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Well-posedness of free boundary hard phase fluids in
Minkowski background and their Newtonian limit∗

Shuang Miao, Sohrab Shahshahani, and Sijue Wu

The hard phase model describes a relativistic barotropic irrota-
tional fluid with sound speed equal to the speed of light. In this
paper, we prove the local well-posedness for this model in the
Minkowski background with free boundary. Moreover, we show
that as the speed of light tends to infinity, the solution of this
model converges to the solution of the corresponding Newtonian
free boundary problem for incompressible fluids. In the appendix
we explain how to extend our proof to the general barotropic fluid
free boundary problem.

1. Introduction

Let (R1+3,m) be the Minkowski space-time with metric components mμν ,

μ, ν = 0, 1, 2, 3,

m00 = −1, m11 = m22 = m33 = 1, and mμν = 0, if μ/=ν.(1.1)

The motion of a relativistic perfect fluid occupying a domain Ω ⊂ R
1+3 in

Minkowski background (R1+3,m) is governed by the conservation laws

∇μT
μν = 0,(1.2)

∇μI
μ = 0,(1.3)

where

Tμν = (ρ+ p)uμuν + p(m−1)μν(1.4)
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is the energy-momentum tensor, and

Iμ = nuμ(1.5)

is the particle current. Here u is the fluid velocity, which is a dimensionless

future-directed unit timelike 4-vector, so its components satisfy

mαβu
αuβ = −1, u0 > 0;(1.6)

and ρ is the energy density, p is the pressure, n is the number density of

particles, and ∇ is the covariant derivative associated to m. Let s be the

entropy per particle, and θ be the temperature. The laws of thermodynamics

state that ρ and p are functions of n and s; ρ ≥ 0, p ≥ 0, and

p = n
∂ρ

∂n
− ρ, θ =

1

n

∂ρ

∂s
.(1.7)

The sound speed η is defined by

η2 := c2
(
∂p

∂ρ

)
s

(1.8)

and is assumed to satisfy 0 ≤ η ≤ c, where c is the speed of light.1

Assume that the perfect fluid is barotropic, that is, the pressure is a

function of the energy density:

p = f(ρ).

Then (1.3) decouples from (1.2), which by themselves form a closed system.

In this case, both p and ρ are functions of a single variable σ, defined by

ρ+ p = σ
dρ

dσ
.(1.9)

1We have chosen not to normalize units leading to c = 1, because as a byproduct
of our well-posedness result and a priori estimates (to be discussed below) we are
able to rigorously justify the Newtonian limit of the problem as c → ∞. The exact
powers of c that appear in the equations below will be explained in the discussion
following the statement of Theorem 1.1. Note also that even though the speed of
light is taken to be c rather than 1, the coordinates (x0, . . . , x3) on (R1+3,m) are
chosen so that the metric components are (1.1).
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Assume that the function f is strictly increasing and the integral∫ p

0

dp

ρ+ p
= F (p)

exists. Let

V = ‖V ‖u
where

‖V ‖ := eF

and

G =
ρ+ p

‖V ‖2 .

Then (1.2) can be reduced to the following equations in the fluid domain Ω:

V ν∇νV
μ +

1

2
∇μ(‖V ‖2) = 0 in Ω,(1.10)

∇μ

(
G(‖V ‖)V μ

)
= 0 in Ω.(1.11)

See [2] for the derivation of (1.10)–(1.11).
Assume further that the fluid is irrotational, that is

V μ = ∇μφ(1.12)

for some scalar function φ, and the sound speed η equals to the speed of
light c. Then we arrive at the hard phase model2. During the gravitational
collapse of the degenerate core of a massive star, when the mass-energy
density exceeds the nuclear saturation density, the sound speed is thought
to approach the speed of light, cf. [2, 12, 7, 29, 25]. The hard phase model is
an idealized model for this physical situation, cf. [2]. See also [1]. As derived
in [2], by choosing appropriate units for the mass, length and time, the
equation of state relating p and σ for the hard phase model is

p =
1

2
(σ2 − c4),(1.13)

the energy density satisfies

ρ =
1

2
(σ2 + c4),(1.14)

2This is also referred to as a stiff or incompressible fluid in the relativistic fluid
literature.
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and

‖V ‖ = σ, G = 1.(1.15)

For the hard phase fluid, the variable σ is the enthalpy, which satisfies σ2 >
c4 in the fluid domain Ω. Equations (1.10)–(1.11) in this case reduce to

−VμV
μ = σ2, ∇μV

μ = 0, in Ω.(1.16)

In terms of the potential function φ, where V μ = ∇μφ, equations (1.16) can
be equivalently written as:

−∇μφ∇μφ = σ2, �φ = 0, in Ω.(1.17)

Observe that the first equation in (1.16) or (1.17), from which (1.10) follows
by taking a covariant derivative, is a direct consequence of (1.6). The energy-
momentum tensor T and the particle current I for the hard phase model
are

Tμν = V μV ν − 1

2
(m−1)μν(VαV

α + c4), Iμ = V μ.

In this paper we study the motion of a hard phase fluid with free bound-
ary, surrounded by vacuum. Let (x0, x1, x2, x3) be the rectangular coordi-
nates for a point in Minkowski spacetime (R1+3,m). We also use t for x0,
and x = (x1, x2, x3), and ∂t for ∇0, ∂x for (∇1,∇2,∇3). Let Ω = {t ≥ 0}∩Ω
be the fluid domain, Ωt := {x0 = t} ∩ Ω, and ∂Ωt be the boundary of Ωt.
Let ∂Ω =

⋃
t≥0 ∂Ωt and T ∂Ω be the tangent space of ∂Ω. Besides equations

(1.16), we assume that on the boundary ∂Ω,

σ2 = c4 on ∂Ω(1.18)

V |∂Ω ∈ T ∂Ω.(1.19)

The first condition (1.18) is equivalent to p = 0 on ∂Ω, and the second states
that the fluid particle on the boundary ∂Ω will remain on ∂Ω at later times.

To summarize, we study the Cauchy problem for the following system
of equations ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−VμV
μ = σ2, in Ω

∇μV
μ = 0, dV = 0, in Ω

σ2 = c4, on ∂Ω

V |∂Ω ∈ T ∂Ω

,(1.20)
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where V , σ2 and ∂Ω are the unknowns. Here dV is the exterior derivative

of the 1-form V (we will abuse notation to write V for both the vectorfield

and the corresponding 1-form V �), so dV = 0 means that V is irrotational.

We assume that the initial data (V0, σ0) and Ω0 are given and satisfy

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−(V0)μ(V0)
μ = σ2

0 ≥ c4, V 0 > 0, in Ω0

∇μ(V0)
μ = 0, dV0 = 0, in Ω0

σ2
0 = c4, on ∂Ω0

∇μσ
2
0∇μσ2

0 ≥ c20c
4 > 0 on ∂Ω0

,(1.21)

where c0 is a nonzero constant.3 We show that if the domain Ω0 and (V0, σ0)

are sufficiently smooth and satisfy (1.21), then (1.20) is uniquely solvable in

a time interval [0, T0], with T0 > 0 depends only on the initial data, and the

solution has the same regularity as the initial data. Furthermore we show

that for suitably given initial data relative to the speed of light c, the life

span of the solution is T0 = cT1, with T1 > 0 independent of c; and as c → ∞,

the solution of (1.20)–(1.21) converges to the solution of the corresponding

free boundary problem of the Newtonian incompressible fluid.

The free boundary problem (1.20) is a fully nonlinear system defined

on a free domain. The key to solving (1.20) is to reduce it to a quasilinear

system.

Consider the Newtonian counterpart of our problem, the water wave

problem, which concerns the motion of an incompressible, irrotational ideal

fluid in free domains, neglecting surface tension. Let Ṽ be the velocity and p̃

the pressure. Assume that the fluid occupies the domain Ω̃t at time t, with

boundary ∂Ω̃t, and let ñ be the unit outward normal to ∂Ω̃t. An important

condition for the well-posedness of the water wave system is the Taylor sign

condition4:

− ∂p̃

∂ñ
≥ c̃0 > 0 on ∂Ω̃t.(1.22)

It was shown in [27, 28] that for the water wave system, taking one material

derivative to the Euler equation gives rise to a quasilinear equation. This

3The last assumption in (1.21) is the relativistic Taylor sign condition, which

we will explain next.
4It is known that the failure of this condition leads to instability; cf. [22].
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quasilinear equation is5

{
(D2

t + ã∇ñ)Ṽ = −∇Dtp̃, on ∂Ω̃t

ΔṼ = 0, in Ω̃t

,(1.24)

where Dt = ∂t + Ṽ · ∇ is the material derivative, ã = − ∂p̃
∂ñ , and ∇ñ is the

Dirichlet-Neumann operator. Observe that by Green’s identity, the Dirichlet-

Neumann operator ∇ñ is a positive operator:∫
∂Ω̃t

v∇ñv ds =

∫
Ω̃t

|∇v|2 dx > 0

for v harmonic. In [27, 28] boundary integrals were used to express the

quantities ã and −∇Dtp̃, and the first equation in (1.24) was shown to be

a quasilinear equation of hyperbolic type, with the left-hand side consisting

of principal terms, and a local-wellposedness result was obtained. In [4] a

similar quasilinear equation as the first in (1.24) was used to study the

more general case that allows for non-zero vorticity (see also [30]). Instead

of boundary integrals, elliptic regularity estimates and equations

{
−Δp̃ = ∂iṼ

j∂jṼ
i, in Ω̃t, p̃ = 0 on ∂Ω̃t

−ΔDtp̃ = ∂ip̃ΔṼ i +G(∂Ṽ , ∂2p̃), in Ω̃t, Dtp̃ = 0 on ∂Ω̃t

(1.25)

were used in [4] to control the regularity of ∇∇p̃ and ∇∇Dtp̃ via the reg-

ularity of Δp̃ and ΔDtp̃, and an a priori estimate was obtained under the

assumption that the Taylor sign condition (1.22) holds.

5Let g be the gravity. The motion of water waves is described by{
DtṼ +∇p̃ = g, in Ω̃t

div Ṽ = 0, curl Ṽ = 0, in Ω̃t

,

{
p̃ = 0, on ∂Ω̃t

(1, Ṽ ) ∈ T ∂Ω̃, on ∂Ω̃
,

Taking a Dt derivative to the Euler equation and computing the commutator
[Dt,∇]p̃ = −∇p̃ · ∇Ṽ yields

D2
t Ṽ −∇p̃ · ∇Ṽ = −∇Dtp̃.(1.23)

Since p̃ = 0 on ∂Ω̃t, −∇p̃ = añ on the free boundary ∂Ω̃t, with a = − ∂p̃
∂ñ . Also

ΔṼ = 0. Restricting (1.23) on ∂Ω̃t gives (1.24).
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This motivates us to take a DV := V μ∇μ derivative of the equation
(1.10) to obtain6

D2
V V

ν − 1

2
∇μσ

2∇μV ν = −1

2
∇νDV σ

2.(1.26)

Since σ2 ≡ c4 on ∂Ω by assumption, ∇σ2 is normal (with respect to m) to
∂Ω. Let n be the unit outward pointing (spacetime) normal to ∂Ω. Assume
that the relativistic Taylor sign condition

∇μσ
2∇μσ2 > 0 on ∂Ω(1.27)

holds.7 Then we can write

∇σ2 = −an, on ∂Ω,

where a > 0 is given by

a =
√

∇μσ2∇μσ2.(1.28)

Observe that the second equation in (1.20) gives

�V = 0,(1.29)

where � is the D’Alembert operator. Going back to (1.26) and restricting it
to the boundary we get{

(D2
V + 1

2a∇n)V
ν = −1

2∇νDV σ
2, on ∂Ω

�V ν = 0, in Ω
.(1.30)

Here ∇n can be thought of as the hyperbolic Dirichlet-Neumann map. That
is,∇nθ is the normal derivative on ∂Ω of the solution Θ for the wave equation{

�Θ = 0 in Ω

Θ = θ on ∂Ω
,

6We know ‖V ‖ = σ for the hard phase model. In the rest of this paper we will
not work with the fluid velocity u again, and will refer to V simply as the velocity.

7This is consistent with the fact that σ2 > c4 in the fluid domain Ω. Assume
that the relativistic Taylor sign condition ∇μσ2

0∇μσ
2
0 ≥ c20c

4 > 0 holds initially and
that the solution exists. Then by continuity, (1.27) will remain to hold for a short
period of time. During this time ∇σ2 is space-like, and hence ∂Ω is timelike.
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provided the initial data for Θ are given. Applying ∇ν to (1.10) and (1.26)
and summing over ν yields

⎧⎪⎨
⎪⎩
�σ2 = (−2∇μV ν)(∇μVν) in Ω, σ2 = c4 on ∂Ω

�DV σ
2 = 4(∇μV ν)∇μ∇νσ

2

+ 4(∇λV ν)(∇λV
μ)(∇νVμ) in Ω, DV σ

2 = 0 on ∂Ω.

(1.31)

Here DV σ
2 = 0 on ∂Ω follows from the boundary conditions (1.18)–(1.19).

Although equations (1.30)–(1.31) take similar forms as the quasilin-
ear system (1.24)–(1.25) of the water waves, there are fundamental differ-
ences. Most notably the Laplacian Δ for water waves is replaced by the
D’Alembertian � for our problem. It is not clear whether the hyperbolic
Dirichlet-Neumann map ∇n is still positive, and if (1.30)–(1.31) is a quasi-
linear system with a lower order right-hand side. Most importantly, it is not
clear in which functional analytic settings the Cauchy problem for (1.30)–
(1.31) can be solved.

In §2.1 we will develop the necessary analytic tools to resolve these issues.
In particular in Lemma 2.3, we will show that in the energy functional for
equation {

(D2
V + 1

2a∇n)Θ = f, on ∂Ω

�Θ = g, in Ω
,(1.32)

the hyperbolic Dirichlet-Neumann map ∇n controls
∫
ΩT

|∇t,xΘ|2 dx, minus
some integrals involving lower order terms and the initial data, provided V
is timelike; and the energy functional for (1.32) controls∫

∂ΩT

|DV Θ|2 dS +

∫
ΩT

|∇t,xΘ|2 dx.

Using the tools in §2.1, we will show that the quantities a and −1
2∇νDV σ

2

in (1.30)–(1.31) are of lower order. We will first solve the Cauchy problem
for the quasilinear system (1.30)–(1.31), and then prove that a solution of
(1.30)–(1.31) is also a solution of the Cauchy problem (1.20)–(1.21), provided
the data for the Cauchy problem of the system (1.30)–(1.31) are derived from
those of equation (1.21).

To solve the system (1.30)–(1.31), we will first construct an energy func-
tional by applying the basic energy estimate in Lemma 2.3 to Θ = Dj

V V for
integers 0 ≤ j ≤ k, and prove an a priori estimate. We find it advantageous
to work with Dj

V V instead of other types of derivatives of V , since we know
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Dj
V σ

2 = 0 on ∂Ω, for j ≥ 0 integers, thanks to the boundary conditions
(1.18)–(1.19). Using equation (1.30), we can control the Sobolev norms in-
volving derivatives in all directions by showing D2

V ≈ ∇ on Ω. We will also
include in our energy functional a quantity involving some L2 integrals of
Dj

V σ
2, see (2.5), to control the quantities a and −1

2∇νDV σ
2 in (1.30). To

prove the existence of solutions of the system (1.30)–(1.31), we will use the
Galerkin method, discretizing the system (1.30)–(1.31) into a system of finite
dimensional ODEs. This appears to be one of the most natural methods to
construct approximate systems for (1.30)–(1.31), since it allows us to almost
effortlessly extend our proof for the a priori estimate for (1.30)–(1.31) to the
discretized system. In Section 1.2.1 we will give an extended outline of the
approach in this paper.

We now state our results. Let (V0, σ0) and Ω0 be given and satisfy (1.21).
Observe that we can use the second equation in (1.21) to compute the co-
variant derivative ∇0V0, hence DV0

V0, and subsequently the higher order
derivatives Dk

V0
V0 and Dk

V0
σ2
0.

Assume that there is a diffeomorphism Y : Ω0 → B with B the unit ball
in R

3, and assume that the following regularity and compatibility conditions
are satisfied by the data:

∂a
xY ∈ L2(Ω0), 2a ≤ K + 2,

∂a
xD

k
V0
V0, ∂a

xD
k+1
V0

σ2
0 ∈ L2(Ω0), k ≤ K + 1, 2a+ k ≤ K + 2,

DK+1
V0

V0 ∈ L2(∂Ω0),

Dk
V0
σ2
0 ∈ H1

0 (Ω0), k ≤ K + 1.

(1.33)

Theorem 1.1. Let K be sufficiently large. Then for initial data (1.21) satis-
fying the regularity and compatibility conditions (1.33), there exists T0 > 0,
a unique domain Ω = ∪t∈[0,T0]Ωt, and a unique solution (V, σ) to (1.20) for
t ∈ [0, T0]. Moreover, (V, σ) and Ω satisfy the same regularity properties as
their initial data.

Remark 1.2. By examining the proof of Theorem 1.1 one can find a nu-
merical value for K (for instance K = 20 is sufficient), but since achieving
the optimal regularity is not our concern in this work, we have stated the
theorem without specifying the optimal value of K that can be derived from
our proof.

Remark 1.3. The life span T0 depends only on the norm of the initial data,
the constant c0 and the speed of light c. For suitably set up data relative to
c, T0 = cT1, with T1 independent of c, see Theorem 1.5 for the precise
statement.
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Remark 1.4. For the top order DV0
derivative of V0 we use the weak for-

mulation to define D�+1
V0

V0 on the boundary. See for instance Lemma 3.10.

To treat the Newtonian limit, we need to introduce some notation. We
will use t′ and x′ to denote the time and space variables in the non-relativistic

setting. We define the flow map of V by dΦi(t,·)
dt =

(
V i

V 0

)
(t,Φ(t, ·)), so that

Φ(t, ·) maps Ω0 to Ωt, and let Ψc(t
′, ·) = Φ(ct′, ·). The non-relativistic fluid

velocity components are defined by

vi(t′, x′) = c
ui(ct′, x′)

u0(ct′, x′)
,(1.34)

where x′ = Ψc(t
′, x′0), x

′
0 ∈ Ω0, so for i = 1, 2, 3.

u0(ct′, x′) =
1√

1− |v(t′, x′)|2/c2
; ui(ct′, x′) =

vi(t′, x′)/c√
1− |v(t′, x′)|2/c2

.

Unlike for the fluid velocity, for some of the thermodynamical variables one
has to subtract the contribution of the rest mass to arrive at a quantity which
has a limit as c → ∞ (see for instance Section 1.1 of [3]). In particular, the
non-relativistic enthalpy, h, is defined by (again with x′=Ψc(t

′, x′0), x
′
0 ∈Ω0)

h(t′, x′) = σ(ct′, x′)− c2, so σ2(ct′, x′) = c4 + 2c2h(t′, x′) + h2(t′, x′).

(1.35)

The robust a priori estimates we establish in this paper allow us to con-
clude that in the limit c → ∞, (h, v) converge to a solution (h′, v′) of the
Newtonian problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t′v
′ + v′ · ∇x′v′ = −∇x′h′, in Dt′

∇x′ · v′ = 0, ∇x′ × v′ = 0, in Dt′

h′ = 0, on ∂Dt′

(1, v′) ∈ T (∪t′(t
′, ∂Dt′))

.(1.36)

Here Dt′ = Ψ(t′,Ω0) with Ψ(t′, ·) defined by

dΨ(t′, ·)
dt′

= v′(t′,Ψ(t′, ·)).(1.37)

To state our result precisely, we introduce the notation

V (t, x) := c−1V (t, x), σ2(t, x) = c−2σ2(t, x)− c2,(1.38)
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and define the renormalized initial energy norm

EK
0 :=

∑
k≤K

(
‖∂t,xDk

V
V (0)‖2L2(Ω0)

+ ‖Dk+1
V

V (0)‖2L2(∂Ω0)

+ ‖∂t,xDk+1
V

σ2(0)‖2L2(Ω0)

)
.

Theorem 1.5. Let K be sufficiently large, and v and h be defined by (1.34)

and (1.35). Suppose the initial data for (1.20) are chosen so that the compo-

nents V
i
(0, ·), i = 1, 2, 3, are independent of c and the component |V 0

(0, ·)−
c| and the energy EK

0 are bounded with bounds independent of c. Then the

solution from Theorem 1.1 can be extended to time T0 = cT1, with T1 > 0

independent of c. Moreover as c → ∞, v(t′,Ψc(t
′, ·)), vt′(t

′,Ψc(t
′, ·)), and

h(t′,Ψc(t
′, ·)) converge strongly in H5(Ω0) to (v′(t′,Ψ(t′, ·)), v′t′(t′,Ψ(t′, ·)),

and h′(t′,Ψ(t′, ·))), respectively, with (v(t′, ·), vt′(t′, ·), h(t′, ·)) a solution of

(1.36).

Remark 1.6. Theorem 1.5 gives a different proof of existence for (1.36),

originally considered in [4, 13].

Remark 1.7. The choice of H5 for the convergence norm is arbitrary and

the convergence can be made as strong as we wish by taking K large.

The method in this paper works for the more general free boundary rel-

ativistic barotropic fluid model (1.10)–(1.11)–(1.18)–(1.19). In Appendix A

we will give a brief outline to show how to prove the well-posedness of the

Cauchy problem for (1.10)–(1.11)–(1.18)–(1.19). We choose to work on the

hard phase model (1.20) for the sake of simplicity, as it already captures the

main challenges in the more general problem.

The work in this paper and in [27, 28] suggest that the general ap-

proach here should work for a variety of free boundary problems. Consider

for instance the Newtonian compressible fluid, Ṽ would again satisfy a wave

equation �h̃Ṽ = 0 in the interior, where h̃ is a conformal metric of the

acoustical metric (cf. [5, 15])

h := η2(dt)2 +

3∑
i=1

(dxi − Ṽ idt)2.

Here η is the sound speed. While the wave equation in this case is quasilinear,

we again see a formal similarity with (1.30).
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1.1. Earlier works

With the exception of [21] which shows existence of a class of solutions to

certain relativistic gaseous models based on earlier work [16], other advances

for well-posedness of relativistic free boundary problems are quite recent. A

priori estimates were obtained in [9, 10] for some gaseous models. In [24] an

existence result was obtained for a gaseous model using Nash-Moser itera-

tion, and in [17] the existence of solutions was proved for a liquid model in

two spacetime dimensions. In [19, 20, 18], using different methods, Oliynyk

derived a priori estimates and an existence result for a similar liquid model.

The same barotropic fluid free boundary problem as in this article was con-

sidered by Ginsberg in [8], who proved an a priori estimate under additional

smallness assumptions on the initial data.

1.2. Main ideas for a priori estimates and local well-posedness

1.2.1. A priori estimates. The a priori estimates for the proof of local

existence in Theorem 1.1 and the uniform in c time of existence in Theo-

rem 1.5 can be combined by working with the renormalized variables V and

σ2 defined in (1.38). Introducing a := c−2a it can be seen that V and σ2 sat-

isfy the same system as (1.30)–(1.31) with (V, σ2, a) replaced by (V , σ2, a);

see (2.3)–(2.4). We begin by discussing the energy identity in Lemma 2.3.

For general quantities Θ satisfying equation (1.32), with a and DV replaced

by a and DV , we have, by Lemma 2.3,

∫
ΩT

(
c−1DV Θ∇0Θ+

V
0

2c
∇μΘ∇μΘ

)
dx+

∫
∂ΩT

V
0

ca

(
DV Θ

)2
dS

(1.39)

=

∫
Ω0

(
c−1DV Θ∇0Θ+

V
0

2c
∇μΘ∇μΘ

)
dx+

∫
∂Ω0

V
0

ca

(
DV Θ

)2
dS

− c−1

∫ T

0

∫
Ωt

gDV Θdxdt+ 2c−1

∫ T

0

∫
∂Ωt

1

a
fDV ΘdSdt

+ c−1

∫ T

0

∫
∂Ωt

/divV

a

(
DV Θ

)2
dSdt

+ c−1

∫ T

0

∫
Ωt

(∇μV
ν
)∇μΘ∇νΘdxdt− c−1

∫ T

0

∫
∂Ωt

1

a2
(DV a)(DV Θ)2dSdt,
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here /divV denotes the (spacetime) divergence of V as a vectorfield on ∂Ω
and should be thought of as a lower order term. Since V is future-directed
timelike,8 the first term on the left satisfies

(c−1DV Θ)(∇0Θ) +
V

0

2c
(∇νΘ)(∇νΘ) � |∇t,xΘ|2.

Therefore as long as a is positive (see (1.27)), the left hand side of the energy
identity (1.39) controls∫

∂ΩT

|DV Θ|2dS +

∫
ΩT

|∇t,xΘ|2dx.

The factor c−1 in front of the space-time integrals, which appears naturally
in this renormalized formulation, is what allows us to prove the uniform in
c time of existence. As mentioned earlier, we will construct our energy by
working on Dk

V
V . Applying (1.39) to Θ = Dk

V
V

ν
and summing over ν we

get control for
∫
∂ΩT

|Dk+1
V

V |2dS+
∫
ΩT

|∇t,xD
k
V
V |2dx by the right hand side

of (1.39) with Θ = Dk
V
V

ν
. This motivates the definition of our k-th order

energy:

Ek(T ) :=
∫
∂ΩT

|Dk+1
V

V |2dS +

∫
ΩT

|∇t,xD
k
V
V |2dx.

The equations satisfied by Dk
V
V are derived in Lemmas 2.8 and 2.9, based on

the commutator identities (2.15)–(2.18). Observe that DV is defined globally
both in the interior of the fluid domain and on the free boundary, being tan-
gential there. As demonstrated in (2.15)–(2.18), commuting DV derivatives
preserves all important structures of our equations.

Next we discuss how to estimate the right-hand sides of (1.39) for Θ = V .
The main contribution is from the inhomogeneous term in the boundary
equation in (1.30), for which we need to control

c−1

∫ T

0

∫
∂Ωt

|∇DV σ
2|dSdt.

For this we use the fact that DV σ
2 satisfies the analogue wave equation

(1.31) with zero boundary data and with V and σ2 replaced by V and σ2;

8Assume that the solution exists. By the assumption (1.21) on initial data and
continuity, V will remain future-directed and timelike for a short period of time

[0, T ] and V
0 � c.
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see (2.4). In Lemma 2.4 we show, by an appropriate choice of multiplier field
Q for the wave equation, that∫

ΩT

∣∣∇t,xDV σ
2
∣∣2 dx+ c−1

∫ T

0

∫
∂Ωt

∣∣∇t,xDV σ
2
∣∣2 dSdt

�
∫
Ω0

|∇t,xDV σ
2|2dx+

∣∣∣∣c−1

∫ T

0

∫
Ωt

(
�DV σ

2
) (

QDV σ
2
)
dxdt

∣∣∣∣
+ c−1

∣∣∣ ∫ T

0

∫
Ωt

(1
2
(∇μQ

μ)(∇νDV σ
2)(∇νDV σ

2)

− (∇μQν)(∇μDV σ
2)(∇νDV σ

2)
)
dx dt

∣∣∣.

(1.40)

We will also need the analogue of this estimate with DV σ
2 replaced by Dk

V
σ2

(also contained in Lemma 2.4), and the wave equation satisfied by Dk
V
σ2 is

derived in Lemma 2.10. For �DV σ
2 on the right-hand side of (1.40), we

note that the term with two derivatives of σ2 on the right-hand side of
(1.31) can be seen to be lower order by converting the wave equation for σ2

in (1.31) into an elliptic equation with D2
V
σ2 as the source term, as done in

Lemma 2.6, and using elliptic regularity.
For the right-hand side of (1.39) with Θ = Dk

V
V , and the higher order

analogue of (1.40), we need to estimate spacetime integrals involving the
right-hand sides of the equations satisfied by Dk

V
V and Dk+1

V
σ2 as derived

in Lemmas 2.8, 2.9, and 2.10. The idea for treating the main source terms is
similar to what was outlined above, and the treatment of the commutator er-
rors is carried out in Subsection 2.4. Here we only mention that the most del-
icate commutator error is c−1

∫ T
0

∫
∂Ωt

|∇Dk−1
V

V |2dSdt, and estimating this
term using the energy Ek defined above involves one more multiplier identity
for wave equations on bounded domains, which is derived in Lemma 2.5.

Finally, we explain how our energies give control of Sobolev norms. This
will be needed, for instance, to bound lower order terms in L∞ in our esti-
mates. The details of deriving Sobolev estimates from our energies are con-
tained in Subsection 2.3, so here we mention the main idea which is quite
simple: Boundedness of Ek+2 gives us control of ‖Dk+2

V
V ‖

H
1
2 (∂Ωt)

on the

boundary (by the trace theorem), and ‖D2
V
Dk

V
V ‖L2(Ωt) and ‖∇Dk

V
V ‖L2(Ωt)

in the interior (in fact we get more in the interior). Then using the higher
order versions of (1.30), as derived in Lemmas 2.8 and 2.9, this gives us

control of ∇nD
k
V
V in H

1

2 (∂Ωt) and an elliptic operator applied to Dk
V
V in

L2(Ωt) (see Lemma 2.6). Elliptic regularity with Neumann boundary condi-
tions (see Lemma 2.7) then allow us to deduce an H2(Ωt) bound for Dk

V
V .
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Similar ideas allow us to get control of V in Ha(Ωt) in terms of Ek as long

as 2a ≤ k, and similarly for DV σ
2. See Proposition 2.11.

1.2.2. The iteration and Newtonian limit. The a priori estimates

outlined in the previous subsection can be carried out completely in Eulerian

coordinates (that is, over the fluid domain Ω), and contain the main ideas

for proving well-posedness. In practice, however, it is more convenient to set

up the iteration for the proof of well-posedness in Lagrangian coordinates.

The main reason is that in this way the domain becomes fixed, and all

norms and function spaces are defined with respect to this fixed domain. To

recast the equations in Lagrangian coordinates we define the (renormalized)

Lagrangian map X : [0, T ] × B → R
1+3 by the requirements that X(t, ·)

map B to Ωt ⊆ R
1+3 and

dX

dt
(t, y) =

V

V 0
(t,X(t, y)).

In other words, t �→ (t,X(t, ·)) is the flow of the vectorfield V
V 0 . Note that

∂t in these coordinates is just the renormalized material derivatives 1
V 0DV .

The pullback Minkowski metric on I ×B is

g =−
(
1−

3∑
i=1

(V i)2

(V 0)2
◦X

)
dt2 + 2

3∑
i,�=1

V i

V 0
◦X∂X i

∂y�
dtdy�

+

3∑
i,k,�=1

∂X i

∂yk
∂X i

∂y�
dykdy�.

We denote the Lagrangian velocity V by Θ, the enthalpy σ2 by Σ, and its

material derivative DV σ
2 by Λ:

Θ = V ◦X and Σ := σ2 ◦X =
√

−gαβV αV β , Λ := (DV σ
2) ◦X.

The wave operator then becomes (gαβ denote the components of the inverse

metric g−1 and |g| := − det g)

�gf :=
1√
|g|

∂α(
√

|g|gαβ∂βf).
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Let (by a slight abuse of notation we continue to denote the normal in

Lagrangian coordinate by n)

γ :=

√
∇μσ2∇μσ2

2V 0
◦X, and nμ ≡ ∇μσ2√

∇μσ2∇μσ2
◦X =

gμν∂νσ
2√

gαβ∂ασ2∂βσ2
.

Equation (1.30) then becomes

{
(∂2

t + γ∇n)Θ
ν = − 1

2(Θ0)2 g
αβ(∂βX

ν)∂αΛ + 1
Θ0∂tΘ

0∂tΘ
ν , on [0, T ]× ∂B

�gΘ
ν = 0, in [0, T ]×B

,

(1.41)

{
�gΛ = S(Θ,Σ), in I ×B

Λ ≡ 0, on I × ∂B
,

(1.42)

∂tΣ =
1

Θ0
Λ,

(1.43)

where

S(Θ,Σ) := 4gαβ(∂βΘ
ν)∂α

(
mμνg

γδ(∂δX
μ)(∂γΣ)

)
+ 4mρμmνκg

αβgγδ(∂δX
κ)(∂αΘ

ν)(∂βΘ
μ)(∂γΘ

ρ),
(1.44)

The idea for the iteration is to iteratively define Θ(m), Λ(m), and Σ(m) as

solutions of

⎧⎪⎪⎨
⎪⎪⎩
(∂2

t + γ(m)∇n(m))(Θ(m+1))ν = −gαβ
(m)(∂β(X(m))ν)∂αΛ(m)

2((Θ(m))0)2

+ ∂t(Θ(m))0∂t(Θ(m))ν

(Θ(m))0 , on I × ∂B

�g(m)(Θ(m+1))ν = 0, in I ×B

,

(1.45)

{
�g(m)Λ(m+1) = S(Θ(m),Σ(m)), in I ×B

Λ(m+1) ≡ 0, on I × ∂B
,

(1.46)

∂tΣ
(m+1) =

1

(Θ(m+1))0
Λ(m+1),

(1.47)
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where S(Σ(k),Θ(k)) is defined from (1.44) by replacing Θ, g, Λ, and Σ by
their iterates Θ(k), g(k), and Σ(k), respectively. See Section 4 for the pre-
cise definition of g(k). Once we can show the existence of solutions to each
of these linear systems satisfying appropriate energy identities, the ideas
from the previous subsection nicely carry over to prove the convergence of
Θ(m) to a solution of (1.41). For (1.46) the existence theory is standard,
as this is a wave equation with variable coefficients and constant Dirichlet
conditions. The only non-standard part is proving existence and energy es-
timates for the linear system (1.45). This can be achieved by formulating
an appropriate weak version of the equation (the main challenge is treat-
ing the hyperbolic Dirichlet-Neumann map) and using Galerkin approxi-
mations. The weak equations are derived in Subsection 3.1. The advantage
of this weak formulation for proving existence is that it does not involve
the hyperbolic Dirichlet-Neumann map, while it still allows us to derive
the main energy identity as for (2.10) in Lemma 2.3 (see Proposition 3.2).
Existence, higher regularity, and energy estimates for the weak solution of
the linearized problem are proved using Galerkin approximations in Subsec-
tion 3.2 (see [6, 26, 14] for some explanations of the Galerkin method). Once
energy estimates, which are modeled on our a priori estimates, are proved at
the linear level, a standard iteration scheme produces our desired solution.
This is carried out in Section 4.

Finally, for the proof of Theorem 1.5, the uniform in c time of existence
follows from the local existence result in Theorem 1.1 and the uniform in c a
priori estimates in Proposition 2.1. The existence of a limit also follows from
standard compactness arguments and boundedness of higher order energies.

The most delicate remaining point is that even though V
0
and ∂0 are treated

at the same order as V
i
and ∂i in the energy estimates in Proposition 2.1,

after the solution is obtained, one can use the equations to show that these
quantities have further decay in c. This allows us to conclude that the limit-
ing equations coincide with the classical equations in the Newtonian setting.
The details of the argument are presented in Section 5.

1.3. Notation and conventions

On R
1+3 containing the fluid we use x = (x0, . . . , x3) as coordinates. On

the Lagrangian side we use y = (y0, . . . , y3). We also use t for y0 and y
for (y1, . . . , y3). An arbitrary spatial derivative of order a is denoted by ∂a

y .
Indices are raised and lowered with respect to the Minkowski metric m and
Greek indices run over {0, . . . , 3} while Roman indices run over {1, 2, 3}. On
the Lagrangian side we use 0 and t interchangeably for the index of the time
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coordiante, and sometimes use r for the radial coordinate r2 =
∑3

i=1(y
i)2.

For a tensor Tμν in rectangular coordinates we use the notation Tμr :=∑3
b=1

yb

r T
μb.

For the derivative of a function Θ along a vectorifeld X, such as the
normal n, we use the notations ∇nΘ and nΘ interchangeably. The derivative
along the fluid flow line will be denoted by DV := V μ∂μ.

The dependency of constants on other parameters or unknowns is de-
noted by subscripts, so for instant Cδ denotes a constant depending on Cδ.
The exact value of constants may differ from inequality to inequality as
should be clear from the context.

On the Lagrangian side B denotes the unit ball of radius one, which
we use to parameterize the constant x0 slices of the fluid, and ∂B denotes
the boundary of B. The L2 pairing on B is denoted by 〈·, ·〉 and the L2

pairing on ∂B by 〈〈·, ·〉〉. The duality pairing between H1(B) and (H1(B))∗

is denoted by (·, ·).

2. A priori estimates

In this section we assume that V , σ2, and DV σ
2 already exist and satisfy{

(D2
V + 1

2a∇n)V = −1
2∇DV σ

2,

�V = 0.
(2.1)

and {
�σ2 = (−2∇μV ν)(∇μVν).

�DV σ
2 = 4(∇μV ν)∇μ∇νσ

2 + 4(∇λV ν)(∇λV
μ)(∇νVμ).

(2.2)

Here n denotes the exterior unit normal to the timelike boundary of Ω, which
we denote by ∂Ω, and a is as in (1.28). With σ2 := c−2σ2 − c2 (see (1.35)),
a = c−2a, and V = c−1V these equations can be written as{

(D2
V
+ 1

2a∇n)V = −1
2∇DV σ

2,

�V = 0.
(2.3)

and {
�σ2 = (−2∇μV

ν
)(∇μV ν).

�DV σ
2 = 4(∇μV

ν
)∇μ∇νσ

2 + 4(∇λV
ν
)(∇λV

μ
)(∇νV μ).

(2.4)
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Motivated by the discussion in the introduction, for any function Θ we define
the energies

E[Θ, t] :=

∫
Ωt

|∂t,xΘ|2dx+

∫
∂Ωt

|DV Θ|2dS,

E[Θ, T ] := sup
0≤t≤T

∫
Ωt

|∂t,xΘ|2dx+ c−1

∫ T

0

∫
∂Ωt

|∂t,xΘ|2dSdt,

where for T = 0

E[Θ, 0] :=

∫
Ω0

|∂t,xΘ|2dx.

Higher order energies are defined as

Ej [Θ, t] = E[Dj

V
Θ, t], E≤k[Θ, t] =

k∑
j=0

Ej [Θ, t],

Ej [Θ, T ] = E[Dj

V
Θ, T ], E≤k[Θ, T ] =

k∑
j=0

Ej [Θ, T ].

To simplify notation we introduce the unified energy

Ek(T ) := E≤k+1[σ
2, T ] + sup

0≤t≤T
E≤k[V , t].(2.5)

Our goal in this section is to prove the following a priori estimate.

Proposition 2.1. Suppose V is a solution to (2.3) with

E�(T ) ≤ C1,(2.6)

for some constant C1 > 0 and 
 sufficiently large and let

E�(T ) := sup
t∈[0,T ]

∑
k≤�+2−2j

(‖Dk
V
V ‖2Hj(Ωt)

+ ‖Dk+1
V

σ2‖2Hj(Ωt)
) + E�(T ).

If T = cT with T > 0 sufficiently small, depending on C1, E�(0), c0, and 
,
then

E�(T ) ≤ P�(E�(0))(2.7)

for some polynomial function P� (independent of C1).
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Remark 2.2. Proposition 2.1 is the backbone of the proof of both Theo-
rems 1.1 and 1.5. Indeed, for local existence as in Theorem 1.1, we set up an
iteration based on these a priori estimates for a fixed value of c (which we can
taken to be c = 1, as we suggest the reader do on first reading). For the New-
tonian limit as in Theorem 1.5, we use Proposition 2.1 to extend the solution
to time x0 = cT and use boundedness of higher energies to extract a limit.

2.1. General identities and estimates

In this section we record a number of general identities and estimates which
will be used in the proof of Proposition 2.1. We start by recording a general
multiplier identity for the wave equation. Let Q = Qμ∇μ be an arbitrary
first order multiplier. Then a direct calculation shows that

(�Θ)(QΘ) =∇μ((QΘ)(∇μΘ)− 1

2
Qμ(∇νΘ)(∇νΘ))

+
1

2
(∇μQ

μ)(∇νΘ)(∇νΘ)− (∇μQν)(∇μΘ)(∇νΘ).

(2.8)

Our first lemma is the main energy identity for (2.3).

Lemma 2.3. Suppose Θ satisfies{
(D2

V
+ 1

2an)Θ = f

�Θ = g
.(2.9)

Then

∫
ΩT

(c−1DV Θ∇0Θ+
V

0

2c
∇μΘ∇μΘ)dx+

∫
∂ΩT

V
0

ca
(DV Θ)2dS

(2.10)

=

∫
Ω0

(c−1DV Θ∇0Θ+
V

0

2c
∇μΘ∇μΘ)dx+

∫
∂Ω0

V
0

ca
(DV Θ)2dS

− c−1

∫ T

0

∫
Ωt

gDV Θdxdt+ 2c−1

∫ T

0

∫
∂Ωt

1

a
fDV ΘdSdt

+ c−1

∫ T

0

∫
∂Ωt

/divV

a

(
DV Θ

)2
dSdt

+ c−1

∫ T

0

∫
Ωt

(∇μV
ν
)∇μΘ∇νΘdxdt− c−1

∫ T

0

∫
∂Ωt

1

a2
(DV a)(DV Θ)2dSdt,
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where /div denotes the divergence operator on ∂Ω.9

Proof. Multiplying the first equation in (2.9) by 1
aDV Θ we get

1

2
DV

(
1

a
(DV Θ)2

)
+

1

2
(nΘ)(DV Θ) =

1

a
fDV Θ− 1

2a2
(DV a)(DV Θ)2,

which upon integration over ∂Ω = ∪t∈[0,T ]∂Ωt gives

∫
∂ΩT

V
0

a
(DV Θ)2dS +

∫ T

0

∫
∂Ωt

(nΘ)(DV Θ)dSdt

=

∫
∂Ω0

V
0

a
(DV Θ)2dS +

∫ T

0

∫
∂Ωt

2

a
fDV ΘdSdt

−
∫ T

0

∫
∂Ωt

1

a2
(DV a)(DV Θ)2dSdt+

∫ T

0

∫
∂Ωt

/divV

a

(
DV Θ

)2
dSdt.

(2.11)

To treat the second term on the left, we integrate (2.8) with Q = V over
Ω ∩ {0 ≤ t ≤ T}. Using the fact that V is tangent to ∂Ω, we get

∫
ΩT

(DV Θ∇0Θ+
V

0

2
∇νΘ∇νΘ)dx−

∫ T

0

∫
∂Ωt

(DV Θ)(nΘ)dSdt

=

∫
Ω0

(DV Θ∇0Θ+
V

0

2
∇νΘ∇νΘ)dx−

∫∫
Ω
gDV Θdxdt

+

∫∫
Ω
(∇μV

ν
)(∇μΘ)(∇νΘ)dxdt.

(2.12)

The lemma follows by adding (2.12) to (2.11) and multiplying by c−1.

9For a simpler model, suppose u satisfies{
�u = 0, in [0, T ]×B

(∂2
t + ∂r)u = f on [0, T ]× ∂B

,

where B is the unit ball in R
3 with normal ∂r. Then a similar argument using the

multiplier ∂tu gives

1

2

∫
B

|∂t,xu(T )|2dx+
1

2

∫
∂B

(∂tu(T ))
2dS =

1

2

∫
B

|∂t,xu(0)|2dx+
1

2

∫
∂B

(∂tu(0))
2dS

+

∫ T

0

∫
∂B

(∂tu)fdSdt.
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We will apply Lemma 2.3 to Θ = Dk
V
V

ν
, for 0 ≤ k ≤ 
. The next

energy estimate is used for the second equation in (2.2) (see (1.40)), as well
as (2.22).

Lemma 2.4. There is a (future-directed and timelike) vectorfield Q such
that for any Θ which is constant on ∂Ω,

∫
ΩT

|∂t,xΘ|2dx+ c−1

∫ T

0

∫
∂Ωt

|∂t,xΘ|2dSdt

�
∫
Ω0

|∂t,xΘ|2dx+

∣∣∣∣c−1

∫ T

0

∫
Ωt

(�Θ)(QΘ)dxdt

∣∣∣∣
+

∣∣∣∣c−1

∫ T

0

∫
Ωt

(
1

2
(∇μQ

μ)(∇νΘ)(∇νΘ)− (∇μQν)(∇μΘ)(∇νΘ))dxdt

∣∣∣∣ .

(2.13)

Proof. Since Θ is constant on ∂Ω,

∇νΘ∇νΘ = (nΘ)2

and

nμ((QΘ)(∇μΘ)− 1

2
Qμ(∇νΘ)(∇νΘ)) =

1

2
Qn(nΘ)2

on ∂Ω, where Qn := m(Q,n). Therefore letting Q be a future-directed time-
like vectorfield with Qn > 0, in particular Q = c−1(αV + n) for some large
α, we get the desired estimate upon integrating (2.8) over Ω.

Our last application of (2.8) will be to control arbitrary derivatives of an
arbitrary function on the boundary in terms of the normal and DV deriva-
tives.

Lemma 2.5. There exists a (future-directed and timelike) vectorfield Q such
that or any function Θ

sup
0≤t≤T

∫
Ωt

|∂t,xΘ|2dx+ c−1

∫ T

0

∫
∂Ωt

|∂t,xΘ|2dSdt

(2.14)

�
∫
Ω0

|∂t,xΘ|2dx+ c−1

∫ T

0

∫
∂Ωt

((nΘ)2 + (DV Θ)2)dSdt

+

∣∣∣∣c−1

∫ T

0

∫
Ωt

(�Θ)(QΘ)dxdt

∣∣∣∣
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+

∣∣∣∣c−1

∫ T

0

∫
Ωt

(
1

2
(∇μQ

μ)(∇νΘ)(∇νΘ)− (∇μQν)(∇μΘ)(∇νΘ))dxdt

∣∣∣∣ .
Proof. The proof is similar to that of Lemma 2.4, but this time we choose
Qn = m(Q,n) < 0. For instance, let Q = c−1(αV −n) with α > 0 chosen so
that Q is future-directed and timelike. Then on ∂Ω,

nμ((QΘ)(∇μΘ)− 1

2
Qμ(∇νΘ)(∇νΘ))

=c−1

((
αDV Θ

)
(nΘ)− (nΘ)2 +

1

2
∇νΘ∇νΘ

)
≥c−1

(
c1|∂t,xΘ|2 − c2((nΘ)2 + (DV Θ)2)

)
for some constants c1, c2 > 0 depending only on V . The lemma now follows
by integrating (2.8) on Ω.

The next lemma will be used to control ‖∇2Θ‖L2(Ωt) in terms of
‖�Θ‖L2(Ωt) and ‖∇DV Θ‖L2(Ωt).

Lemma 2.6. Let A be defined as A := aij∂2
ij, where aij = (m−1)ij − V

i

V
0
V

j

V
0 .

Then for any Θ,

AΘ = �Θ+
1

V
0∂0DV Θ− V

i

(V
0
)2
∂iDV Θ+

⎛
⎜⎝ V

i(
V

0
)2∂iV 0

⎞
⎟⎠ ∂0Θ

+

⎛
⎜⎝ V

i(
V

0
)2∂iV j

⎞
⎟⎠ ∂jΘ−

(
1

V
0∂0V

0
)
∂0Θ−

(
1

V
0∂0V

j
)
∂jΘ.

Moreover,

∂2
0Θ = ΔΘ−�Θ,

∂2
0iΘ =

1

V
0

(
∂iDV Θ− V

j
∂2
ijΘ−

(
∂iV

0
)
∂0Θ−

(
∂iV

j
)
∂jΘ

)
.

Proof. The proof is a direct calculation using the identities

∂0DV Θ = V
0
∂2
0Θ+ V

j
∂2
0jΘ+ (∂0V

0
)∂0Θ+ (∂0V

i
)∂iΘ,

∂iDV Θ = V
0
∂2
i0Θ+ V

j
∂2
ijΘ+ (∂iV

0
)∂0Θ+ (∂iV

j
)∂jΘ.



292 Shuang Miao et al.

To use Lemma 2.6, we will apply the following standard elliptic estimates
(cf. [23]).

Lemma 2.7. For any t > 0, we have

‖∇(2)
x Θ‖L2(Ωt) � ‖AΘ‖L2(Ωt) + ‖Θ‖

H
3
2 (∂Ωt)

,

and

‖∇(2)
x Θ‖L2(Ωt) � ‖AΘ‖L2(Ωt) + ‖NΘ‖

H
1
2 (∂Ωt)

,

where N is a transversal vectorfield to ∂Ωt ⊆ Ωt, and where the implicit
constants depend on Ωt.

2.2. Higher order equations

Here we derive the higher order versions of (2.3) and (2.4). The main com-
mutator identities, valid for any Θ, are:

[DV ,∇μ]Θ = −(∇μV
ν
)∇νΘ.

(2.15)

[DV ,∇ν∇λ]Θ = −(∇λV
κ
)∇κ∇νΘ− (∇νV

κ
)∇κ∇λΘ− (∇ν∇λV

κ
)∇κΘ.

(2.16)

[DV ,�]Θ = −2(∇μV
ν
)∇μ∇νΘ.

(2.17)

[DV , D
2
V
− 1

2
∇μσ2∇μ]Θ =

1

2
(∇λσ

2)(∇λV
ν
)(∇νΘ) +

1

2
(∇λσ

2)(∇νV
λ
)(∇νΘ)

− 1

2
(∇ν(DV σ

2))∇νΘ.

(2.18)

Applying these identities we can calculate the higher order versions of (2.3)
and (2.4), which we record in the following lemmas.

Lemma 2.8. For any k ≥ 0

(D2
V
+

1

2
an)Dk

V
V = −1

2
∇Dk+1

V
σ2 + Fk(2.19)

where Fk is a linear combination of terms of the forms

1. (∇Dk1

V
V ) . . . (∇Dkm

V
V )(∇D

km+1

V
σ2), where k1 + · · ·+ km+1 ≤ k − 1.
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2. (∇Dk1

V
V ) . . . (∇Dkm

V
V )(∇D

km+1

V
DV σ

2), where k1+ · · ·+km+1 ≤ k−1.

Proof. We proceed inductively. For k = 0 the desired identity holds with

Fk = 0. Assume it holds for k = j and let us prove it for k = j + 1. First,

−DV (anD
j

V
V ) = DV (∇μσ2∇μD

j

V
V ) = anDj+1

V
V + (∇μDV σ

2)∇μD
j

V
V

− (∇μV
ν
)((∇νσ

2)∇μD
j

V
V

+ (∇μσ
2)∇νD

j

V
V ),

so [DV + 1
2an,DV ]D

j

V
V has the right form. Next, in view of (2.15), DV

applied to the terms in (1) and (2) with k replaced by j, as well as ∇Dj+1

V
σ2,

also has the desired form.

The wave equation for Dk
V
V in Ω is derived in the next lemma.

Lemma 2.9. For any k ≥ 0

�Dk
V
V = Gk(2.20)

where Gk is a linear combination of terms of the form

(2.21) (∇Dk1

V
V ) . . . (∇Dkm

V
V )(∇(2)D

km+1

V
V ), k1 + · · ·+ km+1 ≤ k − 1.

Proof. Again we proceed inductively. For k = 0, Gk = 0 so suppose the

lemma holds with k = j and let us prove it for k = j + 1. By (2.17),

[DV ,�]Dj

V
V has the right form. Similarly, DV applied to (2.21) has the

desired form by (2.15) and (2.16).

Next we derive the wave equation satisfied by Dk+1
V

σ2.

Lemma 2.10. For any k ≥ 0

�Dk+1
V

σ2 = Hk(2.22)

where Hk is a linear combination of terms of the forms

1. (∇Dk1

V
V ) . . . (∇Dkm

V
V )∇(2)D

km+1

V
σ2, where k1 + · · ·+ km+1 ≤ k.

2. (∇Dk1

V
V ) . . . (∇Dkm

V
V )(∇D

km+1

V
σ2)∇(2)D

km+2

V
V , where k1 + · · · +

km+2 ≤ k and km+2 ≤ k − 1.

3. (∇Dk1

V
V ) . . . (∇Dkm

V
V ) with k1 + · · ·+ km = k.
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Proof. For k = 0 the statement already contained in the second equation
in (2.2), so let us assume it holds for k = j and prove it for k = j + 1. By
(2.17) the commutator [DV ,�]Dj+1

V
σ2 has the right form. By (2.15), DV

applied on terms of the form (3) also has the right form. Finally DV applied
to terms in (1) and (2) has the desired form in view of (2.15) and (2.16).

2.3. Sobolev estimates

To prove Proposition 2.1 we need to show that higher order energies give
pointwise control of lower order derivatives of V and L2 control of lower
order Sobolev norms of V . The main result of this subsection is the following
proposition.

Proposition 2.11. Suppose∑
k+2p≤M+2

‖∂p
t,xD

k
V
V ‖2L2(Ωt)

+
∑

k+2p≤M+2

‖∂p
t,xD

k+1
V

σ2‖2L2(Ωt)
≤ CM .(2.23)

If M > 0 is sufficiently large and T = cT with T > 0 sufficiently small, then
under the assumptions of Proposition 2.1, for any t ∈ [0, T ]∑

k+2p≤M+2

‖∂p
t,xD

k
V
V ‖2L2(Ωt)

+
∑

k+2p≤M+2

‖∂p
t,xD

k+1
V

σ2‖2L2(Ωt)

� sup
0≤τ≤t

E≤M+1[σ
2, τ ] + sup

0≤τ≤t
E≤M [V , τ ]

+
∑

k+2p≤M+2

‖∂p
t,xD

k
V
V ‖2L2(Ω0)

+
∑

k+2p≤M+2

‖∂p
t,xD

k+1
V

σ2‖2L2(Ω0)
.

(2.24)

The implicit constant in this estimate is independent of CM and c.

Before discussing the proof of Proposition 2.11 we state a few immediate
corollaries.

Corollary 2.12. Assuming the bootstrap assumption

sup
t∈[0,T ]

⎡
⎣ ∑
1≤k≤M−2

‖Dk
V
V ‖H2(Ωt) +

∑
j≤2

∑
1≤k≤M−2(j+1)

‖∇(j)Dk
V
V ‖L∞(Ωt)

⎤
⎦

� E
1

2

M (T ) +
∑

k+2p≤M+2

‖∇pDk
V
V ‖L2(Ω0) +

∑
k+2p≤M+2

‖∇pDk+1
V

σ2‖L2(Ω0),

where the implicit constant is independent of CM in (2.23).
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Proof. This is a direct consequence of Proposition 2.11 and the Sobolev
embedding H2(Ωt) ↪→ L∞(Ωt).

In order to use the energy estimates from the previous section we also
need to show that V remains timelike and a stays bounded away from zero.
These statements are summarized in the following corollary.

Corollary 2.13. Suppose the hypothesis of Proposition 2.1 hold. Then there
are constant a0, v0 > 0 and γ > 1 such that

inf
0≤t≤T

a > a0, inf
0≤t≤T

V
0
> v0c, inf

0≤t≤T

(V
0
)2∑3

j=1(V
j
)2

> γc2.

Proof. The proof is by integrating in time combined with the L∞-bounds in
Corollary 2.12.

Before we give the proof of the proposition, we need some preparation.
First, we introduce some notations:

∇i := ∂i, n :=
(∂1σ

2, ∂2σ
2, ∂3σ

2)√∑3
i=1(∂iσ

2)2
, ni := δijn

j , /∇i := ∂i − nin
j∂j .

(2.25)

Note that /∇i, i = 1, 2, 3 are defined globally, are tangential to ∂Ωt, and span
T∂Ωt.

The following lemma is used to estimate ‖Dk+1
V

σ2‖Hj(Ωt), and plays a

crucial role in estimating ‖Dk
V
V ‖Hj(Ωt).

Lemma 2.14. For any smooth function Θ, the following estimate holds:

‖Θ‖Hj(Ωt) � ‖Θ‖Hj−1(Ωt) + ‖∇(j−2)AΘ‖L2(Ωt) + ‖[A,∇(j−2)]Θ‖L2(Ωt)

+ ‖[ /∇,∇(j−2)]Θ‖H1(Ωt) + ‖ /∇Θ‖Hj−1(Ωt).

Proof. Using the first estimate in Lemma 2.7 and the trace theorem

‖Θ‖Hj(Ωt) � ‖Θ‖Hj−1(Ωt) + ‖A∇(j−2)Θ‖L2(Ωt) + ‖ /∇∇(j−2)Θ‖
H

1
2 (∂Ωt)

+ ‖∇(j−2)Θ‖
H

1
2 (∂Ωt)

� ‖Θ‖Hj−1(Ωt) + ‖A∇(j−2)Θ‖L2(Ωt) + ‖ /∇∇(j−2)Θ‖H1(Ωt).

The desired estimate follows after commuting the operators.

The next lemma allows us to bound lower order terms in L∞.
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Lemma 2.15. Under the bootstrap assumption (2.23), if T > 0 is suffi-
ciently small, then∥∥∥∇aDk

V

(
V

0 − c, V
i
)∥∥∥

L∞(Ωt)
+ ‖∇aDk+1

V
σ2‖L∞(Ωt) � 1,

∀0 ≤ a ≤ p− 2, k ≤ M − 2p− 3, t ∈ [0, T ],
(2.26)

where the implicit constant is independent of CM .

Proof. Let ξ be the Lagrangian parameterization, that is,

∂τξ(τ, y) =

(
V

V
0

)
(ξ(τ, y)) , ξ(0, y) = y.

If pt is a point on Ωt, we let p0 be the point on Ω0 such that ξ(t, p0) = pt.
For any function Θ

Θ(pt)−Θ(p0) =

∫ t

0

(
DV Θ

V
0

)
(pτ )dτ.(2.27)

It follows that, using the standard Sobolev estimate,

‖Θ‖L∞(Ωt) ≤ ‖Θ‖L∞(Ω0) + Cc−1 t sup
0≤s≤t

‖DV Θ‖L∞(Ωs)

� ‖Θ‖H2(Ω0) + c−1t sup
0≤s≤t

‖DV Θ‖H2(Ωs).

We apply this estimate to Θ = ∇aDk
V V . Then, by (2.23), as long as a+2 ≤ p

and k + 1 ≤ M + 2− 2(a+ 2),

sup
0≤s≤t

‖DV Θ‖H2(Ωs) �C�
1.

Therefore, estimate (2.26) follows by taking T small. The argument for
∇aDk+1

V σ2 is similar.

We have a similar estimate for the L2 norms:

Lemma 2.16. Under the bootstrap assumption (2.23), if T > 0 is suffi-
ciently small, then∥∥∥∇aDk

V

(
V

0 − c, V
i
)∥∥∥

L2(Ωt)
+ ‖∇aDk+1

V
σ2‖L2(Ωt) � 1,

∀2a+ k ≤ M + 1, t ∈ [0, T ],
(2.28)

where the implicit constant is independent of CM .
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Proof. The proof is again an application of the fundamental theorem of cal-
culus, this time applied to ‖Θ‖L2(Ωt), where we also bound the Jacobian of
the Lagrangian coordinate transformation from Ω0 to Ωt using the funda-
mental theorem of calculus. We omit the details.

Proof of Proposition 2.11. Note that we only need to consider ∂p
xDk

V
V . In-

deed, using induction on the order of ∂t, for ∂t∂
p−1
x Dk

V
V , we have

∂t∂
p−1
x Dk

V
V =

1

V
0 · V 0

∂t∂
p−1
x Dk

V
V =

1

V
0

(
DV ∂

p−1
x Dk

V
V − V

j
∂j∂

p−1
x Dk

V
V
)

=
1

V
0

(
∂p−1
x Dk+1

V
V − V

j
∂j∂

p−1
x Dk

V
V + [DV , ∂

p−1
x ]Dk

V
V
)
.

If we can estimate ∂p′

t ∂p−p′

x Dk
V
V , for ∂p′+1

t ∂p−p′−1
x Dk

V
V , we have

∂p′+1
t ∂p−p′−1

x Dk
V
V =∂t∂

p′

t ∂p−p′−1
x Dk

V
V .

The induction argument follows exactly the same way as we treat the case
when p′ = 0. The argument for σ2 is the same. Turning to ∂p

xDk
V
V , we will

use an induction argument on p. When p = 1, the result follows directly by
definition. Now we assume that the estimate holds for index less or equal to
1 ≤ p ≤ M+2

2 − 1, that is,

∑
q≤p

∑
k+2q≤M+2

‖∂q
t,xD

k
V
V ‖2L2(Ωt)

+
∑
q≤p

∑
k+2q≤M+2

‖∂q
t,xD

k+1
V

σ2‖2L2(Ωt)

� sup
0≤τ≤t

E≤M+1[σ
2, τ ] + sup

0≤τ≤t
E≤M [V , τ ]

∑
q≤p

∑
k+2q≤M+2

‖∂q
t,xD

k
V
V ‖2L2(Ω0)

+
∑
q≤p

∑
k+2q≤M+2

‖∂q
t,xD

k+1
V

σ2‖2L2(Ω0)
,

(2.29)

and prove the estimates for p+ 1, that is,

∑
k≤M−2p

‖∂p+1
t,x Dk

V
V ‖2L2(Ωt)

+
∑

k≤M−2p

‖∂p+1
t,x Dk+1

V
σ2‖2L2(Ωt)

� sup
0≤τ≤t

E≤M+1[σ
2, τ ] + sup

0≤τ≤t
E≤M [V , τ ]

∑
q≤p+1

∑
k+2q≤M+2

‖∂q
t,xD

k
V
V ‖2L2(Ω0)

+
∑

q≤p+1

∑
k+2q≤M+2

‖∂q
t,xD

k+1
V

σ2‖2L2(Ω0)
.

(2.30)
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We start with the estimate for ‖∇p+1
x Dk+1

V
σ2‖L2(Ωt) and in fact first estimate

‖∇(2)
x /∇(p−1)

Dk+1
V

σ2‖L2(Ωt). To apply Lemma 2.6 to Θ := /∇p−1
Dk+1

V
σ2 we

need to estimate ‖A/∇p−1
Dk+1

V
σ2‖L2(Ωt). Using the notation of Lemma 2.10,

we have10

A/∇p−1
Dk+1

V
σ2 ∼ /∇p−1

Hk + [ /∇p−1
,�]Dk+1

V
σ2 +

V · ∇V

(V
0
)2

∇ /∇p−1
Dk+1

V
σ2

+
V

(V
0
)2
∇ /∇p−1

Dk+2
V

σ2 +
V

(V
0
)2
∇[DV , /∇

p−1
]Dk+1

V
σ2.

(2.31)

Except for /∇p−1
Hk the L2(Ωt) norms of all the terms on the right-hand side

of (2.31) are bounded by the right-hand side of (2.30) using the induction

hypothesis (2.29). Here for the terms where derivatives hit the coefficients

of /∇ it suffices to observe that these coefficients are functions of ∇σ2 =

−2DV V . Next we investigate the structure of /∇p−1
Hk. In view of Lemma

2.10, the top order terms in /∇p−1
Hk are

∇p+1Dk
V
σ2 and ∇p+1Dk−1

V
V .

The L2(Ωt) norm of all other term appearing in /∇(p−1)
Hk can be bounded

by the right-hand side of (2.30) using the using induction hypothesis (2.29).

For the two top order terms above, since k ≤ M − 2p we can use Lemma

2.16 to bound the L2(Ωt) norms of these terms by the right-hand side of

(2.30) as well. Based on this discussion, Using (2.31) and Lemma 2.6, for

any k ≤ M − 2p we obtain

‖∇2 /∇p−1
Dk+1

V
σ2‖L2(Ωt) � sup

0≤τ≤t
E≤M+1[σ

2, τ ] + sup
0≤τ≤t

E≤M [V , τ ]

∑
q≤p+1

∑
k+2q≤M+2

‖∂q
t,xD

k
V
V ‖2L2(Ω0)

+
∑

q≤p+1

∑
k+2q≤M+2

‖∂q
t,xD

k+1
V

σ2‖2L2(Ω0)
.

(2.32)

10We use the schematic notation A ∼ A1 + · · · + Am to mean A is a linear

combination of terms of the forms A1, . . . , Am.
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Next we apply Lemma 2.14 to Θ := ∇ /∇p−2
Dk+1

V
σ2 to get

‖∇ /∇p−2
Dk+1

V
σ2‖H2(Ωt) � ‖∇ /∇p−2

ADk+1
V

σ2‖L2(Ωt)

+ ‖[∇ /∇p−2
, A]Dk+1

V
σ2‖L2(Ωt)

+ ‖ /∇p−2
Dk+1

V
σ2‖H2(Ωt)

+ ‖[∇, /∇] /∇p−2
Dk+1

V
σ2‖H1(Ωt)

+ ‖ /∇p−1
Dk+1

V
σ2‖H2(Ωt).

(2.33)

By (2.32) and the arguments leading to it, all the terms on the right-hand
side of (2.33) except

‖∇ /∇p−2
ADk+1

V
σ2‖L2(Ωt)

are bounded by the right-hand side of (2.30). The term

‖∇ /∇p−2
ADk+1

V
σ2‖L2(Ωt) is bounded in the same way as in the treatment

of /∇p−1
Hk above, using Lemmas 2.10 and 2.16. Summarizing we have ob-

tained

‖∇3 /∇p−2
Dk+1

V
σ2‖L2(Ωt) � sup

0≤τ≤t
E≤M+1[σ

2, τ ] + sup
0≤τ≤t

E≤M [V , τ ]

+
∑

q≤p+1

∑
k+2q≤M+2

‖∂q
t,xD

k
V
V ‖L2(Ω0)

+
∑

q≤p+1

∑
k+2q≤M+2

‖∂q
t,xD

k+1
V

σ2‖L2(Ω0).

(2.34)

Repeating the argument inductively for Θ := ∇2 /∇p−3
Dk+1

V
σ2,

∇3 /∇p−4
Dk+1

V
σ2,..., we finally obtain

‖∇p+1Dk+1
V

σ2‖L2(Ωt) � sup
0≤τ≤t

E≤M+1[σ
2, τ ] + sup

0≤τ≤t
E≤M [V , τ ]

+
∑

q≤p+1

∑
k+2q≤M+2

‖∂q
t,xD

k
V
V ‖L2(Ω0)

+
∑

q≤p+1

∑
k+2q≤M+2

‖∂q
t,xD

k+1
V

σ2‖L2(Ω0).

(2.35)

Next we use the second estimate in Lemma 2.7 to estimate

‖∇p+1Dk
V
V ‖L2(Ωt), k + 2p+ 2 ≤ M + 2,
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under the induction hypothesis (2.29). The second estimate in Lemma 2.7
gives

‖∇p+1Dk
V
V ‖L2(Ωt) � ‖A∇p−1Dk

V
V ‖L2(Ωt)

+ ‖(∇μσ2)∂μ

(
∇p−1Dk

V
V
)
‖
H

1
2 (∂Ωt)

.
(2.36)

The term A∇p−1Dk
V V has the similar structure to the corresponding term

in (2.31) and can be handled using similar considerations, so we concentrate

on the boundary contribution ‖(∇μσ2)∂μ

(
∇p−1Dk

V
V
)
‖
H

1
2 (∂Ωt)

. Using the

trace theorem and Lemma 2.8

‖(∇μσ2)∂μ

(
∇p−1Dk

V
V
)
‖
H

1
2 (∂Ωt)

� ‖(∇μσ2)∂μ

(
∇p−1Dk

V
V
)
‖H1(Ωt)

� ‖[(∇μσ2)∂μ,∇p−1]Dk
V
V ‖H1(Ωt)

+ ‖∇p−1Dk+2
V

V ‖H1(Ωt)

+ ‖∇pDk+1
V

σ2‖H1(Ωt)+ ‖∇p−1Fk‖H1(Ωt).

Except for the last term ‖∇p−1Fk‖H1(Ωt), all other terms on the right above
are bounded by the right-hand side of (2.30) using the induction hypothesis11

(2.29) and (2.35). For ‖∇p−1Fk‖H1(Ωt), in view of Lemma 2.8 the highest
order terms in ∇pFk are

∇p+1Dk−1
V

V , and ∇p+1Dk
V
σ2.

The term ‖∇p+1Dk
V
σ2‖L2(Ωt) was already bounded in (2.35), and

‖∇p+1Dk−1
V

V ‖L2(Ωt) can be handled using Lemma 2.16. Putting everything
together we have proved that

‖(∇μσ2)∂μ

(
∇p−1Dk

V
V
)
‖
H

1
2 (∂Ωt)

� sup
0≤τ≤t

E≤M+1[σ
2, τ ] + sup

0≤τ≤t
E≤M [V , τ ]

∑
q≤p+1

∑
k+2q≤M+2

‖∂q
t,xD

k
V
V ‖2L2(Ω0)

+
∑

q≤p+1

∑
k+2q≤M+2

‖∂q
t,xD

k+1
V

σ2‖2L2(Ω0)
.

(2.37)

11Here note that k ≤ M − 2p is equivalent to k + 2 ≤ M + 2 − 2p, so
‖∇p−1Dk+2

V
V ‖H1(Ωt) can indeed be bounded by the induction hypothesis (2.29).
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Combining (2.36) and (2.37), we finally obtain

‖∇p+1Dk
V
V ‖L2(Ωt) � sup

0≤τ≤t
E≤M+1[σ

2, τ ] + sup
0≤τ≤t

E≤M [V , τ ]

∑
q≤p+1

∑
k+2q≤M+2

‖∂q
t,xD

k
V
V ‖2L2(Ω0)

+
∑

q≤p+1

∑
k+2q≤M+2

‖∂q
t,xD

k+1
V

σ2‖2L2(Ω0)
,

(2.38)

which completes the proof of (2.30).

2.4. Proof of Proposition 2.1

We are now ready to prove Proposition 2.1. Throughout the proof we use
the fact that in view of Corollary 2.13

E[Θ, t] �
∫
Ωt

(
c−1DV Θ∂tΘ+

V
0

2c
∇μΘ∇μΘ

)
dx+

∫
∂Ωt

V
0

ca
(DV Θ)2dS.

Recall that our goal is to prove estimate (2.7). The following auxiliary lemma
which relies on elliptic estimates for A is an important ingredient of the
proof.

Lemma 2.17. Suppose the hypotheses of Proposition 2.1 hold. Then for any
k ≤ 
 and t ∈ [0, T ]∫

Ωt

|∇(2)Dk
V
σ2|2dx � E�(T ) +

∑
m+2≤�

‖∂2
t,xD

m
V
V ‖2L2(Ω0)

+
∑

m+2≤�

‖∂2
t,xD

m+1
V

σ2‖2L2(Ω0)
.

(2.39)

Here the implicit constant depends polynomially on Ek−1(T ) if k is suffi-
ciently large, and on C1 for small k.

Proof. For k = 0 this follows for instance by writing

∇μσ2 = −2DV V
μ
.

Inductively, suppose the statement of the lemma holds for k ≤ j− 1 ≤ 
− 1
and let us prove it for k = j. In view of Corollary 2.13 the operator A is
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elliptic, so applying Lemma 2.6 with Θ = Dj

V
σ2 we get

∫
Ωt

|∇(2)D
j
V σ

2|2dx �
∫
Ωt

|∂t,xDj+1

V
σ2|2dx+

∫
Ωt

|∂t,xDj

V
σ2|2dx+

∫
Ωt

|Hj |2dx,

where Hj is given in Lemma 2.10. The first two terms already have the
right form so we concentrate on the last term for which we use Lemmas 2.10
and 2.15. The contribution of line (1) in Lemma 2.10 is bounded by

∑
k≤j−1

∫
Ωt

|∇(2)Dk
V σ

2|2 +
∑

k≤j−1

∫
Ωt

|∇Dk
V
V |2dx.(2.40)

The first term in (2.40) can be bounded using induction hypothesis, while
the second term is directly bounded by E�−1(T ) ≤ E�(T ). The contribution
from line (2) in Lemma 2.10 is bounded by

∑
k≤j−2

∫
Ωt

|∇(2)Dk
V
V |2dx+

∑
k≤j−1

∫
Ωt

(
|∇Dk

V
σ2|2 + |∇Dk

V
V |2

)
dx.(2.41)

The second term in (2.41) is bounded by E�−1(T ). The first term can be
bounded using Proposition 2.11, because 2·2+
−2 = 
+2. The contribution
of line (3) in Lemma 2.10 is directly bounded by E�−1(T ).

The next lemma allows us to estimate ∇Dk−1
V

V on the boundary assum-
ing boundedness of the kth energy.

Lemma 2.18. Suppose the hypotheses of Proposition 2.1 hold. Given η > 0
(small), if T > 0 is sufficiently small then for any k ≤ 
 (recall that T = cT )

c−1

∫ T

0

∫
∂Ωt

|∇Dj

V
V |2dSdt �E�(0) +Rj,η(Ek−1(T )) + ηEk(T ),(2.42)

where the implicit constant is independent of C1, and Rj,η is some polynomial
function for each j ≤ k − 1.

Proof. For j = 0 this follows for instance from Corollary 2.12 and the trace
theorem. Proceeding inductively, we assume (2.42) holds for j ≤ i−1 ≤ k−2
and prove it for j = i. We apply Lemma 2.5 to Θ = Di

V
V . The last integral

on the right in (2.14) can be absorbed in the left if T is sufficiently small.
The term

c−1

∫ cT

0

∫
∂Ωt

(
DV D

i
V
V
)2

dSdt



Well-posedness of free boundary hard phase fluids 303

is bounded by the right-hand side of (2.42) if T is sufficiently small. For the
contribution nDi

V
V on ∂Ω in the right-hand side of (2.14) we use (2.19) to

write

−nDi
V
V =

2

a
DV D

i+1
V

V +
1

a
∇Di+1

V
σ2 − 2

a
Fi,(2.43)

where Fi is as in Lemma 2.8. Using Lemma 2.15, the contribution of Fi is
bounded by

c−1
∑
m≤i

∫ cT

0

∫
∂Ωt

|∇Dm
V
σ2|2dx+ c−1

∑
m≤i−1

∫ cT

0

∫
∂Ωt

|∇Dm
V
V |2dx.(2.44)

The first term on the right-hand side of (2.44) is bounded by Ek−2(T ), and
hence by the right-hand side of (2.42). Using the trace theorem, Proposi-
tion 2.11, and choosing T > 0 sufficiently small, the second term in (2.44)
is bounded by the right-hand side of (2.42).

Next, the integral

c−1

∫ T

0

∫
∂Ωt

∣∣∣∣1aDV D
i+1
V

V

∣∣∣∣
2

dSdt

from the right-hand side of (2.43) is bounded by ηEk(T ) if T is small, because
by assumption i ≤ k − 1. By the same restriction on i the integral

c−1

∫ T

0

∫
∂Ωt

∣∣∣∣1a∇Di+1
V

σ2

∣∣∣∣
2

dSdt

is bounded by Ek−1(T ). To complete the proof of the lemma we still need to
consider the term

c−1

∫ T

0

∫
Ωt

(�Di
V
V )(QDi

V
V )dxdt

on the right-hand side of (2.14). Here Q is the multiplier in Lemma 2.5. By
Lemma 2.9, �Di

V
V contains terms which involve∇(2)Di−1

V
V . Since i ≤ k−1,

this corresponds to (at worst) ∇(2)Dk−2
V

V . But in view of Corollary 2.12,

c−1
∫ T
0

∫
Ωt

|∇2Di−1
V

V |2dxdt is bounded by the right-hand side of (2.42), if

T > 0 is sufficiently small. The term c−1
∫ T
0

∫
Ωt

|QDi
V
V |2dxdt is simply

bounded by Ek−1(T ).
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We turn to the proof of Proposition 2.1.

Proof of Proposition 2.1. We prove estimate (2.7) inductively. First by Lem-
ma 2.3 applied to (2.3), and Corollary 2.12

sup
0≤t≤T

E[V , t] � E[V , 0] + c−1T (1 + C1)
m,

for some m > 0. Therefore, if T = c−1T is sufficiently small

sup
0≤t≤T

E[V , t] � E[V , 0].

Similarly, by Lemma 2.4 applied to each of the equations in (2.2) (note that
σ2 and DV σ

2 are constant on ∂Ω), and Corollary 2.12,

E≤1[σ
2, T ] � E≤�[V , 0] + E≤�+1[σ

2, 0].

It follows that

E0(T ) � E≤�[V , 0] + E≤�+1[σ
2, 0].

Now we assume that smallness of T implies

Ek−1(T ) ≤ Pk−1(E�(0))(2.45)

for some 1 ≤ k ≤ 
 and some polynomial Pk−1, and use this to prove

Ek(T ) ≤ Pk(E�(0)),(2.46)

for some polynomial Pk, possibly by taking T even smaller. In (2.45) and
(2.46) the polynomials Pk−1 and Pk are taken to be independent of C1.
In fact, below we assume that k is sufficiently large, because otherwise the
desired bounds follow Corollary 2.12 by taking T small, in the same manner
as above.

Step 1: First we show that

Ek+1[σ
2, T ] ≤ P̃k(E�(0)) + κEk(T ),(2.47)

for some polynomial P̃k, and where κ is a given small absolute constant
to be chosen later. The idea is to apply Lemma 2.4 with Θ = Dk+1

V
σ2 to

equation (2.22), which can be done because Dk+1
V

σ2 ≡ 0 on ∂Ω. Note that
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using Corollary 2.12 to estimate ∇Q in L∞ (here Q is as in the statement of

Lemma 2.4) the last term on the right-hand side of (2.13) can be absorbed

on the left, provided T is small, to give

∫
Ωτ

|∂t,xDk+1
V

σ2|2dx+ c−1

∫ τ

0

∫
∂Ωt

|∂t,xDk+1
V

σ2|2dSdt

�
∫
Ω0

|∂t,xDk+1
V

σ2|2dx+

∣∣∣∣c−1

∫ τ

0

∫
Ωt

Hk QDk+1
V

σ2dxdt

∣∣∣∣ ,
(2.48)

for any τ ≤ T , where Hk is as in Lemma 2.10. If Hk is of the form (3) in

Lemma 2.10, then we can use Corollary 2.12 and Cauchy-Schwarz on the

last term on the right in (2.48), to bound this contribution by

∑
j≤k

c−1

∫ τ

0

∫
Ωt

|∇Dj

V
V |2dxdt+ c−1

∫ τ

0

∫
Ωt

|∇Dk+1
V

σ2|2dxdt.

If T is small, the first term can be bounded by κEk(T ) and the second

term can be absorbed on the left-hand side of (2.48). If Hk is of the form

(1) in Lemma 2.10 we use elliptic estimates. The term that needs special

attention is when km+1 = max{k1, . . . , km+1}, in which case, after using

Cauchy-Schwarz and Corollary 2.12 as above, we need to estimate

c−1

∫ τ

0

∫
Ωt

|∇(2)Dk
V
σ2|2dxdt.

But, by Lemma 2.17 this term is bounded by the right-hand side of (2.47)

provided T is sufficiently small.

It remains to treat the contribution of Hk replaced by (2) in Lemma 2.10

to (2.48). Here, we only treat the most difficult case when km+2 = k − 1,

and for brevity write the resulting expression in (2) in Lemma 2.10 as

Fμν∇μ∇νD
k−1
V

V ,

where in view of Corollary 2.12, F satisfies

‖F‖L∞(Ω) + ‖∇F‖L∞(Ω) ≤ (Ek−1(T ))
n

for some positive integer n. Replacing Hk on the right-hand side of (2.48)
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by this expression, we write

(Fμν∇μ∇νD
k−1
V

V )(QDk+1
V

σ2) = ∇μ[(F
μν∇νD

k−1
V

V )(QDk+1
V

σ2)]

− (∇μF
μν)(∇νD

k−1
V

V )(QDk+1
V

σ2)

− (Fμν∇νD
k−1
V

V )(∇μQ
λ)(∇λD

k+1
V

σ2)

− (Fμν∇νD
k−1
V

V )(Q∇μD
k+1
V

σ2).

(2.49)

The last term can again be massaged as

(Fμν∇νD
k−1
V

V )(Q∇μD
k+1
V

σ2) = ∇λ[(F
μν∇νD

k−1
V

V )(V
λ
Q∇μD

k
V
σ2)]

− (Fμν∇νD
k
V
V )(Q∇μD

k
V
σ2)

− ((DV F
μν)∇νD

k−1
V

V )(Q∇μD
k
V
σ2)

+ (Fμν(∇νV
λ)∇λD

k−1
V

V )(Q∇μD
k
V
σ2)

− (Fμν∇νD
k−1
V

V )((DV Q
λ)∇λ∇μD

k
V
σ2)

− (Fμν∇νD
k−1
V

V )(Qλ[DV ,∇λ∇μ]D
k
V
σ2).

Plugging back into (2.49) we get

(Fμν∇μ∇νD
k−1
V

V )(QDk+1
V

σ2) = ∇μ[(F
μν∇νD

k−1
V

V )(QDk+1
V

σ2)

− (F λν∇νD
k−1
V

V )(V
μ
Q∇λD

k
V
σ2)]

− (∇μF
μν)(∇νD

k−1
V

V )(QDk+1
V

σ2)

− (Fμν∇νD
k−1
V

V )(∇μQ
λ)(∇λD

k+1
V

σ2)

+ (Fμν∇νD
k
V
V )(Q∇μD

k
V
σ2)

+ ((DV F
μν)∇νD

k−1
V

V )(Q∇μD
k
V
σ2)

− (Fμν(∇νV
λ
)∇λD

k−1
V

V )(Q∇μD
k
V
σ2)

+ (Fμν∇νD
k−1
V

V )((DV Q
λ)∇λ∇μD

k
V
σ2)

+ (Fμν∇νD
k−1
V

V )(Qλ[DV ,∇λ∇μ]D
k
V
σ2).

(2.50)

We need to consider the integration of the terms on the right in (2.50) over
the space-time region ∪0≤t≤τΩt. The terms

(∇μF
μν)(∇νD

k−1
V

V )(QDk+1
V

σ2) and (Fμν∇νD
k−1
V

V )(∇μQ
λ)(∇λD

k+1
V

σ2)



Well-posedness of free boundary hard phase fluids 307

can simply be bounded by Cauchy-Schwarz, assuming T is sufficiently small.
The last five terms,

(Fμν∇νD
k
V
V )(Q∇μD

k
V
σ2) ((DV F

μν)∇νD
k−1
V

V )(Q∇μD
k
V
σ2),

(Fμν(∇νV
λ
)∇λD

k−1
V

V )(Q∇μD
k
V
σ2),

(Fμν∇νD
k−1
V

V )((DV Q
λ)∇λ∇μD

k
V
σ2),

(Fμν∇νD
k−1
V

V )(Qλ[DV ,∇λ∇μ]D
k
V
σ2),

can also be treated by Cauchy-Schwarz, this time combined with elliptic
estimates as above, using Lemma 2.17 and (2.16). For the first term, ∇μI

μ,
with

Iμ := (Fμν∇νD
k−1
V

V )(QDk+1
V

σ2)− (F λν∇νD
k−1
V

V )(V
μ
Q∇λD

k
V
σ2),

on the right-hand side of (2.50), by the divergence theorem

c−1

∫ τ

0

∫
Ωt

∇μI
μdxdt = c−1

∫
Ω0

I0dx− c−1

∫
Ωτ

I0dx+ c−1

∫ τ

0

∫
∂Ωt

nμI
μdSdt.

The first term on the right is bounded by the initial data. The second term
on the right is bounded by

Cδ

∫
Ωτ

|∂t,xDk−1
V

V |2dx+ δ

∫
Ωτ

|∂t,xDk+1
V

σ2|2dx,(2.51)

where Cδ depends polynomially on Ek−1(T ). The second term on the right
in (2.51) can be absorbed on the left-hand side of (2.48) if δ is chosen
sufficiently small (an absolute constant). The first term in (2.51) is bounded
by the right-hand side of (2.47) by the induction hypothesis. Finally, using
the fact that V

μ
nμ = 0 on ∂Ω,

c−1

∫ τ

0

∫
∂Ωt

nμI
μdSdt ≤ Cδc

−1

∫ τ

0

∫
∂Ωt

|∇Dk−1
V

V |2dSdt

+ δc−1

∫ τ

0

∫
∂Ωt

|∇Dk+1
V

σ2|2dSdt,
(2.52)

where again Cδ can depend polynomially on Ek−1(T ). The last term on the
right can be absorbed on the left in (2.48) if δ is chosen sufficiently small.
For the first term on the right in (2.52) we use Lemma 2.18 with η small
(depending on Cδ in (2.52) and κ in (2.47)), where the second term on the
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right in (2.42) is bounded by the right-hand side of (2.47) using the induction
hypothesis. This finishes the proof of (2.47). Step 2: Here we prove that
given δ > 0, if T is sufficiently small then for any j ≤ k

∣∣∣∣
∫ T

0

∫
Ωt

(Dj+1

V
V )(�Dj

V
V )dxdt

∣∣∣∣ � E�(0) + ˜̃Pj(Ek−1(T )) + δEk(T )(2.53)

where the polynomial ˜̃Pj and the implicit constant are independent of C1.
In view of Lemma 2.3 this estimate is needed in estimating

sup
0≤t≤T

E≤k[V , t].

Recall that �Dj

V
V = Gj where Gj is as in Lemma 2.9. We treat the hardest

case when km+1 = max{k1, . . . , km+1} (the other cases can be handled using
Cauchy-Schwarz and Corollary 2.12). In fact we concentrate on the most
difficult case km+1 = j − 1. In this case we write Gj as

Gμν∇μ∇νD
j−1

V
V ,

where G satisfies

‖G‖L∞(Ω) + ‖∇G‖L∞(Ω) ≤ (Ek−1(T ))
n

for some integer n ≥ 0. We now proceed as in the derivation of (2.50). First

(Gμν∇μ∇νD
j−1

V
V )(Dj+1

V
V ) = ∇μ[(G

μν∇νD
j−1

V
V )(Dj+1

V
V )]

− (∇μG
μν)(∇νD

j−1

V
V )(Dj+1

V
V )

− (Gμν∇νD
j−1

V
V )(∇μD

j+1

V
V ).

(2.54)

The last term can again be massaged as

(Gμν∇νD
j−1

V
V )(∇μD

j+1

V
V ) = ∇λ[(G

μν∇νD
j−1

V
V )(V

λ∇μD
j

V
V )]

− (Gμν∇νD
j

V
V )(∇μD

j

V
V )

− ((DV G
μν)∇νD

j−1

V
V )(∇μD

j

V
V )

+ (Gμν(∇νV
λ
)∇λD

j−1

V
V )(∇μD

j

V
V )

+ (Gμν∇νD
j−1

V
V )((∇μV

λ
)∇λD

j

V
V ).
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Plugging back into (2.54) we get

(Gμν∇μ∇νD
j−1

V
V )(Dj+1

V
V ) = ∇μ[(G

μν∇νD
j−1

V
V )(Dj+1

V
V )

− (Gλν∇νD
j−1

V
V )(V

μ∇λD
j

V
V )]

− (∇μG
μν)(∇νD

j−1

V
V )(Dj+1

V
V )

+ (Gμν∇νD
j

V
V )(∇μD

j

V
V )

+ ((DV G
μν)∇νD

j−1

V
V )(∇μD

j

V
V )

− (Gμν(∇νV
λ
)∇λD

j−1

V
V )(∇μD

j

V
V )

+ (Gμν∇νD
j−1

V
V )((∇μV

λ
)∇λD

j

V
V ).

(2.55)

We want to integrate (2.55) over ∪t∈[0,T ]Ωt. The contribution of the last five

terms can be bounded by E�(0), as required in (2.53), provided T is small.
It remains to consider the divergence terms

∇μI
μ
1 := ∇μ[(G

μν∇νD
j−1

V
V )(Dj+1

V
V )],

∇μI
μ
2 := ∇μ[(G

λν∇νD
j−1

V
V )(V

μ∇λD
j

V
V )].

Note that nμI
μ
2 = 0 on ∂Ω because nμV

μ
= 0 there. Therefore the contri-

bution of ∇μI
μ
2 is bounded by the initial data plus∫

ΩT

|∇Dj−1

V
V ||∇Dj

V
V |dx ≤ Cδ

∫
ΩT

|∇Dj−1

V
V |2dx+ δ

∫
ΩT

|∇Dj

V
V |2dx,

with Cδ depending polynomially on Ek−1(T ). The second term on the right
is in the form required by (2.53), and the first term on the right is bounded
by the induction hypothesis. The contribution of ∇μI

μ
1 on ΩT is bounded in

an identical fashion. On ∂Ω the contribution of ∇μI
μ
1 is bounded by

c−1

∫ T

0

∫
∂Ωt

|∇Dj−1

V
V |2dSdt+ c−1

∫ T

0

∫
∂Ωt

|Dj+1

V
V |2dSdt

which, using Lemma 2.18, can be bounded by the right-hand side of (2.53)
by choosing T and η in Lemma 2.18 small. This completes the proof of
(2.53).

Step 3: Finally we show that

sup
0≤t≤T

Ek[V , t] ≤ Sk(E�(0)),(2.56)
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for some polynomial Sk. Note that (2.56) and (2.47) complete the proof of
the proposition upon taking κ in (2.47) small. We apply the energy identity
(2.10) to Θ = Dk

V
V . The first two terms on the right in (2.10) are bounded

by the initial data. The last three terms there can be absorbed on the left by
taking T sufficiently small. The term c−1

∫ T
0

∫
Ωt

gDV Θdxdt with g = �Dk
V
V

was treated in Step 2 above. Indeed, by (2.53) and the induction hypothesis,
this term can be bounded by a polynomial of E�(0) plus a term which can
be absorbed in the left in (2.10) and (2.47). Finally we consider the term

c−1

∫ T

0

∫
∂Ωt

1

a
fDV ΘdSdt

on the right-hand side of (2.10), where f = (D2
V
−1

2an)D
k
V
V as in Lemma 2.8.

The main term ∇Dk+1
V

σ2 was already treated in (2.47) in Step 1 above. The
contribution of the terms of the forms (1) and (2) in Lemma 2.8 are also
bounded by a polynomial of E�(0) or absorbed in the left in (2.10) and
(2.47), in view of Corollary 2.12 and Lemma 2.18, and by the induction
hypothesis.

3. The linear theory

In this section we discuss the linearized equations for V and DV σ
2 and

prove existence and energy estimates for them. Since this concerns the local
existence result of Theorem 1.1 which is for fixed c, to simplify notation we
simply let c = 1 in this section and in Section 4. Since the parameter c is
a constant it is clear that the proof is identical for any other choice of c.
The assumptions on the coefficients and the source terms are of course such
that they can be recovered in the iteration for the quasilinear system. The
general scheme is the one outlined in Subsection 1.2.1 above, and involves
proving Sobolev estimates in terms of the energies. However, as explained in
Subsection 1.2.2 this scheme will be carried out on the Lagrangian side. The
actual iteration for the nonlinear problem will be the subject of the next
section.

3.1. The weak formulation of the equations

3.1.1. The equation for V . Recall from (1.30) that the boundary equa-
tion for V is (

D2
V +

1

2
a∇n

)
V ν = −1

2
∇νDV σ

2.(3.1)
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When considering the linearized equation for V we assume that in (3.1)
the V appearing in DV , a and n are given, and that the right-hand side is
replaced by a fixed function. To be more precise, we consider the following
linear system for the unknown Θ:

�Θ = 0, in Ω,

D2
V Θ+

1

2
a∇nΘ = f̃ , on ∂Ω.

(3.2)

At the linear level the Eulerian coordinates are given by

dx0(t, y)

dt
= 1,

dxi(t, y)

dt
=

(
V i

V 0

)
(t, y), i = 1, 2, 3.(3.3)

On the Lagrangian domain the parameterization domain is [0, T ] × B with
timelike boundary [0, T ]× ∂B. The linearized Minkowski metric becomes

g =−
(
1−

∑
i

(V i)2

(V 0)2

)
dt2 + 2

∑
i,a

V i

V 0

∂xi

∂ya
dtdya +

∑
i,a,b

∂xi

∂ya
∂xi

∂yb
dyadyb.

(3.4)

By redefining the source function f , we write the linear system (3.2) on the
Lagrangian side as

�gΘ = 0 in B × [0, T ],

∂2
tΘ+ γ∇nΘ = f on ∂B × [0, T ],

(3.5)

where γ := a
2(V 0)2 as in Subsection 1.2.2. To derive the weak formulation as

in Subsection 1.2.2, we assume all functions are smooth and multiply the
first equation in (3.5) by a test function ϕ and integrate by parts to get

0 =

∫ s

0

∫
B
ϕ�gΘdydt =

∫ s

0

∫
B

1√
|g|

∂α(ϕ
√

|g|gαβ∂βΘ)dydt

−
∫ s

0

∫
B
gαβ∂αΘ∂βϕdydt

= −
∫
Bs

∂tΘϕdy +

∫
Bs

gta∂aΘϕdy −
∫
B0

gα0∂αΘϕdy

+
1

2

∫ s

0

∫
B
ϕgαβ∂βΘ∂α log |g| dydt

+

∫ s

0

∫
∂B

1

γ
(f − ∂2

tΘ)ϕdSdt−
∫ s

0

∫
B
gαβ∂αΘ∂βϕdydt.
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Since this identity holds for all s, we can differentiate in s to get, after some
manipulation,∫

∂B

1

γ
fϕdS =

∫
B
∂2
tΘϕdy +

∫
∂B

1

γ
∂2
tΘϕdS −

∫
∂B

gtr∂tΘϕdS

−
∫
B
∂aΘϕ∂tg

ta dy +

∫
B
∂tΘϕ∂ag

ta dy

+

∫
B
gαβ∂αΘ∂βϕdy −

∫
B
∂tϕg

0α∂αΘdy +

∫
B
∂tΘgta∂aϕdy

− 1

2

∫
B
gαβ∂βΘϕ∂α log |g| dy.

Simplifying the line before last, we arrive at

∫
∂B

1

γ
fϕdS =

∫
B
∂2
tΘϕdy +

∫
∂B

1

γ
∂2
tΘϕdS

+

∫
B
gab∂aΘ∂bϕdy + 2

∫
B
gta∂tΘ∂aϕdy −

∫
∂B

gtr∂tΘϕdS

− 1

2

∫
B
gαβ∂βΘϕ∂α log |g| dy −

∫
B
∂aΘϕ∂tg

ta dy

+

∫
B
∂tΘϕ∂ag

ta dy.

(3.6)

Equation (3.6) is our guide for formulating a weak problem. Recall that 〈·, ·〉
denotes the inner product in L2(B) with respect to dy, and 〈〈·, ·〉〉 denotes
the inner product in L2(∂B) with respect to the induced Euclidean measure
dS. The pairing between (H1(B))∗ and H1(B) is denoted by (·, ·). We define
the bounded linear map Φ : H1(B) → (H1(B))∗ by

(Φ(u), v) := 〈u, v〉+ 〈〈γ−1tru, tr v〉〉.

Note that if u is a sufficiently regular function of time, and v is independent
of time, we have

〈u′′, v〉+ 〈〈γ−1tru′′, tr v〉〉 = (Φ(u)′′, v)− 2〈〈(γ−1)′tru′, tr v〉〉
− 〈〈(γ−1)′′tru, tr v〉〉.

Also note that Φ is an embedding, because if Φ(u) = Φ(w), then for all
ϕ ∈ C∞

0 (B)

〈u− w,ϕ〉 = 0
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implying u = w almost everywhere in B. But then

〈〈tru− trw, γ−1tr v〉〉 = 0, ∀v ∈ H1(B),

and since tr : H1(B) → L2(∂B) is onto, it follows tru = trw. We define the
following bilinear forms:

B : H1(B)×H1(B) → R, C : L2(B)×H1(B) → R,

D,E : L2(∂B)×H1(B) → R,

B(u, v) := 〈gab∂au, ∂bv〉 −
1

2
〈∂au, vgaα∂α log |g|〉 − 〈∂au, v∂tgta〉,

C(u, v) := 2〈u, gta∂av〉 −
1

2
〈u, vgtα∂α log |g|〉+ 〈u, v∂agta〉,

D(u, v) := −〈〈u, gtrtr v〉〉 − 2〈〈u, (γ−1)′tr v〉〉,
E(u, v) := −〈〈u, (γ−1)′′tr v〉〉.

(3.7)

To simplify notation, for any Θ : [0, T ] → H1(B) satisfying

Θ ∈ L2([0, T ];H1(B)), Θ′ ∈ L2([0, T ], L2(B)),

(trΘ)′ ∈ L2([0, T ];L2(∂B)), Φ(Θ),Φ(Θ)′,Φ(Θ)′′ ∈ L2([0, T ]; (H1(B))∗),

(3.8)

let

L(Θ, v) := B(Θ, v) + C(Θ′, v) +D((trΘ)′, v) + E(trΘ, v).(3.9)

The weak equation then becomes

(Φ(Θ)′′, v) + L(Θ, v) = 〈〈γ−1f, tr v〉〉, ∀v ∈ H1(B),(3.10)

for almost every t ∈ [0, T ]. To complete our formulation of the weak problem
we also need to discuss the initial data. As in the model problem, the initial
data consists of

θ0 ∈ H1(B), θ1 ∈ L2(B), θ̃1 ∈ L2(∂B),

and the initial requirement on Θ is that

Θ(0) = θ0 in L2(B),

(Φ(Θ)′(0), v) = 〈θ1, v〉+ 〈〈θ̃1, tr v〉〉, ∀v ∈ H1(B).
(3.11)
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Note that since we seek Θ ∈ L2([0, T ];H1(B)), Θ′ ∈ L2([0, T ];L2(B)) we
must in fact have Θ ∈ C([0, T ];L2(B)) (after possible modification on a set
of zero measure), so the initial value Θ(0) makes sense in L2(B). By a similar
reasoning we can make sense of Φ(Θ)′(0).12

Remark 3.1. Suppose Θ satisfies (3.10) and that it is sufficiently regular
(say C3). Then taking v = ϕ ∈ C∞

0 (B), we can integrate by parts back in
the definition of L to conclude from (3.10) that∫

B
(�gΘ)ϕdx = 0 ∀ϕ ∈ C∞

0 (B).

It follows that �gΘ ≡ 0 in B. Then using this fact and the surjectivity of
tr : H1(B) → L2(∂B), we can take v = ϕ ∈ C∞(B) arbitrarily, and integrate
by parts again in the definition of L in (3.10) to conclude that

∂2
tΘ+ γ∇nΘ = f.

A similar conclusion holds for equation (3.18) below if Λ is sufficiently reg-
ular.

We also need to consider the equations obtained by commuting several ∂t
derivatives. To be more systematic, let us denote by F0 = 0 and f0 = γ−1f
the right-hand sides of the interior and boundary equations respectively.
Similarly, we use Fk and fk to denote the right-hand sides of the interior and
boundary equations obtained by commuting ∂t derivatives k times, and let
Θk be the k-times differentiated unknown. Now we compute the commutator
in the weak form. Assuming for the moment that all functions are sufficiently
regular,(

(Φ(Θ)′′, v) + L(Θ, v)
)′
=(Φ(Θ′)′′, v) + L(Θ′, v)

+ 〈∂tgab∂aΘ, ∂bv〉 −
1

2
〈∂aΘ, v∂t(g

aα∂α log |g|)〉

− 〈∂aΘ, v∂2
t g

ta〉

+ 2〈Θ′,
(
∂tg

ta
)
∂av〉 −

1

2
〈Θ′, v∂t(g

tα∂α log |g|)〉

+ 〈Θ′, v∂t∂ag
ta〉

− 〈〈Θ′, (∂tg
tr)tr v〉〉+ 〈〈Θ′′, (∂t(γ

−1))tr v〉〉.
12In fact, with a little more work one can argue that Θ′ ∈ C([0, T ];L2(B)) and

(trΘ)′ ∈ C([0, T ];L2(∂B)); see for instance [14, 26]. This will not be needed to
prove energy estimates.
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If we define

〈C(Θ), v〉 := −1

2
〈∂aΘ, v∂t(g

aα∂α log |g|)〉 − 〈∂aΘ, v∂2
t g

ta〉

− 1

2
〈Θ′, v∂t(g

tα∂α log |g|)〉+ 〈Θ′, v∂t∂ag
ta〉,

〈Ca(Θ), ∂av〉 := 〈∂tgab∂bΘ, ∂av〉+ 2〈Θ′,
(
∂tg

ta
)
∂av〉,

〈〈CB(Θ), tr v〉〉 := −〈〈(trΘ)′, (∂tg
tr)tr v〉〉,

〈〈C̃B(Θ), tr v〉〉 := −〈〈(trΘ)′, (γ−1)′tr v〉〉,

〈〈 ˜̃CB(Θ), v〉〉 := 〈〈(trΘ)′, (γ−1)′′tr v〉〉,

(3.12)

then we have the following formula for the weak form of the commutator:

d

dt

(
(Φ(Θ)′′, v) + L(Θ, v)

)
− (Φ(Θ′)′′, v)− L(Θ′, v)− 〈〈C̃B(Θ′), tr v〉〉

= 〈C(Θ), v〉+ 〈Ca(Θ), ∂av〉+ 〈〈CB(Θ), tr v〉〉.
(3.13)

Therefore, Θ1 := ∂tΘ satisfies the weak equation (again assuming sufficient

regularity)

(Φ(Θ1)
′′, v) + L(Θ1, v) + 〈〈C̃B(Θ1), v〉〉 = 〈F1, v〉+ 〈Fa

1 , ∂av〉+ 〈〈f1, tr v〉〉,

where in terms of Θ0 := Θ

F1 = ∂tF0 − C(Θ0), Fa
1 = ∂tFa

0 − Ca(Θ0), f1 = ∂tf0 − CB(Θ0).

For the next derivative, note that with Θ2 := ∂2
tΘ and ˜̃CB as in (3.12)

d

dt
〈〈C̃B(Θ1), v〉〉 = 〈〈C̃B(Θ2), v〉〉 − 〈〈 ˜̃CB(Θ1), v〉〉,

so

(Φ(Θ2)
′′, v) + L(Θ2, v) + 2〈〈C̃B(Θ2), v〉〉 = 〈F2, v〉+ 〈Fa

2 , ∂av〉+ 〈〈f2, tr v〉〉,

where

F2 = ∂tF1 − C(Θ1), Fa
2 = ∂tFa

1 − Ca(Θ1), f2 = ∂tf1 − CB(Θ1)− ˜̃CB(Θ1).



316 Shuang Miao et al.

Continuing in this way we see that Θk := ∂k
t Θ satisfies the weak equation

(Φ(Θk)
′′, v) + L(Θk, v) + k〈〈C̃B(Θk), v〉〉 = 〈Fk, v〉+ 〈Fa

k , ∂av〉+ 〈〈fk, tr v〉〉,
∀v ∈ H1(B),

(3.14)

where the source terms are defined by the following recursive formulas:

F0 = 0, Fa
0 = 0, f0 = γ−1f,

Fk = ∂tFk−1 − C(Θk−1), Fa
k = ∂tFa

k−1 − Ca(Θk−1),

fk = ∂tfk−1 − CB(Θk−1)− (k − 1) ˜̃CB(Θk−1).

(3.15)

Using an induction argument, one can derive the following explicit formulas
valid for k ≥ 1:

Fk =∂k
t F0 −

k−1∑
�=0

∂�
tC(Θk−�−1) = −

k−1∑
�=0

∂�
tC(Θk−�−1),

Fa
k =∂k

t Fa
0 −

k−1∑
�=0

∂�
tCa(Θk−�−1) = −

k−1∑
�=0

∂�
tCa(Θk−�−1),

fk =∂k
t f0 −

k−1∑
�=0

∂�
tCB(Θk−�−1)−

k−2∑
�=0

(k − 
− 1)∂�
t
˜̃CB(Θk−�−1).

(3.16)

To rigorously justify the derivations above we would of course need Θ to be
sufficiently regular, which we cannot a priori assume. Instead, in the next
subsection we will inductively define Θk to be the solution of (3.14) (with
appropriate initial data) and show that Θk = Θ′

k−1, proving regularity of Θ.

3.1.2. The equation for DV σ2. The derivation of the weak formulation
for the linearized equation for DV σ

2 is similar to that of V , but simpler
because the boundary condition is the standard zero Dirichlet condition.
Recall from (1.31) that this equation is

�DV σ
2 = 4(∇μV ν)∇μ∇νσ

2 + 4(∇λV ν)(∇λV
μ)(∇νVμ), DV σ

2 ≡ 0 on ∂Ω.

We will use Λ to denote the linearized unknown for the equation of DV σ
2.

Going through similar computations as for Θ above, we can derive the weak
equation for Λ. Let us restrict the domains of the bilinear forms B and C:

B : H1
0 (B)×H1

0 (B) → R and C : L2(B)×H1
0 (B) → R,
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To write the weak equation for Λ we use the standard embedding of H1
0 (B)

in H−1(B) := (H1
0 (B))∗ given by

(ι(u), v) := 〈u, v〉, u ∈ H1
0 (B), v ∈ H1

0 (B).

By a slight abuse of notation we will simply write u for ι(u) from now on.
For any Λ with

Λ ∈ L2([0, T ];H1
0 (B)), Λ′ ∈ L2([0, T ], L2(B)), Λ′′ ∈ L2([0, T ];H−1(B)),

(3.17)

and v ∈ H1
0 (B) define

Lσ(Λ, v) := B(Λ, v) + C(Λ′, v).

The linearized weak equation for Λ then takes the form

(Λ′′, v) + Lσ(Λ, v) = 〈Fσ, v〉, ∀v ∈ H1
0 (B),(3.18)

where Fσ ∈ L2([0, T ];L2(B)) is a given function. Also given initial data
λ0 ∈ H1

0 (B) and λ1 ∈ L2(B) the initial conditions are

Λ(0) = λ0, ((Λ)′(0), v) = 〈λ1, v〉, ∀v ∈ H1
0 (B).(3.19)

The discussion of the higher order equations for Λk := ∂k
t Λ is also similar

to the case of Θ but simpler. Let

Fσ,0 := F0, Fa
σ,0 := 0,

Fσ,k =∂k
t Fσ,0 −

k−1∑
�=0

∂�
tC(Λk−�−1) = −

k−1∑
�=0

∂�
tC(Λk−�−1),

Fa
σ,k =∂k

t Fa
σ,0 −

k−1∑
�=0

∂�
tCa(Λk−�−1) = −

k−1∑
�=0

∂�
tCa(Λk−�−1),

(3.20)

The higher order equations for Λk are then

(Λ′′
k, v) + Lσ(Λk, v) = 〈Fσ,k, v〉+ 〈Fa

σ,k, ∂av〉, ∀v ∈ H1
0 (B).(3.21)

3.2. Existence and uniqueness of the weak solution

This subsection contains the existence theory and energy estimates which
are the main ingredient of the nonlinear iteration. Let K be a fixed large in-
teger representing the total number of derivatives we commute. Throughout
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this section we assume that g, γ, f0, F0, Fa
0 , Fσ,0, Fa

σ,0 are given functions
satisfying the following conditions:

∂a
y∂

k
t g ∈ L∞([0, T ];L2(B)), k ≤ K + 1,

{
2a ≤ K + 1− k, k ≥ 1

2a ≤ K, k = 0
,

∂k
t (tr g) ∈ L2([0, T ];L2(∂B)), k ≤ K,

∂k
t γ

−1, ∂k
t γ ∈ L2([0, T ];L2(∂B)), k ≤ K,

∂k
t γ

−1, ∂k
t γ ∈ L∞([0, T ];L∞(∂B)), k ≤ K − 5,

∂k
t f0 ∈ L2([0, T ];L2(∂B)), k ≤ K,

∂k
t Fσ,0 ∈ L2([0, T ];L2(B)), k ≤ K.

(3.22)

We will also use the notation introduced in (3.12), (3.16), and (3.20).
We start with the more difficult case of equation (3.14) for Θ. The treat-

ment of (3.14) is divided into two parts. First, in Proposition 3.2 we prove
existence and uniqueness for the linear systems under quite general assump-
tions, and prove higher regularity of the solution up to order K−5. Then in
Proposition 3.9 we prove higher regularity up to order K. The reason for this
distinction is that for the first K − 5 derivatives we can always bound the
coefficients appearing in the commutator errors in L∞, whereas for the last
five derivatives we sometimes need to bound these coefficients in L2. This
requires estimating the lower order derivatives of the solution in L∞, which
in turn calls for Sobolev estimates in terms of the energies. The main step
in going from Proposition 3.2 to Proposition 3.9 is proving these Sobolev
estimates.

Proposition 3.2. Suppose (3.22) holds and that there exist

θk ∈ H1(B), θk+1 ∈ L2(B), θ̃k+1 ∈ L2(∂B), k = 0, ...,K − 6

such that the following two conditions hold:

• For k = 0, . . . ,K − 7

〈θk+2, v〉+ 〈〈θ̃k+2, γ
−1tr v〉〉+ L(θk, v) + k〈〈C̃B(θk), v〉〉

= 〈〈fk(0), tr v〉〉+ 〈Fk(0), v〉+ 〈Fa
k (0), ∂av〉.

Here fk, Fk, Fa
k are given by the formulas in (3.16), where the initial

values of Θk and ∂tΘk are defined to be θk and θk+1 respectively (see
Remark 3.4).

• θ̃k = tr θk for k = 1, . . . ,K − 6.
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Then there exists a unique Θk satisfying (3.8) and (3.11) (with (θ0, θ1, θ̃1)
replaced by (θk, θk+1, θ̃k+1)), such that for all v ∈ H1(B) equation (3.14)
holds for almost every t ∈ [0, T ]. The solution satisfies

sup
t∈[0,T ]

(
‖Θ′

k‖L2(B) + ‖Θk‖H1(B) + ‖trΘ′
k‖L2(∂B)

)
≤ C1e

C2T
(
‖θk‖H1(B) + ‖θk+1‖L2(B) + ‖θ̃k+1‖L2(∂B) + ‖fk‖L2([0,T ];L2(∂B))

+ ‖Fk‖L2([0,T ];L2(B)) + ‖Fa
k ‖L∞([0,T ];L2(B))

)
,

(3.23)

In these estimates C1, C2, and C3 are constants depending only on
‖g‖L∞([0,T ]×B), ‖∂t,yg‖L∞([0,T ]×B), ‖g−1‖L∞([0,T ]×B), ‖∂t,yg−1‖L∞([0,T ]×B),
‖γ−1‖L∞([0,T ]×∂B), and ‖∂tγ−1‖L∞([0,T ]×∂B). Moreover, we have Θ′

k−1 = Θk

for k = 1, ...,K − 5.

Before presenting the proof let us make a few remarks about the as-
sumptions of the proposition.

Remark 3.3. Note that in assuming existence of θ2, θ3, etc, we are not
imposing additional data. Rather, we are requiring additional regularity on
θ0, θ1, and θ̃1. Indeed, if θ2, θ3, etc, exist they are uniquely determined by θ0,
θ1, and θ̃0, so there is no freedom in prescribing them. To see this note that
for instance in the regularity condition for θ2, θ̃2 we can first take v ∈ H1

0 (B)
to get uniqueness of θ2 and then use the surjectivity of tr : H1(B) → L2(∂B)
to get uniqueness of θ̃2. Similarly, θ3 and θ̃3 are determined by θ2.

The compatibility conditions are there to guarantee that the initial and
boundary conditions match on the initial boundary, as required for wave
equations on bounded domains.

Remark 3.4. We clarify the meaning of the initial value of fk, Fk, and
F̃ a
k . By definition, these are simply given by replacing Θk and ∂tΘk by their

initial data θk and θk+1. For instance, the regularity for (θ2, θ̃2) is (see (3.7),
(3.9), and (3.12))

〈θ2, v〉+ 〈〈θ̃2, γ−1tr v〉〉+B(θ0, v) + C(θ1, v)

+D(θ̃1, v) + E(tr θ0, v)− 〈〈θ̃1, (∂tγ−1)tr v〉〉
= 〈〈f0(0), tr v〉〉+ 〈F0(0), v〉+ 〈Fa

0 (0), ∂av〉.

For higher values of k we also replace Θ� and ∂tΘ� appearing in (3.16) by
θ�, θ�+1, and θ̃�+1 in the same way as above.
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Proof of Proposition 3.2. Existence. We proceed inductively. For k = 0,

we have F0 = 0 and Fa
0 = 0. Once Θk−1 is constructed, then Fk and Fa

k is

defined as in (3.16), and satisfy

‖Fk‖L2([0,T ]×B) < ∞, and ‖Fa
k ‖L∞([0,T ];L2(B)) < ∞.

Let {e�}∞�=1 be an orthogonal basis of H1(B) which at the same time is

an orthonormal basis of L2(B) (see for instance [11]). All inner products

are with respect to the time-independent measure dy. The linear span of

{e1, . . . , em} is denoted by Em and the L2(B) orthogonal projection onto

Em by Pm. Note that Pm is also the H1(B) orthogonal projection. Indeed,

if v =
∑∞

�=1 v
�e� is an arbitrary element of H1(B), then both the L2(B) and

H1(B) projections of v on Em are given by
∑m

�=1 v
�e�. We define the map

Φm : H1(B) → (H1(B))∗ by

(Φm(u), v) := (Φ(u), Pmv) = 〈u, Pmv〉+ 〈〈tru, γ−1trPmv〉〉,

and say that

Θk,m(t, x) :=

m∑
�=1

Θ�
k,m(t)e�(x), Θ�

k,m ∈ C2([0, T ]), 
 = 1, . . . ,m,

satisfies the mth approximate weak equation if for 
 = 1, . . . ,m,

(Φm(Θk,m)′′, e�) + L(Θk,m, e�) + k〈〈C̃B(Θk,m), v〉〉
= 〈〈fk, tr e�〉〉+ 〈Fk, e�〉+ 〈Fa

k , ∂ae�〉,
(3.24)

and

Θ�
k,m(0) = 〈θk, e�〉, 
 = 1, . . . ,m,

〈Θ′
k,m(0), e�〉+ 〈〈trΘ′

k,m(0), e�〉〉 = 〈θk+1, e�〉+ 〈〈θ̃k+1, tr e�〉〉, 
 = 1, . . . ,m.

(3.25)

Existence and uniqueness of Θk,m satisfying the mth approximate weak

equation is a consequence of existence theory for ODEs. Indeed, the equa-

tion reduces to a system of linear second order ODEs for the unknowns

Θ1
m, . . . ,Θm

m. The matrix coefficient of the second order derivative is

Im +Gm
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where Gm is the positive semi-definite matrix13 with entries

Gm
ij = 〈〈γ−1tr ei, tr ej〉〉.

It follows that Im + Gm is invertible and the ODE can be put in standard
form. Similarly, for the initial data for the time derivatives (Θk

m)′(0) we use
the invertibility of Im+ G̃m and the second equation in (3.25), where G̃m is
the positive semi-definite matrix with entries G̃m

ij = 〈〈tr ei, tr ej〉〉. The initial
data for Θk

m(0) are given by the first equation in (3.25).
Our next goal is to prove energy estimates for the mth approximate weak

equation. For this we multiply (3.24) by (Θ�
k,m)′ and sum up in 
 = 1, . . . ,m

to get, with |∇gu|2 := gab∂au∂bu,

∫ t

0

(
1

2

d

dt

(
‖Θ′

k,m‖2L2(B) + ‖|∇gΘk,m|‖2L2(B) + ‖γ− 1

2 trΘ′
k,m‖2L2(∂B)

))
ds

=

∫ t

0

(
1

2
〈Θ′

k,m,Θ′
k,m(gtα∂α log |g|)〉+

1

2
〈∂aΘk,m,Θ′

k,m(gaα∂α log |g|)〉
)
ds

+

∫ t

0

(
〈Θk,m,Θ′

k,m∂ag
ta〉+ 1

2
〈∂tgab∂aΘk,m, ∂bΘk,m〉

)
ds

+

∫ t

0

(2k + 1

2
〈〈(∂tγ−1)Θ′

k,m,Θ′
k,m〉〉+ 〈〈fh, trΘ′

k,m〉〉

+ 〈Fk,Θ
′
k,m〉+ 〈Fa

k , ∂aΘ
′
k,m〉

)
ds.

(3.26)

To obtain an energy estimate, we need to bound the initial norms
‖|∇gΘk,m(0)|‖L2(B), ‖Θ′

k,m(0)‖L2(B), and ‖trΘ′
k,m(0)‖L2(∂B). The first term,

‖|∇gΘk,m(0)|‖L2(B), can be bounded by the H1(B) norm of θ0. For the time

derivatives we multiply the second equation in (3.25) by (Θ�
k,m)′(0) and sum

13To see that Gm is positive semi-definite, let gm(x) be the m×m matrix with
entries ei(x)ej(x). For each x, gm(x) has m− 1 zero eigenvectors (take m− 1 lin-
early independent vectors which are perpendicular to �e(x) := (e1(x), . . . , em(x))ᵀ)
and one positive eigenvector (namely �e(x)) with eigenvalue ‖�e(x)‖2

Rm . In particular
gm(x) is positive semi-definite for each x. Then note that for each constant vector
X0 ∈ R

m

Xᵀ
0G

mX0 =

∫
∂B

Xᵀ
0 g

m(x)X0γ
−1dS(x) ≥ 0.
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up in 
 = 1, . . . ,m to get

‖Θ′
k,m(0)‖2L2(B) + ‖trΘ′

k,m(0)‖2L2(∂B)

≤ ‖θk+1‖L2(B)‖Θ′
k,m(0)‖L2(B) + ‖θ̃k+1‖L2(∂B)‖trΘ′

k,m(0)‖L2(∂B),

from which it follows that

‖Θ′
k,m(0)‖2L2(B) + ‖trΘ′

k,m(0)‖2L2(∂B) ≤ ‖θk+1‖2L2(B) + ‖θ̃k+1‖2L2(∂B).

To obtain the uniform bounds on Θk,m(t), we use (3.26) to get

sup
t∈[0,T ]

(
‖Θ′

k,m‖2L2(B) + ‖|∇gΘk,m|‖2L2(B) + ‖trΘ′
k,m‖2L2(∂B)

)
≤ ‖θk‖2H1(B) + ‖θk+1‖2L2(B) + ‖θ̃k+1‖2L2(∂B)

+

∫ T

0
(‖fk‖L2(∂B)‖trΘ′

k,m‖L2(∂B) dt

+
2k + 1

2

∫ T

0
‖∂tγ−1‖L∞(∂B)‖Θ′

k,m‖2L2(∂B)dt

+

∫ T

0
‖Fk‖L2(B)‖Θ′

k,m‖L2(B) dt+

∣∣∣∣
∫ T

0

∫
B
Fa
k∂aΘ

′
k,m dy dt

∣∣∣∣
+

∫ T

0
(‖g‖L∞(B)‖∂t,y log |g|‖L∞(B) + ‖∂t,yg‖L∞(B))

× (‖Θ′
k,m‖2L2(B) + ‖∂yΘk,m‖2L2(B)) dt.

The term
∫ T
0

∫
B Fa

k∂aΘ
′
k,m dy dt needs some special care:

∫ T

0

∫
B
Fa
k∂aΘ

′
k,m dy dt =−

∫ T

0

∫
B
∂tFa

k∂aΘk,mdy dt

+

∫
B
Fa
k (T )∂aΘk,m(T )dy −

∫
B
Fa
k (0)∂aΘk,m(0)dy,

which gives

∣∣∣∣
∫ T

0

∫
B
Fa
k∂aΘ

′
k,m dy dt

∣∣∣∣ �
∫ T

0
‖∂tFa

k (t, ·)‖2L2(B)dt

+

∫ T

0
‖∇gΘk,m(t, ·)‖2L2(B)dt



Well-posedness of free boundary hard phase fluids 323

+ δ sup
t∈[0,T ]

‖∇gΘk,m(t, ·)‖2L2(B)

+ Cδ sup
t∈[0,T ]

‖Fa
k (t, ·)‖2L2(B),

where δ > 0 is sufficiently small. Then it follows from Gronwall that

sup
t∈[0,T ]

(
‖Θ′

k,m‖L2(B) + ‖Θk,m‖H1(B) + ‖trΘ′
k,m‖L2(∂B)

)
≤ C1e

C2T
(
‖θk‖H1(B) + ‖θk+1‖L2(B) + ‖θ̃k+1‖L2(∂B) + ‖fk‖L2([0,T ];L2(∂B))

+ ‖Fk‖L2([0,T ];L2(B)) + ‖Fa
k ‖L∞([0,T ];L2(B))

)
.

(3.27)

Here the constants C1 and C2 depend only on

‖g‖L∞([0,T ]×B), ‖∂t,yg‖L∞([0,T ]×B), ‖g−1‖L∞([0,T ]×B), ‖∂t,yg−1‖L∞([0,T ]×B),

‖γ−1‖L∞([0,T ]×∂B), ‖∂tγ−1‖L∞([0,T ]×∂B).

Estimate (3.27) is the main energy estimate on Θk,m which allows us to

pass to a limit. To get a bound on Φm(Θk,m)′′ note that by (3.24) and the

definition of Φk,m, for any v ∈ H1(B)

(Φm(Θk,m)′′, v) = (Φm(Θk,m)′′, Pmv)

= 〈〈fk, trPmv〉〉+ 〈Fk, Pmv〉 − 〈Fa
k , ∂aPmv〉 − L(Θk,m, Pmv).

Appealing to the bounds (3.27) we get14

‖Φm(Θk,m)′′‖L2([0,T ];(H1(B))∗) ≤ C,

where C depends on the upper bounds on the right-hand side of (3.27). This

means that Θk,m ∈ L2([0, T ];H1(B)), Θ′
k,m ∈ L2([0, T ];L2(B)), (trΘk,m)′ ∈

L2([0, T ];L2(∂B)), and Φ(Θk,m)′′ ∈ L2([0, T ]; (H1(B))∗), and they form

bounded sequences, and hence have weak limits (along a subsequence) in the

same spaces. Let Θk denote the limit of Θk,m and U the limit of Φm(Θk,m).

We claim that U = Φ(Θk) and that Θk satisfies (3.14). For the former

claim suppose v :=
∑M

�=1 v
�e� is element in H1(B) belonging to the span of

14Since trΘk,m and trΘ′
k,m are well defined, uniform (H1(B))∗ bounds on

Φm(Θk,m) and Φm(Θk,m)′ also follow from the bounds on Θk,m, Θ′
k,m, and trΘ′

k,m.
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{e1, . . . , eM} for some M . Then

(Φ(Θk), v) = 〈Θk, v〉+ 〈〈trΘk, γ
−1tr v〉〉 = lim

m→∞
〈Θk,m, v〉

+ lim
m→∞

〈〈trΘk,m, γ−1tr v〉〉

= lim
m→∞

〈Θk,m, Pm v〉+ lim
m→∞

〈〈trΘk,m, γ−1trPm v〉〉

= lim
m→∞

(Φm(Θk,m), v) =: (U, v).

Since elements v of this form are dense in H1(B), it follows that U and

Φ(Θk) agree as elements of (H1(B))∗. Since Φm(Θk,m)′′ ⇀ U ′′ it follows

that Φm(Θk,m)′′ ⇀ Φ(Θ)′′. Indeed, for any smooth compactly supported (in

(0, T )) ϕ : (0, T ) → H1(B)

∫ T

0
(Φ(Θk), ϕ

′′)dt = lim
m→∞

∫ T

0
(Φm(Θk,m), ϕ′′)dt

= lim
m→∞

∫ T

0
(Φm(Θk,m)′′, ϕ)dt.

Using a similar argument as above, starting with elements of the form v :∑M
�=1 v

�e�, we can pass to the limit in (3.24) and conclude that Θk is a

solution of (3.14), and the initial data are attained. Finally, the energy

estimates (3.23) follows from passing to the limit in (3.27).

Uniqueness. To prove uniqueness (to ease notation we consider only

the case k = 0, but the proof easily extends to other values of k) suppose Θ

is a solution with initial data θ0, θ1, θ̃1, and sources f , F , and F all equal

to zero, and for some fixed s ∈ (0, T ) let

ζ(t) :=

{
−
∫ s
t Θ(τ)dτ, t ≤ s

0, t ≥ s
.

Then ζ(t) ∈ H1(B) for each t so integrating (3.14) with v = ζ(t) gives

∫ s

0
(Φ(Θ)′′, ζ)dt+

∫ s

0

(
B(Θ, ζ) + C(Θ′, ζ) +D((trΘ)′, ζ) + E(trΘ, ζ)

)
dt

= 0.

Note that ζ ′(t) = Θ(t) for t ≤ s, so in particular ζ ′(0) = 0. Also by definition

ζ(t) = 0 for t ≥ s. Since Θ has zero initial data by assumption, it follows
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that∫ s

0
(Φ(Θ)′′, ζ)dt = −

∫ s

0
(Φ(Θ)′, ζ ′)dt

= −
∫ s

0
〈Θ′,Θ〉dt

−
∫ s

0

(
〈〈(trΘ)′, γ−1trΘ〉〉+ 〈〈trΘ, (γ−1)′trΘ〉〉

)
dt

= −1

2
‖Θ(s)‖2L2(B) −

1

2
‖γ− 1

2 trΘ‖2L2(∂B)

−
∫ s

0
〈〈trΘ, (γ−1)′trΘ〉〉dt.

Next replacing Θ by ζ ′ and integrating by parts we can write

B(Θ, ζ) =
1

2
∂t〈∂aζ, gab∂bζ〉 −

1

2
〈∂aζ, (∂tgab)∂bζ〉+

1

2
〈ζ ′, (∂aζ)gaα∂α log |g|〉

+
1

2
〈ζ ′, ζ∂a(gaα∂α log |g|)〉

− 1

2
〈〈ζ ′, ζgrα∂α log |g|〉〉 − 〈〈ζ ′, ζ∂tgtr〉〉+ 〈ζ ′, (∂aζ)∂tgta〉

+ 〈ζ ′, ζ∂2
tag

ta〉.

Similar calculations give

C(Θ′, ζ) = 2∂t〈ζ ′, gta∂aζ〉+ 〈ζ ′, (∂agta)ζ ′〉+ 〈〈ζ ′, gtrζ ′〉〉 − 2〈ζ ′, (∂tgta)∂aζ〉

− 1

2
∂t〈ζ ′, ζgtα∂α log |g|〉

+
1

2
〈ζ ′, ζ ′gtα∂α log |g|〉+

1

2
〈ζ ′, ζ∂t(gtα∂α log |g|)〉+ ∂t〈ζ ′, ζ∂agta〉

− 〈ζ ′, ζ ′∂agta〉 − 〈ζ ′, ζ∂a∂tgta〉,

and

D((trΘ)′, ζ) = −∂t〈〈tr ζ ′, gtrtr ζ〉〉+ 〈〈tr ζ ′, gtrtr ζ ′〉〉+ 〈〈tr ζ ′, (∂tgtr)tr ζ〉〉
− 2∂t〈〈tr ζ ′, (γ−1)′tr ζ〉〉+ 2〈〈tr ζ ′, (γ−1)′trζ ′〉〉
+ 2〈〈tr ζ ′, (γ−1)′′trζ〉〉,

as well as

E(trΘ, ζ) = −〈〈tr ζ ′, (γ−1)′′tr ζ〉〉
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Putting everything together (and keeping in mind that ζ ′(0) = ζ(s) = 0) we
arrive at

‖∇gζ(0)‖2L2(B) + ‖Θ(s)‖2L2(B) + ‖trΘ(s)‖2L2(∂B)

≤ C

∫ s

0
(‖ζ(t)‖2H1(B) + ‖ζ ′(t)‖2L2(B) + ‖tr ζ ′(t)‖2L2(∂B))dt

where the constant C depends only on

sup
0≤t≤T

2∑
k=0

(
‖∂kg‖L∞(B) + ‖∂k

t γ‖L∞(∂B) + ‖∂kγ−1‖L∞(∂B)

)
.

Since ζ(0) = −
∫ s
0 ζ ′(t)dt we can add ‖ζ(0)‖2L2(B) to the left-hand side above

to get (with possible different C but with the same dependence on the co-
efficients)

‖ζ(0)‖2H1(B) + ‖Θ(s)‖2L2(B) + ‖trΘ(s)‖2L2(∂B)

≤ C

∫ s

0
(‖ζ(t)‖2H1(B) + ‖Θ(t)‖2L2(B) + ‖trΘ(t)‖2L2(∂B))dt.

Now let

w(t) :=

∫ t

0
Θ(τ)dτ

so that for t ≤ s

ζ(t) = w(t)− w(s).

It follows that

‖w(s)‖2H1(B) + ‖Θ(s)‖2L2(B) + ‖trΘ(s)‖2L2(∂B)

≤ C

∫ s

0
(‖w(t)− w(s)‖2H1(B) + ‖Θ(t)‖2L2(B) + ‖trΘ(t)‖2L2(∂B))dt,

which in turn gives

(1− 2Cs)‖w(s)‖2H1(B) + ‖Θ(s)‖2L2(B) + ‖trΘ(s)‖2L2(∂B)

≤ 2C

∫ s

0
(‖w(t)‖2H1(B) + ‖Θ(t)‖2L2(B) + ‖trΘ(t)‖2L2(∂B))dt.



Well-posedness of free boundary hard phase fluids 327

If s ≤ s0 with s0 < 1
4C , it follows from Gronwall that Θ(s) ≡ 0 on [0, s0].

But since the choice of s0 is independent of the choice of the time origin, we
can repeat the argument to get that Θ(s) ≡ 0 on [s0, 2s0] and continue in
this way to get that Θ(s) ≡ 0 on [0, T ].

Recursive relation. It remains to prove the recursive relation Θ′
j−1 =

Θj . Let us define Γ(t) := Θj−1(0) +
∫ t
0 Θj(s)ds. By the compatibility condi-

tion, we have

Γ(0) = Θj−1(0), (Φ(Γ)′(0), v) = (Φ(Θj−1)
′(0), v), ∀v ∈ H1(B).(3.28)

Let us consider

Z(t) := (Φ(Γ)′′(t), v) + L(Γ(t), v) + (j − 1)〈〈C̃B(Γ(t)), v〉〉.

We have

Z ′(t) =(Φ(Θj)
′′(t), v) + L(Θj(t), v) + j 〈〈C̃B(Θj(t)), v〉〉

+
(
(Φ(Γ)′′(t), v) + L(Γ(t), v) + (j − 1)〈〈C̃B(Γ(t)), v〉〉

)′
− (Φ(Θj)

′′(t), v)− L(Θj(t), v)− j 〈〈C̃B(Θj(t)), v〉〉,

and according to (3.15),

(
(Φ(Γ)′′, v) + L(Γ, v) + (j − 1)〈〈C̃B(Γ), v〉〉

)′
− (Φ(Θj)

′′, v)− L(Θj , v)− j 〈〈C̃B(Θj), v〉〉

= 〈C(Γ), v〉+ 〈Ca(Γ), ∂av〉+ 〈〈CB(Γ), tr v〉〉+ (j − 1)〈〈 ˜̃CB(Γ), tr v〉〉.

By the equation satisfied by Θj , we have

Z ′ =〈Fj , v〉+ 〈Fa
j , ∂av〉+ 〈〈fj , tr v〉〉+ 〈C(Γ), v〉+ 〈Ca(Γ), ∂av〉

+ 〈〈CB(Γ), tr v〉〉+ (j − 1)〈〈 ˜̃CB(Γ), tr v〉〉
=〈F ′

j−1, v〉+ 〈Fa
j−1

′, ∂av〉+ 〈〈f ′
j−1, tr v〉〉+ 〈C(Γ)− C(Θj−1), v〉+ 〈Ca(Γ)

− Ca(Θj−1), ∂av〉

+ 〈〈CB(Γ)− CB(Θj−1), tr v〉〉+ (j − 1)〈〈 ˜̃CB(Γ)− ˜̃CB(Θj−1), tr v〉〉,

which gives

Z(t)− Z(0) = 〈Fj−1(t)− Fj−1(0), v〉+ 〈Fa
j−1(t)−Fa

j−1(0), ∂av〉
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+ 〈〈fj−1(t)− fj−1(0), tr v〉〉

+

∫ t

0

(
〈C(Γ)− C(Θj−1), v〉+ 〈Ca(Γ)− Ca(Θj−1), ∂av〉

+ 〈〈CB(Γ)− CB(Θj−1), tr v〉〉
)
ds

+ (j − 1)

∫ t

0
〈〈 ˜̃CB(Γ)− ˜̃CB(Θj−1), tr v〉〉ds.

In view of (3.28), this implies that

Z(t) = 〈Fj−1(t), v〉+ 〈Fa
j−1(t), ∂av〉+ 〈〈fj−1(t), tr v〉〉

+ (j − 1)

∫ t

0
〈〈 ˜̃CB(Γ)− ˜̃CB(Θj−1), tr v〉〉ds

+

∫ t

0

(
〈C(Γ)− C(Θj−1), v〉+ 〈Ca(Γ)− Ca(Θj−1), ∂av〉+ 〈〈CB(Γ)

− CB(Θj−1), tr v〉〉
)
ds.

Comparing with the equation satisfied by Θj−1, it follows that w(t) :=
Γ(t)−Θj−1(t) has zero initial data and satisfies

(Φ(w)′′(t), v) + L(w(t), v) + (j − 1)〈〈C̃B(w), tr v〉〉

=

∫ t

0

(
〈C(w(s)), v〉+ 〈Ca(w(s)), ∂av〉+ 〈〈CB(w(s)), tr v〉〉

+ (j − 1)〈〈 ˜̃CB(w), tr v〉〉
)
ds.

Since this is a homogeneous equation with zero initial data, we can argue as
in the proof of uniqueness to conclude that w ≡ 0, which implies Θ′

j−1 = Θj

as desired.

As discussed earlier, to prove higher order regulairty we need to prove
Sobolev estimates on Θ, using the fact that Θ satisfies the conclusions of
Proposition 3.2. The main ingredient for this is the following elliptic estimate
for weak solutions of the Neumann problem.

Lemma 3.5. Suppose u ∈ H1(B) satisfies

〈gab∂au, ∂bv〉 = 〈〈w, tr v〉〉+ 〈W, v〉, ∀v ∈ H1(B),(3.29)
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for some w ∈ H
1

2 (∂B) and W ∈ L2(B). Then u ∈ H2(B) and for some
constant depending only on g

‖u‖H2(B) ≤ C(‖w‖
H

1
2 (∂B)

+ ‖W‖L2(B)).(3.30)

More generally, for each k if g,W ∈ Hk(B) and w ∈ Hk+ 1

2 (∂B), then
u ∈ Hk+2(B) and there exists a function Pk depending polynomially on its
arguments such that

‖u‖Hk+2(B) ≤ Pk(‖g‖H5(B), ‖g‖Hk(B), ‖w‖Hk+1
2 (∂B)

, ‖W‖Hk(B)).(3.31)

For future reference in the treatment of the equation for DV σ
2 we also

record the following elliptic estimates for the Dirichlet problem.

Lemma 3.6. Suppose u ∈ H1
0 (B) satisfies

〈gab∂au, ∂bv〉 = 〈W, v〉, ∀v ∈ H1
0 (B),

for some W ∈ L2(B). Then u ∈ H2(B) and for some constant depending
only on g

‖u‖H2(B) ≤ C‖W‖L2(B).(3.32)

More generally, for each k if g,W ∈ Hk(B), then u ∈ Hk+2(B) and there
exists a function Pk depending polynomially on its arguments such that

‖u‖Hk+2(B) ≤ Pk(‖g‖H5(B), ‖g‖Hk(B), ‖W‖Hk(B)).(3.33)

Lemmas 3.5 and 3.6 are standard elliptic estimates with transversal and
Dirichlet boundary conditions respectively, and their proofs, which we omit,
can be found in many references. See for instance [23]. We can now prove
our first Sobolev estimate on the lower derivatives of Θ.

Proposition 3.7. Suppose Θ is as in Proposition 3.2. Then for each k ≤
K − 5 and 2a ≤ K − 3− k,

∂a
yΘk ∈ L∞([0, T ];L2(B))

and for each τ ≤ T

‖∂a
yΘk(τ)‖L∞([0,τ ];L2(B))

(3.34)
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≤ Pk

(
sup
t≤τ

∑
�≤2a+k−2

(‖∇Θ�(t)‖L2(B) + ‖Θ�+1(t)‖L2(B) + ‖Θ�+1(t)‖L2(∂B)),

‖g‖L∞([0,τ ];Hmax{a−2,5}(B)),
∑
�≤k

‖∂�
tf‖L∞([0,T ];Ha− 3

2 (B))

)
,

(3.35)

where Pk is a function (not the same as in Lemma 3.5) depending polyno-
mially on its arguments.

Proof. The argument is a simpler (at linear lever) version of the proof of
Proposition 2.11, so we will be brief on details. By Proposition 3.2, we al-
ready know that

Θk ∈ H1(B), k ≤ K − 5.

We proceed inductively. First note, that in view of Proposition 3.9 we can
apply Lemma 3.5 to Θk, k ≤ K − 7, to get

Θk ∈ H2(B), k ≤ K − 7.

This estimate now allows us to improve the regularity of the lower deriva-
tives. Indeed, using the higher regularity statement in Lemma 3.5 it follows
that

Θk ∈ H3(B), k ≤ K − 9,

and inductively, for 3 ≤ m ≤ 1
2(K − 1),

Θk ∈ Hm−1(B), k ≤ K − (2m+ 1).

The desired estimate (3.35) also follows from Lemma 3.5.

Remark 3.8. Using Proposition 3.7, we can control the L∞([0, T ];L∞(B))
norm for the lower derivatives. More precisely, under the assumptions of
Proposition 3.7, we have, for a ≥ 2,

‖∂a−2
y Θk(τ)‖L∞([0,τ ];L∞(B))

(3.36)

≤ Pk

(
sup
t≤τ

∑
�≤2a+k−4

(‖∇Θ�(t)‖L2(B) + ‖Θ�+1(t)‖L2(B) + ‖Θ�+1(t)‖L2(∂B)),
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‖g‖L∞([0,τ ];Hmax{a−2,5}(B)),
∑
�≤k

‖∂�
tf‖L∞([0,T ];Ha− 3

2 (B))

)
.

(3.37)

Based on the Sobolev estimate (3.37), under the assumptions (3.22), we

have the following improved version of Proposition 3.2:

Proposition 3.9. Suppose (3.22) holds and that there exist

θk ∈ H1(B), θk+1 ∈ L2(B), θ̃k+1 ∈ L2(∂B), k = 0, ...,K

such that the following two conditions hold:

• Regularity: For k = 0, . . . ,K − 1

〈θk+2, v〉+ 〈〈θ̃k+2, γ
−1tr v〉〉+ L(θk, v) + k〈〈C̃B(θk), v〉〉

= 〈〈fk(0), tr v〉〉+ 〈Fk(0), v〉+ 〈Fa
k (0), ∂av〉.

Here fk(0), Fk(0), Fa
k (0) are defined as in Proposition 3.2.

• Compatibility: θ̃k = tr θk for k = 1, . . . ,K.

Then there exists a unique Θk satisfying (3.8) and (3.11), such that for all

v ∈ H1(B) equation (3.14) holds for almost every t ∈ [0, T ]. The solution

satisfies

sup
t∈[0,T ]

(
‖Θ′

k‖L2(B) + ‖Θk‖H1(B) + ‖trΘ′
k‖L2(∂B)

)
≤ C1e

C2T
(
‖θk‖H1(B) + ‖θk+1‖L2(B) + ‖θ̃k+1‖L2(∂B) + ‖fk‖L2([0,T ];L2(∂B))

+ ‖Fk‖L2([0,T ];L2(B)) + ‖Fa
k ‖L∞([0,T ];L2(B))

)
.

(3.38)

In these estimates C1, C2, and C3 are constants depending on the various

norms of g, tr g, γ, γ−1 appearing in (3.22). Moreover, we have Θ′
k−1 = Θk

for k = 1, ...,K, and there exist functions Pk depending polynomially on

their arguments such that (3.35) holds for k ≤ K and 2a+ k ≤ K + 2.

Proof. The proof is similar to that of Proposition 3.2. The only difference

is that when most derivatives fall on the coefficients g, γ we bound these

terms in L2 and bound the lower order derivatives of Θ in L∞(B), using the

Sobolev estimate (3.37). We omit the routine details.



332 Shuang Miao et al.

We turn to the equation for DV σ
2. The overall proofs of existence,

uniqueness, and higher regularity are similar to those in Propositions 3.2

and 3.9. Therefore, we will omit most details and concentrate on deriving

the appropriate energy estimate.

Lemma 3.10. Assume (3.22) hold. Given H ∈ L2([0, T ];L2(B)) and Ha ∈
L∞([0, T ];L2(B)), suppose Λ satisfying (3.17) and (3.19) is a weak solution

of

(Λ′′, v) + Lσ(Λ, v) = 〈H, , v〉+ 〈Ha, ∂av〉, ∀v ∈ H1
0 (B),(3.39)

satisfying

sup
t∈[0,T ]

(‖Λ′‖2L2(B) + ‖Λ‖2H1(B))

≤ c0(‖λ0‖2H1(B) + ‖λ1‖2L2(B) + ‖H‖2L2([0,T ];L2(B)) + ‖H‖2L∞([0,T ];L2(B))).

(3.40)

If ∂yHa ∈ L1([0, T ];L2(B)), then Λ satisfies15

‖∇Λ‖2L2([0,T ];L2(∂B))

≤ c1
(
‖λ0‖2H1(B) + ‖λ1‖2L2(B) + ‖H‖2L2([0,T ];L2(B)) + ‖∂aHa‖2L2([0,T ];L2(B))

)
,

(3.41)

for some constant c1 depending only on the first two derivatives of g and

on c0. If instead Λ can be written as ∂tΓ, with Γ ∈ L∞([0, T ];H1(B)), and

∂tH ∈ L2([0, T ];L2(B)), Hr ∈ L2([0, T ];L2(∂B)), then ‖∂aHa‖2L2([0,T ];L2(B))

15Here ∇Λ on the boundary ∂B is in the weak sense: Suppose Λ ∈ H1(B) is a

solution to (3.39). Then its weak normal derivative ∇w
nΛ on [0, T ]× ∂B is defined

such that for any ϕ ∈ C∞([0, T ]×B), we have

∫ T

0

∫
∂B

〈〈∇w
nΛ, ϕ〉〉dS dt :=

∫ T

0

∫
B

〈gab∂aΛ, ∂bϕ〉dy dt

+

∫ T

0

∫
B

(
(Λ′′, ϕ)− 〈H,ϕ〉 − 〈Ha, ∂aϕ〉+ L̃σ(Λ, ϕ)

)
dy dt.

Here L̃σ(Λ, ϕ) := Lσ(Λ, ϕ)− 〈gab∂aΛ, ∂bϕ〉.
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on the right-hand side of (3.41) can be replaced by

‖Hr‖2L2([0,T ];L2(∂B)) + ‖H‖2L2([0,T ];L2(B)) +

∫ T

0

∫
B
|∂tH||∂2

t,yΓ|dydt

+ sup
t∈[0,T ]

∫
B
|H||∂2

t,yΓ|dy.
(3.42)

Proof. This is a standard estimate for the wave equation with Dirichlet

boundary conditions. See for instance [14, 26, 6] and Lemma 2.4 above. We

sketch the proof for completeness. Note that by (3.22) the metric g is at

least C3. We approximate (λ0, λ1), H, and Ha by regular (say C3) functions

(λε
0, λ

ε
1), H

ε, and Hε,a such that

(λε
0, λ

ε
1) → (λ0, λ1) in H1

0 (B)× L2(B),

Hε → H in L2([0, T ];L2(B)),

∂aH
ε,a → ∂aH

a in L2([0, T ];L2(B)),

and satisfying appropriate compatibility conditions. Let Λε be the solution

of the corresponding wave equation

�gΛ
ε = hε := Hε − ∂aHε,a, (Λε(0), ∂tΛ

ε(0)) = (λε
0, λ

ε
1).

Multiplying by a general multiplier QΛε := qγ∂γΛ
ε we get

(�gΛ
ε)(QΛε) = ∂α

(
gαβqγ(∂γΛ

ε)(∂βΛ
ε) +

1

2
qαgγβ(∂βΛ

ε)(∂γΛ
ε)
)(3.43)

+
1

2
(∂α log |g|)qγgαβ(∂βΛε)(∂γΛ

ε)− gαβ(∂αq
γ)(∂βΛ

ε)(∂γΛ
ε)(3.44)

+
1

2
∂γ(g

αβqγ)(∂αΛ
ε)(∂βΛ

ε).

We now take qα = gαr. Integrating (3.43) over [0, T ] × B we see that the

contribution on the timelike boundary [0, T ]× ∂B is

(grα∂αΛ
ε)2 − 1

2
grrgαβ(∂αΛ

ε)(∂βΛ
ε).

decomposing into polar coordinates, and noting that the tangential deriva-

tives (that is, ∂t and the angular derivatives tangential to ∂B) of Λε are zero
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(because Λε is constant on [0, T ]× ∂B) this expression simplifies to

1

2
(grr∂rΛ

ε)2.

Since grr is bounded away from zero and the tangential derivatives of Λε are
zero on [0, T ]×∂B this controls |∂t,yΛε|2 on [0, T ]×∂B. Therefore integration
of (3.43) gives

∫ T

0

∫
∂B

|∂t,yΛε|2dS dt � sup
t∈[0,T ]

∫
B
|∂t,yΛε|2dy +

∫ T

0

∫
B
|∂t,yΛε|2dy dt

+
∣∣∣ ∫ T

0

∫
B
(�Λε)(QΛε)dy dt

∣∣∣.

(3.45)

Estimate (3.41) for Λε follows after adding a suitably large multiple of (3.40),
and the corresponding estimate for Λ follows by taking the limit ε → 0. For
(3.42) we simply integrate by parts in the last term in (3.45) (here Γε is
defined such that ∂tΓ

ε = Λε):

∫ T

0

∫
B
(∂aHε,a)QΛεdydt =

∫ T

0

∫
∂B

Hε,rQΛεdSdt

−
∫ T

0

∫
B
Hε,a(∂aq

α)∂αΛ
εdydt

−
∫ T

0

∫
B
Hε,aqα∂t∂

2
aαΓ

εdydt

=

∫ T

0

∫
∂B

Hε,rQΛεdSdt

−
∫ T

0

∫
B
Hε,a(∂aq

α)∂αΛ
εdydt

+

∫ T

0

∫
B
(∂tHε,a)qα∂2

aαΓ
εdydt

−
∫
B
Hε,aqα∂2

aαΓ
εdy

∣∣∣T
0
.

This gives the desired estimate for Λε and the corresponding estimate for Λ
follows by taking limits.

We can now state the analogue of Proposition 3.9 for Λ.
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Proposition 3.11. Suppose (3.22) holds and that there exist

λk ∈ H1
0 (B), λk+1 ∈ L2(B), k = 0, ...,K

such that

〈λk+2, v〉+ Lσ(λk, v) = 〈Fσ,k(0), v〉+ 〈Fa
σ,k(0), ∂av〉.

Here Fσ,k and Fa
σ,k and their initial values are defined as in Proposition 3.2

using (3.20). Then there exists a unique Λk satisfying (3.17) and (3.19), such
that for all v ∈ H1

0 (B) equation (3.21) holds for almost every t ∈ [0, T ]. The
solution satisfies

sup
t∈[0,T ]

(
‖Λ′

k‖L2(B) + ‖Λk‖H1(B)

)
+ ‖∇Λk‖2L2([0,T ];L2(∂B))

≤ C1e
C2T

(
‖λk‖H1(B) + ‖λk+1‖L2(B) + ‖Fσ,k‖L2([0,T ];L2(B))

+ ‖Fσ,k‖L∞([0,T ];L2(B))

)
.

(3.46)

In these estimates C1, C2, and C3 are constants depending on the vari-
ous norms of g appearing in (3.22). Moreover, we have Λ′

k−1 = Λk for
k = 1, ..., k, and for for some function Pk depending polynomially on its
arguments such that for k ≤ K and 2a+ k ≤ K + 2

‖∂a
yΛk(τ)‖L∞([0,τ ];L2(B))

≤ Pk

(
sup
t≤τ

∑
�≤2a+k−2

(‖∇Λ�(t)‖L2(B) + ‖Λ�+1(t)‖L2(B)),

‖g‖L∞([0,τ ];Hmax{a−2,5}(B)),
∑
�≤k

‖∂�
tFσ‖L2([0,T ];Ha(B))

)
.

(3.47)

Proof. The proof is similar to those of Propositions 3.2, 3.9, and 3.7, where
for higher derivatives we use Lemma 3.6 instead of 3.5 (see also [26, 14]).
The only part that requires separate treatment is the estimate on
‖∇Λk‖L2([0,T ];L2(∂B)) in (3.46). For this we may assume that we already
have a weak solution satisfying (3.46) without ‖∇Λk‖L2([0,T ];L2(∂B)) on the
left-hand side, and then appeal to Lemma 3.10 to finish the proof. Here, note
that Γ on the right-hand side of (3.42) corresponds to Λk−1 so the corre-
sponding contribution can be bounded using Cauchy-Schwarz with a small
constant, and the elliptic estimate (3.32) applied to (3.21) with k replaced
by k − 1. See the calculation leading to (3.27) for a similar estimate.
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Before moving on to the iteration for the nonlinear system, we need one
more estimate for Θ corresponding to Lemma 2.18. In our scheme, this will
be necessary to guarantee the second assumption in (3.22).

Lemma 3.12. Under the assumptions of Proposition 3.9, for any 
 ≤ K−1

‖∇Θ�‖2L2([0,T ];L2(∂B)) �
∑
j≤�

(
‖Fj‖2L2([0,T ];L2(B)) + ‖Fj‖2L2([0,T ];L2(B))

+ ‖fj‖2L2([0,T ];L2(∂B))

)

+ ‖θ�‖2H1(B) + ‖θ�+1‖2L2(B) + ‖θ̃�+1‖2L2(∂B)

+ ‖(trΘ�)
′‖2L2([0,T ];L2(∂B)) + ‖(trΘ�)

′′‖2L2([0,T ];L2(∂B)),

where the implicit constant depends only on g, γ, and their first three deriva-
tives.

Proof. The proof is essentially the same as that of Lemma 2.18 adapted
to the Lagrangian setting as in the proof of Lemma 3.10. We omit the
details.

4. The iteration

With the linear theory and energy estimates at hand, the proof of Theo-
rem 1.1 is a more or less routine application of Picard iteration. We continue
to work with the renormalization c = 1 to simplify the notation.

Proof of Theorem 1.1. We will prove the existence for the system on the
Lagrangian side (1.41), (1.42), (1.43). We will sketch the proof of existence
of the solution (convergence of the iteration) in some detail, and uniqueness
and persistence of regularity follow from similar arguments as usual (see for
instance [27], Theorem 5.11). It is then a routine calculation to go back to
the corresponding Eulerian equations in (1.31) and (1.31), provided K is
sufficiently large. At the end, we will show how to return to the original
equation (1.20).

The differentiate equations (1.41), (1.42), (1.43): We will use Θ(m),

Λ(m), and Σ(m) to denote the iterates of V , DV σ
2, and σ2 on the Lagrangian

side, respectively. The zeroth iterates Θ(0) and Λ(0) are chosen such that they
are polynomials in t and when t = 0 they themselves and their first order
time derivatives agree with the corresponding initial data. The zeroth iter-
ate Σ(0) is defined to be the solution to the elliptic equation (1.43) where
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Θ,Λ in that equation are replaced by Θ(0),Λ(0) respectively. Given Θ(m) we
define the mth iterate of the (renormalized) Lagrangian map X by

∂(X(m))i

∂t
=

(Θ(m))i

(Θ(m))0
, i = 1, 2, 3.

The mth iterate, g(m), of the metric is then defined as

g(m) =−
(
1−

3∑
i=1

(Θ(m))i)2

((Θ(m))0)2

)
dt2 + 2

3∑
i,�=1

(Θ(m))i

(Θ(m))0
∂(X(m))i

∂y�
dtdy�

+

3∑
i,k,�=1

∂(X(m))i

∂yk
∂(X(m))i

∂y�
dykdy�.

We denote the components of the metric g(m) and the inverse metric g(m)

by g
(m)
αβ and gαβ(m) respectively. Note that these components, and their first

time derivatives, are at the same regularity level as one derivative of Θ(m).
The mth iterate of the coefficient γ is defined as

γ(m) :=

√
gαβ(m)∂αΣ

(m)∂βΣ(m)

2((Θ(m))0)2
,

and Φ(m) : H
1(B) → (H1(B))∗ by

(Φ(m)(u), v) := 〈u, v〉+ 〈〈γ−1
(m)tru, tr v〉〉.

If the mth iterate of V , DV σ
2, and σ2 are given, we define the (m + 1)st

iterates as follows: First Θ(m+1) ∈ L2([0, T ];H1(B)) is the weak solution of

(Φ(m)(Θ
(m+1))′′, v) + L(m)(Θ(m+1), v) = 〈〈f (m), tr v〉〉, ∀v ∈ H1(B),

Θ(m+1)(0) = θ0 in L2(B),

(Φ(Θ(m+1))′(0), v) = 〈θ1, v〉+ 〈〈θ̃1, tr v〉〉, ∀v ∈ H1(B).

(4.1)

Here L(m) is defined as

L(m)(u, v) := B(m)(u, v) + C(m)(u′, v) +D(m)((tru)′, v) + E(m)(tru, v),
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where

B(m) : H1(B)×H1(B) → R, C(m) : L2(B)×H1(B) → R,

D(m), E(m) : L2(∂B)×H1(B) → R,

B(m)(u, v) := 〈gab(m)∂au, ∂bv〉 −
1

2
〈∂au, vgaα(m)∂α log |g(m)|〉 − 〈∂au, v∂tgta(m)〉,

C(m)(u, v) := 2〈u, gta(m)∂av〉 −
1

2
〈u, vgtα(m)∂α log |g(m)|〉+ 〈u, v∂agta(m)〉,

D(m)(u, v) := −〈〈u, gtr(m)tr v〉〉 − 2〈〈u, (γ−1
(m))

′tr v〉〉,

E(m)(u, v) := −〈〈u, (γ−1
(m))

′′tr v〉〉.

Similarly, Λ(m+1) ∈ L2([0, T ];H1
0 (B)) is the weak solution of

((Λ(m+1))′′, v) +B(m)(Λ(m+1), v) + C(m)((Λ(m+1))′, v) + 〈F (m)
σ , v〉 = 0,

∀v ∈ H1
0 (B),

Λ(m+1)(0) = λ0, ((Λ(m+1))′(0), v) = 〈λ1, v〉, ∀v ∈ H1
0 (B),

(4.2)

where

F (m)
σ := S(Θ(m),Σ(m))

Here S is defined as in (1.46) and (Λ(m))′′ should be understood as an ele-
ment of H−1(B) := (H1

0 (B))∗, where Λ(m) is identified with an element of
H−1(B) through (Λ(m), v) := 〈Λ(m), v〉. Finally, Σ(m+1) is defined through
the transport equation ∂tΣ

(m+1) = 1
(Θ(m+1))0Λ

(m+1).

Boundedness. From now on, we will stop writing tru for the restriction
to the boundary and simply write u when there is no risk of confusion. Let16.

Em
k (T ) := sup

0≤t≤T

∑
�≤k

(‖∇t,y∂
�
tΘ

(m)(t)‖2L2(B) + ‖∇t,y∂
�
tΛ

(m)(t)‖2L2(B)

+ ‖∂�+1
t Θ(m)(t)‖2L2(∂B))

+
∑
�≤k

∫ T

0
‖∇t,y∂

�
tΛ

(m)(t)‖2L2(∂B)dt.

16Here among the components of ∇t,y∂
K
t Λ(m), the normal components

∇n∂
KΛ(m) is defined in the weak sense as in the statement of Lemma 3.10
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We claim that if T is sufficiently small, then there are constants A0 ≤ A1 ≤
· · · ≤ AK such that for all m

Em
k (T ) ≤ Ak, k = 0, . . . ,K.(4.3)

For m = 0 this holds trivially for any T , so we assume that (4.3) holds
for some m, with constant Ak to be determined, and prove it for m + 1.
Let us note a few consequences of the induction hypothesis. First, from the
Sobolev estimates in Lemmas 3.5 and 3.6 (see also Proposition 3.7) it follows
that ∑

�≤k

∑
2p+�≤k+2

(‖∂p
y∂

�
tΘ

(m)‖2L2(B) + ‖∂p
y∂

�
tΛ

(m)‖2L2(B)) ≤ CAk
,

for some constant depending on A. Also note that in in view of the transport
equation defining Σ(m+1), we can estimate ∂k

t Σ
(m+1) in terms of ∂�

tΛ
(m+1)

and ∂�
tΘ

(m+1) for 
 ≤ k − 1. It then follows from these observations that
the coefficients and source terms in the equations (4.1) for Θ(m+1) and (4.2)
for Λ(m+1) satisfy the assumptions in Propositions 3.9 and 3.11 respectively.
Since F = 0 in equation (4.1) the energy estimates in Propositions 3.9
and 3.11 imply that

Em+1
0 (T ) ≤ C0 + TC0,AK

,

where C0 depends only on the initial data. If A0 is sufficiently large and T
sufficiently small it follows that

Em+1
0 (T ) < A0

as desired. Next, again by Propositions 3.9 and 3.11

Em+1
1 (T ) ≤ C1 + C1,A0

+ TC1,AK

where C1 depends only on the initial data, and the term C1,A0
comes from the

fact that now F �= 0 after commuting one ∂t with (4.1). If A1 is sufficiently
large, relative to C1 and A0, and T sufficiently small, it follows that

Em+1
1 (T ) < A1.

We can now continue inductively in this fashion to prove (4.3) with m re-
placed by m+1. The only additional detail is that for higher values of k, we
also need to use the Sobolev estimates to bound Θ(m+1) and Λ(m+1) (and
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their lower order derivatives) in L∞ in terms of Em+1
k . Using Gronwall we

can then conclude boundedness of the higher order energies as above. We

omit the routine details. Note that after completing the proof of (4.3) we can

again appeal to the Sobolev estimates from Lemmas 3.5 and 3.6 to conclude

that

∑
k≤K

∑
2p+k≤K+2

(‖∂p
y∂

k
t Θ

(m)‖2L2(B) + ‖∂p
y∂

�
tΛ

(m)‖2L2(B)) ≤ CAK
.

Convergence. Having established that Em
K (T ) is uniformly bounded, we

prove the convergence of Θ(m), Λ(m), and Σ(m) in some lower order Sobolev

norm. The argument is standard using our energy estimates for linear sys-

tems and we will be brief. If K is sufficiently large we can assume that

equations (4.1) and (4.2) are satisfied in the strong sense. Let

Cm(t) := sup
0≤s≤t

∑
�≤5

(‖∇t,y∂
�
tΘ

(m+1)(s)−Θ(m)(s)‖2L2(B)

+ ‖∂�+1
t Θ(m+1)(s)−Θ(m)(s)‖2L2(∂B))

+ sup
0≤s≤t

∑
�≤5

‖∇t,y∂
�
tΛ

(m+1)(s)− Λ(m)(s)‖2L2(B)

+
∑
�≤5

∫ t

0
‖∇t,y∂

�
tΛ

(m+1)(s)− Λ(m)(s)‖2L2(∂B)ds.

We write the equations satisfied by Θ(m+1) and Λ(m+1) in the schematic

forms

{
�g(m)Θ(m+1) = 0, in [0, T ]×B

∂2
tΘ

(m+1) + γ(m)∇n(m)Θ(m+1) = f(Θ(m),Λ(m)), on [0, T ]× ∂B
,

and

{
�g(m)Λ(m+1) = F (Θ(m),Σ(m)), in [0, T ]×B

Λ(m+1) ≡ 0, on [0, T ]× ∂B
.

and recall that ∂tΣ
(m+1) = 1

(Θ(m+1))0Λ
(m+1). Taking differences we see that
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Θ(m+1) −Θ(m) and Λ(m+1) − Λ(m) have zero initial data and satisfy

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�g(m)(Θ(m+1) −Θ(m)) = �g(m)−g(m−1)Θ(m), in [0, T ]×B

(∂2
t + γ(m)∇n(m))(Θ(m+1) −Θ(m))

= f(Θ(m),Λ(m))− f(Θ(m−1),Λ(m−1))

− (γ(m)∇n(m) − γ(m−1)∇n(m−1))Θ(m−1), on [0, T ]× ∂B

,(4.4)

and

⎧⎪⎨
⎪⎩
�g(m)(Λ(m+1) − Λ(m)) = F (Θ(m),Σ(m))−G(Θ(m−1),Σ(m−1))

−�g(m)−g(m−1)Λ(m), in [0, T ]×B

Λ(m+1) − Λ(m) ≡ 0, on [0, T ]× ∂B

.

(4.5)

Similarly,

∂t(Σ
(m+1) − Σ(m)) =

1

(Θ(m+1))0
Λ(m+1) − 1

(Θ(m))0
Λ(m).(4.6)

Since we have already shown that all coefficients, as well as their first few

derivatives, are uniformly bounded, we can apply the energy estimates from

Propositions 3.9 and 3.11 to (4.4) and (4.5) to conclude that for some abso-

lute constant C

Cm(t) ≤ C

∫ t

0
Cm−1(t1)dt1.

Iterating this inequality gives

Cm(t) ≤ Cmtm

m!
sup
t≤T

C0(t),

proving that (Θ(m))∞m=0 and (Λ(m))∞m=0, and hence (Σ(m))∞m=0 by and el-

liptic estimates, are Cauchy sequences, converging to some Θ, Λ, and V

respectively.

Going back to (1.20): It is now not difficult to show that the undifferen-

tiated version of the equations, that is, (1.20), holds. For this we start with
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our Eulerian solutions (V,DV σ
2, σ2) which satisfy

�V = 0 in Ω, (D2
V − 1

2
(∇ασ2)∇α)Vμ = −1

2
∇αDV σ

2 on ∂Ω,

V tangent to ∂Ω,

�DV σ
2 = 4(∇μV ν)(∇μV

α)(∇αVν) + 4(∇μV ν)∇μ∇νσ
2,

DV σ ≡ 0 on ∂Ω, σ2 ≡ 1 on ∂Ω.

Let B := V αVα + σ2, Xα := DV Vα + 1
2∂ασ

2, ωμν := ∂μVν − ∂νVμ, and Yμ =

(D2
V − 1

2(∇ασ2)∇α)Vμ + 1
2∇αDV σ

2. We need to show that these quantities

are identically zero. For this we use the following equations which can be

verified by direct computation:

DV �B = 4(∇μV ν)∇μXν in Ω, DV B = 2V αXα, in Ω,

�ω = 0, in Ω, (D2
V − 1

2
(∇ασ2)∂α)ω = f(ω,DV ω,∇Y,∇X), on ∂Ω,

�Y = F (ω,∇ω,∇X,∇(2)X), in Ω, Y ≡ 0, on ∂Ω,

DV X = G(ω, Y ), in Ω.

It follows that (ω, Y,X) satisfy exactly the same type of equation17 as

(V,DV σ
2, σ2) for which we already proved a priori estimates. Therefore,

since these quantities vanish initially, they must vanish on all of Ω. Then

the equations for B imply that B is also identically zero.

5. Newtonian limit: Proof of Theorem 1.5

In this final section we present the proof of Theorem 1.5 which at this point

is an almost direct consequence of Theorem 1.1 and Proposition 2.1.

Proof of Theorem 1.5. Let Ωt := Φ(t,Ω0) where Φ denotes the flow of V

given by dΦi(t,·)
dt =

(
V

i

V
0

)
(t, ·) and let Ψc(t

′, ·) = Φ(ct′, ·) so that Ωct′ =

Ψc(t
′,Ω0) and dΨ

dt′ (t
′, x′) = cdΦdt (ct

′, x′). We work under the hypotheses of

Theorem 1.5. By Theorem 1.1, for any c > 0 we have a local in time solution

(V, σ2) to (1.20) and hence (2.1)–(2.2). By Proposition 2.1 the solution can

17The only difference is that DV X involves both ω and Y , but in our a priori
estimates we already encountered ∇(2)Dk−1

V V after commuting k derivatives. See
Lemmas 2.8, 2.9, and 2.10.
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be extended to x0 = cT1 with T1 independent of c. For each c and t′ ∈ [0, T1]
we define (with x′ := Ψc(t

′, x′0) and x′0 ∈ Ω0)

fc(t
′, x′) :=

V 0

c
(ct′,Ψc(t

′, x′0))− c, vjc(t
′, x′) :=

V j

c
(ct′,Ψc(t

′, x′0)),

hc(t
′, x′) := σ(ct′,Ψc(t

′, x′0))− c2.

We claim that (fc, v
j
c , ∂t′v

j
c , hc) converge as c → ∞. Indeed, since the higher

order energies of V and σ, as defined in Proposition 2.1, are uniformly
bounded (assuming K in the statement of the theorem is large), by the
Rellich-Kondrachov compactness theorem, there is an increasing subsequence
c� ↗ ∞ such that for each t′ ∈ [0, T ],

(fc�(c�t
′,Ψc�(t

′, ·)), vjc�(c�t
′,Ψc�(t

′, ·)), ∂t′vjc�(c�t
′,Ψc�(t

′, ·)), hc�(c�t′,Ψc�(t
′, ·)))

converge in, say, H10(Ω0) to some

(f(t′,Ψ(t′, ·)), vj(t′,Ψ(t′, ·)), ∂t′vj(t′,Ψ(t′, ·)), h(t′,Ψ(t′, ·)))

with Ψ(t′, ·) given by (1.37). Now we prove that (vj(t′, ·), ∂t′vj(t′, ·), h(t′, ·))
is a solution to the free boundary problem (1.36) (similar considerations
show that f = h + 1

2 |v|2 but we do not present the details as this is not
needed for the proof). Let us start with the following relation:

c−2σ2 − c2 = c−2

(
(V 0)2 −

3∑
i=1

(V i)2 − c4

)

=
(
c−1V 0 − c

)2 − 3∑
i=1

(
c−1V i

)2
+ 2c(c−1V 0 − c).

(5.1)

Since σ2
c , V

i
c and V

0 − c remain bounded as c → ∞, the last term on the
right above is bounded and hence. Therefore we have

c−1V 0 − c = O(c−1), as c → ∞.(5.2)

Differentiating equation (5.1), we similarly obtain that c−1∂0V
0 = O(c−1)

as c → ∞. On the other hand, based on (5.2), we have, with x′ = Ψc(t
′, x′0),

lim
�→∞

(
c−2
� V 0(ct′, x′)

∂

∂t′
+

3∑
i=1

c−1
� V i(ct′, x′)

∂

∂x′

)
→ ∂

∂t′
+

3∑
i=1

vi(t′, x′)
∂

∂x′
.

(5.3)
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Therefore, taking the limit in the second equation in (1.20) and the first

equation in (1.20) we obtain the first two lines of (1.36). The boundary

condition h = 0 also follows from taking the limit of the boundary condition

σ− c2 = 0, and the tangency condition (1, v) ∈ T (∪t′(t
′, ∂Dt′)) follows from

(5.3).

Finally, since the solution to (1.36) is unique, any convergent subse-

quence of (fc, vc, ∂tvc, hc) converges to the same limit. Therefore the entire

sequence converges to the same limit which is a solution to (1.36). This

completes the proof of Theorem 1.5.

Appendix A. Non-vanishing vorticity and general sound
speed

Here we discuss how the proof of Theorem 1.1 can be adapted with minimal

changes to treat the case of barotropic fluids (1.10)–(1.11)–(1.18)–(1.19) with

non-zero vorticity and general sound speeds. By a slight abuse of notation,

we will use σ to denote ‖V ‖. The main equation is now

∇μ(GV μ) = 0, DV V
μ +

1

2
∇μ

(
σ2
)
= 0.(A.1)

Differentiating the first equation above, a direct computation shows that

with the notation hμν := Gmμν − 2G′V μV ν , V satisfies the following acous-

tical wave equation (all indices in this appendix are raised and lowered with

respect to m):

∂μ
(
hμν∂νVα

)
+ ∂μ(Gmμνωαν) = 0 in Ω.(A.2)

Here we used the fact iV ω = 0 which can be derived as follows. Let LV be

the Lie derivative along the vectorfield V and the 1-form β be βμ := mμνV
ν .

Then the second equation in (A.1) implies:

LV β = −d σ2

Therefore we have

iV β = −σ2, ⇒ iV ω = iV dβ = LV β − d iV β = LV β + d σ2 = 0.

It is well-known that the wave equation above for V can be written as the

wave operator of a metric conformal to h applied to V , but we will not need
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this formulation. On the boundary (here DV := V μ∂μ)

(D2
V − 1

2
(∇μσ2)∂μ)Vα − 1

2
(∇μσ2)ωαμ = −1

2
∇αDV σ

2.(A.3)

Note that since V is tangent to ∂Ω and ∇σ2 normal, hμν∂μσ
2 = Gmμν∂μσ

2

on ∂Ω. The fact iV ω = 0 implies that the vorticity ω satisfies the transport

equation LV ω = 0. In coordinates this can be rewritten as

DV ωμν + (∇μV
λ)ωλν + (∇νV

λ)ωμλ = 0.(A.4)

For σ2 and DV σ
2 which are constant on the boundary, we can derive the

following interior acoustical wave equations:

∂μ(h
μν∂νσ

2) = 2G(∇μV ν)ωμν − 2hμν(∇μV
λ)(∇νVλ),(A.5)

and

∂μ(h
μν∂νDV σ

2) = F (ω, σ2, DV σ
2,∇σ2,∇DV σ

2,∇V,∇ω,∇2σ2),(A.6)

where the right-hand side is given by

F = −2DV

(
(∇μV

λ)(hμν∇νVλ +Gmμνωλν)
)

+ (∇μV
λ)(2hμν∇λ∇νσ

2 + (∇λh
μν)∇νσ

2)

−∇μ

(
(DV h

μν)∇νσ
2
)
+ (∇λσ2)∇μ(Gmμνωλν).

This term can be further simplified, but the exact structure is not impor-

tant for our purposes, except that using the relation DV V = −1
2∇σ2, the

dependencies of F on the unknowns is as stated in (A.6). At this point we

can already see that our proof of a priori estimates for (2.1) and (2.2) can

be applied to (A.2), (A.3), and (A.6) with minimal modifications. Indeed,

note that since V and ∇σ2 are respectively tangential and normal (with

respect to m) to ∂Ω, we have hμν∂μσ
2 = Gmμν∂μσ

2 = G∇νσ2. It follows
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that multiplying (A.2) by DV Vα the resulting boundary flux on ∂Ω is18

∫ T

0

∫
∂Ωt

G((∇μσ2)∂μVα)(DV Vα)dSdt,

which can be combined with (A.3) to give us control of

sup
t∈[0,T ]

∫
∂Ωt

|DV V |2dS.

Similarly, the right-hand sides of equations (A.3) and (A.6) have the same
regularity structure as those of the corresponding equations in (2.1) and
(2.2). Indeed, the contribution of σ2 can be treated exactly as before using
equation (A.5) (which amounts to the fact that it is one order lower than
DV σ

2 in terms of our energies). Moreover, the transport equation (A.4)
shows that in general Dk

V ω is of the order ∇Dk−1
V V . But as observed in

Lemmas 2.8, 2.9, and 2.10, we already encountered ∇Dk−1
V V in the right-

hand side of the boundary equation for Dk
V V , and encountered ∇(2)Dk−1

V V

18Remarkably, we can also integrate by parts in the expression
(DV Vα)∂μ(Gmμνωαν) to cancel out the boundary term 1

2 (∇μσ2)ωαμ in (A.3).
More precisely, multiplying the equation (A.2) by DV Vα (α is not summed) and
then integrating in Ω, we obtain

0 =

∫
Ω

∂μ (((h
μν∂νVα) + ∂μ(Gmμνωαν))DV Vα) dx dt

−
∫
Ω

((hμν∂νVα +Gmμνωαν) (∂μV
κ)(∂κVα)) dx dt

−
∫
Ω

(
DV

(
hμν

2
(∂νVα)(∂μVα) +Gmμνωαν∂μVα

))
dx dt

+

∫
Ω

(1
2
(DV h

μν)(∂νVα)(∂μVα) + (DV G)mμνωαν∂μVα

+Gmμν(DV ωαν)∂μVα

)
dx dt.

Except the first term on the right-hand side above, all the other integrals in Ω can
be treated as lower order terms, similar as in the irrotational hard phase case. The
first term on the right-hand side above gives a boundary integral∫

∂Ω

(
(DV Vα)(∂

νσ2)(∂νVα + ωαν)
)
dS dt,

which cancels exactly the non-coercive contributions from the left-hand side of the
equation (A.3).
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in the right-hand side of the interior equations forDk
V V andDk+1

V σ2. Finally,
it remains to check the commutator structure betweenDV and the acoustical
operator ∂μ(h

μν∂ν). But again a direct computation using the definition of
h shows that for any Θ,

[DV , ∂μ(h
μν∂ν)]Θ = −(∇μV

λ)
(
(∇λh

μν)∇νΘ+ 2hμν∇μ∇νΘ
)

+∇μ

(
(DV h

μν)∇νΘ
)
+ (∇μ(Gmμνωλν))∇λΘ.

Comparing with the commutator identity for [DV ,�] from equation (2.17),
we see that the right-hand side above has exactly the same regularity as the
case we already treated in our a priori estimates. Indeed, the only difference
is the appearance of second order derivatives of V , but these always come
with lower orders of DV and as mentioned above were already encountered
in Lemmas 2.9 and 2.10.
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