the left-hand side above
to get (with possible different C' but with the same dependence on the co-
efficients)

IO 5y + 1) Z2 () + lltr ()l (015

<c / UCE) 2y + 1O(8) gy + 6 O() 22 o))

Now let

w(t) :== /Ot@(T)dT
so that for t < s
() = w(t) —w(s).
It follows that
lw(s) 15y + 1905122 + It O()1Z20m)
<€ [ o) = 0o + 10O + T OO [ om)t
which in turn gives
(1= 2Cs)w(s) |z + 19(5) 122 + ItrO() 22 (0m)

SZC/O (@) 175y + OO F2(5) + ltr O 17295t
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If s < 59 with s9 < 45, it follows from Gronwall that ©(s) = 0 on [0, sq].
But since the choice of sg is independent of the choice of the time origin, we
can repeat the argument to get that ©(s) = 0 on [so, 2s¢] and continue in
this way to get that ©(s) =0 on [0, 7.

Recursive relation. It remains to prove the recursive relation @971 =
©;. Let us define I'(t) := ©;_1(0) + fg ©,(s)ds. By the compatibility condi-
tion, we have

(3.28) T(0) = ©;1(0), (B(TY(0),v) = (B(6,1)(0),v), Vo H'(B).

Let us consider

We have

Z'(6) =(@(8,)" (1), v) + £(8;(8),v) + j (C(6,(1)), v)
+ (@) (5),0) + £, 0) + G~ D), 0))
— (2(6,)"(1),v) ~ £(8;(1),v) ~ j (Ca(O; (1)), v),
and according to (3.15),
(@), 0) + £, ) + (G — 1)(Ca(D), v))
— (2(8)",v) = L(8,v) — j (C5(6;),v)
= (C(T), 0} + (C*(D), Dav) + (Co(D), trv) + (j — {Cr(D), tro).

By the equation satisfied by ©;, we have

Z' =(Fj,v) + (F},0av) + (fj: trv)) + (C(T), v) + (C*(T), Oav)

+(Cs(T), tro) + (j — (Cp(T), trv))
—(FI_y,0) + (Fe, 000) + (f_y, tro)) + (C(T) = C(O;-1),v) + (C*(T)
—C%(©j-1),04v)

+ (Cs(T) — Cs(O;1), trv) + (j — 1){(Ca(T) — Ca(©;_1), trv),
which gives

Z(t) = Z(0) = (Fj-1(t) = Fj1(0),v) + (F_1 () = Fj1(0), 9av)
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+ {(fi-1(t) = fi-1(0), trv))

+ [ (e~ e®s.0+ ) - €(©;1). 000
+(Cs(T) — C(0-1), trv))ds
+(j — 1)/ <<C:B(F) - C:B(@j—l)atfv»d&
0
In view of (3.28), this implies that

Z(t) = (Fj-1(t),v) + (F71 (1), av) + (fj-1(1), tr o))

(
. 1)/ (Cs(T) = Cu(©,_1), trv)ds
0
t
+ [ (em) — e(©-1),0) + (€1(1) — €(0-1),000) + (Ca(D)
—C(©j-1),trv))ds.

Comparing with the equation satisfied by ©;_1, it follows that w(t) :=
I'(t) — ©j_1(t) has zero initial data and satisfies

(®(w)" (1), 0) + L(w(t),0) + (G~ D{Colw), tro)
= [ (tetwts). o) + (€"(w(s)).010) + (Catus)).tr )

+ (- 1)<<53(w),trv>>)ds.

Since this is a homogeneous equation with zero initial data, we can argue as
in the proof of uniqueness to conclude that w = 0, which implies @971 =0,
as desired. 0O

As discussed earlier, to prove higher order regulairty we need to prove
Sobolev estimates on ©, using the fact that © satisfies the conclusions of
Proposition 3.2. The main ingredient for this is the following elliptic estimate
for weak solutions of the Neumann problem.

Lemma 3.5. Suppose u € H'(B) satisfies

(3.29) (g™ Dqu, Dyv) = (w, tro) + (W, v), Vv € HY(B),
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for some w € H2(dB) and W € L2(B). Then u € H%(B) and for some
constant depending only on g

(3.30) ||uHH2(B) < C(HwHH%(aB) + HWHLZ(B))

More generally, for each k if ggW € H¥(B) and w € Hk‘*'%(@B), then
u € H*2(B) and there exists a function Pj, depending polynomially on its
arguments such that

(331)  lullmesae) < Pullalso), Il Noll et o, 1W e (s))-

For future reference in the treatment of the equation for Dy o? we also
record the following elliptic estimates for the Dirichlet problem.

Lemma 3.6. Suppose u € H}(B) satisfies
<gab8au78bv> = <VV5 U>7 Vo € H&(B)v

for some W € L%*(B). Then u € H?*(B) and for some constant depending
only on g

(3.32) lull g2(By < ClIW || L2(B)-

More generally, for each k if g, W € H*(B), then u € H**?(B) and there
exists a function Py depending polynomially on its arguments such that

(3.33) lwll vz By < Pr(llgll sy, 191z sy IW e (3y)-

Lemmas 3.5 and 3.6 are standard elliptic estimates with transversal and
Dirichlet boundary conditions respectively, and their proofs, which we omit,
can be found in many references. See for instance [23]. We can now prove
our first Sobolev estimate on the lower derivatives of ©.

Proposition 3.7. Suppose © is as in Proposition 3.2. Then for each k <
K-5and2a < K —-3-—k,

940y, € L>([0,T7; L*(B))
and for each T <T

(3.34)

1050k (T)l L ([0,71:22(B))
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spk(sup S (VO sy + 10651 (1) 25 + 1Oes1(8)]1z2(0m)):
EST p<oqik—2

(3.35)

191l o< 0,7 otz () ) Haff”LM([O,T};H“g(B))>’
<k

where Py is a function (not the same as in Lemma 3.5) depending polyno-
mially on its arguments.

Proof. The argument is a simpler (at linear lever) version of the proof of
Proposition 2.11, so we will be brief on details. By Proposition 3.2, we al-
ready know that

O, c H'(B), k<K-5.

We proceed inductively. First note, that in view of Proposition 3.9 we can
apply Lemma 3.5 to Oy, k < K — 7, to get

O, € H*(B), E<K-T.

This estimate now allows us to improve the regularity of the lower deriva-
tives. Indeed, using the higher regularity statement in Lemma 3.5 it follows
that

O, € H3B), k<K -9,
and inductively, for 3 <m < $(K — 1),
Orc H"Y(B), k<K - (2m+1).

The desired estimate (3.35) also follows from Lemma 3.5. O

Remark 3.8. Using Proposition 3.7, we can control the L*°([0,T]; L>°(B))
norm for the lower derivatives. More precisely, under the assumptions of
Proposition 3.7, we have, for a > 2,

(3.36)
109720 (7) | L= (jo,7)s1. (B)

< Pk<SUP > (IVO)lLe sy + 11 (W)l L2 sy + 1©e41 (B L2 0m)),
LST y<oatk—4
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(3.37)

191l o< 0,7 rmoxca-2.3 (), Y HatefHLO@([O,T];JLI“‘%(B))) '
1<k

Based on the Sobolev estimate (3.37), under the assumptions (3.22), we
have the following improved version of Proposition 3.2:

Proposition 3.9. Suppose (3.22) holds and that there exist
0, € HY(B), 611 € L*(B), 6ps1 € L?(0B), k=0,.. K

such that the following two conditions hold:
e Regularity: For k=0,..., K —1

(Or+2,0) + (Orr, v rv) + L(Ok, v) + k(Cr(0k), v)
= (f&(0), tro)) + (Fi(0),v) + (F§(0), Gav)-

Here f(0), F3(0), F(0) are defined as in Proposition 3.2.
e Compatibility: 0, = tro; fork=1,... K.

Then there exists a unique Oy satisfying (3.8) and (3.11), such that for all
v € HY(B) equation (3.14) holds for almost every t € [0,T]. The solution
satisfies

(3.38)

sup (104l 2y + 1Okl () + 14Ol L2 (05))
te[0,7

< Clec2T<||9kHH1(B) + 1011l L2) + 10kt z20m) + | frll 20,1312 (0))

+ | Fll 22 jo,1;22(B)) + \\]:1?\|Lm([o,T};L2(B))>~

In these estimates C1, Co, and C5 are constants depending on the various
norms of g,trg,v,Y" ' appearing in (3.22). Moreover, we have O, , = 64
for k = 1,..., K, and there exist functions P, depending polynomially on
their arguments such that (3.35) holds for k < K and 2a + k < K + 2.

Proof. The proof is similar to that of Proposition 3.2. The only difference
is that when most derivatives fall on the coefficients g,y we bound these
terms in L? and bound the lower order derivatives of © in L>°(B), using the
Sobolev estimate (3.37). We omit the routine details. O
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We turn to the equation for Dy o?. The overall proofs of existence,
uniqueness, and higher regularity are similar to those in Propositions 3.2
and 3.9. Therefore, we will omit most details and concentrate on deriving
the appropriate energy estimate.

Lemma 3.10. Assume (3.22) hold. Given H € L*([0,T); L?(B)) and H® €
L>=([0,T); L3(B)), suppose A satisfying (3.17) and (3.19) is a weak solution
of

(3.39) (A", v) + Lo(A,v) = (H,,v) + (H®, 0,v), Vv € HY(B),
satisfying

(3.40)

sup (|| 725y + Al ()
te[0,7

< co(|l Xl my + 1M l1Z2(my + 1H 2200223y + 17 0.17:22(3))-
If O;H* € L'([0,T); L*(B)), then A satisfies'

(3.41)

IV ANz 207722 08))

< er([Mollzmy + M2y + 1B 201028y + 10aH 22 0172 (3)))
for some constant c1 depending only on the first two derivatives of g and

on co. If instead A can be written as &', with T € L°([0,T); H*(B)), and
OH € L*([0,T]; L*(B)), H" € L*([0,T]; L*(9B)), then [0aH |20 1y:2(3)

5Here VA on the boundary dB is in the weak sense: Suppose A € H!(B) is a
solution to (3.39). Then its weak normal derivative V¥A on [0,7] x B is defined
such that for any p € C*°([0,T] x B), we have

/OT /BB«W‘ZA,SD»det - /OT/B@abaaA?ab@dydt
T
+/O /B((A”M/J)—<H,<p>—<7{“,8agp>+£0(1\’¢)) dgdt.

Here L, (A, @) := Lo(A, @) — (g%, A, Dp).
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on the right-hand side of (3.41) can be replaced by

T
11122 0,13, 020my) + 1FN 2 0,102 +/0 /B|3t7'l||3t2,yr\d§dt

+ sup /|H||3§yf\d§.
tel0, 7] /B

(3.42)

Proof. This is a standard estimate for the wave equation with Dirichlet
boundary conditions. See for instance [14, 26, 6] and Lemma 2.4 above. We
sketch the proof for completeness. Note that by (3.22) the metric g is at
least C3. We approximate (Ao, A1), H, and H® by regular (say C?) functions
(AG, Af), H®, and H** such that

(A5 AD) = (Mo, A1) in Hg(B) x L*(B),
H® - H in L%*[0,T];L*(B)),
O, H"* — 9,H* in L3([0,T); L*(B)),

and satisfying appropriate compatibility conditions. Let A® be the solution
of the corresponding wave equation

OgA® = h® := H® — O, H™, (A°(0), 0:A°(0)) = (AG, AD)-
Multiplying by a general multiplier QA® := ¢?0,A® we get

(3.43)
(A (@A) = 8 (907 (,A%)(95A°) + 140" (350°)(8,17))

(3.4 + 5 (@a o |g)a" 6" (05A)(0,A%) — 9™ (ag™)(95A) (8, A°)
+ 304 (6°07) (0uA7) (951°).

We now take ¢* = g*". Integrating (3.43) over [0,7] x B we see that the
contribution on the timelike boundary [0,T] x 9B is

1
(grozaaAa)Q o igrrgaﬁ(aaAa)(aﬂAa).

decomposing into polar coordinates, and noting that the tangential deriva-
tives (that is, d; and the angular derivatives tangential to B) of A® are zero
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(because A is constant on [0,7] x 0B) this expression simplifies to
1
5 (grrarAa)Q‘

Since ¢"" is bounded away from zero and the tangential derivatives of A¢ are
zero on [0, 7] x OB this controls |9 3A%|? on [0, 7] x B. Therefore integration
of (3.43) gives

345
/ / 10,5 A°PAS dt < sup /|8tyA6| dy+/ /|8tyA 2dg dt
tGOT

+\/0 /B(DAE)(QAE)dydt‘.

Estimate (3.41) for A® follows after adding a suitably large multiple of (3.40),
and the corresponding estimate for A follows by taking the limit ¢ — 0. For
(3.42) we simply integrate by parts in the last term in (3.45) (here I'¢ is
defined such that 0, = A°):

T T
/ / (O, HEYQAdydt = / HETQASASdt
0 B 0

OB
/ /’Haa g% )0 A°dydt
/ / HEq 0,07 Tedydt
= / / HETQATASAL
0 0B
T
- / / HOU(Daq™)0u A°dydt
T
+ / / (O H=)q 02, Tedydt
0 B
T
—/ vaaqaagaradg‘ :
B 0

This gives the desired estimate for A® and the corresponding estimate for A
follows by taking limits. O

We can now state the analogue of Proposition 3.9 for A.
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Proposition 3.11. Suppose (3.22) holds and that there exist
M € HY(B), My1€L*B), k=0,..,K
such that
Aet2,v) + Lo(Ak, v) = (Fo 1(0),0) + (F55(0), 0av).

Here Fy ), and F2 . and their initial values are defined as in Proposition 3.2
using (3.20). Then there exists a unique Ay, satisfying (3.17) and (3.19), such
that for allv € H(B) equation (3.21) holds for almost every t € [0,T]. The
solution satisfies

sup (A%l 2y + 1Akl () + VAR 20 77.22(0))
t€[0,T]

(346) < e (IAullmsm) + esillies) + 1 Fok

L2([0,T};L*(B))

+ H‘Fo,k

\LOO([O,T];L%B))) :

In these estimates C1, Co, and C5 are constants depending on the vari-
ous norms of g appearing in (3.22). Moreover, we have Aj,_, = Ay for
k= 1,....k, and for for some function P. depending polynomially on its
arguments such that for k < K and 2a +k < K + 2

105 Ak (T)[] Lo ((0,7];22(B))

<P (Sup > (UIVA@lzeB) + A1) r2(m)s
(3.47) EST p<oath—2
g1l £ (0,7 Frmmsto-2.51 (BY)s D HafFaHm([o,T];Ha(B))) :
o<k

Proof. The proof is similar to those of Propositions 3.2, 3.9, and 3.7, where
for higher derivatives we use Lemma 3.6 instead of 3.5 (see also [26, 14]).
The only part that requires separate treatment is the estimate on
VARl z2(0,1);22(88)) in (3.46). For this we may assume that we already
have a weak solution satisfying (3.46) without ||V Ag||z2(0,17;22(am)) on the
left-hand side, and then appeal to Lemma 3.10 to finish the proof. Here, note
that I" on the right-hand side of (3.42) corresponds to Ax_j so the corre-
sponding contribution can be bounded using Cauchy-Schwarz with a small
constant, and the elliptic estimate (3.32) applied to (3.21) with k replaced
by k — 1. See the calculation leading to (3.27) for a similar estimate. O
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Before moving on to the iteration for the nonlinear system, we need one
more estimate for © corresponding to Lemma 2.18. In our scheme, this will
be necessary to guarantee the second assumption in (3.22).

Lemma 3.12. Under the assumptions of Proposition 3.9, for any £ < K —1

||V@z||%2([o,T];L2(aB)) S Z (HFjH%z([o,T];Lz(B)) + H]:J'HQB([O,T];L?(B))
j<t

+ HfjH%Z([QT];L?(aB)))

+ ||9ngql(B) + H9z+1||%2(3) + ||é€+1||%2(83)

+ 11 (tr00)' 72 0.11.203)) + 1 (tr00)" 17210 17.22(03))

where the implicit constant depends only on g, v, and their first three deriva-
tives.

Proof. The proof is essentially the same as that of Lemma 2.18 adapted
to the Lagrangian setting as in the proof of Lemma 3.10. We omit the
details. O

4. The iteration

With the linear theory and energy estimates at hand, the proof of Theo-
rem 1.1 is a more or less routine application of Picard iteration. We continue
to work with the renormalization ¢ = 1 to simplify the notation.

Proof of Theorem 1.1. We will prove the existence for the system on the
Lagrangian side (1.41), (1.42), (1.43). We will sketch the proof of existence
of the solution (convergence of the iteration) in some detail, and uniqueness
and persistence of regularity follow from similar arguments as usual (see for
instance [27], Theorem 5.11). It is then a routine calculation to go back to
the corresponding Eulerian equations in (1.31) and (1.31), provided K is
sufficiently large. At the end, we will show how to return to the original
equation (1.20).

The differentiate equations (1.41), (1.42), (1.43): We will use O™
A and ¥(™) to denote the iterates of V, Dy o2, and o2 on the Lagrangian
side, respectively. The zeroth iterates ©(©) and A©) are chosen such that they
are polynomials in ¢ and when ¢ = 0 they themselves and their first order
time derivatives agree with the corresponding initial data. The zeroth iter-
ate X0 is defined to be the solution to the elliptic equation (1.43) where
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O, A in that equation are replaced by O A respectively. Given O™ we
define the mth iterate of the (renormalized) Lagrangian map X by

a(X(m))z‘ B (@(m))i o
5= ey = 1,2,3.

The mth iterate, g™, of the metric is then defined as

g == (1 B> ((( (m)))o_)2> At +2 3 ((@(m)))o (ayz Rty

i=1 © il=1
3 .
X g(xmhyt
+“§21 o 5 dyFdy’.

We denote the components of the metric ¢(™ and the inverse metric 9(m)

by gc(xm) and g(o;g ) respectively. Note that these components, and their first

time derivatives, are at the same regularity level as one derivative of ©(™).
The mth iterate of the coefficient 7 is defined as

\/gg;{j) Do D(m) 9522 (m)
V(m) = 2((0(m))0)2 ’

and ®,,) : H'(B) — (H'(B))* by
(D () (u),v) == (u,v) + <<'y(_wt)tr u, tr o).

If the mth iterate of V, Dy o?, and o2 are given, we define the (m + 1)st
iterates as follows: First ©(1) ¢ L2([0,T]; H'(B)) is the weak solution of

(4.1)
(@) (O™ DY 0) 4 LM@Y 4) = (£ tro)), Vo€ HY(B),
Om+(0) =6, in L*(B),

(@O Y (0),v) = (01,v) + (01, trv), Vo e HY(B).

Here £™) is defined as

L) (u,v) := B™ (u,v) + C™ (u/,v) + D™ ((tru)’, v) + E™ (tru, v),
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where

B™ : HY(B) x H'(B) = R, C :L*B)x H'(B) = R,
D™ EM) . [2(0B) x H'(B) — R,

1
B™ (u,v) := (g?f,’l)@au, Opv) — —(aau,vg?ﬁ;)@a log [¢9™|) — (Dau v@tg(m))
1
O a,0) 1= 2 ) 0u) — £ (1, 095 Do Lo 9™ )+ (o1, 02
DI = (o = 2o 5 5
B (u,0) i= — (u, (7)) "t ).

Similarly, A(™*Y ¢ L2([0,T]; H}(B)) is the weak solution of

(4.2)
((ATDY py 4 BOD(AMHD 4y 4 ¢ (AHDY ) 4 (B0 ) =0,
Vv € HY(B),
AED©O) = No,  (AFDY(0),0) = (Ag,v), Vo € HY(B),
where

Em .= (@™ nim)

Here S is defined as in (1.46) and (A(™)” should be understood as an ele-
ment of H~'(B) := (H}(B))*, where AU™ is identified with an element of
H~1(B) through (A(™) v) := (A(™ ). Finally, 2(™+1) is defined through
the transport equation 9;%(m+1) ).

Boundedness. From now on, we will stop writing tr u for the restriction
to the boundary and simply write u when there is no risk of confusion. Let'6.

— WA(WL—H

EN(T) == sup Y ([Vey 80 ()] 5) + | Vey O A (1)1
0<t<T£<k

+ 19,10 ()72 (o)

Y / IV DA (1) 2,

1<k

Here among the components of V;,0f A the mnormal components
V., 05 A(™M) is defined in the weak sense as in the statement of Lemma 3.10
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We claim that if T is sufficiently small, then there are constants Ag < A1 <
.-+ < Ak such that for all m

(4.3) EM(T) < Ay, k=0,... K.

For m = 0 this holds trivially for any 7', so we assume that (4.3) holds
for some m, with constant A; to be determined, and prove it for m + 1.
Let us note a few consequences of the induction hypothesis. First, from the
Sobolev estimates in Lemmas 3.5 and 3.6 (see also Proposition 3.7) it follows
that

SN I8RO + 2OAT 2. ) < Ca,.
0<k 2p+0<k+2

for some constant depending on A. Also note that in in view of the transport
equation defining £+ we can estimate 9FfX(™+1) in terms of 9fA(™HD
and 970"+ for £ < k — 1. Tt then follows from these observations that
the coefficients and source terms in the equations (4.1) for ©(™+1) and (4.2)
for A(m+1) satisfy the assumptions in Propositions 3.9 and 3.11 respectively.
Since F = 0 in equation (4.1) the energy estimates in Propositions 3.9
and 3.11 imply that

EMTNT) < Cy +TCo

where Cy depends only on the initial data. If Ag is sufficiently large and T’
sufficiently small it follows that

ErTNT) < Ag
as desired. Next, again by Propositions 3.9 and 3.11
EMTUT) < Cy + Ciyay + TCOL A,

where C depends only on the initial data, and the term C 4, comes from the
fact that now F # 0 after commuting one 0; with (4.1). If A; is sufficiently
large, relative to C; and Ag, and T sufficiently small, it follows that

EMTNT) < Ay

We can now continue inductively in this fashion to prove (4.3) with m re-
placed by m+ 1. The only additional detail is that for higher values of k, we
also need to use the Sobolev estimates to bound @+ and A(™+1) (and
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their lower order derivatives) in L in terms of £""'. Using Gronwall we
can then conclude boundedness of the higher order energies as above. We
omit the routine details. Note that after completing the proof of (4.3) we can
again appeal to the Sobolev estimates from Lemmas 3.5 and 3.6 to conclude
that

Z Z Hapake) HL2 y T HapagA 13 B)) < Cag
k<K 2p+k<K-+2

Convergence. Having established that £ (7") is uniformly bounded, we
prove the convergence of @™ A and ¥(™) in some lower order Sobolev
norm. The argument is standard using our energy estimates for linear sys-
tems and we will be brief. If K is sufficiently large we can assume that
equations (4.1) and (4.2) are satisfied in the strong sense. Let

Cn(t) := sup Z Ve, yﬁg@(mﬂ)( ) — @(’”)(S)II%Q(B)

0<s<t <5

+ 1010 (5) — 0™ ()72 9))

+ sup > [ Ve 0 AT (s) — AU (s)[[7

0<s<t€<5
Y / |94 BEATD () = A (5)[12, 50 ds.
<5

We write the equations satisfied by ©™*1) and A(™*1) in the schematic
forms

Dg(m)@(erl) O in [0, ] x B
O+ 4 A(my ., emt) = f(@m Am) on [0,T] x OB’
and
Oyem AMHD = p(0M) 52(m)), in [0,7] x B
A+ = on [0,7] x 9B
and recall that §,2(m*tY) = L A(m+1) Taking differences we see that

= [@m)
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em+1) _ g(m) and Am+1) — A(™) have zero initial data and satisfy

Dg(m)(@(m+l) — @(m)) =04 (m)_g(mfl)('_)(m)’ in [O,T] X B

- g

(02 + 7™V o) (OMHD — ©(m))

(44) = f(Om Alm)y _ f(@(m=1) Alm-1)) ’
— (Y = YDV )™= on [0,T] x OB

and
(4.5)

Oy (A(m+1) _ A(m)) = F(@(m% z(m)) — G(@(m—lxz(m—l))

— Dg(m),g(m—UA(m), in [0, T] x B

Alm+1) — A(m) = 0, on [0,7T] x OB

Similarly,
1 1
(m+l) _y(m)y — = A(m+1) _ (m)

(4.6) (> =) (@(m+1))0A (@(m))OA ~

Since we have already shown that all coefficients, as well as their first few
derivatives, are uniformly bounded, we can apply the energy estimates from
Propositions 3.9 and 3.11 to (4.4) and (4.5) to conclude that for some abso-
lute constant C

t
Cont) < C / Con 1 (1) d.
0

Iterating this inequality gives

Cmtm
— sup Co(t),
m. t<T

Cin(t) <

proving that (©0™)%_, and (A™)%_, and hence (X£(™)%_, by and el-
liptic estimates, are Cauchy sequences, converging to some O, A, and V
respectively.

Going back to (1.20): It is now not difficult to show that the undifferen-
tiated version of the equations, that is, (1.20), holds. For this we start with
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our Eulerian solutions (V, Dyo?,0?) which satisfy

OV =01in Q, (D% — %(V“a2)VQ)Vu = —%VQDVUQ on 09,
V tangent to 012,

ODvao? = 4(VFVY) (V. V) (VaVi) + 4(VFVY)V, V.02,

Dyo =0 on 01, o2 =1 on 9.

Let B := VeV, + 0%, Xo = DyV, + 20402, wp == 0,V, — 0,V,,, and Y, =
(D} — 4(V20?) Vo)V, + 3VaDyo?. We need to show that these quantities
are identically zero. For this we use the following equations which can be
verified by direct computation:

DyOB = 4(V*VY)V,X, inQ,  DyB=2V®X,, inQQ,
1
Ow =0, in, (D% — §(V°‘02)8a)w = f(w,Dyw,VY,VX), on 9,

OY = Flw,Vw, VX, VPX) inQ, Y=0, ondQ,

DyX = G(w,Y), inQ.

It follows that (w,Y,X) satisfy exactly the same type of equation!” as
(V, Dyo?,0%) for which we already proved a priori estimates. Therefore,
since these quantities vanish initially, they must vanish on all of €. Then
the equations for B imply that B is also identically zero. O

5. Newtonian limit: Proof of Theorem 1.5

In this final section we present the proof of Theorem 1.5 which at this point
is an almost direct consequence of Theorem 1.1 and Proposition 2.1.

Proof of Theorem 1.5. Let Q := ®(t,€) where ® denotes the flow of V
given by %&t") = (%) (t,) and let W.(t',-) = ®(ct’,-) so that Qup =
T.(t', Q) and $E(¢,2") = cS2(ct',2’). We work under the hypotheses of
Theorem 1.5. By Theorem 1.1, for any ¢ > 0 we have a local in time solution
(V,0?%) to (1.20) and hence (2.1)-(2.2). By Proposition 2.1 the solution can

"The only difference is that Dy X involves both w and Y, but in our a priori
estimates we already encountered V(Q)Df’,_lV after commuting k derivatives. See
Lemmas 2.8, 2.9, and 2.10.
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be extended to 2° = ¢T} with T} independent of ¢. For each ¢ and t' € [0, T71]
we define (with 2/ := U (¥, z() and z{, € Qo)

’oonN VO / AN Goal N . v / o
fe(t,x') == —(ct', V(' zp)) —c, vl(t,a"):=—I(ct',¥.(t,xp)),
c

c
he(t', a) := a(ct!, U (', xh)) — 2.

We claim that (f., gg, A, hc) converge as ¢ — oo. Indeed, since the higher

order energies of V and &, as defined in Proposition 2.1, are uniformly

bounded (assuming K in the statement of the theorem is large), by the

Rellich-Kondrachov compactness tlforem, there is an increasing subsequence
¢¢ /' oo such that for each ¢’ € [0, 7],

(fCe (Cftlv \IjCe (tlv ))? Ve, (Cft \IIC[( ) ))7 atlvgg (c@tla \che (t/7 ))7 h‘Ce (Cgt/, \I/Ce (t,? )))

converge in, say, H'%()) to some

(f(tlv \Ij(t,a ))7 Uj(t,a \Ij(t/’ ))7 8t’vj(t/7 \I/(tlv ))a h(t,7 \I/(t/> )))

with W(#,) given by (1.37). Now we prove that (v’ (¢, ), 0pv7 (¥, -), h(t,-))
is a solution to the free boundary problem (1.36) (similar considerations
show that f = h + $[v|? but we do not present the details as this is not
needed for the proof). Let us start with the following relation:

6_20'2 . 62 _ C—Q <<V0)2 _ i(vz)2 _ C4>

(C_IV")2 +2¢(c7VO0 —¢).

MWH

= (c_lvo — 0)2 —
i=1

Since EE,VZ and V'’ — ¢ remain bounded as ¢ — 0o, the last term on the
right above is bounded and hence. Therefore we have

(5.2) VP —c=0(ct), as c¢— .

Differentiating equation (5.1), we similarly obtain that ¢ 19V? = O(c™1)
as ¢ — 0o. On the other hand, based on (5.2), we have, with 2’ = ¥ (¢, ),

(5.3)
3

3
. 27,0 —1y,7 z
th <c€ V ct’ ' = E V ct/ = > BT E v

=1
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Therefore, taking the limit in the second equation in (1.20) and the first
equation in (1.20) we obtain the first two lines of (1.36). The boundary
condition h = 0 also follows from taking the limit of the boundary condition
o —c? =0, and the tangency condition (1,v) € T(Uy(¥,0Dy)) follows from
(5.3).

Finally, since the solution to (1.36) is unique, any convergent subse-
quence of (f¢, v, Opve, he) converges to the same limit. Therefore the entire
sequence converges to the same limit which is a solution to (1.36). This
completes the proof of Theorem 1.5. O

Appendix A. Non-vanishing vorticity and general sound
speed

Here we discuss how the proof of Theorem 1.1 can be adapted with minimal
changes to treat the case of barotropic fluids (1.10)—(1.11)—(1.18)—(1.19) with
non-zero vorticity and general sound speeds. By a slight abuse of notation,
we will use o to denote ||V||. The main equation is now

1
(A.1) V. (GVH) =0, DyVH + 5v“ (o) = 0.

Differentiating the first equation above, a direct computation shows that
with the notation h*” := GmM" — 2G'VHV", V satisfies the following acous-
tical wave equation (all indices in this appendix are raised and lowered with
respect to m):

(A.2) Oy (h‘“’&,Va) + 0, (GmMway) =0 in Q2.
Here we used the fact iyyw = 0 which can be derived as follows. Let Ly be
the Lie derivative along the vectorfield V' and the 1-form 3 be 3, := m,,, V".
Then the second equation in (A.1) implies:

LyvB = —do?
Therefore we have

ivB=—0, = iyw=iydB=LyB—diyB=LyB+do’>=0.

It is well-known that the wave equation above for V' can be written as the
wave operator of a metric conformal to i applied to V', but we will not need
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this formulation. On the boundary (here Dy := V*#0,)

1 1 1
(A.3) (D} — §(V“a2)8u)va — §(V“U2)wau = —§VQDV02.

Note that since V is tangent to Q and Vo? normal, h*” 8M02 = GmM d,,0*
on 0f2. The fact iyw = 0 implies that the vorticity w satisfies the transport
equation Lyw = 0. In coordinates this can be rewritten as

(A.4) Dywu + (V,VMwr + (Vo VM wu = 0.

For 02 and Dyo? which are constant on the boundary, we can derive the
following interior acoustical wave equations:

(A.5) (W 9,0°) = 2G(V*V )wpy — 20 (V VN (V,VA),

and

(A.6)  0,(h"d,Dyo*) = F(w,d? Dyo? Va2, VDya?, VV,Vw, V35?),
where the right-hand side is given by

F = —2Dy ((V, V) (W™ V, Vi + Gm*wy,))
+ (V, V(20 V3V ,0° + (VAh)V,0%)
— V. ((Dvh*™)V,0?) + (V2 a?)V ,,(Gm* wy,).

This term can be further simplified, but the exact structure is not impor-
tant for our purposes, except that using the relation DyV = —%VU2, the
dependencies of F' on the unknowns is as stated in (A.6). At this point we
can already see that our proof of a priori estimates for (2.1) and (2.2) can
be applied to (A.2), (A.3), and (A.6) with minimal modifications. Indeed,
note that since V and Vo? are respectively tangential and normal (with
respect to m) to 02, we have h’“’@ua2 = Gm‘“’@ua2 = GV¥02. It follows
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that multiplying (A.2) by Dy V, the resulting boundary flux on 9 is'®

/ ! / G((V*0%)0, Vo) (DyVy)dSdt,
0 o0

which can be combined with (A.3) to give us control of

sup/ |DyV|2dS.
te[0,T] J 092,

Similarly, the right-hand sides of equations (A.3) and (A.6) have the same
regularity structure as those of the corresponding equations in (2.1) and
(2.2). Indeed, the contribution of 0 can be treated exactly as before using
equation (A.5) (which amounts to the fact that it is one order lower than
Dy o? in terms of our energies). Moreover, the transport equation (A.4)
shows that in general D(“/w is of the order VD‘kflV. But as observed in
Lemmas 2.8, 2.9, and 2.10, we already encountered VD‘k,_lv in the right-
hand side of the boundary equation for D"“,V7 and encountered V(Q)D‘]“/_IV

8Remarkably, we can also integrate by parts in the expression
(DvVa)0u(Gm* wq,) to cancel out the boundary term £(VFo?)wg, in (A.3).
More precisely, multiplying the equation (A.2) by DyV, (« is not summed) and
then integrating in €2, we obtain

0= / 8, (W0, Va) + 8, (G war)) Dy Vi) da dt
Q
- / (B0, Vi + G ) (8, V") (Vi) da dt
Q
hiav
—/ (DV (T(ayva)(aﬂva) + Gm‘“’wa,,aﬂva>) dx dt
Q
1
+ /S 2 (3 (DAY OVe) OuVa) + (Dy G a0,V
+ G (Dy )0 Ve ) de dt.

Except the first term on the right-hand side above, all the other integrals in € can
be treated as lower order terms, similar as in the irrotational hard phase case. The
first term on the right-hand side above gives a boundary integral

/ ((DvVa)(8702) (0, Ve + waw)) dS dt,
o

which cancels exactly the non-coercive contributions from the left-hand side of the
equation (A.3).
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in the right-hand side of the interior equations for D’{}V and D‘]“/HJQ. Finally,
it remains to check the commutator structure between Dy and the acoustical
operator 09, (h*”0,). But again a direct computation using the definition of
h shows that for any ©,

[Dy, 0,(h*9,)]© = —(V, V) ((VAR*)V,0 + 21"V ,V,0)
+ V. ((Dvh*)V,0) + (Vu(Gmi* wy,))V*O.

Comparing with the commutator identity for [Dy, O] from equation (2.17),
we see that the right-hand side above has exactly the same regularity as the
case we already treated in our a priori estimates. Indeed, the only difference
is the appearance of second order derivatives of V', but these always come
with lower orders of Dy and as mentioned above were already encountered
in Lemmas 2.9 and 2.10.
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